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Behavior of the reaction front between initially segregated species in a two-stage reaction
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The large-time asymptotic behavior of a two-stage reactibfr B—R, B+R—S) with initially segre-
gated reactants is described. The concentration of the reactants is found to be significantly less than the initial
concentrations in a depletion zone of width proportionalt§ wheret is time; the reaction takes place in a
thinner zone of width proportional t0”8. Similarity solutions for the chemical concentration profiles in the
reaction zone are calculated, and are compared with numerical simulations of the full partial differential
reaction-diffusion equations. The large-time asymptotic scalings reported here are the same as in the absence
of the secondary reaction, but we find that the location of the reaction zone is significantly shifted due to the
secondary reaction. The reaction zone may behave in an exotic fashion at large time, moving first one way,
then reversing its direction.
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[. INTRODUCTION sponding results have been derived by other authors when
the two diffusivities differ[3,8—10. A rigorous analysis of
The chemical reaction between initially segregated reacthe large-time behavior of th&+B—0 system has also
tants can depend sensitively upon the manner in which theeen giver{19].
reactants are brought into contact with each oflsee, for Of course, the single reactigh+ B— 0 is rather a simple
example, Ref[1]). As a consequence, the distribution of case, and other, more sophisticated reaction schemes with
products from a multistage reaction process can vary widelynitially segregated components have been analyzed. Revers-
according to the way in which the reactants are mixed, andbility of the reaction[20] gives rise to large-time asymptotic
this is of particular concern in the chemical process industryscalings that are simpler than in the irreversible case, with all
for example. The simplest prototypical problem involving length scales being diffusive, proportionaltt®; if the back-
the reaction and diffusion of initially segregated reactantsvards reaction proceeds only slowly, there is a crossover
involves their initial separation by a planar interface, with between small-time irreversible and large-time reversible re-
subsequent evolution depending only on the normal coordigimes[21-23. A ternary reactiorA+2B—C [24] and ex-
nate and time. Such a setup, with the simplest two-stagtensions to reaction schemes of the famA+nB—0 [4,25]
(also called “series-parallel” or “competitive-consecutive” have been analyzed in the large-time limit, where the
reaction schemeA+B—R, B-+R—S, is the subject of asymptotic scalings differ from those of tiet B— 0 reac-
this paper. tion scheme of G& and Raz[2]. The ternary scheme may
The single reactio®+B—R, with such initial condi- be thought of as a limit of our two-stage reaction scheme
tions, has been thoroughly analyzed in both the small- ansvhen the secondary reaction is fast. Experiments and nu-
large-time limits; numerical simulations have confirmedmerical simulations with competing reactiofis3] are in ex-
these analyses and extended them to intermediate timesgllent agreement.
where no asymptotic treatment is possife-18]. The initial The structure of the paper is as follows. In Sec. Il we
segregation of the reactants allows one to identify at earlyntroduce the two-stage reaction-diffusion problem to be
times a reaction front, which in general advances into one osolved. In Sec. lll we examine the asymptotic behavior of
other of the reactants. If the diffusivities of the reactafasts the reactions at large time, by analytical and numerical
and B differ, this reaction front may behave in an exotic means. Here, the asymptotic results are compared with nu-
fashion[6,7,11,14—17, reversing its direction twice before merical simulation of the full problem. In Sec. IV we show
settling to its large-time behavior, traveling with speed pro-that exotic behavior of the reaction front is possible before it
portional tot~ 2, Alternatively, the front may initially move settles to its large-time behavior, which depends on the ini-
in one direction, then come to a halt. Such exotic behavior igial stoichiometry. Finally, in Sec. V we summarize our con-
supported by experimental evidends). clusions.
At large time, a reaction zone, in which the chemical re-
action takes place, is surrounded by a rather wider depletion
zone, in which the concentration of one or other of the reac- Il. THE REACTION SCHEME
tants differs significantly from its initial value. In general the
reaction zone has width proportionaltt® and moves with a
speed proportional ta~*?% the depletion zone has width
proportional tot'2. These results were first derived byla
and Raz [2] in the case where the diffusivities of the two
reactants are equ#b,7,12,13, although, as these authors Ky Ky
noted, this restriction is not essential, and, indeed, corre- A+B—R, B+R—S, D

We consider the influence of a secondary reaction on the
progress of a primary reaction between reactand B,
and hence we examine the two-stage reaction
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wherek,; andk, are the rates of the two reactions. In prac- To solve the systent2), (4), and (5), we note that the
tice, of course, there may be many side reactions competinguantities
with the primary reaction, but such complexity is not consid-

ered here. u(x,t)y=2a—b+r, (6a)
We assume that the four chemical spede®, R, andS
all have equal diffusivityD. We believe that this assumption v(x,t)=a+b+2r+3s (6b)

is not essential in deriving the large-time asymptotic scalings

below, but without it we cannot make such a high degree ofatisfy, respectively, the linear diffusion equations
analytical progress. We make the problem dimensionless by

adopting k;C) ! as the time scale affd/(k,C)]*? as the du  du

length scale, wher€ is a concentration scale to be specified =2

gt gx2]
below. Then the governing equations for one-dimensional X
diffusion and reaction of the four species are
Jv _ %
da d%a Y
Farva ab, (29)
subject to the initial conditions
b %b -
—r = —ab—ebr, (2b) L(x.0)= 2 if x<0,
IX ' —q if x>0,
ar 1 if x<O
—=——+ab—ebr, (20 = ’
ot gx? v(x0 (q if x>0
Js  9%s It follows that
E = —2 + Gbr, (Zd)
28 2—q 2+q f 1+q 1-q .
u=——-——erfy, v=—F5—-—F—cerfy,
where 2 2 2 2
K, where 7=xt"%2/2. The problem may now be reduced to
€= (3) solving a pair of reaction-diffusion equations,
1
- : ” da d%a
We shall be concerned with order-one valueg @f addition 2% ab @)
to the limite—0*. As an initial condition we suppose that gt gx? ’
andB are initially segregated and that the produRtand S
are initially absent, so that sb b ,
—=—2+(26—1)ab—6bu—6b , 9
1 if x<O, gt ox
ax0=1y ¥ >0 (4a)
" xX=G for a andb [together with the initial and boundary conditions
0 if x<0 for these quantities given, respectively, in EGH. and (5)],
b(x,0) = T x<0 (4b) with r ands then being reconstructed from E@&). Note that
' g if x>0, the single-reaction schenfe+B—R may be obtained as a
special case of the two-stage reaction scheme by sedting
r(x,0=0, (40 =0. The small-time asymptotic solution to this initial-
boundary-value problem has been given elsewh&eand
s(x,0)=0. (4d)  we now turn to its large-time asymptotic behavior.
Wlth this ch0|ce .Of initial Cond_ition, t_he (_:oncer_1tration _SCﬂ'e . LARGE-TIME ASYMPTOTIC SOLUTION IN THE
C is thus the initial concentration & in dimensional units, REACTION ZONE
while qC is the initial concentration oB in dimensional
units. We apply the boundary conditions Guided by numerical experimentation with the syst&mn
(4), and (5), and by experience with the simpler single-
a(x,t)—1b(x,t),r(x,t),s(x,t)-0 as x— —oo, reaction system of Gfa and Raz [2], we suppose that at

(53 large times the reaction takes place in a reaction zone cen-
tered arounk=x;, where
a(x,t),b(x,t)—q,r(x,t),s(x,t)—-0 as x— +o,
(5b) X=utt? (10)
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andu is a constant to be determined. We seek reactant corof B. The threshold valug=2 corresponds to the stoichi-
centration profiles in the reaction zone of similarity form, ometry required for alR to convert toS[5].

with With the scaling given by Eq(13), the leading-order
equations to be satisfied by the concentration profile func-
a(x,H)=t"*A(2), b(x,t)=t"B(z), z=(x—xpt . ) tions A andB are thus
(11
. . A"=AB, (15
The exponentsy, B8, and y are determined by balancing
leading-order terms in the governing equatig@s and (9). B"—(1—2€)AB— U ezB+ ¢B2. (16

Their values can be found by considerit@, which be-

comes
The choice of correct boundary conditions to apply to this
a1 1 AR system of equations requires careful consideration. First, it is
BB (yzt 5 pt )B'] clear that the concentrations Bfand A tend to zero to the
=t*"2YB" 4 (2e—1)AB— Upet®B left and right of the reaction zone, respectively, so that
+upeztet 2B — et PB?, (12) B—0 as z—-o, A—0 as z—+w». (17
where At the right-hand side of the reaction zone, the prodrics
consumed in the secondary reaction withand hence
2—q 2+q 1
Up= ———erf3
0 2 2 2 1 R—0 as z—+w, (18
and In contrast, at the left-hand side of the reaction zdBés
o virtually absent and so the secondary reaction does not sig-
_(2+ge” nificantly deplete the concentration 8 Neither does the
! 212 primary reaction generate significant amount®oThusR is
subject to diffusion only: since the diffusion length scale for
are determined by expanding R is much greater than the width of the reaction zone, it
follows that the appropriate boundary condition is
2— 2+q B
u(x’t):T_Terf%(MJFZty 12 R'—0 as z——oo. (19

in the reaction zone fojzt” "4 <1. If we are to retain in We have found supporting evidence for the appropriateness
Eg. (12) the terms representing diffusion, consumptionfof  of these boundary conditions by careful analysis of numeri-
and B in the primary reaction, and production BfandS, ~ cal simulations of the full systeit2), (4), and(5). Of course,

then we are forced to take in order to apply the boundary conditiofk8) and(19) to the

system(15) and(16), we must translate them into boundary
a—2y=0=a+y—12=a—p, conditions onA andB. We do this by applying Eq6) and

by expandingu around the poink=x;, from which it fol-

and hence lows that in the reaction zoneu,;z~2A—B+R, and hence
Egs.(18) and(19) are to be replaced by

a=pB=2y=7%. (13
) ’ A'~—3%u, as z——», B~u;z as z—+x.
This is the same scaling as obtained byfiGand Raz[2] for (20)

the single-stage reactioA+B—R. All terms on the left-
hand side of Eq(12) are then negligible compared with

those on the right-hand side. At large times, the term A. The special casee=1/2

uget®B(z) dominates all others unlesg=0. Thus we re- Although it seems to have no particular physical signifi-
quire uy=0; this fixes the value of. to be given by cance, the special case=1/2 simplifies the system to be
solved by removingA from the equation foB”. In view of
. 2—q its relative analytical simplicity, we therefore begin by tack-
erfa =y (14 jing this case. The problem is further simplified by a rescal-
ing with
and hence determines the location of the reaction zone, 13
through Eq(10). It follows that if g> 2, there is an excess of (= (ﬂ) z
B and the reaction zone advandeftwardsinto the reservoir 2

of A; conversely, ifq<2 there is a deficit oB and the
reaction zone instead advancgéghtwardsinto the reservoir and
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N(g) B(Z) 6 T T T T T
- , 5L i
(2ud)R D 4l N

2
which yields the following boundary-value problem for @ :: M e=0.1.7 0.9 :
N(Z): = 0.9

1r-e=01 .

, ) N—O0 as (——o, 0 . . .
N”"=N<“—¢N, N~¢ as {o+c. (21 6 4 2 &0 2 4 6

The substitutiorP(£) =N(£) — /2 then makes the problem  FIG. 1. Scaled profiles foA and B in the reaction zone, for
symmetrical about =0, yielding the boundary-value prob- values ofe from 0.1 to 0.9 in steps of 0.1, according to E¢®S5)

lem and(26). All quantities are dimensionless.
w1 P~-3{ as {—-—o, into two one-parameter shooting problems, both of which
P'=P°— 3", p_1 o (22) involved shooting from the center of the domain. For general
2{ as (- ' values ofe>0, however, shooting is not the most appropri-

ate method since the full fourth-order boundary-value prob-
lem given by Eqs(15)—(17) and Eq.(20) must be solved and
the most straightforward schemes involve shooting from one
edge or other of the domain. The rapid decayAcindB to
their large}¢| behaviors makes numerical shooting impracti-
cal. Instead, for general values ef we employ a finite-

This problem is readily solved numerically by shooting with
the single parametdP(0), since an even solutiofas sug-
gested by the boundary conditiongquiresP’(0)=0. We
calculateP(0)~0.5453509.

Remarkably, the same boundary-value problem—E).
or, equivalently, Eq(22)—arises in the single-reaction prob- difference approach
lem (e=0), and has been solved by iBaand Raz [2], As for the casee=1/2 treated above, we find it conve-
whose results are consistent with ours. The value we find for . .

: . : . . nient to rescale the problem to remove the explicit appear-
P(0) is also consistent with a rigorous analytical treatmentance of the constant. . so that
of Eq. (22), which demonstrates that this value lies between b
0.53 and 0.57[19]._ Further analytical results rela_ting to the M (&) =u; ?PA(2), (249
existence and uniqueness of the solution to this boundary-

value problem are given by Hastings and McLd&6] and

Holmes[27]. N(&)=u; #*B(2), (24b)
The profile forA remains to be determined. With the res- ,
caling é=ui’z (240
M(Z)= 3 2/3A(z) (Note that this rescaling differs from that of the previous
u ' section) ThenM (&) andN(¢) satis
1
we are left to solve "=MN, (253

M'~—-1 — oo,

M”=2MN B ATTE g N"=(1—2e)MN— eéN+ eN?, (25b)

' M—0 as (—+o».
. - . bject to the bound diti
This problem is linear irM, a fact that we exploit in finding stbject to The boundary condrtions
a numerical solution to Eq23) by shooting with just one , 1 _
parameter, despite the second-order nature of the equation. M (O+2,N(§—-0 as ¢—-, (263
We first compute a solutioM =M, ({) to the equation in
(23), choosingM, (0)=1; the parameteM (0) is varied
until the asymptotic behaviorM,—0 as {—+x is ) . .
achieved. The functioM, automatically acquires a constant 1h€ resulting profiles are shown in Fig. 1 for valueseof
slope as{— —= becauseN—0 and henceM”—0 in this between 0.1 and 0.9. As the secondary reaction becomes

limit. This slope does not take the desired value-af: we ~ More rapid(i.e., ase increasep the profiles forA andB in
can, however, simply scald, by a constant factor, so that the reaction zone shift to the riglite., towards the reservoir
M=—M, /lim,_._.M, does satisfy Eq(23). of B).
In Fig. 2 we show the excellent agreement between the
asymptotic reactant profiles calculated above and direct nu-
merical simulations of Eqg2)—(5) at large time {=1000).
In solving numerically the systelfi5)—(17) and(20) for =~ The parameter values aee=0.2 andg= 1.5, which corre-
the special case=1/2, we were able to exploit special prop- spond tow~0.2546, and hence the reaction zone is centered
erties of the problem to transform the fourth-order systemabout the poink=x;, wherex;= ut?~8.05.

M(§),N(§)—§—0 as &—+. (26b)

B. The general case
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FIG. 2. Comparison between asymptotic and numerical profiles

(broken and solid lines, respectivgljor A, B, R, and S in the
reaction zone, witke=0.2 andq=1.5, att=1000. The asymptotic
profiles are computed from Eq&4)—(26) and the numerical pro-
files from Eqgs.(2)—(5). All quantities are dimensionless.

IV. BEHAVIOR OF THE REACTION ZONE

The analysis of Sec. Il provides an analytical description

PHYSICAL REVIEW B3 051102
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FIG. 3. Large-time motion of the poing,(t), wherea(xyy,,t)
=b(x,p,t), for selected values of the parameteSolid lines show
evolution ofx,, according to the full probleni2), (4), and(5), for

of the reaction zone at large times. In this section we disCUSge fixed secondary reaction rate-0.2; the values off are marked
the implications of our results, in particular focusing on thepesjde each curve. Dashed lines show our large-time asymptotic

differences engendered by the secondary reaction.

For the no-waste reaction scheme oflfGand Raz [2]
(i.e., the case=0), with equal diffusivities of the reactants,
the center of the reaction zone=Xgg(t) is conveniently
defined as the point at whid(xgr,t) =b(Xggr,t). Theexact
location of the center can be shown to be given By

Xer= ert"% (27)

where

1 1-¢

effz,uefm- (28

estimates for,,, given in Eq.(30). All quantities are dimension-
less.

tem, and if the primary reaction is to proceed it must move
nearer to the region in whicB is relatively rich.

The equations that determine the location of the reaction
zone are Eq927) and(28) for e=0, and Eqs(10) and(14)
for e>0; they demonstrate that the large-time location of the
reaction zone withe=0 differs from that withe>0 by an
amount ofO(tY?), and this difference is independent of the
size of e.

To illustrate in more detail the behavior of the reaction
zone, we follow GHi and Raz[2], and study the motion of
the pointx,,(t), where a(x,y,,t) =b(X,p,t); although this

This expression applies for all time and shows that the readeoint has no particular analytical significance when0, it

tion zone moves monotonically left or right according to provides a common point of reference inside the reaction

whetherq is greater than or less than unity. zone for various parameter values. It follows from E{$),
Two significant results of the analysis of Sec. IIl are that(11), (13), and(24) that

when a secondary reaction is presést thate>0) the re-

action zone is found at a different location, and, furthermore,

that its direction of motion can change with time.

Xap~X¢ Uy "4 %, (30)
where &,, is defined as the point for whichvi(&,p)
=N(&,p) (see Fig. 1L In Fig. 3 we demonstrate the agree-
ment between our calculation &f,(t) obtained by solving

, , Egs.(2), (4), and(5) numerically and that derived from Eq.
In contrast to the calculation of Gaand Raz [2], our (3%)_( ) @ © y d

calculation of the reaction zone location for the two-stage

reaction isnot exact, but applies only for asymptotically -
large times; we find foe>0 that the reaction zone is located B- "EXotic
at x;= ut*?, wherey is given in(14). Thus at large times
the reaction zone moves to the left or right according to the
sign ofg—2. Since

A. Location of the reaction zone in the presence of
a secondary reaction

behavior of the reaction zone in the presence of a
secondary reaction

In deriving the large-time behavior of the reaction zone
we have assumed theat € 3; for smaller times than this, the
secondary reaction has not proceeded very far, and our
analysis does not apply. Indeed, initially the reaction zone
for e>0 lies close to its location foe=0 [2], with the
perturbation due to the presence of a secondary reaction
u> ugr and hence the secondary reaction shifts the reactiogrowing as time advances; in particular, the reaction zone

29

erf%u—erf%MGR=m>0, (29

zone to the right, towards the reservoirBf This is reason-
able since the secondary reaction remoBefsom the sys-

initially moves to the left or right according to the sign of
g—1. In Fig. 4, we demonstrate the agreement between the
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FIG. 4. Small-time motion of the point,,(t), wherea(x,y,,t)
=b(Xap,t), for selected values of the parametefSolid lines show
evolution ofx,, according to the full probleni2), (4), and(5), for
the fixed secondary reaction rate- 0.2; the values of] are marked
beside each curve. Dashed lines show the exact location,ah
the corresponding cases, where 0 [2]. The secondary reaction
causesX,, to be increasingly perturbed to the right of the dashed
lines as time increases. All quantities are dimensionless.

FIG. 5. Transition ofx,,(t) between small- and large-time
asymptotic behavior foe=0.2. The pointx,,(t), and the reaction
zone within which it lies, can exhibit three distinct types of behav-
ior according to the value of the parametgforq<1, x,, moves
forever to the right, while fog>2 it moves forever leftwards. I
lies between 1 and 2 the poixf, moves intially to the left and then
changes direction to move rightwards. All quantities are dimension-
less.
small-time behavior ofx,,(t) computed numerically from
Egs.(2), (4), and(5) and the analytical behavior computed V. CONCLUSIONS
for e=0, using Eqs(27) and (28).

For €>0, the small-time and large-time asymptotic be- We have calculated the large-time asymptotic behavior of
haviors of the reaction front do not match, and consequentljhe reaction zone for initially segregated chemical species
there is a transition region fore= O(e %), which we have not  undergoing a two-stage reaction. The location of the reaction
analyzed in any detail. The behavior of the reaction zoneone is significantly altered by the presence of the secondary
during this changeover depends on the initial stoichiometryreaction, regardless of the relative rates of the two reactions.
characterized by the parametgr Since the quantities (1 Furthermore the reaction zone may move in different direc-
—q)/(1+q) and (2-q)/(2+q) take different signs when tions at early and late times, with an intermediate transition
1<qg<2, it follows that in this caséat least for small values phase.
of €) the reaction zone initially moves to the left, but then  Our analysis has been greatly facilitated by the assump-
reverses direction to settle into its large-time behavior moviion that all the participating chemical species diffuse at the
ing rightwards. Foilg<1 or q>2, the reaction zone moves same rate. If this assumption were dropped, we expect that
monotonically to the right or left, respectively. ~ the same large-time scalings would apply, but that there

This behavior is illustrated in Fig. 5, where numerical yould be the potential for even more exotic behavior of the

simulations of Eqgs(2), (4), and(5), with €=0.2, show the  yeaction zone, with more than one change of directici
change of direction of the reaction front to occur tat Refs.[11,14-17).

~100 (~e 3=125), at least for values af not close to 1
or 2. The reversal in direction of the reaction front at large
time is reminiscent of the “exotic”’smalttime behavior of
the reaction front observgd 1,14-17 in a single-stage re-
action when the diffusivities of the reactants are not equal. ~ This work was supported by funding from the Division of
For the special casg=2, corresponding to the stoichi- Theoretical Mechanics in the School of Mathematical Sci-
ometry required for the well-mixed reaction to go to comple-ences at the University of Nottingham. We are grateful to
tion, the front comes to a halt at asymptotically large timesProfessor John King for drawing our attention to references
(beyond those displayed in Fig).3 relating to Eqs(21) and (22).
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