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Quantum lattice-gas model for computational fluid dynamics
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Quantum-computing ideas are applied to the practical and ubiquitous problem of fluid dynamics simulation.
Hence, this paper addresses two separate areas of physics: quantum mechanics and fluid dynamics~or specifi-
cally, the computational simulation of fluid dynamics!. The quantum algorithm is called aquantum lattice gas.
An analytical treatment of the microscopic quantum lattice-gas system is carried out to predict its behavior at
the mesoscopic scale. At the mesoscopic scale, a lattice Boltzmann equation with a nonlocal collision term that
depends on the entire system wave function, governs the dynamical system. Numerical results obtained from
an exact simulation of a one-dimensional quantum lattice model are included to illustrate the formalism. A
symbolic mathematical method is used to implement the quantum mechanical model on a conventional work-
station. The numerical simulation indicates that classical viscous damping is not present in the one-dimensional
quantum lattice-gas system.

DOI: 10.1103/PhysRevE.63.046702 PACS number~s!: 47.11.1j, 03.67.Lx, 05.60.Gg
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I. INTRODUCTION

A. Overview

The purpose of this paper is to show that a phase-cohe
quantum computer can be used to simulate the behavior
system of massive quantum particles, propagating and
liding on a discrete space-time lattice. This discrete quan
particle system is called aquantum lattice gas. I have used
principles and concepts from quantum mechanics instea
from classical mechanics to formulate ‘‘local rules’’ for a
artificial microscopic particle dynamics. In a quantum latti
gas, this is possible because a network of two-energy-le
quantum systems is used to encode the configuration of
ticle occupancies throughout the lattice.

There are two parts to this paper. First, I analyze a g
bally phase-coherent and entangled quantum lattice-gas
tem governed by the many-body Schro¨dinger equation of
quantum mechanics.1 The many-body Schro¨dinger equation
is reformulated as a Boltzmann equation of kinetic transp
Assuming the quantum computer’s wave function does
decohere by uncontrolled entanglement with the exte
world, the main analytical result of this paper is the deriv
tion of a lattice Boltzmann equation that exactly describ
kinetic transport at the mesoscopic scale in the quantum
tice gas. That is, the lattice-Boltzmann equation is an ex
representation of the particle dynamics, including all effe
due to quantum superposition and entanglement. This re
mulation of many-body quantum mechanics represent
quantum computing application geared towards the di
simulation of physical dynamical models. A hydrodynam
fluid simulation is considered here as a test case.

Second, numerical data taken from an exact simulation
a globally phase-coherent quantum lattice-gas system is

*Email address: Jeffrey.Yepez@hanscom.af.mil; URL:htt
xyz.plh.af.mil

1The quantum state of the quantum lattice gas is said to beglo-
bally entangledwhen qubits in the system are entangled with oth
qubits in the system positioned arbitrarily far away in the lattice
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sented. The simulation method uses symbolic mathematic
implement a quantum mechanical system in the sec
quantized representation. A globally phase-coherent w
function is simulated on a classical computer. This is p
sible because the number of spatial sites of the lattice
small and the number of qubits per site is few. The m
finding from the simulation is that it is possible for mas
density waves to oscillate indefinitely. The simulation co
firms that there is no viscous damping in the hydrodynam
sound mode of the artificial fluid.

B. Background

Other types of quantum lattice gases have been stud
beginning in the mid 1990s, by Bialynicki-Birula@1#, Succi
@2,3#, Meyer @4,5#, and Boghosian and Taylor@6# to model
the relativistic Dirac equation and the nonrelativisitic Sch¨-
dinger equation. In contrast, the macroscopic scale beha
of the quantum lattice gas presented here is classical, e
though the microscopic scale dynamics is quantum mech
cal rather than classical in nature. The quantum lattice
reduces to a classical lattice gas only if the collision proc
causes a particular incoming configuration of particles
scatter into only one single ‘‘outgoing’’ configuration.2

In two previous papers on quantum lattice gases@7,8#, I
considered a quantum spin system where the system w
function was collapsed into a tensor product state over
spins ~or qubits! after each collision step. This allows fo
local entanglement to occur temporarily and avoids glo
entanglement altogether when the particles propag
through the lattice@7#. Allowing for only short-range and
short-time entanglement of qubits, the quantum lattice-
system is described at the mesoscopic scale by a la
Boltzmann equation, with a local collision operator th
obeys the principle of detailed balance@8# ~we may refer to
this model as afactorized quantum lattice gas!. It provides a/

r 2This follows since it is a direct generalization of a classical latt
gas with quantum bits replacing classical bits.
02-1



n
A
tio
um
ie

i
n
tio
t
c

tu

e
is

on
es
an
tic
e

u

o
re
e
um
o

m
a
,
te
m
ic
e

d
e
re

el
se
ic
e
u
a

sic

la
o
tic
ca
ic
w

rk

n

by
n
ate
de-
ra-

f

d

f
abel.
y

t
-

vals
-
-

erg
hm
ical
e,

n a

JEFFREY YEPEZ PHYSICAL REVIEW E 63 046702
way to implement the lattice Boltzmann equation in an u
conditionally stable manner on a classical computer.
though quantum mechanical ideas inspired the formula
of the collision process, in the end, the factorized quant
lattice gas is a probabilistic classical process. The sal
feature of the factorized quantum lattice-gas formulation
that it is suited for implementation on an array of small qua
tum computers, interconnected by a classical communica
network. Therefore, the previous papers do not address
situation where quantum superposition and entanglement
spread throughout the entire quantum computer. This si
tion is treated here.

C. Organization

In Sec. II, I introduce thequantum lattice-gas formulation
from an analytical perspective. The quantum lattice gas
treated at the microscopic and mesoscopic scales in S
II A and II B, respectively. When the quantum computer
fully coherent throughout the entire course of the simulati
the collision operator is nonlocal. Evaluating it requir
knowledge of the entire system wave function on the qu
tum computer. An exact representation of the quantum lat
gas’ mesoscopic behavior is developed in Sec. II B. Its m
soscopic behavior is governed by a lattice-Boltzmann eq
tion.

The quantum lattice-gas formalism is presented from
numerical perspective in Sec. III. The numerical method
ogy used in the simulation of the quantum system is p
sented in Sec. III A. The numerical method discussed in S
III A 1 is based on a representation of a universal quant
gate expressed in terms of the creation and annihilation
erators. The symbolic rules used to carry out the exact si
lation is described in Sec. III A 2. A simple one-dimension
lattice-gas model, used in this paper for test purposes
described in Sec. III B. I have included various compu
simulations with both classical and quantum mechanical
croscopic dynamics. The classical and quantum mechan
versions of this simple one-dimensional lattice-gas mod
called the1D3Px model, are described in Secs. III B 1 an
III B 2, respectively. Simulation results are presented in S
III C. The classical and quantum mechanical simulations
sults are presented in Secs. III C 1 and III C 2, respectiv
The classical simulations, provided for comparison purpo
are done at the microscopic scale and also in a class
mesoscopic mean-field approximation. Then, I present an
act simulation of the quantum 1D3Px model, with three q
bits per site for small systems. Approximation schemes
needed to compute the many-body dynamics on a clas
computer, except in the case of very small system size
systems with very few particles. An exact quantum simu
tion of a small cluster, comprising 21 qubits, is carried out
a conventional workstation using a symbolic mathema
technique that is described in Sec. III A. The numeri
simulation gives us a way to understand the quantum latt
gas method in concrete terms and is a necessary step to
achieving numerical simulations on quantum computers.

A brief summary of the results and a few closing rema
are given in Sec. IV.
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II. ANALYTICAL TREATMENT

A. Microscopic scale

In quantum computing@9,10#, a two-level quantum bit
~called aqubit! represents the smallest unit of informatio
that may be in a superposition of the discrete statesu0& and
u1&. A qubit uq&5au0&1bu1& has an amplitudea of being
in thezero state, u0&, and another amplitudeb of being in the
one state, u1&. The complex coefficients are constrained
uau21ubu251 so that the probability of the qubit being i
the zero state plus the probability of it being in the one st
is unity. For any unitary quantum computation, one can
scribe the algorithm by specifying a unitary evolution ope

tion, in our case formally written aseiĤ t/\, acting on the
system wave function,uC(t)&, which constitutes the state o
the quantum computer’s ‘‘memory.’’ WithN qubits, the
quantum stateuC(t)& resides in a large Hilbert space with 2N

dimensions. A new quantum stateuC(t1t)& is generated by
application of a unitary operator~which could be represente
by a unitary matrix of size 2N32N) for a short durationt as

uC~ t1t!&5eiĤ t/\uC~ t !&. ~2.1!

By repeated application ofeiĤ t/\, an ordered sequence o
states is generated and each one is given a unique time l
If the first state is labeled byt then the next one is labeled b
t1t, and the next byt12t, and so forth. In this way, think
of the computational timeadvancing incrementally in uni
steps of durationt. Of course the state of the quantum com
puter exists at all intermediate times, say att1t/2, but for
our purposes we need to consider only the state at inter
of the time stept. Formally, the quantum computer’s evolu
tion is invertible by application of the adjoint of the evolu
tion operator

uC~ t2t!&5e2 iĤ t/\uC~ t !&. ~2.2!

This computational picture is consistent with the Heisenb
picture of quantum mechanics. For any reversible algorit
chosen, the task is to map the algorithm onto the dynam
evolution of interacting qubits within the physical devic
which can be driven by external control.

1. Preliminaries

Consider a quantum computer with qubits arranged i
lattice-based array with the following properties:

~1! V is the number of lattice sites.
~2! B is the number of qubits per site~and the number of

nearest neighbors!.
~3! N5VB is the total number of qubits.
~4! 2N is the size of the full Hilbert space.
~5! 2B is the size of the on-site submanifold, denotedB

~and the number of on-site configurations!.
2-2
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QUANTUM LATTICE-GAS MODEL FOR COMPUTATIONAL . . . PHYSICAL REVIEW E 63 046702
At each site of the lattice resides a group of qubits ac
upon by a sequence ofquantum gates@10–13#, whose action
is mediated by external control. The quantum lattice g
evolution can be formally expressed as a special case of
~2.1! whereeiH t/\[ŜĈ as follows:

uC~xW1 , . . . ,xWV ;t1t!&5ŜĈuC~xW1 , . . . ,xWV ;t !&. ~2.3!

In Eq. ~2.3!, Ŝ is the streamingoperator, which in matrix
representation is an orthogonal permutation matrix w
components being either 0 or 1.Ŝ is the ‘‘classical’’ lattice-
gas streaming operator. However, in Eq.~2.3!, Ĉ is not a
classical operator. It is a unitarycollision operator. In gen-
eral, when expressed in matrix form,Ĉ has complex compo
nents.~The quantum lattice gas reduces to a determini
classical lattice gas ifĈ is a permutation matrix with 0 or 1
components. If and whenĈ is stochastically switched be
tween different permutation matrices during the dynami
evolution, then the quantum lattice gas reduces to a prob
listic classical lattice gas.! Finally, in Eq. ~2.3!, I have ex-
plicitly labeled the wave function’s dependence on all t
coordinates of the lattice to emphasize that the wave func
is a lattice-based field quantity.

In general, the operatorĈ can cause mixing of outgoing
collisional configurations at each site of the lattice, loca
entangling the qubit states within a lattice cell of sizel . The
operatorŜ then causes particles to move from one site to
next, by exchanging qubit states between nearest neigh
ing sites. Although the application ofŜ causes the particle
to move just as they would in the streaming phase of a c
sical lattice gas, it also causes global superposition and
tanglement of all the qubit states, if local entanglement
already been caused byĈ. In this way, quantum entangle
ments are spread throughout the lattice by the action ofŜ.

I will use the following convention for indices.
~1! Small roman letters (a,b,c) for the momentum direc-

tions on the lattice,aP$0, . . . ,B21%.
~2! Greek letters (a,b,g) for specifying qubits, a

P$0, . . . ,N21%.
~3! Middle roman letters (i , j ,k) for the spatial dimen-

sions,i P$1, . . . ,D%.

2. System wave function

Let uC&, uc&, anduq& denote thetotal system ket, on-site
ket, and qubit ket, repectively, as shown in Table I. Th
quantum computer’s total wave function can in general
expressed as a linear combination of tensor product st
over all the qubits

TABLE I. Ket symbols.

Symbol Size of manifold Description

uC& 2N Total system ket
uc& 2B On-site ket
uq& 2 Qubit, local state ket
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uC~xW1 , . . . ,xWV ;t !&5 (
$q1 , . . . ,qN%

A~q1 , . . . ,qN!

3uq1& ^ •••^ uqN&. ~2.4!

Here the summation indicesqa are either zero or one, fo
1<a<N. Each tensor productuq1& ^ •••^ uqN& is a basis
state anduC& is a pure classical state. The number repres
tation ~2.4! is used in the numerical quantum simulation pr
sented in Sec. III C. I would like to establish a conventi
for representing the system ket as a linear combination
tensor product states that are lattice-site specific. Letuc&
denote anon-site ketformed over the qubits at a single si
of the lattice

uc~xW ,t !&5 (
$q1 , . . . ,qB%

a~q1 , . . . ,qB!

3uq1~xW ,t !& ^ •••^ uqB~xW ,t !&. ~2.5!

The system wave function~2.4! can in general also be ex
pressed as a linear combination of tensor product states
all the on-site kets

uC~xW1 , . . . ,xWV ;t !&5 (
$c1 , . . . ,cV%

A~c1 , . . . ,cV!

3uc1& ^ •••^ ucV&, ~2.6!

where the shorthand notationucn&[uc(xWn ,t)& is used. Here
the indicescn ~for 1<n<V) in the sum represent the num
bered basis states in the on-site manifoldB. So they are in
the range 0<cn<2B21. The coefficientsA account for all
the global superpositions between lattice sites.

3. Unitary collision matrix

Collisions are implemented independently at each site
the lattice. Hence, all sites can be collided in parallel, hom
geneously across the entire system. The collision operatoĈ
is therefore expressible in tensor product form since lo
quantum superposition of outgoing on-site configurations
curs only within each 2B-dimensional submanifoldB. The
2N32N collision matrix Ĉ can be written as the following
tensor product:

Ĉ5 ^

x51

V

Û, ~2.7!

where theon-site collision matrix Uˆ is a 2B32B unitary
matrix. It acts on the on-site ket

uc8~xW ,t !&5Ûuc~xW ,t !&. ~2.8!

The prime on the left-hand side~LHS! of Eq. ~2.8! indicates
that the ket is anoutgoingcollisional state. Using the repre
sentation~2.6! of the system ket, the postcollision system k
is
2-3
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JEFFREY YEPEZ PHYSICAL REVIEW E 63 046702
uC8~xW1 , . . . ,xWV ;t !&5ĈuC~xW1 , . . . ,xWV ;t !&

5 (
$c1 , . . . ,cV%

A~c1 , . . . ,cV!Û

3uc1& ^ •••^ ÛucV&

5 (
$c18 , . . . ,cV8 %

A8~c18 , . . . ,cV8 !

3uc18& ^ •••^ ucV8 &. ~2.9!

An equivalence classis defined as a set of basis states t
correspond to particle configurations with the same mass
momentum~and energy if that is also defined in the lattic
gas model!. The on-site unitary collision operatorÛ acting
on the B-submanifold itself is block diagonal over th
equivalence classes. Consider, for example, the quan
1D3Px lattice gas~see Sec. III B 1 for a detailed descriptio
of the 1D3Px lattice-gas model!. There are two conserve
quantities for this one-dimensional system: the mass and
momentum along thex axis. Hence, there is only one equiv
lence class and it has two members, a two-body head
configuration and a configuration with a single rest partic
Both configurations havem52 andpW 50. The equivalence
class is comprised of the following on-site kets:

u3&5u011&,

u4&5u100&.

A general outgoing ket in this mass-momentum sector of
on-site submanifold is a linear combination of these two,

au011&1bu100&, ~2.10!

wherea andb are complex numbers. So the collision matr
Û for this one-dimensional quantum lattice gas has o
block. It has a 232 block for mixing the head-on and re
particle configurations. In general,Û is block diagonal over
the equivalence classes@7#. Each block ofÛ, associated with
an equivalence class of sizen, is a member of theU(n)
unitary group.

B. Mesoscopic scale

1. Occupancy probability and the mass and momentum densit

The probability of occupancyat time t of the ath local
state is denotedf a(t). Let theath local state be associate
with a displacement vectorêa at position xW . Also, let n̂a
denote the number operator for theath local state. That is
n̂auC(t)& has eigenvalue 1 or 0 corresponding to theath
local state being occupied or empty at timet. A fundamental
construct of the quantum lattice-gas formalism is that
probability of occupancyf a(t) is expressed in terms of th
quantum mechanical density matrix%(t)5uC(t)&^C(t)u as
the following trace:
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In the literature on classical lattice gases and the latt
Boltzmann equation,f a(xW ,t) is referred to as thesingle-
particle distribution function, and it is defined at the mesos
copic scale. For classical lattice gases, numerical estimate
f a(xW ,t) are obtained either by ensemble averaging over m
independent microscopic systems or by coarse-grain ave
ing over space-time blocks with a single microscopic syste
For the quantum lattice gas, thef a(xW ,t) is the expectation
value of the operatorn̂a determined by repeated measur
ment of single microscopic realizations or by direct measu
ment of an ensemble, as occurs in nuclear magnetic r
nance quantum computers@14,15#. So the definition~2.11!
also definesf a(xW ,t) at the mesoscopic scale.

Let as denote the first local state within the group
local states at positionxW of the Bravais lattice. In addition, le
as correspond to the displacement vectorê0. Next, suppose
the local states are numbered in a systematic and w
ordered fashion so that each local statea5as1a, for all
aP$0,1, . . . ,B21%, resides at positionxW . Note that with this
numbering scheme, the directional indexa, associated with
the ath local state, is found by the modulus operationa
5(a modB). Then, the local mass density and the mome
tum density atxW and t can be expressed in terms of th
occupancy probabilityf a(xW ,t) following the convention used
to define the mass and momentum densities in a class
lattice gas

r~xW ,t !5 lim
l s→0

(
a51

B

m fa~xW ,t !5 lim
l →0

(
a5as

as1B

m Tr @%~ t !n̂a#,

~2.12!

r~xW ,t !v i~xW ,t !5 lim
l s→0

(
a51

B

mc2eai f a~xW ,t !

5 lim
l →0

(
a5as

as1B

mc2e(a modB) iTr @%~ t !n̂a#.

~2.13!

The mass and momentum densities are considered ‘‘ma
scopic’’ field quantities. They are only well defined in th
continuum limit, where the primitive cell size of the lattic
approaches zero. However, for practical considerations, t
are approximated by high resolution grids with small b
finite cell size.

To experimently determine the mass density or mom
tum density at a sitexW at timet in an actual quantum system
it is necessary to know the probability of occupancy of
the local states at that sitef a(xW ,t) for a51, . . . ,B, according
to the definitions~2.12! and~2.13!. The probability of occu-
pancyf a(xW ,t) of each local state depends on the polarizat
of the corresponding qubit uqa(xW ,t)&5aa(xW ,t)u0&
1ba(xW ,t)u1&. A Von Neuman measurement of the state
2-4
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QUANTUM LATTICE-GAS MODEL FOR COMPUTATIONAL . . . PHYSICAL REVIEW E 63 046702
this qubit will yield a value of either 0 or 1, with probabilit
uaa(xW ,t)u2 or uba(xW ,t)u2, respectively, since the measureme
causes a collapse of the quantum wave function. A sin
value obtained by this stochastic measurement process i
sufficient to determinef a(xW ,t). Therefore, to obtain an est
mate of the expected equilibrium values of the mass
momentum densities, it is necessary to either ensemble a
age over many realizations of the microscopic system
coarse-grain average over space-time blocks within a si
microscopic realization. In this regard, the amount of eff
needed to obtain estimates of the densities is identical for
quantum system and classical lattice-gas sysytems. A q
tum computer that provides a direct means for measuring
expected state of a qubit~such as is possible with an NMR
quantum computer! would be a more natural choice fo
implementing this quantum lattice-gas algorithm.

If measurements were made at each and every site, a
every time step of the dynamics, then the quantum lattice-
system is effectively ‘‘factorized’’ in such a way that th
quantum computer’s wave function is always collapsed i
a tensor product state. This type of factorized quant
lattice-gas simulation, with continual and homogeneous m
surement of the qubits, results in a probabilistic class
lattice-gas simulation@8#. Yet, even in this case, the value o
the transport coefficients can differ from those of the clas
cal lattice gas.

2. Mesoscopic transport equation

Let us consider two qubitsuq& anduq8&, which are located
at neighboring sitesxW andxW85xW1l êa , respectively. I shall
refer to the local states encoded by these two neighbo
qubits by their numerical labelsa and a8, respectively.
Next, suppose these local states may be occupied by part
with momentummcêa . Following this construction, the ac
tion of the streaming operatorŜ causes a particle to mov
from site xW to the neighboring sitexW8, hopping from local
statea with momentumpW 5mcêa to local statea8 with the
same momentumpW 85pW . This labeling convention is summa
rized in Table II. With this understanding, we can write t
identity.

^Cun̂auC&5^CuŜ†n̂a8ŜuC&. ~2.14!

This is a simple mathematical way of stating the followin
If you make a measurement of the occupancy of local staa
before streaming, the result you get must be the sam
when you make a measurement ofa8 after streaming.

The first step toward deriving a microscopic transp
equation for the quantum lattice gas is to rewrite Eq.~2.3! as

TABLE II. Two neighboring qubits.

Qubits uq& uq8&

Local state a a8
Position xW xW85xW1l êa

Momentum pW 5mcêa pW 85pW
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^C~ t !uĈ†n̂aŜ†uC~ t1t!&5^C~ t !uĈ†n̂aĈuC~ t !&,
~2.15!

which is done by multiplying through from the left b

^C(t)uĈ†n̂aŜ†, and then using the identityŜ†Ŝ51. From the
identity ~2.14!, we know thatn̂aŜ†5Ŝ†n̂a8 . Using this fact
in the above equation allows us to write it as

^C~ t !uĈ†Ŝ†n̂a8uC~ t1t!&5^C~ t !uĈ†n̂aĈuC~ t !&.
~2.16!

The ‘‘bra’’ vector on the LHS of this equation can be sim
plified using the adjoint of Eq.~2.3!, which is ^C(t1t)u
5^C(t)uĈ†Ŝ†, so that we obtain the following result:

^C~ t1t!un̂a8uC~ t1t!&5^C~ t !uĈ†n̂aĈuC~ t !&.
~2.17!

Using Eq. ~2.11! and referring to Table II, Eq.~2.17! ex-
presses the probability of occupancy of local statea8 at site
xW1l sêa at timet1t in terms of a matrix element evaluate
at the neighboring sitexW and at the earlier timet. That is,

f a~xW1l sêa ,t1t!5^C~ t !uĈ†n̂aĈuC~ t !&. ~2.18!

We may addf a(xW ,t)2^C(t)un̂auC(t)&, which vanishes by
definition, to the right-hand side~RHS! of Eq. ~2.18!. Then,
we recognize Eq.~2.18! is a transport equation for the pa
ticle occupancies. The result is a lattice-Boltzmann equa
for the quantum lattice-gas system

f a~xW1l sêa ,t1t!5 f a~xW ,t !1Va
meso~C!, ~2.19!

where the collision term is expressed as the following ma
element:

Va
meso~C![^C~ t !uĈ†n̂aĈ2n̂auC~ t !&. ~2.20!

An alternative derivation of Eq.~2.20!, carried out in the
continuum limit, is given in Appendix A. In practice, we wil
not be able to analytically evaluate Eq.~2.20! for a large
quantum lattice-gas system with global entanglement
cause of the exponential size of theuC& ket. However, it is
possible to formally express the collision termVa

meso when
uC& is represented as the linear combination~2.6!. This is
done as follows:

Va
meso5 (

$c18 , . . . ,cV8%
(

$c1 , . . . ,cV%
A* ~c18 , . . . ,cV8!

3A~c1 , . . . ,cV!^c18u ^ •••

^ ^cV8uĈ
†n̂aĈ2n̂auc1& ^ •••^ ucV&. ~2.21!

Moreover, it is possible to expressVa
meso in terms of the

on-site number operatorn̂a , which is represented by a
2B32B matrix. That is,n̂a acts only in the submanifoldB on
the qubits at a single site. We write theN-qubit number
operator n̂a as a V-fold tensor product that has a sing
2-5
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B-qubit number operatorn̂a located at thenth site index
corresponding to the position vectorxWn as

n̂a51^ 1^ •••^ n̂a^ •••^ 1, ~2.22!

where 1 denotes the 2B32B identity matrix. The collision
operatorĈ†n̂aĈ2n̂a , can then be written as

1^ 1^ •••^ ~Û†n̂aÛ2n̂a! ^ •••^ 15 ^ x51
V V̂a ,

~2.23!

where

V̂a[H Û†n̂aÛ2n̂a , x5xn

1, otherwise.
~2.24!

Using Eqs.~2.7!, ~2.22!, and the orthonormality of the
on-site ketŝ cn8ucn&5dn8n , Eq. ~2.21! reduces to a loca
matrix element evaluated at single sitexWn85xWn5xW as

Va
meso5(

cn8
(

$c1 , . . . ,cV%

3A* ~c1 , . . . ,cn21 ,cn8 ,cn11 , . . . ,cV!

3A~c1 , . . . ,cn , . . . ,cV!^cn8uÛ
†n̂aÛ2n̂aucn&.

~2.25!

Let us make the following definition:

R~cn8 ,cn![ (
$c1 , . . . ,cn21 ,cn11 , . . . ,cV%

3A* ~c1 , . . . ,cn21 ,cn8 ,cn11 , . . . ,cV!

3A~c1 , . . . ,cn , . . . ,cV!. ~2.26!

The quantityR(cn8 ,cn) represents the superposition of th
on-site basis states at sitexW with all the other on-site basi
states in the system at the other sites. With this definit
Eq. ~2.25! can be written in a simpler way,

Va
meso5(

cn8
(
cn

R~cn8 ,cn!^cn8uÛ
†n̂aÛ2n̂aucn&.

~2.27!

If each on-site state is not entangled or superposed with
other on-site state, thenR can be written in factorized form
R(cn8 ,cn)5C(cn8)C(cn). In this case, Eq.~2.27! is simpli-
fied,

Va
meso5^cuÛ†n̂aÛ2n̂auc&, ~2.28!

where the coefficientsC(cn) specify any local superpositio
and entanglement

uc&[(
cn

C~cn!ucn&. ~2.29!
04670
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Then using Eq.~2.22!, the lattice-Boltzmann equation for th
quantum lattice-gas system becomes a local equation
can be easily simulated on a classical computer@7,8#.

3. The approach to steady-state equilibrium

The system is said to be insteady-state equilibrium
~which may also be calledthermodynamic equilibrium! when
the system ketuCeq(t)& is an eigenvector, with unity eigen
value, of the collision operatorĈ,

ĈuCeq&[uCeq&. ~2.30!

The value of the probability of occupancy~2.11! is then de-
termined fromuCeq& as

f a
eq~xW ,t !5^Ceq~ t !un̂auCeq~ t !&. ~2.31!

Notice by the definition~2.30! for steady-state equilibrium
the collision term~2.20! in the lattice-Boltzmann equation
vanishes,

Va
meso~ uCeq&)50. ~2.32!

Therefore, at steady-state equilibrium, the occupancy pr
abilities are unchanging over time. That is,uCeq& is the
ground state of the system. The distribution along the m
mentum directions of the particle occupancies are unifo
so the local configurations are perfectly symmetric, a
Va

mesocannot cause any further changes.

III. NUMERICAL TREATMENT

A. Methodology

1. Universal two-qubit gate

In this section, I write a two-qubit universal gate in term
of the creation and annihilation operators of the second qu
tized formulation of quantum mechanics. A classic text
second quantization is by Fetter and Walecka@16#. For our
purposes, the two-qubit gate is a member of the special
tary group SU~2!; I neglect the overall phase factor becau
this does not affect the quantum lattice-gas dynamics. IfÛ is
a member of SU~2!, it can be parametrized using three re
numbersj, z, andu as follows:

Û[S ei jcosu 2ei zsinu

2e2 i zsinu 2e2 i jcosu D . ~3.1!

Let âa
† andâa denote the creation and annihilation operato

for ath spin of a fermionic quantum spin system. Then t
spin-12 creation and annihilation operators satisfy the an
commutation relations

$âa ,âb
†%5dab , ~3.2!

$âa ,âb%50,

$âa
† ,âb

†%50.
2-6
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The spin number operatorn̂i[âa
† âa has eigenvalues of 1 an

0 in the number representation when acting on a pure s
corresponding to thei th spin being upsz5

1
2 and down

sz52 1
2 , respectively.

Consider a fermionic spin system with a total ofN spins
whose system ket is denoted byuC&. Acting on this system
ket with a unitary operator, we would like to entangle t
two spin states, the states of theath andbth spins, according
to the components of the special unitary matrix~3.1!. Let
Yab denote a square 2N32N matrix that does this. I define
Yab in terms of the multispin creation and annihilation o
erators as follows:

Yab[11e2 i zsinu âb
† âa1ei zsinu âa

† âb2~11ei jcosu!n̂a

2~12e2 i jcosu!n̂b22i sinj cosun̂an̂b ~3.3!

for aÞb. Its matrix representation for a two-qubit system

Y5S 1 0 0 0

0 ei jcosu 2ei zsinu 0

0 2e2 i zsinu 2e2 i jcosu 0

0 0 0 21

D . ~3.4!

In Appendix B, I demonstrate whyYab is manifestly unitary
and an appropriate formulation of a universal quantum g

In the special case whenu5p/2, j50, andz50, then
Yab reduces aninterchange operator

xab[11âb
† âa1âa

† âb2n̂a2n̂b , ~3.5!

which is aNOT gate~see Appendix B!.

2. Symbolic mathematics method

It is possible to simulate the exact quantum mechan
evolution of a quantum spin system using computatio
symbolic mathematics.3 To test the quantum lattice-ga
method, I implemented the algorithm using version 4
MATHEMATICA @17#. Letting 1 and 0 represent spin up an
spin down, respectively, the first step is to define a se
rules that encode the Fermionic anticommutation relati
~3.2!

a†@0#51, ~3.6!

a†@1#5:, ~3.7!

a†@:#5:, ~3.8!

a@0#5:, ~3.9!

a@1#50, ~3.10!

a@:#5:, ~3.11!

3I developed this symbolic method in 1991 at Brandeis Univ
sity, see http://xyz.plh.af.mil/Papers/pdf/ae91.pdf
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where: is a symbol used to denote what I call thenull state
that accommodates Pauli exclusion and destruction on
vacuum. That is, the symbolsa† anda represent the single
spin ~or single qubit! creation and annihilation operators, r
spectively.

Next, all the basis states, in the number representation
encoded by the symbolC@s#, where 0<s<2N21, for a
system withN spins. That is, the states are binary encod
and labeled byN-bit integers. The stateC@0# is called the
vacuum state. The symbolic rules embodying the multiple
spin creation and annihilation operators are defined in te
of the single-spin rules

a†
†a,C@s#‡5H ~21!Saa†@~s`2a!⇒a#

0, if s5:,

~3.12!

a†a,C@s#‡5H ~21!Saa@~s`2a!⇒a#

0, if s5:,

~3.13!

where 0<a<N21 and where the factor (21)Sa appearing
in Eqs. ~3.12! and ~3.13! accounts for a phase change ofp
radians induced by commuting spins. In the numb
representation each basis state is denoted by a
un1n2•••na•••nN&, where eachn is either 1 ~particle
present! or 0 ~no particle present!. The phase factorSa is
defined by

Sa5n11n21•••1na21 . ~3.14!

The bitwiseAND operation is denoted here by the symbol`.
The symbol⇒ denotes a bitwise barrel roll to the right. Th
is, ‘‘s⇒ j ’’ means shift the integers to the right byj digits.
Hence, the result of the operation ‘‘(s`2a)⇒a ’’ is either 1
or 0, depending on whether or not a particle occupies theath
local state. Notice that the symbolsa† anda are overloaded,
so that when they are used with a single argument, that
gument is interpreted as a spin value. Ifa† and a are used
with two arguments, the first argument is interpreted a
spin-index and the second argument is interpreted as a

Notice that these symbolic definitions of the multiple-sp
creation and annihilation operators use the basis-state sym
C on the LHS of the rules, butC is not used at all on the
RHS in the definition of the rules. Hence, it may seem t
the use of the symbolC is superfluous here. However, this
not the case, because its use allows me to define the actio
the creation and annihilation operators on a superpositio
basis states in a recursive fashion:

a†
†a,AC@s#1B‡5A a†

†a,C@s#‡1a†@a,B#, ~3.15!

a†a,AC@s#1B‡5A a†a,C@s#‡1a@a,B#. ~3.16!

Using this convention, it is possible, for example, to destr
a spin in local statea of a superposed state, sayC@s1#
1C@s2#, by directly supplying this state as the second arg
ment. Then, Eq.~3.13! correctly expands out to

-

2-7
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a†a,C@s1#1C@s2#‡5a†a,C@s1#‡1a†a,C@s2#‡.
~3.17!

If the special symbolC were not used, then one would g
the wrong answer,

a@a,s11s2#5a@a,s3#, ~3.18!

wheres3 is the numerical sum ofs1 ands2. Of course, it is
possible to use a special symbol in place of the plus sig
represent superimposed states. I have chosen not to do
With the C symbol convention,MATHEMATICA can by de-
fault manipulate expressions involving the superposition
an arbitrary number of states and represent them in mem
in a compact fashion. After the action of the collision ope
tor ~which is mathematically defined earlier in this paper a
symbolically defined immediately below! on to a superposed
state, the resulting new state in general has identical b
states that are repeated in the superposition, where eac
currence has a different amplitude. Using theC symbol con-
vention, all these types of replications are automatically
duced down to the one term, sinceMATHEMATICA

automatically adds coefficients of common terms.
Next, the multiple-spin number operator is defined a

composition of the multiple-spin creation and annihilati
rules

n@a,C#5a†
†a,a@a,C#‡. ~3.19!

With rules ~3.12!, ~3.13!, and ~3.19!, for the creation, anni-
hilation, and number operators, it is then straightforward
implement the universal gate, Eq.~3.3!, by composition:

U@s1 ,s2 ,C#5C2Ca†
†s2 ,a@s1 ,C#‡2Ba†

†s1 ,a@s2 ,C#‡

1~A21!n@s1a ,C#1~D21!n@s2 ,C#

2~A1D !n†s1 ,n@s2 ,C#‡, ~3.20!

where thec numbersA, B, C, andD are components of an
SU~2! matrix (C

A
D
B).

In the case of the quantum 1D3Px model, the collis
operator mixes the on-site kets,u011& and u100&. Three
qubits are affected. I use a modified rule to directly han
this situation. The on-site collision operator for the 1D3
quantum lattice gas is implemented by the following comp
sition of universal gates:

U@s1a ,s1b ,s2 ,C#5C2Ca†@s2 ,a†s1a ,a@s1b ,C#‡#

2Ba†@s1a ,a†
†s1b ,a@s2 ,C#‡#

2~12A!n†s1a ,n@s1b ,C#‡

2~12D !n@s2 ,C#

1~12D !n†s1a ,n@s2 ,C#‡

1~12D !n†s2 ,n@s1b ,C#‡

2~A2D !n@s1a ,n†s1b ,n@s2 ,C#‡#.

~3.21!
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The lattice-gas collision operator according to Eq.~2.7!
for theV57l system is thus defined as a sevenfold com
sition

C@C#5U@20,21,19,U†17,18,16,U@14,15,13,U†11,12,10,

3U@8,9,7,U†5,6,4,U@2,3,1,C#‡#‡#‡#. ~3.22!

This is actually handled recursively in the symbolic impl
mentation, soC works regardless of the size of the system

The streaming operator for the quantum lattice gas
implemented using two rules, one to stream the right mov
particles, denotedS1 , and the other to stream the left mov
ing particles, denotedS2 . Note that the right moving par
ticles occupy local states 2,5,8,11,14,17,20 and the left m
ing particles occupy local states 3,6,9,12,15,18,21.S1 and
S2 are defined in terms of a sevenfold composition of int
change operators~3.5!:

S1@C#5x†2,5,x@5,8,x†8,11,x@11,14,x†14,17,

3x@17,20,C#‡#‡#‡, ~3.23!

S2@C#5x†21,18,x@18,15,x†15,12,x@12,9,x†9,6,

3x@6,3,C#‡#‡#‡. ~3.24!

Again, these are handled recursively in the symbolic imp
mentation, so the streaming operators work regardless o
size of the system. A global shift of particles is done
successive local interchanges of particles occupancies@18#.

Finally, the evolution rule, denotedE, for the entire quan-
tum system is the composition of the last three rules

E@C#5C@S1†S2@C#‡#. ~3.25!

Any other compound rules that may be needed in a sim
tion can be defined in a similar fashion by composing p
defined simpler rules. Therefore, beginning with a superp
ton of basis statesF(t)5(sfsC@s# the dynamical evolution
equation corresponding to Eq.~2.3! is

F~ t1t!5E@F~ t !#, ~3.26!

where the result is a new superposition over a different se
basis statesF(t1t)5(s8fs8C@s8#.

B. The 1D3Px model

1. Classical version

Let us consider a simple lattice-gas model as a conc
example, called the1D3Px lattice-gas model, in this paper.
This model was first studied by Qian in 1990@19# and is
referred to as Model I in his thesis. The lattice gas is o
dimensional and has three bits per site, a rest particle w
mass two and speed61 particles with mass one. The ma
and momentum at a lattice site is

m52n01n11n2 and px5n12n2 . ~3.27!

There are two local configurations both withm52 and px
50: ~1! $n0 ,n1 ,n2%5$1,0,0% and ~2! $n0 ,n1 ,n2%5$0,1,1%.
2-8
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These two configurations are members of the only collis
set ~which is called anequivalence class!. An equivalence
class has two or more members. Figure 1 illustrates
equivalence class of the 1D3Px model. Its two elements
the configuration of two head-on particles$011% and the con-
figuration with a single rest particle$100%.

Because the total number of particles and the total m
mentum must be conserved, the collision part of the dyna
ics can only permute the local configurations. The collis
equation, which is applied homogeneously across the lat
can be expressed as in terms of a mapping functionU as
follows:

s85U~s!, ~3.28!

whereU maps 2B configurations to 2B new configurations.
For the simple 1D3Px lattice,U is

U~$011%!5$100%,

U~$100%!5$011%.

If a configurations is not a member of an equivalence clas
thenU(s)5s. In other words, if the incoming state is not
member of an equivalence class, then the outgoing sta
set equal to the incoming state. To speed up a lattice
simulation, the mapping functionU may be precomputed
before the simulation and accessed inlookup tablefashion
during the simulation.

In a computer implementation, it is convenient to use t
arrays to simultaneously store the statess ands8. Therefore,
in Eq. ~3.28!, data in the array that stores the ‘‘incoming
states is transformed by the action of the lookup tableU
~which is applied homogeneously over the entire array! and
the output is written into the next array to store the n
‘‘outgoing’’ state s8.

It is conventional to write the collision rule in terms of th
occupation variablesna51 or 0, which are Boolean values
The collision rule, expressed for an individual local state
written

na8~xW ,t !5na~xW ,t !1Va~n* !, ~3.29!

where the collision termVa(n* )561 or 0. Writing
Va(n* ) with an asterisk subscript onn* denotes that the
collision term for theath local state depends on all the o
site local states. It is conventional to write the streaming r
in terms ofna also,

na~xW1l êa ,t1t!5na8~xW ,t !. ~3.30!

Combining Eqs.~3.29! and~3.30!, themicroscopic transport
equationis therefore

FIG. 1. Head-on collision in the 1D3Px lattice-gas model. T
single equivalence class hasm52 andpx50.
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na~xW1l êa ,t1t!5na~xW ,t !1Va~n* !. ~3.31!

For the 1D3Px model, the lattice vectors areê050W , ê15 x̂,
and ê252 x̂ and the collision term is specified by the sing
function

V5n1n2~12n0!2n0~12n1!~12n2!, ~3.32!

whereV05V andV1,252V. Then explicitly for the 1D3Px
model, the microscopic transport equation~3.31! is

n0~x,t1t!5n0~x,t !1V~x,t !, ~3.33!

n1,2~x6l ,t1t!5n1,2~x,t !2V~x,t !.

A lattice-Boltzmann equation describes the dynamics of
1D3Px lattice-gas system at the mesoscopic scale. The
soscopic average of the occupation variablena(xW ,t) is the
probability of occupancy

f a~xW ,t ![^na~xW ,t !&. ~3.34!

Here, the angle brackets around a microscopic quantity
note its mesoscopic expectation value obtained by ensem
averaging. The kinetic transport equations are

f 0~x,t1t!5 f 0~x,t !1^V~x,t !&, ~3.35!

f 1,2~x6l ,t1t!5 f 1,2~x,t !2^V~x,t !&.

To carry out a classical lattice-gas simulation at the mes
copic scale, we can approximateVmeso(x,t)[^V(x,t)& by a
mean-fieldcollision term, denotedVmf(x,t), that neglect
particle-particle correlations:

^V~x,t !&.Vmf~x,t !5 f 1f 2~12 f 0!2 f 0~12 f 1!~12 f 2!.

~3.36!

A statement of detailed balance can be written by setting
mean-field value of the collision term~3.36! to zero at equi-
librium

^V&.Vmf~ f
*
eq!50. ~3.37!

Therefore, the probability of occupancies satisfies the eq
tion

f 0
eq5

f 1
eqf 2

eq

f 1
eqf 2

eq1~12 f 1
eq!~12 f 2

eq!
. ~3.38!

This equation, along with equations for the mass and m
mentum densities

rs52 f 0
eq1 f 1

eq1 f 2
eq and uxs5 f 1

eq2 f 2
eq, ~3.39!

gives us a nonlinear system of three equations in five
knowns f 0

eq, f 1
eq, f 2

eq, rs , anduxs . Hence, it is possible to
analytically solve for the occupation probabilitiesf 0

eq, f 1
eq,

and f 2
eq in terms ofrs anduxs . When the system is at res

at equilibrium,px50, then f 1
eq5 f 2

eq5d and the probability
of occupancy for the rest particle state is
2-9
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f 0
eq5

d2

122d12d2
. ~3.40!

Using Eq. ~3.36!, the Jacobian of the collisionJab

[]Va
mf/] f bu f eq is

J5S 2112d22d2 ~12d!d

122d12d2

~12d!d

122d12d2

122d12d2 ~d21!d

122d12d2

~d21!d

122d12d2

122d12d2 ~d21!d

122d12d2

~d21!d

122d12d2

D .

~3.41!

The eigenvectors ofJ are

u1&5~2,1,1!, ~3.42!

u2&5~0,1,21!, ~3.43!

u3&5S ~122d12d2!2

d~d21!
,1,1D . ~3.44!

The eigenvectorsu1& and u2&, corresponding to mass an
momentum, span a two-dimensional hydrodynamic s
space. The remaining eigenvectoru3& is a kinetic eigenvec-
tor, which in this case is density dependent. The eigenva
of J are

l150, ~3.45!

l250, ~3.46!

l35
122d16d228d314d4

2112d22d2
. ~3.47!

Now using the lattice vectorsê050, ê151, and ê2
521, and the expression forJ given in Eq.~3.41!, we set
the secular determinant of the linearized Boltzmann equa
equal to zero

@~ei (l sêa•kW1vt)21!dab2Jab#50. ~3.48!

This allows us to solve for the dispersion relations for t
lattice-gas system obeying what is calledgeneralized hydro-
dynamics. Equation~3.48! is a result from the generalize
hydrodynamics of classical lattice-gas systems previou
worked out by Das, Bussemaker, and Ernst@20# and Grosfils,
Boon, Brito, and Ernst@21#. Taking l 5t51, we get the
following dispersion relation:

~122d12d2!e3v22@d23d214d322d4

1~123d13d2!cosk#e2v ~3.49!

1~122d!2@112d~d21!cosk#ev14d2~d21!250.
~3.50!
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This is a cubic equation inev, and it is analytically solvable
The only hydrodynamic mode is a damped sound wa
v(kW )56csk1 iG(r)k2. Real and imaginary parts of the dis
persion relations for the 1D3Px lattice-gas model are sho
respectively in Fig. 2 and Fig. 3. The real part of the disp
sion relations indicates a sound mode@Re(v)→6csk as k
→0#. The imaginary part of the dispersion relation for th
hydrodynamic mode is parabolic for small wave numbe
indicating viscous damping of the sound mode@ Im(v)
→Gk2 ask→0#. The sound damping constantG approaches
zero as the background mass density approaches zero@19#.
That is, low-mass density waves can oscillate without v
cous damping.

The real part of the dispersion relation for the sound mo
for the 1D3Px lattice-gas model set with a background d
sity of d56/4V, with V57l , is shown in Fig. 2. The rea
part of the dispersion relation indicates a sound mo
@Re(v)→6csk as k→0 where cs50.74l /t#. The data
points, plotted as black circles, are solutions to the lineari
Boltzmann equation in the mean-field limit. The curves w
slope of6cs are numerical linear fits to the data. The imag
nary part of the dispersion relation for the sound mode

FIG. 2. The real part of the dispersion relation for the mes
copic 1D3Px lattice gas in the long wavelength limit and mean-fi
limit at a reduced background density ofd50.214 286.

FIG. 3. The imaginary part of the dispersion relation for t
mesoscopic 1D3Px lattice gas in the long wavelength limit a
mean-field limit at a reduced background density ofd50.214 286.
2-10
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FIG. 4. A one-dimensional array of quantum
computers with three qubits per node.
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the 1D3Px lattice-gas model is shown in Fig. 3. The ima
nary part of the dispersion relation indicates sound damp
@ Im(v)→ iGk2 as k→0 whereG50.08l 2/t. The parabola
is a numerical fit to the data in the region of smallk,1. The
calculations shown in Figs. 2 and 3 were done with a m
density filling fraction ofds56/4V50.214, where a smal
system size ofV57l is used. In this case,k52p/V
50.898.

2. Quantum version

A hypothetical lattice-based quantum computer~with
computational sites depicted as circles! arranged as a one
dimensional lattice is shown in Fig. 4. At each lattice s
residesB53 qubits in 1D in this example withV57l sites.
Theon-site ketuc& resides in a 2B-dimensional submanifold
The large circle on the right represents an expanded view
this on-site submanifold, which is denoted byB. The basis
states ofB are shown in the number representation. Each
is coupled to its nearest neighboring sites by a mechan
allowing for the exchange of qubits. If the exchange mec
nism retains all quantum entanglement~and thereby spread
ing it through the quantum computer!, then the quantum
computer is considered fully coherent. If the exchan
mechanism is classical~destroying quantum entanglement b
collapsing the wave function!, then it is called atype II quan-
tum computer~which is simply a large array of small quan
tum computers interconnected by a classical communica
network!.

The associated 1D3Px quantum lattice-gas model
three qubits per site,uqa&5aau0&1bau1& for a50,1,2. The
zeroth qubit represents a rest particle of mass two and
first and second qubits represent moving particles of spe
61, translating in the right and left going directions, resp
tively.

The m52, px50 equivalence class is spanned by t
statesu100& andu011&. Collisional entanglement occurs on
between these two states,ju100&1xu011&, wherej and x
arec numbers. The on-site ket,uc&5uq0& ^ uq1& ^ uq2&, is

uc&5b0b1b2u111&1b0b1a2u110&1b0a1b2u101&

1b0a1a2u100&1a0b1b2u011&1a0b1a2u010&

1a0a1b2u001&1a0a1a2u000&. ~3.51!

The outgoing on-site ketuc8&5Ûuc& is
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1
b0b1b2

b0b1a2

b0a1b2

ab0a1a21ba0b1b2

ca0b1b21da0b1b2

a0b1a2

a0a1b2

a0a1a2

2
51

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 a b 0 0 0

0 0 0 c d 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2 1
b0b1b2

b0b1a2

b0a1b2

b0a1a2

a0b1b2

a0b1a2

a0a1b2

a0a1a2

2 ,

~3.52!

where the local collision operator is the 838 matrix with
one 232 block, which is a member of the U~2! unitary
group satisfying

uau21ubu25ucu21udu251, ~3.53!

ac* 1bd* 5a* c1b* d50, ~3.54!

uau21ucu25ubu21udu251, ~3.55!

ab* 1cd* 5a* b1c* d50. ~3.56!

The quantum 1D3Px lattice gas obeys detailed bala
because the collision operatorÛ is a unitary matrix@8#.

The mass and momentum densities for the quan
lattice-gas system are

r52^q0un̂uq0&1^q1un̂uq1&1^q2un̂uq2&, ~3.57!

ux5^q1un̂uq1&2^q2un̂uq2&. ~3.58!

Viscous dissipation does not necessarily occur in quan
lattice-gas systems. Global entanglement of the wave fu
2-11
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FIG. 5. Damping of a mass density wave for a system withV27 sites in the classical 1D3Px model simulated using a mesosc
Boltzmann equation with the collision term expressed in the mean-field approximation. The background density isds56/4V50.214. The
ordinate is the absolute value of the amplitude of the mass-density wave divided by the peak amplitude of the initial perturbation
ic

n,
itly

,
l
th

te

nc

v

ar

l
an
rin

s-
al
the

it

n

en-
nt

he

ula-
of
at

ve
e
ear
tant
ll-
or
n-

g-

bed
of

-
tion.
tion significantly complicates the dispersion relations, wh
are determined by the following equation:

DetF ~el ea•kW1vt21!dab

2
]^Cequ~Û†n̂aÛ2n̂a! ^ 1^ •••^ 1uCeq&

] f b
G50,

~3.59!

where Ceq is the steady-state equilibrium wave funtio
which is the ground state of the system. I have explic
written the collision operator, as in Eq.~2.23!, in spatially
separated form. In general, as described in Sec. II B1a
5as1a, whereas is an index that refers to the first loca
state at some particular site in the system. According to
ordered numbering scheme used,as50 at the first site of
the system,as5B at the second site,as52B at the next
site, and so on. Without loss of generality, in Eq.~3.59! we
can assume we are working at the first site of the sys
wheren̂a5n̂a^ 1^ •••^ 1. In the classical case,Ĉ is a per-
mutation matrix and the steady-state equilibrium wave fu
tion is a tensor product over the on-site kets

uCeq&5 ^

x51

V

uceq&. ~3.60!

In turn, the on-site kets are formed by a tensor product o
the individual qubits

uceq&5 ^

a51

B

~Af a
equ1&1A12 f a

equ0&). ~3.61!

Finally, f 1,2
eq5d and f 0

eq5d2/@d21(12d)2# according to Eq.
~3.40!. The Jacobian of the collision matrix element appe
ing in Eq. ~3.59! is computable using Eqs.~3.60! and~3.61!
@see Eq.~3.41! in Sec. III B 1#. In the quantum mechanica
case,uCeq& is not expressible as a tensor product state,
hence the Jacobian of the collision matrix element appea
in Eq. ~3.59! becomes complicated.
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C. Simulations

1. Classical simulation

A time history of the mass density wave for a small sy
tem with V57l sites is shown in Fig. 5. The exponenti
envelope is analytically determined by an analysis of
linearized lattice-Boltzmann equation in the mean-field lim
~see Fig. 3!. The predicted sound damping constantG
50.08l 2/t is in excellent agreement with the simulatio
data.

Plotted in Fig. 6 are damping time constants of mass d
sity waves in the classical 1D3Px lattice gas for differe
system sizes fromV52l up to V5256l . The log-log plot
shows the power-law behavior, known asdiffusive ordering,
typical of a lattice-gas system in the viscous regime. T
power law in this case isT50.44V2, which is parabolic.
Each circle is determined from a mesoscopic scale sim
tion that was initialized with a sinusoidal perturbation
dr50.04m/l from a uniform background mass density
half-filling, r52m/l . The damping constantG5l 2/T is de-
termined from the envelope of the resulting standing wa
e2t/Tcosvt ~see Fig. 5!. The mean-field estimates of th
damping time constant are the circles. The line is a lin
best fit to these estimates. The estimated damping cons
deviates only slightly from power-law behavior at the sma
est system sizes. This is an example of ‘‘fluidlike’’ behavi
occurring in systems far below the continuum limit. The i
set plot is a linear plot of the data forV<16 and the parabola
is the same diffusive-ordering power-law in the larger lo
log plot.

2. Quantum simulation

I have tested the quantum lattice-gas formalism descri
in this paper by carrying out exact numerical simulations

FIG. 6. Diffusive ordering in the classical 1D3Px model com
puting at the mesoscopic scale using the mean-field approxima
2-12
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QUANTUM LATTICE-GAS MODEL FOR COMPUTATIONAL . . . PHYSICAL REVIEW E 63 046702
a 1D3Px model, which is described in detail in Sec. III B
In this section, I present results obtained from the numer
simulation of a small system withV57l sites. I have used
the symbolic numerical technique described above in S
III A 2. The principal finding is that the quantum lattice ga
does not display viscous damping.

Since the evolution operator conserves mass and mom
tum, we can divide the Hilbert space into disjoint mas
momentum sectors. When the lattice-gas evolution oper
maps a particular state residing in a mass-momentum se
to a new state, the new state must also reside in that s
mass-momentum sector. The Hilbert space for theV57l
system has over two million dimensions. The number
states within each mass-momentum sector of theV57l sys-
tem are graphically illustrated in Fig. 7. The density plot
the left side of Fig. 7 clearly shows that the allowable ma
momentum sectors are all contained within a hexago
boundary. The distribution for the number of available sta
within a mass-momentum sector is reflection symme
about half-filling (m514) and about zero momentum (px
50).

I have simulated theV57l system~with BV521 glo-
bally entangled qubits! in the massm56 and momentum
px50 sector. In this mass-momentum sector, there are 5
basis states. The goal of the numerical test was to mea
the sound damping constant in the quantum 1D3Px mo
and compare the result to the mean-field estimate. The
tem was initialized with a sinusoidal perturbation of the ma
density field, with a wavelength equaling the grid size of t
periodic system (l5V). All the states in them56, px50
sector were superposed by choosing amplitudes in su
fashion that the entropy of the initial state is maximize
subject to the independent constraints of conservation
probability, mass, and momentum. The entropy function w
taken to be

S52(
a

@ ucau2lnucau21~12ucau2!ln~12ucau2!#,

~3.62!

whereca is the amplitude of the ketua& in the m56, px
50 mass-momentum sector. Given a particular desired
file of the mass density field, it is more difficult to constru
an initial state that completely resides in only one sector t
to use an initial state that spans the entire Hilbert spa

FIG. 7. Mass and momentum sectors of the 1D3Px lattice-
model with V57l sites plotted versus the number of states
sector.
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However, it is computationally advantageous to limit t
simulation to a single sector of the Hilbert space, so t
memory allocation in the computer is kept at a managea
level. Figure 8 shows a maximized entropy state used in
test simulation presented in this section.

The data from the simulation run is presented in seve
ways. First, the peak amplitude of the mass density wav
recorded after every time step. The amplitude is normali
in such a fashion that at timet50 it has unity value. In a
viscous fluid with sound damping, the peak amplitude wo
oscillate and decay exponentially in time by the fact
e2Gt/l 2

cos(2pcst/l ), wherecs is the sound speed andG is a
positive definite damping constant as is shown in Fig.
However, for the quantum 1D3Px model, the numerical
sult indicatesG may be zero for certain collision operators

A time series history of the square of the peak amplitu
is plotted in Fig. 9, using the same format as Fig. 5 for t
classical 1D3Px model with the same grid size and ini
condition. In the quantum simulation, the peak amplitu
does not decay in time, unlike the results obtained in
classical lattice-Boltzmann simulations shown in Fig. 5. I
tially, within the first couple of dozen time steps, the pe
amplitude appears to decay, very much like it does in a c
sical microscopic simulation or lattice-Boltzmann simulati
of the 1D3Px model. However, the amplitude does not c
tinue to damp in subsequent time steps. The peak ampli
rises and falls. No damping is observed even after a thous
time steps. An expanded view of the first 250 time steps
shown underneath. Since the algorithm is unitary~and hence
the collisions obey the principle of detailed balance! the dy-
namics is reversible.

In Fig. 10, these data are presented in scatter plot fash
where the square of the normalized peak amplitude is plo
versus its first order time derivative. I used the followin
difference formula to approximate the time derivative:

s
r

FIG. 8. Initial mass density sinusoidal perturbation in the qu
tum 1D3Px lattice gas for a small system size ofV57l with peri-
odic boundary conditions. The total number of qubits in the sim
lation is BV521. The simulation is initialized with a sinusoida
perturbation in them56, px50 mass-momentum sector with
peak amplitude ofdr.0.4 from a uniform background mass de
sity at rs5

6
2850.857. So the fractional mass density variation

initially one part in two, which is an extremely large-scale fluctu
tion. The wavelength equals the system size. The initial mass
sity field is not exactly sinusoidal, because aside from the limitat
of only V57l sites, it is produced by the interference of all 537
in them56 andpx50 sector. An algorithm using Lagrangian mu
tipliers maximizes the entropy of the resulting wave function a
chooses all the amplitudes of the initial state.
2-13
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JEFFREY YEPEZ PHYSICAL REVIEW E 63 046702
]r2~x,t !

]t
.

r2~x,t2t!2r2~x,t1t!

2t
. ~3.63!

The data appear randomly scattered, but is clustered alo
‘‘cone’’ corresponding to the speed of sound in the 1D3
model, which the Boltzmann analysis of Sec. III B 1 predi
to becs50.74l /t.

To obtain a more accurate estimate of the sound spee
the quantum 1D3Px simulation, a Fourier transform of
time series history of the mass density at a single site of
system was computed and the power spectrumrv* (x)rv(x)
plotted ~see the bottom plot of Fig. 11!. The top plot shows

FIG. 9. Oscillations of a mass density wave in the quant
1D3Px lattice gas for a system size ofV57l in the m56 andpx

50 sector. The ordinate is the absolute value of the amplitud
the mass-density wave divided by the peak amplitude of the in
perturbation.

FIG. 10. Normalized peak~absolute value of the amplitude o
the mass-density wave divided by the peak amplitude of the in
perturbation! versus the first derivative of the normalized peak
oscillations of a mass density wave in the quantum 1D3Px lat
gas for a system size ofV57l in the m56 andpx50 sector. We
have plotted maximum speed curves corresponding the indivi
particle velocity,c56l /t. As expected, all the data are contain
within this ‘‘cone.’’ In addition, we have plotted sound-spee
curves corresponding tocs560.74l /t, which is analytically deter-
mined from a mean-field approximation of the system using
linearized lattice-Boltzmann equation. Most of the data is cluste
around the sound-speed curves, and additional data points sca
within the ‘‘sound-speed cone’’ indicates randomness in the os
lation of the mass density wave.
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the time series collected by measuring the fluctuation of
mass density field of theV57l quantum 1D3Px lattice-ga
system. The signal, which isr(6l ,t), is measured at sitex
56l . Plotted below is the power spectrum of the Four
transform of the signal, which isurvu2, versus sound spee
~this is proportional to the oscillation frequeny,cs5l f ). A
peak in the power spectrum occurs just below the mean-fi
approximation of sound speed,cs50.74l /t, which is plotted
as the vertical bar.~See Fig. 2 for the mean-field value es
mate ofcs .)

IV. CONCLUSION

The main results of this paper are as follows.
The quantum mechanical wave equation is recast a

lattice-Boltzmann equation describing a quantum lattice-
system.

The continuity and Navier-Stokes equations constitut
macroscopic effective field theory for the quantum lattic
gas system and quantum entanglement changes the val
the transport coefficients.

A symbolic math method was presented for simulati
dynamical quantum systems.

With reversible microscopic-scale dynamics, a feature
classical lattices is that dissipation occurs at the macrosc
scale. However, viscous damping is not observed in sim
tions of the quantum 1D3Px lattice-gas model, which is a
microscopically reversible.

The sound speed of mass density waves is the same a
classical value.

Given the memory and speed constraints of classical c
puters, today only small quantum lattice gas can be exa
simulated. I have performed many test simulations of
quantum 1D3Px model for system sizes ranging fromV
53l up to V57l and have included results from theV
57l quantum simulation in the paper, since this was
largest computer run.

I do not wish to argue that results obtained for such
small system, withV57l sites, can give us too much in
sight about the true macroscopic behavior of the quan
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FIG. 11. Time history of the mass density at sitex56l for a
system withV57l sites plotted versus time. A discrete Fouri
transform of this time series data is taken to giverv* (x)rv(x). A
peak in the power spectrumurvu2 occurs at about 0.72l /t, which is
close to the expected sound speed. The abscissa is converted
unit of velocity,c5l /t, to show that there is a unique sound spe
The ordinate has units of (m/l 3t)2.
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QUANTUM LATTICE-GAS MODEL FOR COMPUTATIONAL . . . PHYSICAL REVIEW E 63 046702
lattice gas, which is only well defined in the continuum lim
Further testing is required on larger systems and in two
three dimensions and will be presented in a subsequen
per. Yet, in the classical version of the model, hydrodyna
clike behavior is observed in very small systems~see Figs. 5
and 6!. The type of behavior found in the smallV57l quan-
tum lattice-gas system may also occur for larger systems.
quantum lattice gases of multiple grid sizes should be sim
lated. To this end, a compiled version of quantum lattice-
code is being developed inFORTRAN 90 and will be run on
available supercomputers.

The issue of the similarity or distinction between partic
particle correlations~as occurs in classical lattice gases! and
quantum entanglement~as occurs in quantum lattice gase!
has not been addressed in this paper. Yet, this is an issue
can be studied using quantum lattice-gas simulations.
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APPENDIX A: DERIVATION OF THE QUANTUM
LATTICE-GAS TRANSPORT EQUATION

IN THE CONTINUUM LIMIT

In this appendix, I would like to rederive the transpo
equation~2.19! for the quantum lattice-gas system. The de
vation given here is carried out in the continuum limit~imag-
ine a space-time lattice with infinite resolution as the c
size vanishes!. All the usual restrictions arising from the dis
cretization of the microscopic quantities are temporarily
moved. A particle can exist at any point in space and tim
and it can also have any momentumpW 5mvW . The only as-
sumption I make here is that I can still decompose the sp
time into an ordered set of local states, which in this cas
infinite but denumerable. That is, I imagine there are an
finite number of local states at each point in space (B5`),
one corresponding to every possible particle moment
Since the number of points in the space is also infiniteV
5`), the total number of local states are doubly infin
(N5BV5`2). Nevertheless, I assume the local states
well ordered and denumerable.

The probability of finding a particle with momentumpW in
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theath local state located at positionxW given by Eq.~2.11! is
the following matrix element:

f ~xW ,pW ,t ![^C~ t !un̂auC~ t !&. ~A1!

I assumef (xW ,pW ,t) is a continuous and differentiable meso
copic field quantity. For the moment, suppose thea is the
local state of an ‘‘incoming’’ particle, preceding a possib
collision event. I still want to imagine the particle dynami
divided into mutually exclusive events~collision followed by
streaming! repeated in stepwise fashionad infinitum. Next,
the probability of finding a particle in the local statea8,
corresponding to momentumpW 8 at position xW85xW

1(t/m)pW 8, is expressed by the matrix element

f „xW1~t/m!pW 8,pW 8,t1t…[^C~ t1t!un̂a8uC~ t1t!&.
~A2!

Supposea8 is the local state of the ‘‘outgoing’’ particle
Then, a basic definition of the total time derivative
f (xW ,pW ,t) is the following ratio:

d f~xW ,pW ,t !

dt
[ lim

t→0

f „xW1~t/m!pW 8,pW 8,t…2 f ~xW ,pW ,t !

t
, ~A3!

or, in terms of the matrix elements, it is

d f~xW ,pW ,t !

dt

5 lim
t→0

^C~ t1t!un̂a8uC~ t1t!&2^C~ t !un̂auC~ t !&
t

.

~A4!

This is the seed of a Boltzmann equation for particle tra
port and the RHS of this equation constitutes the collis
term, although this may not appear quite obvious at this po
in the development. In the following development, I sh
interpret the collision term and rewrite it so that it explicit
depends only onn̂a at positionxW anduC(t)&. In so doing, we
shall see how the collision dynamics is inherently encoded
this expression.

First, we add zero to the RHS of the above equation
write the collision term in two parts, explicitly separating th
total change into ‘‘temporal-change’’ and ‘‘spatial-change
parts, as follows:

d f~xW ,pW ,t !

dt

5 lim
t→0

^C~ t1t!un̂a8uC~ t1t!&2^C~ t !un̂a8uC~ t !&
t

1 lim
t→0

^C~ t !un̂a8uC~ t !&2^C~ t !un̂auC~ t !&
t

.

~A5!
2-15
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JEFFREY YEPEZ PHYSICAL REVIEW E 63 046702
From the time-displacement operation,et]/]t f (xW ,pW ,t)
5 f (xW ,pW ,t1t), we see that the first term on the RHS of t
above equation is a partial derivative with respect to time

] f „xW1~t/m!pW ,pW ,t…

]t
1O~Sh2!

5 lim
t→0

^C~ t1t!un̂a8uC~ t1t!&2^C~ t !un̂a8uC~ t !&
t

.

~A6!

The Stouhal number, Sh, is defined as the ratio of the me
free time to the characteristic length scale (Sh5t/t). Simi-
larly, from the space-displacement operation,etvW •“ f (xW ,pW ,t)
5 f (xW1tvW ,pW ,t), we see that the second term is a partial d
rivative with respect to position

vW •“ f ~xW ,pW ,t !1
1

2
~vW •“ !2f ~xW ,pW ,t !1O~Kn3!

5 lim
t→0

^C~ t !un̂a8uC~ t !&2^C~ t !un̂auC~ t !&
t

.

~A7!

The Knudsen number, Kn, is defined as the ratio of
mean-free path to the characteristic length scale (
5l /L). Therefore, we have the convective derivative

d f~xW ,pW ,t !

dt
5

] f „xW1~tm/pW !,pW ,t…

]t
1vW •¹ f ~xW ,pW ,t !

1
1

2
~vW •“ !2f ~xW ,pW ,t !1O~Sh2,Kn3!,

~A8!

composed of a local term and a nonlocal advection term
the local term, it is technically correct~albeit unconven-
tional! to explicitly write the partial time derivative’s depen
dence ont, even thought→0. This is done to stress a
equivalence with the matrix element formulation given
Eq. ~A5!.

Second, we rewrite the ‘‘local change’’ term. Sinc
uC(t1t)&5eiĤ t/\uC(t)& and eiĤ t/\511 iĤ t/\1O(t2),
we have

^C~ t1t!un̂a8uC~ t1t!&

5^C~ t !un̂a8uC~ t !&1
i t

\
^C~ t !u@ n̂a8 ,Ĥ#uC~ t !&

1O~t2!. ~A9!

Using this equation in conjuction with Eq.~A6!, we have

\

] f S xW1
t

m
pW ,pW ,t D

]t
5 i ^C~ t !u@ n̂a8 ,Ĥ#uC~ t !&. ~A10!
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This result is expected, since in quantum mechanics, the
tial time derivative of an operator is found by calculating t
commutator of that operator with the Hamiltonian. Using th
result, the Boltzmann equation~A5! becomes

d f~xW ,pW ,t !

dt
5

i

\
^C~ t !u@ n̂a8 ,Ĥ#uC~ t !&

1 lim
t→0

K C~ t !U na82na

t UC~ t !L . ~A11!

Now the RHS no longer depends onuC(t1t)& ~so it is local
in time!, but it is still nonlocal in space because it depends
n̂a8 as well. That is, if the RHS of the above equation we
to depend only onn̂a , then it would have ‘‘strictly local’’
form.

Third, using the fact thateiĤ t/\[ŜĈ, we can rewrite the
commutator as

i

\
@ n̂a8 ,Ĥ#5 lim

t→0

e2 iĤ t/\n̂a8e
iĤ t/\2n̂a8

t

5 lim
t→0

Ĉ†Ŝ†n̂a8ŜĈ2n̂a8
t

. ~A12!

Now, n̂a andn̂a8 are related by the similarity transformatio
~2.14!, n̂a5Ŝ†n̂a8Ŝ, so the commutator reduces to

i

\
@ n̂a8 ,Ĥ#5 lim

t→0

Ĉ†n̂aĈ2n̂a8
t

. ~A13!

Inserting this into Eq.~A11! gives the final local form of the
quantum Boltzmann equationfor f (xW ,pW ,t), which is

d f~xW ,pW ,t !

dt
5 lim

t→0

1

t
^C~ t !uĈ†n̂aĈ2n̂auC~ t !&. ~A14!

Notice that the collision term depends only on the wa
function evaluated at timet and the occupancy of theath
local state located at positionxW . However, if there exists
quantum superposition between particles at different po
in space, thenuC(t)& cannot be written in separable tens
product form over the spatial points. So in this case,
collision term is ‘‘nonlocal.’’ Hence, when I say the lattice
Boltzmann equation is local in form, I mean this in a pseud
classical sense, barring nonlocal quantum entangleme
And this is why I said in the introduction of this paper th
the lattice-Boltzmann equation, which accounts for glob
entanglement through the collision process, is an exact re
mulation of the many-body Schro¨dinger equation.

There is one more point to make in this appendix. Fro
the basic definition~A3! for the total time rate of change o
f (xW ,pW ,t), we see that Eq.~A14! can be written as the follow-
ing ‘‘finite-difference’’ equation
2-16
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f „xW1~t/m!pW 8,pW 8,t…5 f ~xW ,pW ,t !1^C~ t !uĈ†n̂aĈ2n̂auC~ t !&.

~A15!

This is the lattice-Boltzmann equation@see Eq.~2.19! in Sec.
II B 2#. It is important to note that the Boltzmann equation
still an exact representation of the particle dynamics, e
when expressed in finite-difference form. This is imme
ately obvious when the identityn̂a5Ŝ†n̂a8Ŝ is inserted into
the collision term,̂ C(t)uĈ†S†n̂a8ŜĈ2n̂auC(t)&. Then, the
lattice-Boltzmann equation becomes a simple identity

f „xW1~t/m!pW 8,pW 8,t…5 f ~xW ,pW ,t !1^C~ t1t!un̂a8uC~ t1t!&

2^C~ t !un̂auC~ t !&. ~A16!

In the case of a finite resolution lattice~used in a computa
tional simulation of the quantum lattice-gas system!, the
lattice-Boltzmann equation is the appropriate formulation
the particle dynamics. However, the quantum Boltzma
equation~A14!, in differentiable point form, becomes th
appropriate formulation of the particle dynamics when ta
ing about the system in the continuum limit.

APPENDIX B: REPRESENTATION OF A TWO-QUBIT
GATE FOR A 2-SPIN SYSTEM

In this appendix, we show that Eq.~3.3! is a manifestly
unitary operator that entangles two qubits according to
SU~2! special unitary group. Let us consider a quantum s
system with only two spins. Then the Hilbert space is fo
dimensional, and we choose the following basis kets in
number representation:

u00&5S 1

0

0

0

D , u10&5S 0

1

0

0

D , u01&5S 0

0

1

0

D , u11&5S 0

0

0

1

D .

~B1!

In this basis, the creation operators are

â1
†5S 0 0 0 0

21 0 0 0

0 0 0 0

0 0 21 0

D , â2
†5S 0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

D .

~B2!

Sinceâ1
† and â2

† have real components, the annihilation o
erators are the transpose of the matrices given in Eq.~B2!:
â15(â1

†)T andâ15(â1
†)T. The universal gate operator is e

pressed in terms of the following five operators:
04670
n
-

f
n

-

e
n
r
e

-

â1
†â25S 0 0 0 0

0 0 21 0

0 0 0 0

0 0 0 0

D , â2
†â15S 0 0 0 0

0 0 0 0

0 21 0 0

0 0 0 0

D ,

~B3!

and

n̂1~12n̂2!5S 0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D ,

~12n̂1!n̂25S 0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

D ,

12n̂12n̂25S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D . ~B4!

We can represent a block diagonal 434 unitary matrix in
terms of these five operators as follows:

S 1 0 0 0

0 A B 0

0 C D 0

0 0 0 21

D 5An̂1~12n̂2!2Bâ1
†â22Câ2

†â1

1D~12n̂1!n̂2112n̂12n̂2 .

~B5!

When the 232 block is a member of SU~2! as given by Eq.
~3.1!, this expression for a unitary matrix becomes a rep
sentation of a universal gate given by Eq.~3.3!.

In this appendix, we used a two-spin quantum system
an example system for illustrating how a universal gate
be expressed in terms of the multispin creation and annih
tion operators. Although we used a two-spin system in t
example, the procedure outlined here also works for a s
system with an arbitrary number of spins.

All permutations of single fermion states may be imp
mented by successive application of a ‘‘interchange ope
tor’’ @22#, here denoted byx̂ab8 , where the permutations
occur between statea at sitexW and statesb8 at sitexW8

x̂ab85âa
† âb81âb8

† âa112âa
† âa2âb8

† âb8 . ~B6!

This is a special case of the universal quantum gate,Yab8
where u5p/2, j50 and z50. The interchange operato
correctly handles any necessary phase change due to the
commutation relations~3.2!.
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