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Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic
materials
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We derive the asymptotic equations governing the evolution of a quasi-monochromatic optical pulse in a
nonresonant quadratic material starting from Maxwell equations. Under rather general assumptions, equations
of nonlinear Schro¨dinger~NLS! type with coupling to mean fields result~here called NLSM!. In particular, if
the incident pulse is polarized along one of the principal axes of the material, scalar NLSM equations are
obtained. For a generic input, however, coupled vector NLSM systems result. Special reductions of these
equations include the usual scalar and vector NLS equations. Based on results known for similar systems
which arise in other physical contexts, we expect the behavior of the solutions to be characterized by a rather
large variety of phenomena. In particular, we show that the presence of the coupling to the dc fields can have
a dramatic effect on the dynamics of the optical pulse, and stable localized multidimensional pulses can arise
through interaction with boundary terms associated to the mean fields.
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I. INTRODUCTION

The propagation of a light pulse in a nonlinear medium
characterized by a series of complex changes in its struc
A theoretical interpretation of these phenomena is crucia
order to understand the nonlinear properties of the med
and the complex dynamics of such nonlinear systems. Q
dratically nonlinear media are potentially promising for
number of applications. Propagation of a single light beam
a quadratic medium has attracted significant interest in re
years~see, e.g., Refs.@1–3# and references therein!. In this
kind of media the nonlinear response generates second
monic components and dc fields which subsequently pla
key role in the evolution of the optical pulse. Here we co
centrate on novel system of equations which arise due to
interaction between the fundamental and dc fields in the s
ation where second-harmonic generation is not ph
matched. In this case, the second harmonic component
be solved explicitly and produces an additional self-ph
modulation contribution due to cascaded nonlinearity. T
importance of the coupling between dc fields and the fun
mental was realized early in nonlinear optics—in a differe
context@4,5#. The interaction between optical pulses and
fields was also recently studied in Refs.@1,6,7#.

In more familiar isotropic~Kerr! media, where the non
linear response of the material depends cubically on the
plied field, the dynamics of a quasi-monochromatic opti
pulse is governed by the nonlinear Schro¨dinger equation
~hereafter NLS!. The NLS equation~first derived in optics in
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1965 @8,9# and in a general context in 1967@10#! is also a
centrally important equation in other areas like fluid dyna
ics, plasma physics, etc. In optics, its spatial and temp
versions provide a framework to describe and explain a la
variety of phenomena, from optical switching to lon
distance communication systems. In one-dimensional n
resonant quadratic materials the NLS equation was rece
derived as the evolution equation of a single optical pulse
Refs. @2,3#. The evolution of two pulses at the fundamen
and second harmonic in a nonresonant one-dimensional
terial with both quadratic and cubic response was studie
Ref. @11#, where coupled equations of NLS-type were sho
to appear for the two wave components.

The above cited studies are relative to the on
dimensional temporal case, in which the modulation of
pulse envelope over the transverse coordinates is negle
However, it is well known that (111)-dimensional struc-
tures propagating in a multidimensional medium are unsta
with respect to modulations along the direction perpendicu
to the structure~this instability is in a sense the analog
several dimensions of the well-known Benjamin-Feir ins
bility @12# in one-dimensional systems!. As a consequence
in a medium which has large transverse extent it is not
sirable to reduce the dynamics of the pulse to a simple o
dimensional system. When studying the modulation o
wave packet in a multidimensional dispersive medium, g
eralized NLS systems with coupling to a mean term
known to appear in various physical situations@13,14#. Here-
after we denote such equations as NLSM. In some spe
cases these systems are also known to be integrable; the
iting integrable case was first studied in Ref.@15# in the
context of water waves, and has been the subject of m
research papers ever since~cf. Refs. @16–18#!. However,
©2001 The American Physical Society05-1
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even in the general, nonintegrable case these systems ex
interesting phenomena depending on the coefficients in
equations, such as focusing, singularities and a rich struc
of solutions~see, e.g., Refs.@19,20#!.

In a recent letter@21# we discussed how novel NLSM
systems appear in the context of nonlinear optics w
studying three-dimensional bulk materials with nonzerox (2),
i.e., with quadratic nonlinearity. A brief discussion of th
subject also appears in Ref.@22#, where a prototypical two-
dimensional scalar system is derived from a model sc
wave equation. However, as shown in Ref.@21# and as we
further explain here, the results obtained from the vec
Maxwell equations in the full three-dimensional case dif
significantly.

The structure of this work is the following. In Sec. II w
present in detail the general framework that we use to de
the asymptotic equations of these systems. In Sec. III
provide a full derivation of the scalar NLSM system pr
sented in Ref.@21#, and we discuss in some detail the resu
arising in different physical situations. In Sec. IV we sho
how the same type of derivation can be extended to ob
novel systems of vectors, coupled NLSM equations, and
cuss some of the different physical scenarios that can a
Finally, in Sec. V, we numerically obtain localized solutio
of the optical NLSM equations, and we show that the d
namics of the optical pulse can be significantly affected
the presence of the associated dc fields.

These results provide a generalization in quadratic m
rials of the well-known scalar and vector nonlinear Sch¨-
dinger equations—to which they reduce in some appropr
limits. Since both the scalar and vector versions of the n
linear Schro¨dinger equation have proven to be of fundame
tal importance in many different aspects of nonlinear opt
we can expect our results to be of general character an
have a wide range of applicability.

II. THE PERTURBATION SCHEME

In this section we present the general framework that
will use in Secs. III and IV to derive the asymptotic equ
tions of the system from the full (311)-dimensional Max-
well equations.

A. The vector nonlinear wave equation

In nonmagnetic materials, and in the absence of sour
Maxwell equations yield the vector nonlinear wave equat
for the electric fieldE as

“

2E2“~“•E!2
1

c2

]2

]t2 ~E1P!50, ~2.1!

wherec is the speed of light in vacuum. The material pola
ization P is expressed in terms of the electric field by t
expansion

P5x ""
~1!

* E1x """
~2!

* EE1x """"
~3!

* EEE1¯ , ~2.2!

wherex ""¯"
(n) (t1 ,...,tn) is the nth order susceptibility of the

material, and the asterisk denotes an-dimensional convolu-
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tion integral. Although not independent from the nonline
wave equation~2.1!, it is advantageous to use the divergen
law:

“•~E1P!50. ~2.3!

We note that, as a consequence of equation~2.3!, “•E5
2“•PÞ0. Since the term“•E is usually a small perturba
tion, its contribution to the nonlinear wave equation~2.1! is
often neglected. However, its presence is sometimes cru
in the derivation of the correct asymptotic equations of
system, as we are going to show.

B. The multiple scale expansion

We study the evolution of a quasi-monochromatic wa
with central frequencyv. We consider an incident field
propagating along thez axis and polarized along one or bo
the transverse axes, where our coordinate axes are tak
be an appropriate permutation of the crystallographic axe
the material~see following sections!. Our derivation is based
on a multiple scale perturbation expansion. We define
rapidly varying phase

u5kz2vt, ~2.4a!

and slowly varying space and time coordinates as

X5ex, Y5ey, Z5e2z, T5e~ t2z/v !, ~2.4b!

where k(v) and v(v) are, respectively, the wave numb
and the group velocity, to be determined later, ande is a
parameter that measures the width of the frequency spec
of the input pulse: that is,e;(Dv)/v. Concretely speaking
we use a slowly varying envelope approximation, i.e.,
assume that the modulation of the amplitude of the elec
magnetic field occurs over scales which are much lon
than the optical wavelength. This assumption motivates
substitutions

]

]x
5e

]

]X
, ~2.5a!

]

]y
5e

]

]Y
, ~2.5b!

]

]z
5k

]

]u
2

e

v
]

]T
1e2

]

]Z
, ~2.5c!

]

]t
52v

]

]u
1e

]

]T
. ~2.5d!

C. Perturbation expansion of the optical field

We expand the electric field in powers ofe. Given the
field at O(e) one can deduce the higher order terms in
usual manner for such perturbation expansions. Explici
we write each Cartesian componentj ( j 5x,y,z) of the elec-
tric field as
5-2
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Ej5eEj
~1!1e2Ej

~2!1e3Ej
~3!1¯ . ~2.6!

At any order ine, Ej
(n) is found to consist only of a finite

number of higher harmonics generated by the nonlinear
larizationP. As a result, at any order ine we can decompose
the electric field into a sum of harmonic frequencies, ea
modulated by a complex envelope which is assumed to
slowly varying:

Ej
~n!5 (

m52n

n

eimuEj ,m
~n! ~X,Y,Z,T!. ~2.7!

The assumption of a quasi-monochromatic input field gu
antees that each of the envelopesEj ,m

(n) is centered around
zero frequency.~As a consequence, the termeimuEj ,m

(n) is cen-
tered around the frequencymv.! Also, due to the reality of
the electric field,Ej ,m

(n) 5(Ej ,2m
(n) )* , where the asterisk denote

the complex conjugate.

D. Perturbation expansion of the material polarization

The polarization vectorP can also be expanded in powe
of e. Substituting the electric field in Eq.~2.2! we employ
relations such as

E
2`

`

xab
~1!~ t2t8!Eb,m

~n! ~X,Y,Z,T8!eimu8 dt8

5x̂ab
~1!S vm1 i e

]

]TDEb,m
~n! ~X,Y,Z,T!eimu, ~2.8!

where for convenience we definevm5mv, with

x̂ab
~1!S v̄1 i e

]

]TD5x̂ab
~1!~ v̄ !1 i e

]

]v
x̂ab

~1!~v!uv̄
]

]T

2
1

2
e2

]2

]v2 x̂ab
~1!~v!uv̄

]2

]T2 1¯

~2.9!

and wherex̂ (1)(v) is the Fourier transform ofx (1)(t). Simi-
lar relations apply for thex (2) and x (3) contributions when
Eq. ~2.9! is substituted by a multivariate Taylor expansio
Our task is to expand the vector wave equation in power
e and to solve iteratively for the quantitiesEj ,m

(n) . While the
results obtained with this procedure are perfectly equiva
to those coming from a more traditional perturbation meth
~cf. Ref. @10#!, the merits of the expansion~2.7! manifest in
~i! the substitution of differential equations for theEj ;m

(n) with
algebraic relations; and~ii ! the effective decomposition o
the problem into small units, which allows an easier iden
fication of the relevant contributions at any stage. As a res
a substantial simplification of the calculations is obtain
This will be particularly useful when deriving the vecto
NLSM equations, where the number of different nontriv
contributions in the expansion is considerably large.
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E. Perturbation expansion of the wave equation

Motivated by the previous considerations we substit
the expansions~2.6!–~2.7! into Eq. ~2.1!, which allows us to
formally decompose the wave equation into a set of eq
tions for the corresponding harmonic components:

L j ,a;mEa;m2D j ;m1M j ,a,b;r ,m2rEa;rEb;m2r

1Nj ,a,b,c;r ,s,m2r 2sEa;rEb;sEc;m2r 2s50, ~2.10!

where a sum is understood over the Cartesian indicesa,b,c
and over the harmonic indicesr,s. A similar decomposition
holds for the divergence equation~2.3!. The termD in ~2.10!
represents the gradient of the divergence of the electric fi
@i.e., D5“(“•E)#, while L accounts for the Laplacian an
the linear part of the material polarization, andM,N are the
result of the quadratic and cubic nonlinearity of the syste
respectively. Note that“•E is at leastO(e2), which allows
us to treatD as a perturbation.

By using Eqs. ~2.6!–~2.7! we have L j ,a;m5L j ;md j ,a ,
whered i , j is Kronecker’s delta,

L j ;m5S imk2
e

v
]T1e2]ZD 2

1e2~]X
21]Y

2 !1k j
2~vm1 i e]T!,

~2.11!

with k j (v) defined by

k j
2~v!5

v2

c2 @11x̂ j j
~1!~v!#, ~2.12!

and where only materials for which the principal and cry
tallographic coordinate systems coincide are considered.
operatorsM andN are

M j ,a,b;r ,m2r5
1

c2 @vm1 i e~]Ta
1]Tb

!#2
•x̂ j ,a,b

~2! ~v r

1 i e]Ta
,vm2r1 i e]Tb

!, ~2.13a!

Nj ,a,b,c;r ,s,m2r 2s5
1

c2 @vm1 i e~]Ta
1]Tb

1]Tc
!#2x̂ j ,a,b,c

~3! ~vt

1 i e]Ta
,vs1 i e]Tb

,vm2r 2s1 i e]Tc
!,

~2.13b!

where]Ta
(Ea;rEb;m2r)5(]TEa;r)Eb;m2r , etc. As a result of

the combined expansions~2.6!–~2.7!, L,M,N are also auto-
matically expanded in powers ofe. That is,

Lm5Lm
~0!1eLm

~1!1e2Lm
~2!1¯ , ~2.14!

and similar forM andN. It is useful to list the first few terms
in these expansions:

L j ;m
~0! 52~mk!21k j

2~vm!, ~2.15a!

L j ;m
~1! 52i @2mk/v1~k jk j8!vm#]T , ~2.15b!
5-3
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L j ;m
~2! 52imk]Z1]XX1]YY2@~k jk j91~k j8!2!vm

21/v2#]TT .
~2.15c!

Also,

Ms,m2s
~0! 5

vm
2

c2 x̂s,m2s
~2! , ~2.16a!

Ms,m2s
~1! 5 i

vm
2

c2 ~ x̂s8,m2s
~2! ]Ta

1x̂s,m2s8
~2! ]Tb

!

12i
vm

c2 x̂s,m2s
~2! ~]Ta

1]Tb
!, ~2.16b!

Ms,m2s
~2! 52

vm
2

2c2 ~ x̂s9,m2s
~2! ]TaTa

12x̂s8,m2s8
~2! ]TaTb

1x̂s,m2s8
~2! ]TbTb

! ~2.16c!

22
vm

c2 ~]Ta
1]Tb

!~ x̂s8,m2s
~2! ]Ta

1x̂s,m2s8
~2! ]Tb

!

2
1

c2 x̂s,m2s
~2! ~]Ta

1]Tb
!2, ~2.16d!

where x̂s,m2s
(2) 5x̂ (2)(vs ,vm2s), and where for simplicity

tensor indices have been dropped. Similarly

Nr ,s,m2s
~0! 5

vm
2

c2 x̂ r ,s,m2r 2s
~3! . ~2.17!

At any ordern and in each directionj, the productL j ;mEj ;m
decomposes as

LmEm5Lm
~0!Em

~n!1Lm
~1!Em

~n21!1¯1Lm
~n21!Em

~1! ,
~2.18!

where again the indexj has been omitted for simplicity. A
similar decomposition holds for the nonlinear terms and
the divergence termD j ;m in Eq. ~2.10!.

In the next sections, using these expansions, we solve
~2.10! and the divergence Eq.~2.3! recursively in powers of
e in a number of representative cases.

III. SCALAR NLSM EQUATIONS

In this section we consider the case in which the elec
field is polarized along one of the principal axes of the m
terial. ~That is, the incident field has a nonzero compon
only along one of the principal axes.! In this case only a
relatively small number of terms in the vector wave equat
~2.1! plays a significant role, and we are able to obtain
relatively simple scalar result. To be specific, we consi
the propagation of a light pulse in a~uniaxial! tetragonal 4
mm-material. Materials with such a symmetry class are p
vided, for instance, by photorefractive BaTiO3, SBN, and
KTN @23#. This particular choice of symmetry class is mo
vated by the special structure assumed by the nonlinear
ceptibility tensorsx (2),x (3) ~cf. Ref. @24#!, and guarantees
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that only few components play an active role in the vec
wave equation~2.1!. For convenience of exposition, we tak
our x axis to coincide with the crystallographicz axis of the
material.

The nonzero entries of the susceptibility tensors are
following.

~1! For x (1),xxx
(1) :xyy

(1)5xzz
(1) .

~2! For x (2): In thex direction,xxxx
(2) , xxyy

(2) 5xxzz
(2) ; in they

direction, xyyx
(2) ,xyxy

(2) ; in the z direction, xzzx
(2)5xyyx

(2) , xzxz
(2)

5xyxy
(2) .

~3! For x (3): The three elements with all indices equ
xxxxx

(3) 5xyyyy
(3) ; xzzzz

(3) . Also, the 18 elements with indice
equal in pairs, with equality between elements obtained
exchangingx↔y ~i.e., xzxzx

(3) 5xzyzy
(3) , etc.!. In total, this

leaves 11 independent elements.

A. Derivation of the scalar equations

We take the leading order incident field to consist only
the fundamental polarized in thex direction. That is, we take
Ex,m

(1) 50 for mÞ61 andEy,m
(1) 5Ez,m

(1) 50.
O(e): From thex component (j 5x) of Eq. ~2.10! at the

fundamental (m51) at O(e) we obtain the usual dispersio
relation: k[kx(v), with k j (v) defined by~2.12!. Here we
neglect the imaginary part ofx̂ (1)(v), which leads to attenu-
ation. The effects of loss can be included in the theory i
straightforward way. Note that, due to the uniaxiality,xyy
5xzz ~i.e., xxx5xyy in the crystallographic system!, which
will be important later.

O(e2): For each Cartesian componentj, the relevant com-
bination for the linear part of the wave equation~2.10! is
L j ;m

(1) Ej ;m
(1) 1L j ;m

(0) Ej ;m
(2) . Then, from thex component of the

wave equation at the fundamental~j 5x, m51!, we obtain
the group velocityv[vx(v), with

v j~v!51/k j8~v!. ~3.1!

Also, atm52 we haveEy,2
(2)5Ez,2

(2)50, from they andz com-
ponents, and from thex component we find the second ha
monic generated by the quadratic nonlinearity:

Ex,2
~2!5

x̂xxx
~2! ~v,v!

Dx
2~v!

~Ex,1
~1!!2, ~3.2!

where

D j
2~v!5nj

2~v!2nj
2~2v!. ~3.3!

We emphasize that in our derivation we assumeDx
2(v)@e;

i.e., we assume to be far away from the phase match
condition which leads to second harmonic resonance.
also note that the particular choice of material~reflecting in
the tensor structure ofx (2)! ensures that no new Cartesia
components are generated as an effect of the nonlinearity
O(e2), all the other harmonics are found to be zero with o
important exception form50: Due to the absence of fas
derivatives, the dc electric field~i.e., m50! is undetermined
at this stage; that is,Ex,0

(2)Þ0. In fact, atO(e2), similar dc
fields are also allowed for they andz components. Like the
5-4
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field at the fundamentalEx,1
(1) , the dc fieldsEx,0

(2) , Ey,0
(2) , and

Ez,0
(2) need to be determined at higher orders in the expans

As it turns out, all dc fields play a crucial role in the calc
lation. It is important to realize that such mean terms can
simply be ignored, otherwise inconsistencies develop
higher orders in the expansion, as we are going to show.
also important to observe that, at this stage, the results o
derivation would be exactly the same for Kerr materi
~with the exception that, for Kerr materials,x (2)50 and no
second harmonic is produced!. The difference lies on the fac
that, in the absence of quadratic nonlinearity, at higher ord
there would be no source term in the equations for the
fields and no coupling to the dc fields in the equations for
optical fields.

Finally, at O(e2), the divergence equation~2.3! at the
fundamental determines thez component of the optical field
which is generated by the slow modulation of thex compo-
nent:

Ez,1
~2!5

inx
2~v!

kx~v!nz
2~v!

]

]X
Ex,1

~1! , ~3.4!

where the linear index of refraction is defined in the us
way as

nj
2~v!511x̂ j j

~1!~v!. ~3.5!

The fast variation of]XEx,1
(1) with respect tou generates a

nonzeroz component at orderO(e2). However, since the
modulation of the envelope with respect toy is slow, no such
component is generated in they direction. That is,Ey,1

(2)50.
O(e3): The divergence law~2.3! at dc (m50) yields an

explicit equation forEz,0
(2) in terms of the fundamentalEx,1

(1)

and the dc fields in thex andy directions,Ex,0
(2) andEy,0

(2) :

]

]T
Ez,0

~2!5
v~v!

nz
2~0!

Fnx
2~0!

]

]X
Ex,0

~2!1ny
2~0!

]

]Y
Ey,0

~2!

12x̂xxx
~2! ~v,2v!

]

]X
~ uEx,1

~1!u2!G . ~3.6!

It is noted that the presence of the source term proportio
to uEx,1

(1)u2 makes it impossible to neglect the dc fields a
maintain consistency in the derivation.

For each Cartesian componentj, the relevant combination
for the linear part of the wave equation~2.10! is L j ;m

(3) Ej ;m
(1)

1L j ;m
(1) Ej ;m

(2) 1L j ;m
(0) Ej ;m

(3) . From thex component at the funda
mental, we find the evolution of the slowly varying amp
tude of the incident field. Defining

Ex,1
~1!5..A~X,Y,T,Z!, Ex,0

~2!5..f~X,Y,Z,T!, ~3.7!

and using Eq.~3.2! in the nonlinear contributions and~3.6! to
computeDx ~the divergence term!, we get forA the follow-
ing evolution equation:
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]

]Z
1~12ax,1!

]2

]X2 1
]2

]Y22kk9
]2

]T2

1Mx,1uAu21Mx,0fGA50, ~3.8a!

where the coefficientsax,1 , Mx,0 , andMx,1 are given below.
Equation ~3.8a! contains the coupling of the fundament
with the second harmonic and the mean fieldf. An explicit
expression forf cannot be obtained. Rather, an evoluti
equation forf in terms of the fundamental is found. The tw
necessary ingredients for this kind of coupling to occur
the presence of a multidimensional medium and quadr
nonlinearity.

O(e4): The evolution of the mean fieldf is captured
from the wave equation at dc atO(e4), where, using~3.6!, it
is found that

F ~12ax,0!
]2

]X2 1
]2

]Y2 1sx

]2

]T2Gf
5FNx,1

]2

]T22Nx,2

]2

]X2G~ uAu2!. ~3.8b!

Oncef is known, the auxiliary fieldEy,0
(2) is obtained fromf

as

F ]2

]X2 1
]2

]Y2 1sy

]2

]T2GEy,0
~2!2ax,0

]2

]X]Y
f

52Nx,2

]2

]X]Y
~ uAu2!. ~3.9!

The coefficienta j ,m appearing in Eqs.~3.8! is defined as

a j ,m512
nj

2~vm!

nz
2~vm!

, ~3.10a!

while theM j ,m andNj ,m are given by

M j ,052
v2

c2 x̃ j j j
~2!~v,0!, ~3.10b!

M j ,15
v2

c2 F3x̂ j j j j
~3! ~v,v,2v!1

2

D j
2~v!

3x̂ j j j
~2!~2v,2v!x̂ j j j

~2!~v,v!G , ~3.10c!

Nj ,15
2

c2 x̂ j j j
~2!~v,2v!,

Nj ,25cz
2~0!Nj ,15

2

nz
2~0!

x̂ j j j
~2!~v,2v!, ~3.10d!

and
5-5
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sj5
1

v2~v!
2

1

cj
2~0!

, ~3.10e!

where cj
2(v)5c2/nj

2(v) is the phase velocity. We reca
that, for convenience, our choice of axes is a permutation
the crystallographic set. Also, although we only need
coefficients for j 5x at this time, the corresponding coeffi
cients for j 5y will also be needed when considering vect
NLSM equations.

We note thatNj ,2 and thea j ,m arise from the vector na
ture of the electric field@via the contribution of“(“•E)#.
That is, Nj ,25a j ,m50 if “•E50. Also, Mx,1 results from
the combined effects ofx (3) and twox (2) in cascade: the firs
term inMx,1 is due to the self-interaction of the fundament
while the second originates from the coupling between fi
and second harmonic. Similar physical problems are kno
to be capable of leading to large ‘‘effective’’ third orde
processes@25,26#. Again, the choice of the symmetry class
instrumental in simplifying the contribution arising from
x (3). In fact, due also to the particular input consider
~namely, the fact thatEy,61

(1) 5Ez,61
(1) 50!, only the tensor

componentsxxxx
(2) and xxxxx

(3) of the nonlinear susceptibilitie
play a role in the calculations.

B. Remarks

Equations~3.8! constitute the fundamental scalar syste
that governs the evolution of a multidimensional qua
monochromatic pulse in a nonresonant material with q
dratic nonlinearity. They are the (311)-dimensional ana-
logue in optics of the (211)-dimensional equations arisin
in water waves@13,15#.

As a result of the perturbation expansion, the electric fi
E(x,y,z,t) is decomposed as follows:

Ex~x,y,z,t !5e@Ex,1
~1!~X,Y,Z,T!eiu1Ex,1

~1!~X,Y,Z,T!* e2 iu#

1e2@Ex,2
~2!~X,Y,Z,T!e2iu1Ex,2

~2!

3~X,Y,Z,T!* e22iu1Ex,0
~2!~X,Y,Z,T!#

1O~e3!, ~3.11a!

Ey~x,y,z,t !5e2Ey,0
~2!~X,Y,Z,T!1O~e3!, ~3.11b!

Ez~x,y,z,t !5e2@Ez,1
~1!~X,Y,Z,T!eiu1Ez,1

~1!~X,Y,Z,T!* e2 iu

1Ez,0
~2!~X,Y,Z,T!#1O~e3!, ~3.11c!

whereEx,2 is given by Eq.~3.2!, Ez,1 is given by Eq.~3.4!,
Ez,0 is given by Eq.~3.6!, Ey,0 is given by Eq.~3.9!, andEx,1
andEx,0 are determined by the NLSM equations~3.8!.

The absence of aZ derivative in Eqs.~3.8b! and ~3.9!
originates from the choice of using a reference frame tha
moving with the group velocity of the optical pulse. In fac
an alternative but equivalent derivation can be done with
performing the transformation to the comoving frame a
introducing the multiple time and space scales

T5et, Z15ez, Z25e2z, ... . ~3.12!
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In this case the resulting equations would be

2ikS ]

]Z
1

1

v~v!

]

]TDA1eF ~12ax,1!
]2

]X2 1
]2

]Y22kk9
]2

]T2

1Mx,1uAu21Mx,0fGA50, ~3.13a!

F ~12ax,0!
]2

]X2 1
]2

]Y2 1
]2

]Z22
1

v2~0!

]2

]T2Gf
5FNx,1

]2

]T22Nx,2

]2

]X2G~ uAu2!, ~3.13b!

where nowZ[Z1 .
We remark upon the importance of the sign ofsj in Eqs.

~3.8b!–~3.9!: If sj.0, Eqs. ~3.8b! and ~3.9! are elliptic,
whereas ifsj,0 ~anda j ,0,1!, they are hyperbolic. Indeed
in the case of all the materials considered heresj,0, which
has important ramifications~cf. Sec. V!. Finally, we observe
that the standard NLS equation can be considered as a
cial ‘‘limiting’’ case wherex (2)50, in which case we have
Mx,05Nx,15Nx,250, Ej ,0

(2)5const, andMx,153(v/c)2x̂xxxx
(3)

3(v,v,2v). Then, if we further assumex (1) to be isotro-
pic, ax,150 and we obtain the usual scalar multidimension
NLS equation for isotropic materials as a reduction of E
~3.8!.

We also emphasize that the special structure of Eqs.~3.8!
depends on the particular choice of symmetry class, wh
crucially reflects on the type of nonlinear couplings betwe
the different harmonic components. In general, differe
symmetry classes lead to different types of evolution eq
tions. As an example, we consider a~biaxial! orthorhombic
mm2 class.~A material with such a symmetry class is pr
vided by KNbO3 @23#.! The derivation of the fundamenta
equations proceeds exactly in the same way as before,
equations similar to the system Eqs.~3.8! are found. How-
ever, due to biaxiality, we now havexyyÞxzz ~i.e., xxx
Þxyy in the crystallographic system!. This implies that
ay,0Þ0, andEy,0

(2) enters in the equation forEx,0
(2) . That is, the

resulting equations for the fundamentalEx,1
(1)5..A(X,Y,T,Z)

and for the mean fieldsEx,05
..fx(X,Y,Z,T) and Ey,0

5..fy(X,Y,Z,T) now read

F2ik
]

]Z
1~12ax,1!

]2

]X2 1
]2

]Y22kk9
]2

]T2

1Mx,1uAu21Mx,0fxA50 ~3.14a!

and

F ~12ax,0!
]2

]X2 1
]2

]Y2 1sx

]2

]T2Gfx2ay,0

]2

]X]Y
fy

5FNx,1

]2

]T22Nx,2

]2

]X2G~ uAu2!, ~3.14b!
5-6
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F ]2

]X2 1~12ay,0!
]2

]Y2 1sy

]2

]T2Gfy2ax,0

]2

]X]y
fx

52Nx,2

]2

]X]Y
~ uAu2!. ~3.14c!

As a consequence, Eqs.~3.14a! and ~3.14b! do not form a
closed system anymore, and the full set of Eqs.~3.14! is now
necessary to describe the behavior of the material. In
case neglecting the term“•E in the nonlinear wave equatio
~2.1!—which corresponds to lettinga j ,m50—would result
in a different systems of equations, which miss the dir
coupling between the two dc fields. We also emphasize t
even in the relatively simpler situation in which Eqs.~3.8a!
and ~3.8b! are sufficient to completely determine the evo
tion of the pulse, the underlying dynamics of the system
still characterized by highly nontrivial dc interactions in a
Cartesian components. It is also evident that the NLS
equations are rather general. Several comments are no
order.

~1! As mentioned before, the above equations are deri
under the assumption that there are no resonant wave i
actions; otherwise the governing equations and relev
scales would be very different—e.g., two/three wave inter
tions, which have already been the subject of many rese
papers~see, e.g., Refs.@27,28# and references therein!.

~2! We do not introduce dc fields and/or second harmo
components at leading order because we are interested i
evolution of a modulated optical field and not in the intera
tions among different waves. This is a standard assump
in order to obtain NLS-type—and in this case NLSM-type
equations. Of course, other assumptions would lead to
ferent evolution equations, e.g., long–short wave interacti
~cf. Refs.@6,7,20,29#!.

~3! Again, we emphasize that the mean fields are driv
by the optical field and play a central role in the equatio
Indeed, as we have seen, it is necessary to incorporate th
field in the analysis atO(e2); otherwise inconsistencies aris
in the expansion. This is true even in the one-dimensio
temporal case~i.e., when the mean fields are independent
X andY!. In this case however the mean fields can be in
grated explicitly; only then the equations reduce to the w
known NLS equation~cf. Refs. @2,3#!. In particular, if x (2)

50 ~i.e., for the familiar Kerr materials! there are no source
terms in the analogue of Eqs.~3.14b!–~3.14c! and the mean
fields are zero.

~4! Finally, if the modulations of the incident field are s
slow that it can be assimilated to a continuous wave,
scenario reduces to that described in Ref.@1#, in which a
static dc field produces a change in the refractive ind
through the electro-optic effect. However, if a temporally
spatially modulated pulse is considered, the full NLSM s
tem of equations is necessary for a more accurate descrip
of the physics, in which a traveling dc field is obtained, a
for which phase matching can occur mediated by the opt
group velocity and the dc field phase velocity. Previous st
ies on the coupling between optical fields and their low f
quency counterparts show that a traveling dc field is p
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duced by a modulated optical envelope@4#. Our results show
that a spatially modulated envelope works just as well a
temporally modulated one.

It is also worth discussing some results that are known
similar systems of (211)-dimensional NLSM equations
which arise in water waves~cf. Ref. @19#!, since we expect
that many of the issues will be also relevant in our conte

C. NLSM equations in water waves

In the context of water waves, the relevant problem
our purposes is the evolution of a small-amplitude, slow
modulated packet of surface waves on sufficiently deep
ter. If A is the dimensionless envelope of the wave pack
propagating in thex direction, andF is the dimensionless
amplitude of the mean fluid flow, the dynamical equatio
for A andF take the form@13#

i
]A

]t
1c1

]2A

]j2 1c2

]2A

]h2 5x1A
]F

]j
1x2uAu2A,

~3.15a!

g
]2F

]j2 1
]2F

]h2 52b
]@ uAu2#

]j
, ~3.15b!

wherej5ek(x2cgt), h5eky andt5e2(gk)1/2t are the di-
mensionless coordinates,~k,l! are the wave numbers in th
~x,y! directions,cg5]v/]k is the group velocity, andg is the
gravity acceleration. The coefficientsc1 , c2 , x1 , x2 , g, and
b are suitable functions ofk, cg , the dispersion coefficients
]2v/]k2 and ]2v/] l 2, the water depthh and the surface
tensionT.

Depending on the values of the dimensionless quanti
kh and T̃5(k21 l 2)T/g, several physical scenarios arise,
discussed in detail in Refs.@19,20#. Also, different reduc-
tions are possible in different physical limits.

~1! When derivatives with respect toy can be neglected
~e.g., in a narrow canal!, Eq. ~3.15b! can be integrated im-
mediately, and one recovers the familiar one-dimensio
nonlinear Schro¨dinger equation, which is a completely inte
grable infinite-dimensional Hamiltonian system that can
solved by the inverse scattering transform~IST! @20#.

~2! In the deep water limit,kh→`, the coefficientb tends
to zero. Thus, the mean flowF vanishes and Eqs.~3.15!
reduce to the (211)-dimensional NLS equation:

i
]A

]t
1c1

`
]2A

]j2 1c2
`

]2A

]h2 5x2
`uAu2A. ~3.16!

Contrary to the one-dimensional case, this equation is
solvable by IST. Also, for various choices of paramete
~sufficiently strong surface tension in sufficiently deep wat!
the solutions can blow up in finite time. One-dimension
solitons ~i.e., NLS solitons! embedded in the two-
dimensional equation are unstable to slow transverse pe
bations.

~3! A different scenario arises in the opposite limit, that
shallow water, whenkh→0 with e!(kh)2. In this case,
after rescaling, the equations can be written as
5-7
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i
]A

]t
2s

]2A

]x2 1
]2A

]y2 5A
]F

]x
1suAu2A, ~3.17a!

s
]2F

]x2 1
]2F

]j2 522
]@ uAu2#

]x
, ~3.17b!

where s5sign(1
3 2T̃). This system, usually called th

Davey–Stewartson equations@15#, is of IST type, and thus
completely integrable. We should note that if a similar si
ation were also true for the optical NLSM equations fou
here, the corresponding equations would provide one of
first integrable multidimensional systems in nonlinear opti

In this last case—that is, for the Davey–Stewarts
system—several exact solutions are available. In particu
stable localized pulses, often called ‘‘dromions,’’ are know
to exist which are driven by the appropriate mean fields
Sec. V we further discuss these solutions of the integra
case, and we show that similar solutions exist even in
more general nonintegrable case described in this work.

IV. VECTOR NLSM EQUATIONS

We now direct our attention to the case in which the el
tric field has nonzero components along both the transv
principal axes of the material. This allows us to derive n
systems of equations, whose analog is not known to exis
other physical contexts. The derivation of these coup
equations closely follows the method developed for the s
lar case. For concreteness, we consider a~uniaxial! hexago-
nal 6̄ material, where now we takex,y,zto coincide with the
crystallographic axes of the material. Materials with oth
uniaxial symmetry classes such as 3 m~like LiNbO3 and
LiTaO3, cf. Ref. @23#! will result in similar vector NLSM
equations. This amounts to assuming the following struct
for the nonlinear susceptibility tensors@24#:

~1! For x (1), only diagonal elements are nonzero:xxx
(1)

5xyy
(1) andxzz

(1) .
~2! For x (2), only eight components are nonzero, cor

sponding to all possible combinations ofx andy indices. Of
these, only two are independent. Explicitly,xxyy

(2) 5xyxy
(2)

5xyyx
(2) 52xxxx

(2) andxyxx
(2) 5xxyx

(2) 5xxxy
(2) 52xyyy

(2) .
~3! For x (3), there are 41 nonzero elements, correspo

ing to all the elements in which thez index appears in pairs
Of these, 19 are independent. Explicitly,xxxyy

(3) 5xyyxx
(3) ,

xxyyx
(3) 5xyxxy

(3) , and xxyxy
(3) 5xyxyx

(3) , while xyyxy
(3) 52xxxyx

(3) ,

xyxyy
(3) 52xxyxx

(3) , and xxyyy
(3) 52xyxxx

(3) . Also, xxxxx
(3) 5xxxyy

(3)

1xxyyx
(3) 1xxyxy

(3) 5xyyyy
(3) and xxxxy

(3) 5xyyxy
(3) 1xyxyy

(3) 1xxyyy
(3) 5

2xyyyx
(3) . Components withz indices are omitted since the

have no active role in the calculations.

Finally, we allow for a small birefringence in the transver
dimensions by assuming thatukx2kyu(e, due to a slight
effective difference betweenxxx

(1) and xyy
(1) which could be

obtained in various ways, e.g., imperfections of the crysta
a waveguide, and would break the degeneracy of the pro
gation modes. Of course, in a waveguide we would neg
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one of the transverse derivatives. The presence of artifi
birefringence allows us to illustrate some of the scenar
that can appear when the derivation is performed for diff
ent materials. As we will see, the asymptotically small s
of the birefringence terms plays an important role in det
mining the precise details of the resulting NLSM equatio

A. Derivation of the vector equations

The electric field is expanded as in Eq.~2.6!. However, in
this case we include both transverse components atO(e),
i.e., we takeEx,61

(1) Þ0, Ey,61
(1) Þ0, andEx,61

(1) 50. The pertur-
bation expansion is similar to the case discussed above.
main difference from the scalar case is the presence of
different phases for thex and y components; namely, the
~fast! variableu defined in~2.4a! is substituted byux anduy ,
with

u jªkjz2vt, ~4.1!

where each of the wave numberskj (v) is to be determined
in the following. Also, the definition of the~slow! retarded
time is now modified to beT5e(t2z/ v̄), where the mean
group velocityv̄ is also to be determined later. As a cons
quence, some care must be taken in replacing thez derivative
with the proper slow and fast counterparts@Eq. ~2.5c!#, since
each transverse component now evolves with its own ch
acteristic wave number. Therefore we expand the elec
field as

Ej
~n!5 (

m52n

n

eimu jEj ,m
~n! ~X,Y,Z,T!. ~4.2!

@We should point out that, as long asEz,m
(n) is slowly varying,

the choice ofuz is arbitrary, since thez component of the
electric field is only driven by thex andy components, as in
the scalar case. In other words,Ez will turn out to be inde-
pendent ofuz ; cf. Eq. ~4.8! below.# In turn, Eq.~2.11! needs
to be replaced by

L j ;m5S imkj2
e

v̄
]T1e2]Z

2D 2

1e2~]X
21]Y

2 !1k j
2~vm1 i e]T!.

~4.3!

Equations~2.15! change accordingly. In spite of these mod
fications, and although the calculations are considera
more involved, the analysis proceeds almost exactly as in
scalar case. In what follows we only concentrate on the
ferences between the two cases.

At O(e) we find the respective wave numbers as a fu
tion of v. As it may be expected,kx and ky are given by
kj5k j (v), wherek j (v) is still defined by~2.12!. At O(e2),
for the fundamental in each transverse componenta5x,y we
find

2ikaS ka82
1

v̄ D ]

]T
Ea,1

~1!50. ~4.4!
5-8



o

ic

e

f
ce

ar
h

th

c-

a

e
po-

f

red
n

the

ing

ese
ce
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The respective group velocities are given byv j51/kj8 , as
before. However, due to birefringence we havevxÞvy . The
mean velocity is then defined asv̄(v)51/k̄8(v), where

k̄8~v!5 1
2 ~kx8~v!1ky8~v!!. ~4.5!

Then, if kx8(v)2ky8(v);O(e), it is useful to introduce the
O(1) temporal walk-off coefficients

wa52ka~ka8~v!2 k̄8~v!!/e. ~4.6!

In fact, since the differenceka82 k̄8 is O(e), theO(e2) equa-
tions at the fundamental become effectively residuals
O(e3), which are carried at next order in the expansion.

Also, atO(e2) for m52, we obtain the second harmon
components in the transverse coordinates as

Ea,2
~2!5

1

Da
2~v!

@xaaa~v,v!~Ea,1
~1!!22x āāā~v,v!

3~Eā,1
~1!!2e2i ~u ā2ua!22x āāā~v,v!Ea,1

~1!Eā,1
~1!ei ~ua2ua!#,

~4.7!

wherea indicates eitherx or y, andā is the other transvers
coordinate@with D j (v) still given by ~3.3!#. Note how the
more complicated tensor structure ofx (2) and the presence o
a y component at the fundamental generate the appearan
many more coupling combinations in Eq.~4.7! compared to
Eq. ~3.2!. As in the scalar case, atO(e2) all other harmonics
are found to be zero, except for all the dc fields, which
unknown at this level and need to be determined at hig
order in the expansion.

From the divergence law at the fundamental we get
O(e2) correction to the fields at the fundamental as

Ez,1
~2!5

inx
2~v!

kz~v!nz
2~v!

]

]X
Ex,1

~1!ei ~ux2uz!

1
iny

2~v!

ky~v!nz
2~v!

]

]Y
Ey,1

~1!ei ~uy2uz!, ~4.8!

which is to be compared to Eq.~3.4!. Similarly, at O(e3),
from the divergence law at dc we get thez component of the
dc field in terms of transverse fields:

]

]T
Ez,0

~2!5
v̄~v!

nz
2~0!

Fnx
2~0!

]

]X
Ex,0

~2!1ny
2~0!

]

]Y
Ey,0

~2!G
12

v̄~v!

nz
2~0!

F x̂xxx
~2! ~v,2v!

]

]X
2x̂yyy

~2! ~v,2v!
]

]YG
3~ uEx,1

~1!u22uEy,1
~1!u2!22

v̄~v!

nz
2~0!

F x̂xxx
~2! ~v,2v!

]

]X

1x̂yyy
~2! ~v,2v!

]

]YGRe@Ex,1
~1!~Ey,1

~1!!* ei ~ux2uy!#,

~4.9!
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which is the analog of Eq.~3.6!. The differenceuEx,1
(1)u2

2uEy,1
(1)u2 in Eq. ~4.9! arises from the particular tensor stru

ture belonging to the symmetry class considered~namely, the
fact thatxxyy

(2) 52xxxx
(2) !, and should not be considered as

generic feature of quadratic materials.
From theO(e3) contribution of the wave equation at th

fundamental we find the evolution of the transverse com
nents of the optical field. Define

Ex,1
~1!5..Ax~X,Y,T,Z!, Ex,0

~2!5..fx~X,Y,T,Z!,
~4.10a!

Ey,1
~1!5..Ay~X,Y,T,Z!, Ey,0

~2!5..fy~X,Y,T,Z!.
~4.10b!

Then Ax ,Ay are found to satisfy the following system o
coupled NLSM equations:

F2ika

]

]Z
1wa

]

]T
1~12daxaa,1!

]2

]X2 1~12dayaa,1!
]2

]Y2

2kaka9
]2

]T2GAa2a ā,1

]2

]X]Y
Aāe2 i ~ua2u ā!1~M̃a,1uAau2

1M̃a,2uAāu2!Aa1M̃a,3Aā
2Aa* e22i ~ua2u ā!1~M̃a,4uAau2

1M̃a,5uAāu2!Aāe2 i ~ua2u ā!1M̃a,6Aā
2Aā

* ei ~ua2u ā!

1~Ma,0fa2Mā,0f ā!Aa2~Ma,0fa

1Mā,0f ā!Aāe2 i ~ua2u ā!50, ~4.11a!

where againa denotes eitherx or y, andā is the other trans-
verse coordinate. Note that Eqs.~4.11a! are characterized by
the presence of additional nonlinear combinations compa
to Eq.~3.14a!. In particular, note the direct coupling betwee
the two optical fieldsand the coupling of either optical field
to the dc field in the other transverse coordinate. As in
scalar case the evolution of the mean fieldsfx ,fy is cap-
tured atO(e4):

F ~12daxaa,0!
]2

]X2 1~12dayaa,0!
]2

]Y2 1sa

]2

]T2Gfa

2a ā,0

]2

]X]Y
f ā2FNa,1

]2

]T22daxNa,2

]2

]X22dayNa,2

]2

]Y2

1Nā,2

]2

]X]YG~ uAau22uAāu2!1FNā,1

]2

]T22daxNā,2

]2

]X2

2dayNā,2

]2

]Y22Na,2

]2

]X]YGRe~AaAā
* ei ~ua2ua!!50.

~4.11b!

Again, we note the presence of many more nonlinear forc
terms in Eqs.~4.11b! as opposed to Eqs.~3.14b! and~3.14c!.
As in the scalar NLSM case discussed before, some of th
combinations result from the contribution of the divergen
5-9
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of the electric field,“•E, in Eq. ~2.1!, througha j ,m , and
would be missed by using a scalar wave equation instea
the full vector Eq.~2.1!.

The coefficientsaa,m ,Ma,m ,Na,m are still defined by Eqs
~3.10!, while

sa5
1

v̄2~v!
2

1

ca
2~0!

, ~4.12a!

d i j is the Kronecker symbol~d i j 51 if i 5 j , d i j 50 if iÞ j !,
and the coefficientsM̃a,1 ,...,M̃a,6 are

M̃a,15
v2

c2 ~3ba,112ca,1!, M̃a,25
v2

c2 ~2ba,114cā,2!,

M̃a,35
v2

c2 ~ba,122ca,1!, ~4.12b!

M̃a,45
v2

c2 ~2ba,214cā,3!, M̃a,55
v2

c2 ~3ba,212ca,4!,

M̃a,65
v2

c2 ~ba,222ca,4!, ~4.12c!

where

ba,15x̂aaaa
~3! ~v,v,2v!, ba,25x̂aāāā

~3! ~v,v,2v!
~4.12d!

and

ca,15x̂aaa
~2! ~2v,2v!x̂aaa

~2! ~v,v!/Da
2~v!

1x̂ āāā
~2! ~2v,2v!x̂ āāā

~2! ~v,v!/D ā
2~v!, ~4.12e!

ca,25x̂aaa
~2! ~2v,2v!x̂aaa

~2! ~v,v!/D ā
2~v!

1x̂ āāā
~2! ~2v,2v!x̂

āā
a~2!~v,v!/Da

2~v!,

~4.12f!

ca,35x̂aaa
~2! ~2v,2v!x̂ āāā

~2! ~v,v!/Da
2~v!2x̂ āāā

~2! ~2v,

2v!x̂aaa
~2! ~v,v!/D ā

2~v!, ~4.12g!

ca,45x̂ āāā
~2! ~2v,2v!x̂aaa

~2! ~v,v!/Da
2~v!

2x̂aaa
~2! ~2v,2v!x̂ āāā

~2! ~v,v!/D ā
2~v!, ~4.12h!

with D j (v) given by ~3.3!. The particular symmetry clas
considered ensures that a symmetrical result is obtainedx
andy components, and that the couplings due tox (3) contri-
butions are written as a simple extension of those valid
isotropic materials.

B. Reductions and physical limits

Together, the coupled NLSM equations~4.11! constitute
the fundamental system that governs the evolution of
electromagnetic pulse in the material considered. They g
04660
of

r

r

e
n-

eralize Eqs.~3.14! in the case where the incident field ha
nonzero components along both transversal axes of the
terial. As far as we know, the vector system
(311)-dimensional NLSM equations~4.11! has no known
counterpart in other physical situations.

As a result of the perturbation expansion, the electric fi
E(x,y,z,t) has the following decomposition:

Ea~x,y,z,t !5e@Ea,1
~1!~X,Y,Z,T!eiua1Ea,1

~1!~X,Y,Z,T!* e2 iua#

1e2@Ea,2
~2!~X,Y,Z,T!e2iua1Ea,2

~2!

3~X,Y,Z,T!* e22iua1Ea,0
~2!~X,Y,Z,T!#

1O~e3!, ~4.13a!

Ez~x,y,z,t !5e2@Ez,1
~1!~X,Y,Z,T!eiuz1Ez,1

~1!~X,Y,Z,T!* e2 iuz

1Ez,0
~2!~X,Y,Z,T!#1O~e3!, ~4.13b!

with a5x,y, whereEx,2 is given by Eq.~4.7!, Ez,1 is given
by Eq.~4.8!, Ez,0 is given by Eq.~4.9!, andEa,1 andEa,0 are
determined by the vector NLSM equations~4.11!. Equations
~4.13! are to be compared to Eqs.~3.11!, which are valid in
the scalar case.

It is interesting to note that the usual coupled NLS syst
is a limiting reduction of~4.11!. Namely, in the case wher
x (2)50, isotropic materials, we haveMa,05Na,15Na,25fa
50. Hence Eqs.~4.11! reduce to the well-known couple
NLS equations~cf. Ref. @30#!:

F2ika

]

]Z
1wa

]

]T
1~12daxaa,1!

]2

]X2

1~12dayaa,1!
]2

]Y22kaka9
]2

]T2GAa

2a ā,1

]2

]X]Y
Aāe2 i ~ua2u ā!1M̃a,3~3uAau212uAāu2!Aa

1M̃a,3Aā
2Aa* e22i ~ua2u ā!1M̃a,6~2uAau2

13uAāu2!Aāe2 i ~ua2u ā!1M̃a,6Aa
2Aā

* ei ~ua2u ā!50,

~4.14!

where M̃a,15
3
2 M̃a,253M̃a,35(v2/c2)x̂aaaa

(3) (v,v,2v) and

M̃a,55
3
2 M̃a,453M̃a,65(v2/c2)x̂aāāā

(3) (v,v,2v). Also, the
vector Eqs.~4.11! reduce to the scalar system~3.14! if Ay

5xyyy
(2) 50.

In the more general case wherex (2)Þ0, a number of dif-
ferent physical situations occur according to the magnitu
of the termDk5kx2ky . We analyze each of them sep
rately.

Case 1. Consider first the case in whichukx2kyu is non-
zero andO(e). Introducingkx2ky[ek0 , we can write the
phase difference asux2uy5k0Z/e. Therefore we see that a
the terms which contain phase differenceux2uy are rapidly
5-10
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varying in Z, and will not contribute to the system whe
integrated over a distanceZ;O(1). Equations~4.11! then
become

F2ika

]

]Z
1wa

]

]T
1~12daxaa,1!

]2

]X2 1~12dayaa,1!
]2

]Y2

2kaka9
]2’

]T2GAa1@M̃a,1uAau21M̃a,2uAāu21Ma,0fa

2Mā,0f ā#Aa50, ~4.15a!

F ~12daxaa,0!
]2

]X2 1~12dayaa,0!
]2

]Y2 1sa

]2

]T2Gfa

2a ā,0

]2

]X]Y
f ā2FNa,1

]2

]T22daxNa,2

]2

]X22dayNa,2

]2

]Y2

1Nā,2

]2

]X]YG~ uAau22uAāu2!50, ~4.15b!

where the temporal walk-off coefficientwa is now O(1). In
this case there is no coupling tofy in the equation forAx
~nor to fx in the equation forAy!. However, the equation
for the dc fields are still driven byboth optical fields, in
contrast to the scalar case. Thus, Eqs.~4.15! constitute a
nonlinearly coupled system.

Case 2. The opposite situation emerges when there is
phase mismatch between thex andy components of the elec
tric field, that is, ifkx5ky . In this case all the exponentia
in ~4.11! become unity, and the equations are

F2ika

]

]Z
1~12daxaa,1!

]2

]X2 1~12dayaa,1!
]2

]Y2

2kaka9
]2

]T2GAa2a ā,1

]2

]X]Y
Aā1~M̃a,1uAau2

1M̃a,2uAāu2!Aa1M̃a,3Aā
2Aa* 1~M̃a,4uAau2

1M̃a,5uAāu2!Aā1M̃a,6Aa
2Aā

* 1~Ma,0fa2Mā,0f ā!Aa

2~Ma,0fa1Mā,0f ā!Aā50, ~4.16a!

F ~12daxaa,0!
]2

]X2 1~12dayaa,0!
]2

]Y2 1sa

]2

]T2Gfa

2a ā,0

]2

]X]Y
f ā2FNa,1

]2

]T22daxNa,2

]2

]X22dayNa,2

]2

]Y2

1Nā,2

]2

]X]YG~ uAau22uAāu2!1FNā,1

]2

]T22daxNā,2

]2

]X2

2dayNā,2

]2

]Y22Na,2

]2

]X]YGRe~AaAā
* !50. ~4.16b!

Of course, in this case there is no temporal walk-off ter
i.e., wa50.

Case 3. Finally, if the difference betweenkx and ky is
nonzero andO(e2), i.e., if kx2ky[e2k0 , then ux2uy
04660
o

,

5k0Z, and the dynamics of the systems is effectively d
scribed by the full system of Eqs.~4.11!, where now how-
everwa is O(e) and can be ignored:

F2ika

]

]Z
1~12daxaa,1!

]2

]X2 1~12dayaa,1!
]2

]Y2

2kaka9
]2

]T2GAa2a ā,1

]2

]X]Y
Aāe2 i ~ua2u ā!1~M̃a,1uAau2

1M̃a,2uAāu2!Aa1M̃a,3Aā
2Aa* e22i ~ua2u ā!1~M̃a,4uAau2

1M̃a,5uAāu2!Aāe2 i ~ua2u ā!

1M̃a,6Aa
2Aā

* ei ~ua2u ā!1~Ma,0fa2Mā,0f ā!Aa

2~Ma,0f ā2Mā,0f ā!Aāe2 i ~ua2u ā!50, ~4.17a!

F ~12daxaa,0!
]2

]X2 1~12dayaa,0!
]2

]Y2 1sa

]2

]T2Gfa

2a ā,0

]2

]X]Y
f ā2FNa,1

]2

]T22daxNa,2

]2

]X22dayNa,2

]2

]Y2

1Nā,2

]2

]X]YG~ uAau22uAāu2!1FNā,1

]2

]T22daxNā,2

]2

]X2

2dayNā,2

]2

]Y22Na,2

]2

]X]YGRe~AaAā
* ei ~ua2u ā!!50.

~4.17b!

It is important to stress that, ifDk5kx2ky is notO(e) or
smaller, multiple time and space scales are still presen
Eqs. ~4.11!. In this particular case Eqs.~4.11! are not in a
sense true asymptotic equations, and further analysis is
essary in order to extract the true asymptotic behavior of
system. More precisely, ifukx2kyu@e, equations such as th
ones discussed here cannot result. For example, ifukx2kyu
;O(1), it follows that uvx2vyu;O(1) and wx ,wy
;O(1/e), which implies that the walk-off terms cannot b
carried toO(e3). The system is then governed by differe
equations, in general valid over different space-time sca
Therefore the conditionukx2kyu&O(e) poses a limitation
on the physical situations that can be described via ve
NLSM equations such as the ones presented in this pap

As for the properties of Eqs.~4.11!, ~4.15!, and~4.16!, we
expect some of the observations made in the scalar cas
carry through. Nonetheless, an adequate study of the e
tions and their behavior, as well as a characterization of
solutions, is essentially an open problem.

V. SPECIAL SOLUTIONS

In this section we consider the scalar NLSM equatio
derived in Sec. III and we show that stable localized mu
dimensional pulses exist which are driven by appropri
mean fields, even in the more general nonintegrable cas
5-11
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A. Nondimensionalization and rescalings

If the Y dependence ofA andf can be neglected, or if i
is already taken into account when dealing with the lin
modes~e.g., in a waveguide configuration!, Eqs. ~3.8! be-
come effectively (211)-dimensional. In this case we intro
duce nondimensional variables and fields as

t5T/T0 , j5X/X0 , z5Z/Z0 ,

q5A/A0 , Q5f/f0 , ~5.1!

with

T05@ ukx9uZ0/2#1/2, X05@r x,0 /usxu#1/2T0 , ~5.2a!

f05
2kx

Z0Mx,0
, A0

25
2kx

Z0Mx,0N
, ~5.2b!

whereZ0 andN are for now arbitrary, and where for conve
nience we introduced

r j ,m5
nj

2~mv!

nz
2~mv!

512a j ,m . ~5.2c!

In this way we can write the optical NLSM equations for
tetragonal 4 mm material in the case of anomalous disper
(k9,0) as the following dimensionless system:

iqz1a1qjj1qtt1~a2uqu21Q!q50, ~5.3a!

Qjj2Qtt5c1~ uqu2!tt2c2~ uqu2!jj , ~5.3b!

where

a15
r x,1

r x,0

usxu
kxukx9u

, a25
Mx,1

Mx,0N
, ~5.4a!

c15
Nx,1

usxuN
, c25

Nx,2

r x,0N
, ~5.4b!

with Nx,1 andNx,2 given by Eqs.~3.10!, and where the sub
scriptsj, z, andt on q andQ denote partial derivatives. Not
that the integrable case presented in Eq.~3.17! can also be
rewritten in terms of Eq.~5.3! by simply identifying t5z,
x5j, y5t, A5q, Fx52Q, s5a15a251, c150, and
c252.

Next we perform a rotation of coordinates to the char
teristic frame of reference of Eq.~5.3b!:

t5~j81t8!/&, j5~j82t8!/&. ~5.5!

Also, we redefine the mean field asQ85Q2 1
2 (c1

1c2)uqu2, and we choose the normalization constantN as
N5N2 , where

2N65
Nx,1

usxu
6

Nx,2

r x,0
~5.6!
04660
r

on

-

~N1 is defined here for later use!. Omitting primes for sim-
plicity, Eqs. ~5.3! in the new frame of reference take on
particularly simple form:

iqz1~12u1!~qjj1qtt!12u1qet1~u2uqu21Q!q50,
~5.7a!

2Qjt5~ uqu2!jj1~ uqu2!tt , ~5.7b!

where the parametersu1.2 are given byu15 1
2 (12a1) and

u25a22 1
2 (c11c2). In Eqs. ~5.7! all the properties of the

material are absorbed into the values of the constantsu1 and
u2 , which are explicitly given by

u15
1

2 S 12
r x,1usxu

r x,0kxukx9u
D , ~5.8a!

u25
1

N2
S Mx,1

Mx,0
2N1D . ~5.8b!

The integrable case corresponds tou15u250. Equation
~5.7b! can be readily solved by expressing the dc field
Q5U1V, with

U~j,t,z!5
1

2 Et
*

t

~ uqu2!j dt1u* ~j,z!, V~j,t,z!

5
1

2 Ej
*

j

~ uqu2!t dj1v* ~t,z!, ~5.9!

and whereu* (j,z),v* (t,z) are two arbitrary integration
constants. If (j* ,t* )5(2`,2`), the corresponding two
functions, which we callu` and v` , assume the role o
boundary conditions of the dc fieldQ5U1V. An alterna-
tive but equivalent choice which we will use in the followin
is (j* ,t* )5(0,0), corresponding to functionsu0 andv0 . It
is clear that there is a one-to-one correspondence betw
any choice foru` andv` and any choice foru0 andv0 . As
demonstrated below, the functionsu0 ,v0 or u` ,v` play a
key role in the dynamics of the pulse.

B. Special solutions: Integrable case

In the integrable case~that is, when u15u250!,
stable localized multidimensional pulses, often call
‘‘dromions,’’are known to exist, which are driven by th
mean field through a proper choice of boundary conditio
Explicitly, the one-dromion solution of Eq.~5.7! with u1
5u250 is given by@16,17#

q~x1 ,x2 ,t !5G~x1 ,x2 ,t !/F~x1 ,x2 ,t !, ~5.10!

where, for convenience, we setx15j, x25t, andt5z, and
where

G~x1 ,x2 ,t !5reh11h21 i ~f11f2!, ~5.11a!

F~x1 ,x2 ,t !511e2h11e2h21ge2~h11n2!, ~5.11b!

with
5-12
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h j~xj ,t !5kj~xj2x0,j22v j t !, ~5.12a!

f j~xj ,t !5v j~xj2x0,j !2~v j
22kj

2!t, ~5.12b!

j 51,2, with r52A2(g21)k1k2, and withkj ,v j ,x0,j arbi-
trary real parameters. The constantg determines the overal
amplitude, the parameterskj represent the width of the puls
in each respective direction, and thev j represent the Carte
sian components of the velocity, while thex0,j determine the
dromion position. The ‘‘potentials’’ U(x1 ,x2 ,t) and
V(x1 ,x2 ,t) are obtained by integrating Eqs.~5.9! subject to
the boundary conditions

u`~x1 ,t !52k1
2 sech2 h1 , v`~x2 ,t !52k2

2 sech2 h2 .
~5.13!

The resulting expressions are

U~x1 ,x2 ,t !52„ln F~x1 ,x2 ,t !…x1x2
,

V~x1 ,x2 ,t !52„ln F~x1 ,x2 ,t !…x2x2
. ~5.14!

Figure 1~a! shows a typical~stationary! dromion solution,
corresponding tok15k251, v15v250, andg59. The cor-
responding dc fieldQ5U1V is shown in Fig. 1~b! @note the
nonzero boundary conditionsu`(x1) and v`(x2) corre-
sponding to Eq.~5.13!#. The pulse is located at the interse
tion of U andV.

FIG. 1. The stationary dromion solution of the integrable ca
(u15u250): ~a! The optical pulseuq(j,t,z)u; ~b! the dc field
Q(j,t)5U(j,t)1V(j,t) associated withq.
04660
C. Special solutions: General case

When u1 and/or u2 are not zero, to date no localize
analytical solutions have been found, and one must reso
numerical simulations. We integrated Eq.~5.7a! with a two-
dimensional second order split-step method and Eqs.~5.9!
with a second order numerical quadrature routine, for a nu
ber of different values ofu1 and u2 . Figure 1~a! shows a
typical stationary pulse in the integrable caseu15u250,
while Fig. 1~b! represents the corresponding dc fieldQ5U
1V obtained from Eq.~5.9! with u` ,v` given by Eq.~5.13!.
If the pulse shown in Fig. 1~a! is used as initial condition for
u1 ,u2Þ0, and the same boundary conditions as in Fig. 1~b!
are used for the dc fields numerical simulations show th
even though some radiation is produced, a localized pu
similar to the one in the integrable case persists for a lo
propagation distance. On the other hand, Fig. 2 shows
output produced after just two propagation distances by
same input pulse as in Fig. 1~a! if the boundary conditionsu,
v for the dc fields are zero~i.e., u`5v`50!, for u15u2
50.4. In this case the pulse decays very quickly, and
localized asymptotic state is obtained.~Note that the pulse
disperses along directions which are the analog of the M
lines associated with the propagation of a supersonic dis
bance in a classical fluid.! It is therefore clear that, even in
the more general situationu1Þ0, u2Þ0, the dc fields can
stabilize the optical pulses, which otherwise would dispe
away very quickly without the presence of nonzero bound
conditions. Similar results were found for a wide range
values ofu1 andu2 .

A further result can be achieved ifu0 , v0 are used instead
of u` , v` . In this case, generalized stationary solutions
found to exist even whenu1 andu2 are significantly different
from zero. To find these solutions, we integrated Eqs.~5.7a!
and ~5.9! with u1 ,u2Þ0, using the dromion solution of the
integrable case as initial condition and inserting absorb
boundaries at the edges of the two-dimensional grid to
move the radiation shed by the pulse@31#. After the pulse
has reached an asymptotic state, we removed the abso
boundaries and let the pulse evolve according to the NL
equations, to verify that we have obtained a stationary so
tion. As an example, in Fig. 3~a! we show the stationary
pulse corresponding tou15u250.4, while Fig. 3~b! is rela-
tive to the caseu150, u2521. ~In particular, this last case
implies that, even for defocusing self-interaction, the pr
ence of nonzero asymptotic mean fields is sufficient to ma

e

FIG. 2. The output pulse atzout52, for u15u250.4, with same
initial condition as in Fig. 1~a! but with zero boundary conditions
5-13
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tain a localized state.! These findings suggest that stable
calized multidimensional pulses are not unique to integra
systems; rather, they are a generic feature of forced evolu
equations of this type.

Whenu1 andu2 are nonzero, the stationary pulses diff
significantly from the corresponding solution of the int
grable case. In particular, a numerical study of the equat
reveals thatu1 affects the shape of the pulse, whileu2 con-
trols its amplitude. More precisely, we find that, starti
from a fixed initial condition, for increasingly negative va
ues ofu2 ~implying strong defocusing!, the amplitude of the
asymptotic stationary state decreases, while for increa
positive values ofu2 ~implying focusing! the final amplitude
of the solution increases until, for large enough values ofu2 ,
the pulse does not asymptote to a stationary state anym
and, presumably, higher order solutions are obtained.

Some of these features can be explained on the bas
simpler one-dimensional models. To this aim, we consi
the parametrically forced NLS equation

iqt1~1/2!qxx1~V~x!1uuqu2!q50. ~5.15!

As initial condition and forcing potential we take, respe
tively, q0(x)5a sechx andV(x)5A sech2 x. By comparison
with the usual NLS equation it is clear that, ifA1ua251
@that is, if a5A(12A)/u#, the initial condition correspond
to the profile of the stationary stateq(x,t)5a sechx eit/2.
This implies that, in the presence of a strong enough forc
potential~A.1 in this case!, stationary solutions also exis
for u,0; however, the amplitude of these states decrea
with u. For u.0 the picture is more complicated. In th
case, looking for stationary solutions of the formq(x,t)
5 f (x)eilt, with f (x) real, Eq.~5.15! leads to the following
nonlinear eigenvalue problem:

FIG. 3. Stationary solutions of the optical NLSM equations
the nonintegrable case:~a! u15u250.4; ~b! u150, u2521.
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f xx12~V~x!1u f 22l! f 50. ~5.16!

The numberN of discrete eigenvaluesl j in Eq. ~5.16! de-
pends on the potentialV(x), but also on the self-phas
modulation coefficientu. If N.1, the solution of Eq.~5.15!
may be expected to be a superposition of all the correspo
ing stationary modes. Since each of these modes has its
frequency, the overall pulse can be expected to undergo
riodic or quasiperiodic oscillations, which corresponds
what is observed numerically in the two-dimensional syste

VI. CONCLUSIONS

In this paper we have studied the evolution of a sin
quasi-monochromatic optical pulse in a multidimension
nonresonant quadratic material. We have seen that, if th
are no resonant wave interactions, and under rather gen
assumptions, the dynamics of the pulse is governed by e
tions of nonlinear Schro¨dinger type with coupling to mean
~dc! fields ~NLSM!. In general, if the incident optical field is
polarized along one of the principal axes of the mater
scalar equations can be expected to apply. These equa
are the (311)-dimensional analog in optics of a similar typ
of (211)-dimensional NLSM equations in water waves.
instead the optical pulse has nonzero polarization project
along both transverse axes, more general vector system
equations are found depending on the particular phys
situations considered. As far as we know, these systems
no known counterpart in other physical situations outside
optics. Even in the scalar case, the dynamics of the opt
pulse appears to depend in a critical way upon the inte
tions with the associated dc fields~cf. also Ref.@29#!. In
particular, for appropriate choices of boundary conditio
stable localized multidimensional pulses can arise even
nonintegrable cases. These findings suggest that stable l
ized multidimensional pulses are not unique to integra
systems; rather, they are a generic feature of nonlinear e
lution equations with forcing terms like those present in E
~5.9!. In our case, the presence of small applied dc fie
@O(e2) in the perturbation expansion# can drive much larger
optical pulses@O(e) in the expansion#. Preliminary studies
suggest that the above described dynamical configura
might be realized experimentally, given the wide range
values ofu1 and u2 over which stationary propagation oc
curs. It is expected that, since these values can be adju
through linear material properties, proper design of the
vice structure will ensure pulse propagation within the d
sired regime. This possibility is particularly interesting b
cause such experiments would allow the production of sta
localized multidimensional optical pulses whose dynam
can be electrically controlled by modification of the releva
dc fields.
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