PHYSICAL REVIEW E, VOLUME 63, 046605

Nonlinear Schrodinger equations with mean terms in nonresonant multidimensional quadratic
materials
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We derive the asymptotic equations governing the evolution of a quasi-monochromatic optical pulse in a
nonresonant quadratic material starting from Maxwell equations. Under rather general assumptions, equations
of nonlinear Schrdinger (NLS) type with coupling to mean fields resttiere called NLSNL In particular, if
the incident pulse is polarized along one of the principal axes of the material, scalar NLSM equations are
obtained. For a generic input, however, coupled vector NLSM systems result. Special reductions of these
equations include the usual scalar and vector NLS equations. Based on results known for similar systems
which arise in other physical contexts, we expect the behavior of the solutions to be characterized by a rather
large variety of phenomena. In particular, we show that the presence of the coupling to the dc fields can have
a dramatic effect on the dynamics of the optical pulse, and stable localized multidimensional pulses can arise
through interaction with boundary terms associated to the mean fields.
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I. INTRODUCTION 1965[8,9] and in a general context in 19670]) is also a
centrally important equation in other areas like fluid dynam-
The propagation of a light pulse in a nonlinear medium isics, plasma physics, etc. In optics, its spatial and temporal
characterized by a series of complex changes in its structurgersions provide a framework to describe and explain a large
A theoretical interpretation of these phenomena is crucial irvariety of phenomena, from optical switching to long-
order to understand the nonlinear properties of the mediundistance communication systems. In one-dimensional non-
and the complex dynamics of such nonlinear systems. Quaesonant quadratic materials the NLS equation was recently
dratically nonlinear media are potentially promising for aderived as the evolution equation of a single optical pulse in
number of applications. Propagation of a single light beam irRefs.[2,3]. The evolution of two pulses at the fundamental
a quadratic medium has attracted significant interest in recernd second harmonic in a nonresonant one-dimensional ma-
years(see, e.g., Ref§1-3] and references therginin this  terial with both quadratic and cubic response was studied in
kind of media the nonlinear response generates second hdRef.[11], where coupled equations of NLS-type were shown
monic components and dc fields which subsequently play & appear for the two wave components.
key role in the evolution of the optical pulse. Here we con- The above cited studies are relative to the one-
centrate on novel system of equations which arise due to théimensional temporal case, in which the modulation of the
interaction between the fundamental and dc fields in the situpulse envelope over the transverse coordinates is neglected.
ation where second-harmonic generation is not phasklowever, it is well known that (+1)-dimensional struc-
matched. In this case, the second harmonic component cdares propagating in a multidimensional medium are unstable
be solved explicitly and produces an additional self-phasavith respect to modulations along the direction perpendicular
modulation contribution due to cascaded nonlinearity. Theo the structurgthis instability is in a sense the analog in
importance of the coupling between dc fields and the fundaseveral dimensions of the well-known Benjamin-Feir insta-
mental was realized early in nonlinear optics—in a differentbility [12] in one-dimensional systemsAs a consequence,
context[4,5]. The interaction between optical pulses and dcin a medium which has large transverse extent it is not de-
fields was also recently studied in Reff,6,7]. sirable to reduce the dynamics of the pulse to a simple one-
In more familiar isotropic(Kerr) media, where the non- dimensional system. When studying the modulation of a
linear response of the material depends cubically on the apwave packet in a multidimensional dispersive medium, gen-
plied field, the dynamics of a quasi-monochromatic opticaleralized NLS systems with coupling to a mean term are
pulse is governed by the nonlinear Safirger equation known to appear in various physical situati¢ng,14). Here-
(hereafter NL$. The NLS equatiortfirst derived in optics in  after we denote such equations as NLSM. In some special
cases these systems are also known to be integrable; the lim-
iting integrable case was first studied in REE5] in the
*Corresponding author. Electronic address: context of water waves, and has been the subject of many
biondini@northwestern.edu research papers ever sin¢ef. Refs.[16—18). However,
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even in the general, nonintegrable case these systems exhibidgn integral. Although not independent from the nonlinear
interesting phenomena depending on the coefficients in theave equatiori2.1), it is advantageous to use the divergence
equations, such as focusing, singularities and a rich structudaw:
of solutions(see, e.g., Ref§19,20Q).

In a recent lettef21] we discussed how novel NLSM V. (E+P)=0. 2.3
systems appear in the context of nonlinear optics when
studying three-dimensional bulk materials with nonzef®, =~ We note that, as a consequence of equatiaB), V-E=
i.e., with quadratic nonlinearity. A brief discussion of this ~V-P#0. Since the tern¥ -E is usually a small perturba-
Subject also appears in Réﬂz:l, where a prototypical two- tion, its contribution to the non“near Wa\./e equat((ﬁ]l) IS )
dimensional scalar system is derived from a model scala@ften neglected. However, its presence is sometimes crucial
wave equation. However, as shown in Rgf1] and as we in the derivation of th_e correct asymptotic equations of the
further explain here, the results obtained from the vectoystem, as we are going to show.
Maxwell equations in the full three-dimensional case differ
significantly. B. The multiple scale expansion

The structure of this work is the following. In Sec. Il we
present in detail the general framework that we use to derivgvi
the asymptotic equations of these systems. In Sec. Illl w

prowde. a full derivation of_the sc.alar NLSM system P'€ ihe transverse axes, where our coordinate axes are taken to
sented in Ref[21], and we discuss in some detail the results

S ! oo be an appropriate permutation of the crystallographic axes of
arising in different physical situations. In Sec. IV we Show.the materialsee following sections Our derivation is based

how the same type of derivation can be exten_ded to Obt".i'Bn a multiple scale perturbation expansion. We define the
novel systems of vectors, coupled NLSM equations, and dis:,

cuss some of the different physical scenarios that can arisé?pldly varying phase
Finally, in Sec. V, we numerically obtain localized solutions 0=kz— wt, (2.43
of the optical NLSM equations, and we show that the dy-
namics of the optical pulse can be significantly affected byand slowly varying space and time coordinates as
the presence of the associated dc fields.

These results provide a generalization in quadratic mate- X=ex, Y=ey, Z=¢€’z, T=e(t—2z/v), (2.4b
rials of the well-known scalar and vector nonlinear Sehro
dinger equations—to which they reduce in some appropriatevhere k(w) andv(w) are, respectively, the wave number
limits. Since both the scalar and vector versions of the nonand the group velocity, to be determined later, anid a
linear Schrdinger equation have proven to be of fundamen-parameter that measures the width of the frequency spectrum
tal importance in many different aspects of nonlinear opticspf the input pulse: that iss~ (Aw)/w. Concretely speaking,
we can expect our results to be of general character and twe use a slowly varying envelope approximation, i.e., we

We study the evolution of a quasi-monochromatic wave
th central frequencyw. We consider an incident field
ropagating along theaxis and polarized along one or both

have a wide range of applicability. assume that the modulation of the amplitude of the electro-
magnetic field occurs over scales which are much longer
Il. THE PERTURBATION SCHEME than the optical wavelength. This assumption motivates the
. ] substitutions
In this section we present the general framework that we
will use in Secs. Il and IV to derive the asymptotic equa- 9 9
tions of the system from the full (81)-dimensional Max- € (2.53
well equations.
. . J
A. The vector nonlinear wave equation @ =€y (2.5b
In nonmagnetic materials, and in the absence of sources,
Maxwell equations yield the vector nonlinear wave equation 9 9 € o 9
for the electric fieldE —=k————=+é—= 2.
or the electric fieldE as o 0 o aT €7 (2.50
) 1 42
V°E-V(V-E)— = —(E+P)=0, (2.1 9 9 J
c? ot —=—w—te— (2.50

ot a6 JT’
wherec is the speed of light in vacuum. The material polar-
ization P is expressed in terms of the electric field by the C. Perturbation expansion of the optical field
expansion :
We expand the electric field in powers ef Given the
P=yDxE+ yP+EE+ y P+ EEE+-- -, (2.2 field atO(€) one can deduce the higher order terms in the
usual manner for such perturbation expansions. Explicitly,
where (™ (t;,...t,) is the nth order susceptibility of the we write each Cartesian componeér(tj =x,y,z) of the elec-
material, and the asterisk denotes-dimensional convolu- tric field as
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Ej - EE}1)+ €2E](2)+ 63E}3>+' . (2.6) E. Perturbation expansion of the wave equation

Motivated by the previous considerations we substitute
At any order ine, E{” is found to consist only of a finite the expansion&.6—(2.7) into Eq.(2.1), which allows us to
number of higher harmonics generated by the nonlinear pdormally decompose the wave equation into a set of equa-
larizationP. As a result, at any order iawe can decompose tions for the corresponding harmonic components:
the electric field into a sum of harmonic frequencies, eac
modulated by a complex envelope which is assumed to b

SIOWIy Varying: +Nj,a,b,c;r,s,m—r—sEa;rEb;sEc;m—r—s:Ov (2-1@

j,a;mEa;m_ Dj;m+ Mj,a,b;r,m—rEa;rEb;m—r

noo where a sum is understood over the Cartesian indices
E(V= > eMEM(X,Y,Z,T). (2.7 and over the harmonic indicess. A similar decomposition
m=-n holds for the divergence equati¢2.3). The termD in (2.10
represents the gradient of the divergence of the electric field
The assumption of a quasi-monochromatic input field guarfje. D=V (V-E)], while L accounts for the Laplacian and
antees that each of the envelof$), is centered around the linear part of the material polarization, aktiN are the
zero frequency(As a consequence, the tem‘r‘WE}f‘g1 iscen-  result of the quadratic and cubic nonlinearity of the system,
tered around the frequeneyw.) Also, due to the reality of respectively. Note tha¥ - E is at leastO(e?), which allows
the electric fieldE{")= (E{™ )*, where the asterisk denotes us to treaD as a perturbation.
the complex conjugate. By using Egs.(2.6—(2.7 we havel;,n=Lj.mdja,
where §; ; is Kronecker’s delta,

D. Perturbation expansion of the material polarization 2

€
o _ [ 2 2002, 220 2 -
The polarization vectoP can also be expanded in powers Ljim=|IMKk= —dr+e€°dz | +e*(Ix+dy) + «j(wn+iedr),
of € Substituting the electric field in Eq2.2) we employ (2.11)
relations such as

with «j(w) defined by

f_ Xop (t=t ) EQR(X,Y,Z,T e dt! =
()= Z[1+ P ()], (2.12
d .
=51 i (n) imo
~Xab| @ +'f—)E (X,Y,Z,T)em?, (2.8 _ _ o
o aT) e and where only materials for which the principal and crys-

tallographic coordinate systems coincide are considered. The

where for convenience we defirg,= mw, with operatordM andN are
=y Y 2 (1) Y 9 M :i[ +ie(dr +ar )1 32 o (
Xab w+leﬁ ZX(ab(B)-I—Ie%ng(wﬂgﬁ jabirm-r=2 O Tle(dr T o7, Xj.aplor

1 ) (92 n (92 +i€aTa,wm,r+i€é’Tb), (2133
3¢ Wxgb)(w)bﬁﬁ““

1
- ~(3
(2.9 Nj ,a,b,c;r,s,mfrfs:EZ[wm'l' i e( aTa+ aTb+ aTC)]ZX},a{,b,c(‘”T

and whereyY)(w) is the Fourier transform of(Y)(t). Simi- +iedr ,ostiedr ,on stiedr),
lar relations apply for the(®) and x(®) contributions when
Eqg. (2.9 is substituted by a multivariate Taylor expansion. (2.13H
Our task is to expand the vector wave equation in powers of _
e and to solve iteratively for the quantiti€"),. While the Where(yTa(.Ea"Eb;mfr) . (9rBa;)Epim— . €tC. As a result of
results obtained with this procedure are pérfectly equivalentlhe _combmed expar_15|or(§.6)—(2.7), L’M’N are also auto-
to those coming from a more traditional perturbation methodnat'caIIy expanded in powers ef That is,

(cf. Ref.[10Q]), the merits of the expansig2.7) manifest in
(i) the substitution of differential equations for tE(lfaf‘g1 with
algebraic relgmons, an(jl)'the effectwe decompogltlop of . and similar forM andN. It is useful to list the first few terms
the problem into small units, which allows an easier identi-. o

Lot D in these expansions:

fication of the relevant contributions at any stage. As a result,
a substantial simplification of the calculations is obtained.

Ln=LW0+ el M+ L@+, (2.14

©) = (K2 o2
This will be particularly useful when deriving the vector Ljim= = (M) «j(om), (2.153
NLSM equations, where the number of different nontrivial (1) _ o ,
contributions in the expansion is considerably large. Lj;m=2i[—mKv +(xjkj) om]dT, (2.15h
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LJ(?%ZZimkaer Ixxt dyy—[ (k| Kj/+(Kj,)2)w —1/v?)d7. that only fe\_/v components play_ an active rolg .in the vector
’ m (2.159 wave equatior{2.1). For convenience of exposition, we take
' our x axis to coincide with the crystallographicaxis of the
Also, material.

2
wm

M- s=—7 X5 s (2.16a

c

w
1) _; M ~(2) ~(2)
M(s,rzqfs_l CZ (Xs’,m—saTa_l_Xs,m—s’(gTb)

w
+2i 5 x2)

w
2 m  ~(2) ~(2)
M (S,I‘aflfs_ - 207 (XS”,m—saTaTa+ ZXS’ ,mfs’(gTaTb

~(2)

+ XS’m— s/ aTbTb

?Xs,m—s(aTa+‘9Tb)r (2.16b

) (2.160

The nonzero entries of the susceptibility tensors are the
following.

(1) For x®M {2 x(y)=x%).
2 Y direction v @) — 2. i
(2) For x®): In thex direction, x {3y, x\oy= X\ay: in they
dire(czt)ion, X2 x2; in the z direction, x2=x2, x$2,
= Xyxy-
(3) For x©®): The three elements with all indices equal
X o= xSy X%, Also, the 18 elements with indices

equal in pairs, with equality between elements obtained by
exchangingx—y (i.e., x30,= x5, etc). In total, this

leaves 11 independent elements.

A. Derivation of the scalar equations

We take the leading order incident field to consist only of

the fundamental polarized in thedirection. That is, we take
E()=0 for m# +1 andE{) =E{) =0.

O(e€): From thex component {=x) of Eq. (2.10 at the

1 fundamental fn=1) atO(e) we obtain the usual dispersion
— 5 Xm-s(07,+ 1), (2160 relation: k= ky(w), with xj(w) defined by(2.12. Here we
¢ neglect the imaginary part 6f%)(w), which leads to attenu-
ation. The effects of loss can be included in the theory in a
straightforward way. Note that, due to the uniaxialiy,,
= X2z (i.8., Xxx= Xyy IN the crystallographic systgmwhich
will be important later.

O(€?): For each Cartesian compongnthe relevant com-
bination for the linear part of the wave equati@h10 is
At any ordern and in each directiofy the product. . ,E;.m L nEfn+ LimE{"n- Then, from thex component of the
decomposes as wave equation at the fundamental=x, m=1), we obtain

the group velocity =v,(w), with

®“m ~(2) ~(2)
- 2 ?(&Ta—i_ &Tb)(Xs’ ’m—s(?Ta—i_ Xsym—s’aTb)

where ¥2)_=P(ws,0m_¢), and where for simplicity
tensor indices have been dropped. Similarly

2
0 _ M. (3
NE,S),mfs__ZXlg,s),mfrfs' (2.17

L. E =L(O)E(n)+L(l)E(n_l)+'"+L(n_1)E(1),
mememm e moem m m (2.18 vj(w)=1/k{(w). (3.1

where again the indeik has been omitted for simplicity. A Also, atm=2 we haveEfz)z E{3=0, from they andz com-
similar decomposition holds for the nonlinear terms and forponents, and from the component we find the second har-
the divergence term;.,, in Eq. (2.10. monic generated by the quadratic nonlinearity:

In the next sections, using these expansions, we solve Eq.

~(2
(2.10 and the divergence Eq2.3) recursively in powers of o

Z)ZXXxx(wlw)

( AXXX T =(1)y2
€ in a number of representative cases. Ex2 A w) (ExD)" 32
Ill. SCALAR NLSM EQUATIONS where
In this section we consider the case in which the electric Af(w)=nf(w)—nf(2w). (3.3

field is polarized along one of the principal axes of the ma-

terial. (That is, the incident field has a nonzero componentVe emphasize that in our derivation we assulijéw)> e;

only along one of the principal axesin this case only a i.€., we assume to be far away from the phase matching
relatively small number of terms in the vector wave equatioreondition which leads to second harmonic resonance. We
(2.1) plays a significant role, and we are able to obtain a@lso note that the particular choice of matefigflecting in
relatively simple scalar result. To be specific, we considethe tensor structure of)) ensures that no new Cartesian
the propagation of a light pulse in (@niaxia) tetragonal 4 components are generated as an effect of the nonlinearity. At
mm-material. Materials with such a symmetry class are proO(e”), all the other harmonics are found to be zero with one
vided, for instance, by photorefractive BaEiOSBN, and important exception fom=0: Due to the absence of fast
KTN [23]. This particular choice of symmetry class is moti- derivatives, the dc electric field.e., m=0) is undetermined
vated by the special structure assumed by the nonlinear suat this stage; that idiffgaﬁ 0. In fact, atO(€?), similar dc
ceptibility tensorsy(®,x(® (cf. Ref.[24]), and guarantees fields are also allowed for thgandz components. Like the
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field at the fundamentdE(y, the dc fieldsE(, EY, and ) N
E{3 need to be determined at higher orders in the expansion. 2ik o+ (1= ayy) oo+ o5 KKy
As it turns out, all dc fields play a crucial role in the calcu-
lation. It is important to realize that such mean terms cannot
simply be ignored, otherwise inconsistencies develop at
higher orders in the expansion, as we are going to show. Itis
also important to observe that, at this stage, the results of thehere the coefficienta, ;, M, o, andM, ; are given below.
derivation would be exactly the same for Kerr materialsEquation (3.89 contains the coupling of the fundamental
(with the exception that, for Kerr materialg{®=0 and no  with the second harmonic and the mean figldAn explicit
second harmonic is produced he difference lies on the fact expression for¢ cannot be obtained. Rather, an evolution
that, in the absence of quadratic nonlinearity, at higher ordersquation for¢ in terms of the fundamental is found. The two
there would be no source term in the equations for the deecessary ingredients for this kind of coupling to occur are
fields and no coupling to the dc fields in the equations for thehe presence of a multidimensional medium and quadratic
optical fields. nonlinearity.

Finally, at O(€?), the divergence equatiof®.3) at the O(e*): The evolution of the mean field is captured
fundamental determines tlzzzomponent of the optical field, from the wave equation at dc @(e*), where, using3.6), it
which is generated by the slow modulation of theompo- s found that

+My 1| A+ My 0p|A=0, (3.89

nent:
? 9P 92
PO £ a4 [(1_““’) 2 av? SXaTZ}d’
21kl w)ng(w) oX 34 > 2
= Nx,lﬁ— Nx,ZW (JA%). (3.8b

where the linear index of refraction is defined in the usual

way as Once is known, the auxiliary field{ is obtained fromg
as
nf(w)=1+{{’(w). (35
S ——
The fast variation ofixE{Y with respect tof generates a | X2~ Y2 YiT? Vo ~ gy ¢

nonzeroz component at ordeO(ez) However, since the

modulation of the envelope with respectyt@ slow, no such 5

component is generated in thedirection. That isE{?)=0. = NMMON )-
0O(€%: The divergence lavw2.3) at dc (m=0) ylelds an

explicit equation forE(z) in terms of the fundamentéﬁ(l) The coefficienta; , appearing in Eqs(3.8) is defined as

and the dc fields in the andy directions,E{?) and ER:

2
(3.9

2
ni(om)
jlom
aj,m:]-_ > , (3.10a
i (Z)ZU(w) nZ(O)iE(2)+n2(0) J E? nz(wm)
aT 20 n2(0)| ¥ ax x0TI gy Ty0

while theM; ,, andN; ., are given by

+ 235K @, —w>—<|E<l> (3.6 0,
Mj,ozz?;{}jf(w,oy (3.10b

It is noted that the presence of the source term proportional

to |[E(Y|? makes it impossible to neglect the dc fields and M '’ “ |3 2

maintain consistency in the derivation. £ X““ (@.0,~w)+ A% (w)
For each Cartesian compongnthe relevant combination

for the linear part of the wave equatid@.10 is L{)E) X2 (20, — )32 (0,0) (3.100

+LMER +LOES) . From thex component at the funda- n “' '

mental, we find the evolution of the slowly varying ampli-

tude of the incident field. Defining 2 2

Nj,1:?)(jjj (0,~ ),

EHN=AX,Y,T,Z), E&=¢(X,Y,ZT), (3.9

Y2 (w,—w), (3.100

N: ,=C2(0)N; ;= 2
j,2=C7(0) j,1—n§(O)ijj

and using Eq(3.2) in the nonlinear contributions ard.6) to
computeD, (the divergence terinwe get forA the follow-

ing evolution equation: and
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1 1 In this case the resulting equations would be
Sj —m— m, (3109

J (92 (92 (92

A+e

Jd
oik| Z 4+~ 2 1-ayy) gt o kK ey
where ¢’(w)=c?/n’(w) is the phase velocity. We recall (82 v(w) T (A= a) 5 5v2 aT?

that, for convenience, our choice of axes is a permutation of
the grystallogrgphic set..AI.so, although we onI.y need 'Fhe +M, 4| A2+ Mx,OAA:O’ (3.133
coefficients forj=x at this time, the corresponding coeffi-
cients forj =y will also be needed when considering vector
NLSM equations. I LR 1 9
We note thaiN; , and thee; , arise from the vector na- (I=axo) gz o2+ 572~ v2(0) 9T2 ¢
ture of the electric fieldvia the contribution ofV(V-E)].

That is,N; ;= aj =0 if V-E=0. Also, M, ; results from 52 2
the combined effects gf® and twoy(? in cascade: the first =| Nxg2— NX,ZW}(WZ), (3.13b
term inM, , is due to the self-interaction of the fundamental,

while the second originates from the coupling between first .
and second harmonic. Similar physical problems are know here nowZ=2,. _ .
to be capable of leading to large “effective” third order We rema.\rk upon the importance of the signspin _Eq_s.
processef25,26. Again, the choice of the symmetry class is (3'8@_(3'_9)' If >0, Egs. (3.8 and (3.9 are elliptic,
instrumental in simplifying the contribution arising from yvhereas ifs;<0 (andaj,0<1_), they are hyperbolic. Ind_eed,
x®. In fact, due also to the particular input considered'" thg case of all th? m_aterlals conSIde_red rgre0, which
(namely, the fact thaE(llleglllzo), only the tensor has important ramlflcatlor(szf.'Sec. \J. Finally, we observe

@) (3)%— =L o that the _s_tandard NLS equation can be_con5|dered as a spe-
componentsyyg, and x5y of the nonlinear susceptibilities g “limiting” case where (=0, in which case we have

play a role in the calculations. M 0= Ny 1= Ny ,=0, E}?gzconst, ande,1=3(w/C)25(§<3x)xx

X(w,w,— o). Then, if we further assumg® to be isotro-

pic, a, ;=0 and we obtain the usual scalar multidimensional
Equations(3.8) constitute the fundamental scalar systemNLS equation for isotropic materials as a reduction of Egs.

that governs the evolution of a multidimensional quasi-(3.8).

monochromatic pulse in a nonresonant material with qua- We also emphasize that the special structure of E318)

dratic nonlinearity. They are the (31)-dimensional ana- depends on the particular choice of symmetry class, which

logue in optics of the (2 1)-dimensional equations arising crucially reflects on the type of nonlinear couplings between

B. Remarks

in water waveg13,15. the different harmonic components. In general, different
As a result of the perturbation expansion, the electric fieldymmetry classes lead to different types of evolution equa-
E(x,y,z,t) is decomposed as follows: tions. As an example, we consider(l@iaxial) orthorhombic

mn? class.(A material with such a symmetry class is pro-
Ex(X,y,z,t)=€e[EXY(X,Y,Z,T)e'+EN(X,Y,Z,T)*e '?]  vided by KNbQ; [23].) The derivation of the fundamental
(@) 264 =(2) equat!ons p_ro_ceeds exactly in the same way as before, and
+eTEL(XY,ZT)e? " +E,5 equations similar to the system Ed8.8) are found. How-
i ever, due to biaxiality, we now havg,,# i.e.,
X(XY,Z, Ty e A0 E;?‘;(X’Y’Z’T)] # Xyy in the crystallggraphic systemg'lxﬁisxizr;élies )t(ﬁxat
+0(€%), (3.113 ay 070, andE% enters in the equation ch(X’zg. That is, the
resulting equations for the fundameng{})=:A(X,Y,T,2)
Ey(xy.z)=€’E(X,Y.ZT)+0(e®), (311D  and for the mean fieldsE, o= ¢«(X,Y,Z,T) and E,q

. . =:¢,(X,Y,Z,T) now read
E.(x,y,zt)= € EN(X,Y,ZT)e+EXN(X,Y,Z,T)*e '? 2 )
2 02 0-,2

+EBF(X,Y,Z,T)]+0(e), 3.11 T A A
2(X,Y,2,T)]+0() (3.110 {2|kaz NCTR A —a
whereE, , is given by Eq.(3.2), E,; is given by Eq.(3.4),
E,olis given by Eq(3.6), E, o is given by Eq(3.9), andE, ; + MX'1|A|2+ M, 0bxA=0 (3.14a
andE, o are determined by the NLSM equatiof88).

The absence of & derivative in Egs.(3.8b and (3.9 and
originates from the choice of using a reference frame that is
moving with the group velocity of the optical pulse. In fact, 92 92 92 EL
an alternative but equivalent derivation can be done Withou£(1— ay,0) a—xz+ Y2 +Sx[?_-|—2'}
performing the transformation to the comoving frame and

introducing the multiple time and space scales

by~ Ay 03y by

2 2

d d
— o . 2
T=et, Z,=e€z, Z,=¢€%z, .... (3.12 {NWTZ Nx'zaxz}(w ), (3149
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32 92 92 92 duced by a modulated optical enveldgé. Our results show
Brcalt ay o) 2t SyaT2 ¢>y—ax,om Px that a spatially modulated envelope works just as well as a
temporally modulated one.
92 ) It is also worth discussing some results that are known for
== Nx,zm(|A| ). (3.140  similar systems of (2 1)-dimensional NLSM equations

which arise in water wave&f. Ref.[19]), since we expect

that many of the issues will be also relevant in our context.
As a consequence, Eq8.149 and (3.14b do not form a y

closed system anymore, and the full set of Eg§sl4) is now
necessary to describe the behavior of the material. In this
case neglecting the terW- E in the nonlinear wave equation In the context of water waves, the relevant problem for
(2.1)—which corresponds to letting; n,=0—would result ~our purposes is the evolution of a small-amplitude, slowly
in a different systems of equations, which miss the direcimodulated packet of surface waves on sufficiently deep wa-
coupling between the two dc fields. We also emphasize thater. If A is the dimensionless envelope of the wave packet,
even in the relatively simpler situation in which E¢8.839 propagating in thex direction, and® is the dimensionless
and (3.8b are sufficient to completely determine the evolu- amplitude of the mean fluid flow, the dynamical equations
tion of the pulse, the underlying dynamics of the system igor A and® take the form13]

still characterized by highly nontrivial dc interactions in all
Cartesian components. It is also evident that the NLSM
equations are rather general. Several comments are now in

C. NLSM equations in water waves

_aA+ a2A+ FA Aacb+ AlZA
IE Cl(Téz CZW_Xl a—g X2l AlI%A,

order. (3.1539
(1) As mentioned before, the above equations are derived
i i PPD 9P a[|Al?]
under the assumption that there are no resonant wave inter- + _ (3.15H
actions; otherwise the governing equations and relevant Y a&2 (97/7 aE "’ '

scales would be very different—e.g., two/three wave interac-

tions, which have already been the subject of many researshihereé=ek(x—cgt), 7= eky and = €?(gk) are the di-

papers(see, e.g., Ref§27,28 and references thergin mensionless coordinateg,l) are the wave numbers in the
(2) We do not introduce dc fields and/or second harmonidXx,y) directions c,=dw/ K is the group velocity, ang is the

components at leading order because we are interested in tBeavity acceleration. The coefficients, c,, x1, x2, 7 and

evolution of a modulated optical field and not in the interac-8 are suitable functions d&, c,, the dispersion coefficients

tions among different waves. This is a standard assumptiodw/dk? and #?w/dl?, the water deptth and the surface

in order to obtain NLS-type—and in this case NLSM-type— tensionT.

equations. Of course, other assumptions would lead to dif- Depending on the values of the dimensionless quantities

ferent evolution equations, e.g., long—short wave interactiongh and T = (k?+12)T/g, several physical scenarios arise, as
(cf. Refs.[6,7,20,29). discussed in detail in Ref$19,20. Also, different reduc-

(3) Again, we emphasize that the mean fields are drivenions are possible in different physical limits.
by the optical field and play a central role in the equations. (1) When derivatives with respect pcan be neglected
Indeed, as we have seen, it is necessary to incorporate the ggg., in a narrow canglEq. (3.15b can be integrated im-
field in the analysis aD(€?); otherwise inconsistencies arise mediately, and one recovers the familiar one-dimensional
in the expansion. This is true even in the one-dimensionahonlinear Schrdinger equation, which is a completely inte-
temporal caséi.e., when the mean fields are independent ofgrable infinite-dimensional Hamiltonian system that can be
X andY). In this case however the mean fields can be intesplved by the inverse scattering transfofi®T) [20].
grated explicitly; only then the equations reduce to the well-  (2) In the deep water limitsh— o, the coefficien{3 tends
known NLS equatior{cf. Refs.[2,3]). In particular, if x'*  to zero. Thus, the mean flo# vanishes and Eqg3.15
=0 (i.e., for the familiar Kerr materialghere are no source reduce to the (2 1)-dimensional NLS equation:
terms in the analogue of Eq&8.14H—(3.149 and the mean
fields are zero. OA PN PN

(4) Finally, if the modulations of the incident field are so 'E+Cl(9_§2+02(9_772:X2|A| A. (3.18
slow that it can be assimilated to a continuous wave, the
scenario reduces to that described in Héf, in which a  Contrary to the one-dimensional case, this equation is not
static dc field produces a change in the refractive indexsolvable by IST. Also, for various choices of parameters
through the electro-optic effect. However, if a temporally or (sufficiently strong surface tension in sufficiently deep water
spatially modulated pulse is considered, the full NLSM sys-the solutions can blow up in finite time. One-dimensional
tem of equations is necessary for a more accurate descripti@olitons (i.e., NLS solitong embedded in the two-
of the physics, in which a traveling dc field is obtained, anddimensional equation are unstable to slow transverse pertur-
for which phase matching can occur mediated by the opticabations.
group velocity and the dc field phase velocity. Previous stud- (3) A different scenario arises in the opposite limit, that is
ies on the coupling between optical fields and their low fre-shallow water, wherkh—0 with e<(kh)2. In this case,
quency counterparts show that a traveling dc field is proafter rescaling, the equations can be written as
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oA PA A ) one of the transverse derivatives. The presence of artificial
el e Ll WZZA&—X+U|A| A, (3.178  birefringence allows us to illustrate some of the scenarios
that can appear when the derivation is performed for differ-

2D 2D Ja|AI2] ent materials. As we will see, the asymptotically small size
o—> -=—2 , (3.170 of the birefringence terms plays an important role in deter-
X g 2 mining the precise details of the resulting NLSM equations.

where o=sign¢—T). This system, usually called the
Davey—Stewartson equationt5], is of IST type, and thus
completely integrable. We should note that if a similar situ- The electric field is expanded as in E§.6). However, in
ation were also true for the optical NLSM equations foundthis case we include both transverse component®(a,

here, the corresponding equations would provide one of thge., we takeE{*),#0, E§1):1¢ 0, andE{*),=0. The pertur-
first integrable multidimensional systems in nonlinear opticspation expansion is similar to the case discussed above. The
In this last case—that is. for the Davey—Stewartsonmain difference from the scalar case is the presence of two

’ different phases for th& andy components; namely, the

system—several exact solutions are available. In particular(TaSD variabled defined in(2.43 is substituted by, and ¢
stable localized pulses, often called “dromions,” are knownWi,[h ' X v

to exist which are driven by the appropriate mean fields. In
Sec. V we further discuss these solutions of the integrable 0;:=kjz— wt, 4.0
case, and we show that similar solutions exist even in the
more general nonintegrable case described in this work.

A. Derivation of the vector equations

where each of the wave numbéqg ) is to be determined
in the following. Also, the definition of théslow) retarded
IV. VECTOR NLSM EQUATIONS time is now modified to b = e(t—2z/v), where the mean
group velocityv is also to be determined later. As a conse-

We now direct our attention to the case in which the elecquence, some care must be taken in replacing theivative
tric field has nonzero components along both the transversgith the proper slow and fast counterpdisy. (2.50], since
principal axes of the material. This allows us to derive neweach transverse component now evolves with its own char-
systems of equations, whose analog is not known to exist icteristic wave number. Therefore we expand the electric
other physical contexts. The derivation of these coupledield as
equations closely follows the method developed for the sca-
lar case. For concreteness, we considéuraaxial) hexago- n
nal 6 material, where now we takey,zto coincide with the EM= > eMiEN(X,Y,Z,T). 4.2
crystallographic axes of the material. Materials with other m=-n
uniaxial symmetry classes such as 3(like LiNbO; and
LiTaO;,, cf. Ref.[23]) will result in similar vector NLSM  [We should point out that, as long &), is slowly varying,
equations. This amounts to assuming the following structurghe choice ofé, is arbitrary, since the component of the

for the nonlinear susceptibility tensora4]: electric field is only driven by th& andy components, as in
(1) For ¥, only diagonal elements are nonzeqzﬁix’ the scalar case. In other words, will turn out to be inde-
=X(y§,) and y'%). pendent ofd, ; cf. Eq.(4.8) below] In turn, Eq.(2.11) needs

(2) For ), only eight components are nonzero, corre-to be replaced by
sponding to all possible combinationsx&ndy indices. Of

these, only two are independent. Explicitly(2),=x{2, € 2
Ljm=|imk— =1+ €295 | + €2(95+0%) + k> (wn+i€dr).
= x3h= — x\G and X=X = xy=—x %), jim im gt edz] e (Oxt )t rj(ontiesn)
(3) For x3), there are 41 nonzero elements, correspond- 4.3

ing to all the elements in which theindex appears in pairs.

Of these, 19 are independent. EXpliCitlwii)yf X§3;)xx: Equations(2.15 change accordingly. In spite of these modi-
@) =x® and y& =33 while X@)xyz (3) fications, and although the calculations are considerably

Xxyyx— Xyxxy: xyxy— Xyxyx: — Xxxyxs : . .
Y& — 3@ and & =—y®  Also, y&) =y more involved, the analysis proceeds almost exactly as in the
e o Yy oo L) GYY scalar case. In what follows we only concentrate on the dif-

(3) (3) — @) (3) — () (3) (3) —
+XE%’)VX+ Xxyxy™— Xyyyy ahd Xooixy™ Xyyxy T Xyxyyt Xxyyy™  ferences between the two cases.
~ Xyyyx- COmponents witlz indices are omitted since they At O(¢€) we find the respective wave numbers as a func-
have no active role in the calculations. tion of w. As it may be expected, andk, are given by

K;= «j(®), wherek;(w) is still defined by(2.12. At O(€?),
for the fundamental in each transverse compoaenx,y we
find

Finally, we allow for a small birefringence in the transverse
dimensions by assuming thﬂtx—ky|£e, due to a slight
effective difference betweeg!s) and x{;) which could be
obtained in various ways, e.g., imperfections of the crystal or

a waveguide, and would break the degeneracy of the propa- 2ik (k’ _ i)iE(l):O (4.4)
gation modes. Of course, in a waveguide we would neglect alta yleT Al '
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The respective group velocities are given =1k, as  which is the analog of Eq(3.6). The difference|E,(jl)|2

before. However, due to birefringence we haye‘vy. The  —|E{}|2 in Eq. (4.9) arises from the particular tensor struc-

mean velocity is then defined agw) =1k’ (w), where ture belonging to the symmetry class considegramely, the
B fact that x{),= — x{3)), and should not be considered as a
K'(0)=35(K,(w)+ ky()). (4.5  generic feature of quadratic materials.

From theO(€®) contribution of the wave equation at the
Then, if k() —ky(w)~O(e), it is useful to introduce the fundamental we find the evolution of the transverse compo-

0O(1) temporal walk-off coefficients nents of the optical field. Define
Wa=2Ka(k(w)—K' (o)) (4.6 EN=A(X,Y,T,2), EZ=¢(XY,T,2),
_ (4.10a
In fact, since the differende, —k’ is O(¢), theO(e?) equa-
tlong at the fundamental become effectively residuals of E(y}{:Ay(X,Y,T,Z), Efg::qsy(x,Y,T,Z).
O(€°), which are carried at next order in the expansion. (4.10B
Also, atO(€?) for m=2, we obtain the second harmonic
components in the transverse coordinates as Then A, A, are found to satisfy the following system of
1 coupled NLSM equations:
E.(az,%:m[Xaaa(waw)(E'(al,Dz_Xaaa(w:w) p p e P
. . 2ika_+wa_+(1_5axaa,1)_2+(1_5ayaa,1)_2
X(E%{)Zez'“’a: 0q) _ ZWw,w)Eg%{Egie'(oa_aa)], 0Z aT axX aY

2 2
4. . 0 Jd o ~
“.7 _kaka(ﬂ—Z}Aa_ ag,laanAEe (0 @+(Ma,l|Aa|2

wherea indicates eithex or y, anda is the other transverse 5 5 . ~
coordinate[with A;(w) still given by (3.3)]. Note how the + Moo AZ1 D) AL+ M, AZAR @210 03+ (M, 4 A2
more complicated tensor structure)df) and the presence of ~ _ ~ .

ay component at the fundamental generate the appearance of  + M, 5|Az|%)Aze (%~ %)+ M, AZALe!(Pa™ 0a)

many more coupling combinations in E@.7) compared to L

Eq. (3.2). As in the scalar case, 8t(e2) all other harmonics +(Ma0¢a—Mzoda)Aa— (Mg ot

are found to be zero, except for all the dc fields, which are + Mz odm)Age (=2l =, (4.113
unknown at this level and need to be determined at higher ’

order in the expansion. where agaira denotes eithex or y, anda is the other trans-
Fzrom the c_zllvergence_law at the fundamental we get th(?/erse coordinate. Note that Eq4.113 are characterized by

O(€7) correction to the fields at the fundamental as the presence of additional nonlinear combinations compared

to Eq.(3.144. In particular, note the direct coupling between

a2
E(Zfzw iE“{e‘("x‘ 6,) the two optical fieldsand the coupling of either optical field
7 Kk o)ng(w) 9X 0 to the dc field in the other transverse coordinate. As in the

s scalar case the evolution of the mean fieltls, ¢, is cap-
inf(w) d : tured atO(e%):

o2y y B %, @y tareda0le);

w ,
Y ‘ 2 192 [92

which is to be compared to E¢3.4). Similarly, atO(€®), ba

from the divergence law at dc we get theomponent of the

(1- 5axaa,0) W +(1- 5aya'a,0) W + Saﬁ

dc field in terms of transverse fields: 92 92 92 92
; o) ; ; B e da— Na,lé,_-l—z_ 5axNa,2(9_XZ_ 5ayNa,2(9_Y2
V(W
EE;Z&: 20 ni(O)REf)—Fni(O)WE%} 2 2 52
n(0) Nz 2| (A2~ A5 + | Ny oz~ 8aNa e
_ “OXIY =0T “oX
+2§%[&§i&<w,—w>ﬁix—séfy)y(w.—w)}Y} 7 % .
z - 5ayNE,2W_ Na,zm} Re(AaAge'wf %2))=0.
v(w) | . d
XA I —2 s [x&i&(w,—wm (4.11b

J _ Again, we note the presence of many more nonlinear forcing
+ X (@, — w) W} REELH(EMN)* el ()], terms in Eqs(4.11h as opposed to Eqé3.140 and(3.140.
As in the scalar NLSM case discussed before, some of these
(4.9 combinations result from the contribution of the divergence
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of the electric field,V-E, in Eq. (2.1), through«; ,, and

PHYSICAL REVIEW E 63 046605

eralize Eqs(3.14 in the case where the incident field has

would be missed by using a scalar wave equation instead dfonzero components along both transversal axes of the ma-

the full vector Eq.(2.1).
The coefficientsr, m,M4 m,Na m are still defined by Egs.
(3.10, while

__ ! 4.12
%= 32%(w) c2(0)’ (4123
d;j is the Kronecker symbdls;;=1 if i=j, ;=0 if i #]),

and the coefficient#l, ,,...,M, ¢ are

~ (,l)z ~ w2
Mg 1= r< (3ba1t2¢,1), My,o= r (2by1t+4c30),

2

~ w
Ma,SZ?(ba,l_ an,l)a (4.12b

2 2

w
M ad— EZ' (2ba2+ 405,3) , M a5 Ez' (3ba,2+ 2Ca,4) ,

N

~ w
M a6 2 ( ba,z_ 20a,4) )

c (4.129

where

ba1= )A(g)aa(w,w, —w), byo= )A(ga—a(w,w, —w)
(4.120

and
Cai= X oan( 20, — 0) ¥ @, 0)1A%(0)
+X2 (20, 0) ¥ w,0)/AXw), (4.128

Ca 2= X2 (2w, — w)f(g%a)a(w,w)/Ag( w)

+ Raan( 20, — 0) ¥_a(2) (0,0)/AY(0),
(4.12f
Ca = Xiael 20, — ©) Y 0, @)/ A% 0) — ¥ EE( 20,
— 0) {52 ©,0)AX( ), (4.129
Cau= Xoaa( 20, — 0) ¥ @, 0) 1 A%(0)

~2,20,~ ) Y2 w,0)/AX w), (4.12h

with Aj(w) given by (3.3). The particular symmetry class
considered ensures that a symmetrical result is obtained for

andy components, and that the couplings dug/® contri-

butions are written as a simple extension of those valid fo

isotropic materials.

B. Reductions and physical limits

Together, the coupled NLSM equatiofs11) constitute

terial. As far as we know, the vector system of
(3+1)-dimensional NLSM equationgt.11) has no known
counterpart in other physical situations.

As a result of the perturbation expansion, the electric field
E(x,y,z,t) has the following decomposition:

Ea(X,y,z,t) = €[ELN(X,Y,Z, T)e %+ EJY(X,Y,Z,T)* e %a]
+e[EZ(X,Y,Z,T)e? %+ EZ)
X(X,Y,Z,T)*e 2%+ EZ(X,Y,Z,T)]

+0(€%), (4.133

E.(X,y,z,0)=€][ESY(X,Y,Z,T)e %+ EMN(X,Y,Z,T)*e %

+ER(X,Y,Z,T)]+0(€%), (4.130

with a=x,y, whereE, , is given by Eq.(4.7), E,, is given
by Eq.(4.8), E, o is given by Eq.(4.9), andE, ; andE, , are
determined by the vector NLSM equatiofsds11). Equations
(4.13 are to be compared to Eq&.11), which are valid in
the scalar case.

It is interesting to note that the usual coupled NLS system
is a limiting reduction of(4.11). Namely, in the case where
x#=0, isotropic materials, we hawd , ;= N, 1=N, ,= ¢
=0. Hence Eqgs(4.11) reduce to the well-known coupled
NLS equationgcf. Ref.[30]):

9 d &2
2Ikaﬁ_z +Wa<9_T + (1— 5axaa'1) a—xz
2 2
+(1- 5ayaa,1) ﬁ_Yz_ kakga_-rz Aa

62

— ooy os Age ! e M (3| Al 242 AglP)A,

+ Mg AZAL e 20a 024 M, (2| A2
+3[Agl?) Age e+ Wl AZAT ! =0,
(4.19

where M, 1= 3M, ,=3M, 5= (0%/c?) ¥, @, 0,— ) and
Mas=32M,4=3M, ¢=(0/c?)¥(w,0,— w). Also, the
vector Egs.(4.1]) reduce to the scalar syste(8.14 if A,
“x@=o.

In the more general case whey&)+0, a number of dif-

ferent physical situations occur according to the magnitude

of the termAk=k,—k,. We analyze each of them sepa-
rately.

Case 1 Consider first the case in whidk,—k,| is non-
zero andO(e). Introducingk,—ky=e€ky, we can write the

the fundamental system that governs the evolution of the@hase difference a8— 6, =kZ/€. Therefore we see that all
electromagnetic pulse in the material considered. They gerthe terms which contain phase differenge- 6, are rapidly
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varying in Z, and will not contribute to the system when =k,Z, and the dynamics of the systems is effectively de-
integrated over a distancé~0(1). Equations(4.11) then  scribed by the full system of Eq$4.11), where now how-

become everw, is O(e€) and can be ignored:
2Ky +Wam= + (1= Say@a 1) =0z + (1= Sayar) =02 7 7
aaz a(ﬂ— ( ax a,l) (9X2 ( ay a,l) (9Y2 |:2|kaﬁ +(1 5 Xaa l) 2 +(l 5 yaa l) aYz
9 . .
_k K T2 Aa+[Ma,l|Aa|2+Ma,2|Aa2+Ma,O¢a 9 9 _i(f.— ~
T -k ka&TZ aa,lmAaﬁ '(fa @+(Ma,1|Aa|2
Mz o0#alAa=0, (4.153 - . 4 .
R W o Al At W AZAE €2 0001 ([, A2
(92 2 (92 _ _
[(1‘ baxta0) g2t (17 dayta0) W’Lsaﬁ_ﬂ} be + Mo dAcfD)Aze e 0
9? . [N 92 SN 92 5N 92 +Ma,6A§A§ei<ga_@+(Ma,0¢a_ME,O‘ﬁE)Aa
T a0 v al72 QaxNa25y27 QaylNa, 22 il —
IXIY aT axX aY — (M 03— Mz oda) Age i(6a=02) =, (4.173
2
+Nazzss| (1Adl*=|Agl?) =0, (4.15 P 2
(1-9 xa'ao) 2+(1 ) ya'ao) &Y2+Saﬁ ba
where the temporal walk-off coefficiemt, is nowO(1). In
this case there is no coupling i, in the equation forA, 52 92 32 92
(nor to ¢, in the equation forA). However, the equations ~daogyoy Pa | Nagz— daxNa sz ™ dayNa 2702
for the dc fields are still driven byoth optical fields, in
contrast to the scalar case. Thus, EGE15 constitute a 2 ) ) 2 3
nonlinearly coupled system. + Nazgsov| (1Aal* ~1Adl ) + | Na Zr = daNazgyz

Case 2 The opposite situation emerges when there is no
phase mismatch between thandy components of the elec-
tric field, that is, ifk,=k, . In this case all the exponentials ~ dayNa, 29Y2 Na 29X aY
in (4.11) become unity, and the equations are

i 9 .
}Re(AaA;e'wa—@) =0.

(4.17H
92 92

2|kaﬁ +(1- 5ax0‘a,1) ax2 +(1- 5ayaa,1) aY2

It is important to stress that, £k=k,—k, is notO(e) or
2 2 smaller, multiple time and space scales are still present in
— kK A, ag At (M. A2 Egs. (4.13). In this pgrhcular.case Eq$4.11) are not in a
&—Tz} algxgy 2 (MalAdl sense true asymptotic equations, and further analysis is nec-
essary in order to extract the true asymptotic behavior of the

~ ~ 5 -
+MadAgl?) At My AZAL + (Mg dlAgl? system. More precisely, |k,—k,|> €, equations such as the
~ 5 ~ 2 0% ones discussed here cannot result. For exampl, if k|
+Mag Agl*) Aat MaghsAT + (Magda=Maoda)Aa —0(1), it follows that |vy—v,|~O(1) and wy,wy
_ A ~0O(1/e), which implies that the walk-off terms cannot be
M +M Az=0 4.16 ) . .
(MaofatMaoda) (4.163 carried toO(€%). The system is then governed by different
52 52 52 equations, in general valid over different space-time scales.
[(1— Oaxa,0) X2 + (1= day@a) ~? +saﬁ} b Therefore the conditiq|1|kx— ky|sO(e) poses a Iimit_ation
on the physical situations that can be described via vector

52 92 52 prs NLSM equations such as the ones presented in this paper.
B Py [Na 72 §aXNa,2W— 5ayNa,2W As for the properties of Eqs4.11), (4.15, and(4.16, we
expect some of the observations made in the scalar case to
2 2 92 carry through. Nonetheless, an adequate study of the equa-
a2 5axNa2&X2 tions and their behavior, as well as a characterization of the
solutions, is essentially an open problem.

+Na,2m}(|Aa|2—|Aﬁz)+ N

2 2

~ SaNazz— Nazy s [REAAL) =0, (4.16D

V. SPECIAL SOLUTIONS

Of course, in this case there is no temporal walk-off term, In this section we consider the scalar NLSM equations

i.e.,w,=0. derived in Sec. Ill and we show that stable localized multi-
Case 3 Finally, if the difference betweek andk, dimensional pulses exist which are driven by appropriate

nonzero andO(e€?), i.e., if ke— ky=¢€ ko, then 6,— 0 mean fields, even in the more general nonintegrable case.
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A. Nondimensionalization and rescalings

If the Y dependence o and ¢ can be neglected, or if it

is already taken into account when dealing with the linea

modes(e.g., in a waveguide configuratipnEgs. (3.8) be-

come effectively (2+1)-dimensional. In this case we intro-

duce nondimensional variables and fields as

T:T/To, §:X/XO, gZZ/Zo,
q:A/AO1 Q:¢/¢O1 (51)
with
TO:[|k;|ZO/2]l/2, XOZ[rX’0/|SX|]l/2-r0, (523
2k, 2k,
=0, Aj=5—7, 5.2
P ZMe 0T ZoM N (520

whereZ, andN are for now arbitrary, and where for conve-

nience we introduced

n(Mw)
rj'm: =

(5.29

S =1 «; .
nZ(mw) h:m

PHYSICAL REVIEW E 63 046605

(N is defined here for later useOmitting primes for sim-
plicity, Egs. (5.9 in the new frame of reference take on a

particularly simple form:

iq;+ (1= 601)(Ueet+d,,) +26019.,+(02]0)*+Q)g=0,
(5.7a

2Q§T=(|q|2)§§+(|q|2)771 (57b)
where the parameterg, , are given by#,;=3(1—a,;) and
6,=a,—3(cy+Cy). In Egs.(5.7) all the properties of the
material are absorbed into the values of the consténend
6,, which are explicitly given by

1 r><1|Sx| )
O1=5| 1= — ] (5.8a
' 2( rx,ka|kx|

1 [(My,
62_m<M_x,o_N+>. (5.8b)

The integrable case corresponds fg= 6,=0. Equation
(5.7b can be readily solved by expressing the dc field as
Q=U+V, with

1 (7
_ - 2
In this way we can write the optical NLSM equations for a U(End=75 L*(|Q| JedT+u (£,0), V(&7
tetragonal 4 mm material in the case of anomalous dispersion

(k"< 0) as the following dimensionless system:

i0,+a10g+d,,+(a2]q/°+Q)q=0, (5.39
ng_QTT:Cl(|q|2)7'7'_02(|q|2)§§1 (53b)
where
er |SX| Mxl
a :;—ny a :—’, 5.4
! I'x,0 kx|kx| 2 MX,ON ( a
_ Nx,l _ Nx,z

Cl—m, Co= N’ (5.4b

with N, ; andN, , given by Eqs(3.10, and where the sub-
scriptsé, ¢, andron g andQ denote partial derivatives. Note
that the integrable case presented in E317) can also be
rewritten in terms of Eq(5.3 by simply identifyingt={¢,
x=¢, y=71, A=q, &,=—-Q, o=a;=a,=1, ¢;,=0, and
C2:2.

1 ¢
=2 ) e ero. o, 59

and whereu, (¢,0),v,(7,{) are two arbitrary integration
constants. If €, ,7,)=(—%,—®), the corresponding two
functions, which we callu,, and v, assume the role of
boundary conditions of the dc fiel@=U+V. An alterna-
tive but equivalent choice which we will use in the following
is (¢, ,7,.)=1(0,0), corresponding to functiong, andv,. It

is clear that there is a one-to-one correspondence between
any choice foru., andv.. and any choice foug andvy. As
demonstrated below, the functiong,vy or u. ,v. play a
key role in the dynamics of the pulse.

B. Special solutions: Integrable case

In the integrable case(that is, when 6,=6,=0),
stable localized multidimensional pulses, often called
“dromions,”’are known to exist, which are driven by the
mean field through a proper choice of boundary conditions.
Explicitly, the one-dromion solution of Eq5.7) with 6,

Next we perform a rotation of coordinates to the charac= #,=0 is given by[16,17]

teristic frame of reference of E¢5.3h):

=& +7)IV2, &=(&—-1)IV2. (5.5
Also, we redefine the mean field a® =Q—3(c;
+¢,)|ql?, and we choose the normalization constihas
N=N_, where

(5.6

a(Xq,X5,t) =G(Xq,Xo,t)/F(Xq,X5,1), (5.10

where, for convenience, we sef= ¢, x,= 1, andt=¢, and

where
G(X1,Xp,t)=pemtm2tilértda), (5.113
F(X1,Xo,t)=1+e2M+e?724 ye?m*h2) - (511

with
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FIG. 2. The output pulse &, =2, for §,= 6,=0.4, with same
initial condition as in Fig. a) but with zero boundary conditions.

ity C. Special solutions: General case
i ’%ﬁfﬂ%ﬁ#ﬂgmﬁ
i
" "’""""""":’llf,',',"f'f"l’:':’:"‘:’l .

When 6, and/or 6, are not zero, to date no localized
analytical solutions have been found, and one must resort to
numerical simulations. We integrated E§.73 with a two-
dimensional second order split-step method and EgS)
with a second order numerical quadrature routine, for a num-
ber of different values of, and 6,. Figure 1a) shows a
typical stationary pulse in the integrable cagg=6,=0,
while Fig. 1(b) represents the corresponding dc fi€e= U

FIG. 1. The stationary dromion solution of the integrable caseﬁf— ;k/]gztli!];gg(r)?/vr?l IiEanZSiég)(j\;\)”tig Sgégwagl}/r?itri]atl));;gr?d(iﬁélng)l"or
(6,=6,=0): (@ The optical pulselq(¢,7,0)|; (b) the dc field 0. 0.0 and the same Iboundar diti :
Q(&7)=U(& 1)+ V(£ 7) associated with, 1,0270, _ y conditions as in Fig) 1

are used for the dc fields numerical simulations show that,
even though some radiation is produced, a localized pulse
similar to the one in the integrable case persists for a long
propagation distance. On the other hand, Fig. 2 shows the

b;(x;,t)= wj(Xj—Xo,j)—(wjz—ka)t, (5.12p  output produced after just two propagation distances by the

same input pulse as in Fig(d if the boundary conditions,
. ) R . . v for the dc fields are zerdi.e., u,=v..=0), for 6,=6,
=12, with p=2y2(y—1)kikp, and withk;, o} ,Xo; arbi- 04 | this case the pulse decays very quickly, and no
trary _real parameters. The constandeterml_nes the overall localized asymptotic state is obtainglote that the pulse
amplitude, the parameteks represent the width of the pulse yigherses along directions which are the analog of the Mach
in each respective direction, and the represent the Carte- |ines associated with the propagation of a supersonic distur-
sian components of the velocity, while thg; determine the  pance in a classical fluidlt is therefore clear that, even in
dromion position. The “potentials” U(xy,xz,t) and  the more general situatiof, #0, 6,0, the dc fields can
V(xy,%2,t) are obtained by integrating Eq.9) subject to  giapilize the optical pulses, which otherwise would disperse
the boundary conditions away very quickly without the presence of nonzero boundary
conditions. Similar results were found for a wide range of

!
)

plte g )

i
i
Nl
gy
et )
,l,l,:;m,,’,‘,',',l,llll:lm',',',’,"”

o

U.(Xq,t)=2kZseclt 71, v..(X,t)=2k5seck 7,. values of6; and 6,.
(5.13 A further result can be achieveduf,, v, are used instead
of u.., v... In this case, generalized stationary solutions are
The resulting expressions are found to exist even whe#; and @, are significantly different

from zero. To find these solutions, we integrated Es/a
and (5.9) with 6,,6,+# 0, using the dromion solution of the
integrable case as initial condition and inserting absorbing
boundaries at the edges of the two-dimensional grid to re-
V(Xq %0, 1) =200 F(Xq,X0,1))y .. (5.14 ~ Move the radiation shed py the pulg®l]. After the pulse _
272 has reached an asymptotic state, we removed the absorbing
boundaries and let the pulse evolve according to the NLSM
Figure Xa) shows a typical(stationary dromion solution, equations, to verify that we have obtained a stationary solu-
corresponding t;=k,=1, w;=w,=0, andy=9. The cor-  tion. As an example, in Fig.(8 we show the stationary
responding dc fiel@@=U +V is shown in Fig. {b) [note the  pulse corresponding t6,= #,= 0.4, while Fig. 3b) is rela-
nonzero boundary conditions..(x;) and v.(Xp) corre- tive to the cas&); =0, 6,=— 1. (In particular, this last case
sponding to Eq(5.13]. The pulse is located at the intersec- implies that, even for defocusing self-interaction, the pres-
tion of U andV. ence of nonzero asymptotic mean fields is sufficient to main-

U(X11X2!t):2(|n F(XllXZ!t))XlXZI
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fot 2(V(X)+ 0f2—\)f=0. (5.16

The numbe of discrete eigenvalues; in Eg. (5.16 de-
pends on the potentia¥/(x), but also on the self-phase
modulation coefficien®. If N>1, the solution of Eq(5.15

may be expected to be a superposition of all the correspond-
ing stationary modes. Since each of these modes has its own
frequency, the overall pulse can be expected to undergo pe-
riodic or quasiperiodic oscillations, which corresponds to
what is observed numerically in the two-dimensional system.

VI. CONCLUSIONS

it

In this paper we have studied the evolution of a single
)

quasi-monochromatic optical pulse in a multidimensional,
j:}:,?::m nonresonant quadratic material. We have seen that, if there
are no resonant wave interactions, and under rather general
assumptions, the dynamics of the pulse is governed by equa-
tions of nonlinear Schidinger type with coupling to mean
(do) fields (NLSM). In general, if the incident optical field is
polarized along one of the principal axes of the material,
scalar equations can be expected to apply. These equations
FIG. 3. Stationary solutions of the optical NLSM equations in are the (3+ 1)-dimensional analog in optics of a similar type
the nonintegrable caséa) 6, = 6,=0.4; (b) 6,=0, 8,= —1. of (2+1)-dimensional NLSM equations in water waves. If
instead the optical pulse has nonzero polarization projections
tain a localized statpThese findings suggest that stable lo-along both transverse axes, more general vector systems of
calized multidimensional pulses are not unique to integrabl@quations are found depending on the particular physical
systems; rather, they are a generic feature of forced evolutiogituations considered. As far as we know, these systems have
equations of this type. no known counterpart in other physical situations outside of
When 6, and 6, are nonzero, the stationary pulses differ optics. Even in the scalar case, the dynamics of the optical
significantly from the corresponding solution of the inte- Pulse appears to depend in a critical way upon the interac-
grable case. In particular, a numerical study of the equationons with the associated dc fieldsf. also Ref.[29]). In
reveals thaty, affects the shape of the pulse, white con-  particular, for appropriate choices of boundary conditions,
trols its amplitude. More precisely, we find that, startingstable localized multidimensional pulses can arise even in
from a fixed initial condition, for increasingly negative val- honintegrable cases. These findings suggest that stable local-
ues ofé, (implying strong defocusingthe amplitude of the ized multidimensional pulses are not unique to integrable
asymptotic stationary state decreases, while for increasingystems; rather, they are a generic feature of nonlinear evo-
positive values of, (implying focusing the final amplitude lution equations with forcing terms like those present in Eq.
of the solution increases until, for large enough valueg,of ~ (5.9._In our case, the presence of small applied dc fields
the pulse does not asymptote to a stationary state anymorQ(€?) in the perturbation expansipuan drive much larger
and, presumably, higher order solutions are obtained. optical pulsedO(e) in the expansioh Preliminary studies
Some of these features can be explained on the basis &#ggest that the above described dynamical configuration
simpler one-dimensional models. To this aim, we considefight be realized experimentally, given the wide range of

Ampltede fpfer

the parametrically forced NLS equation values off,; and 6, over which stationary propagation oc-
curs. It is expected that, since these values can be adjusted
i9¢+ (L/2) gyt (V(X) + 6q]?)g=0. (5.19  through linear material properties, proper design of the de-

vice structure will ensure pulse propagation within the de-
As initial condition and forcing potential we take, respec-sjred regime. This possibility is particularly interesting be-
tively, go(x) =a sectx andV(x) = A sectf x. By comparison  cause such experiments would allow the production of stable
with the usual NLS equation it is clear that,Af+ #a®=1  |ocalized multidimensional optical pulses whose dynamics

[that is, ifa=+/(1—A)/#], the initial condition corresponds can be electrically controlled by modification of the relevant
to the profile of the stationary stam(x,t)=a sechx &', dc fields.

This implies that, in the presence of a strong enough forcing
potential (A>1 in this casg stationary solutions also exist

for 6<0; however, the amplitude of these states decreases
with 6. For >0 the picture is more complicated. In this  This work was partially sponsored by the Air Force Office
case, looking for stationary solutions of the forgfx,t) of Scientific Research, Air Force Materials Command,
=f(x)e'™, with f(x) real, Eq.(5.15 leads to the following USAF under Grant No. F49620-00-1-0031 and by the Na-
nonlinear eigenvalue problem: tional Science Foundation under Grant No. DMS-9703850.
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