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Chaos in small-world networks
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A nonlinear small-world network model has been presented to investigate the effect of nonlinear interaction
and time delay on the dynamic properties of small-world networks. Both numerical simulations and analytical
analysis for networks with time delay and nonlinear interaction show chaotic features in the system response
when nonlinear interaction is strong enough or the length scale is large enough. In addition, the small-world
system may behave very differently on different scales. Time-delay parameter also has a very strong effect on
properties such as the critical length and response time of small-world networks.
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[. INTRODUCTION some timeA, called ignition time or waiting time, to start a
new fire or infection. In addition, a fraction of infected sites
Since the pioneer work of Watts and Strog@id on  shall recover after a further time @fto normality. Thus the
small-world networks, a lot of interesting research on theexisting models are no longer be able to predict the response
theory and application of small-world networkg—7] have in the networks or systems with a time delay. Furthermore,
been initiated. The properties of complicated networks sucithe nonlinear effect such as the competition factor as in the
as internet servers, power grids, forest fires, and disorderggPpulation dynamics, congestion features such as the traffic
porous media are mainly determined by the way of connecjam in internet communication and road networks, and the
tions between the vertices or occupied sites. One limitindgrictional or viscous effect in the interaction of vertices, shall
case is the regular network with a high degree of local clusbe modelled in order to simulate more realistic networks.
tering and a large average distance, while the other limitingVhen considering these nonlinear effects, the resulting
case is the random network with negligible local clusteringsmall-world network model is generally no longer linear.
and a small average distance. The small-world network is dherefore, a nonlinear model is yet to be formulated.
special class of networks with a high degree of local cluster- The main aim of this paper is to present a more general
ing as well as a small average distance. Such small-worl@onlinear model for the small-world networks by extending
phenomenon can be obtained by adding randomly only &he existing Newman-Wat{2] and Moukarze[3] models to
small fraction of the long-range connections, and some cominvestigate the effects of time delay, site recovery, and the
mon networks such as power grids, financial networks andionlinear interaction due to competition and congestion. The
neural networks behave similar to small-world networksnew model will generally lead to a nonlinear difference dif-
[2-9. ferential equation, whose solution is usually very difficult to
The dynamic features such as spreading and response @ptain if it is not impossible. Thus the numerical simulation
an influence over a network have also been investigated iRecomes essentifl]. However, we will take the analytical
recent studie$2,3] by using shortest paths in system with analysis as far as possible and compare with the results from
sparse long-range connections in the frame work of smallnumerical simulations. The characteristic chaos of the net-
world models. A simple time-stepping rule has been used tavork dynamics is then studied by reducing the governing
simulate the spreading of the influence such as a forest fir€guation into a logistic equation. The control of the chaos is
an infectious disease, or a particle in percolating media. Thalso investigated by introducing the negative feedback with a
influence propagates from the infected site to all uninfectedime delay to the small-world networks.
sites connected to it via a link at each time step, whenever a
Iong-rangt_e connection or shortcut is met, the influence is II. NONLINEAR MODEL FOR SMALL-WORLD
newly activated at the other end of the shortcut so as to NETWORKS
simulate long-range sparkling effect such as the infect site
(e.g., a person with influengasuddenly travels to a new To investigate the nonlinear effect of the time delay on
place, or an infected portable computer starts to connect to the properties of a small-world network, we now consider a
network at a new site. These phenomena have been succesandomly connected network ordedimensional latticé1,2]
fully studied by the Newman and Watts modgl] and (with d=1,2,...), andoverlapping on the network are a
Moukarzel[3]. Their models are linear model in the sensenumber of long-range shortcuts randomly connecting some
that the governing equation is linear and the response is imsertices, and the fraction of the long-range shortcuts or prob-
mediate as there is no time delay in their models. ability p is relative small p<1). Now assuming an influ-
However, in reality, a spark or an infection cannot start aence or a pollutant particle spreads with a constant velocity
new fire spot or new infection immediately, it usually takesu=1 in all directions and a newly infected site in the other
end of a shortcut will start but with a time deldy Follow-
ing the method developed by Newman and Wa#k and
*Email address: xinshe@amsta.leeds.ac.uk Moukarzel[ 3], the total influenced volum¥(t) comes from
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three contributions: one is the influenced volume with Ill. CHAOS IN SMALL-WORLD NETWORKS

t od-1 ot i
T'afo{"""d{ wheret is time andl' is a shape factor, the From the theory of dynamical systems, it is expected that

: : : t e d—-1
other contribution i’y o[ 2pV(t—¢{—A) ¢ "d fora hy-  yhe gynamic features can be shown more clearly by using the
persphere started at timg These two components have yopresentation in Poincare plafig0], which usually trans-

been used earli€i2,3] although without the time delay pa- torms a nonlinear differential equation into a nonlinear iter-
rameter. Now we add the third component due to the nonling.q map or logistic equation. Now we write B&.5) in a

ear interactions such as friction, slow down due to the congjiterence form and takd =& to get a logistic equation. In
gestion as in the case of internet network and traffic jam and qer 1o focus on the main characteristics of the dynamics,

lack of other resource such as insufficient oxygen for the firg, simplicity, we can takes=1 in one dimensiond=1),
spark to start a new fire. By assuming this nonlinear effect ag,q we then have
—Tyf [ uV3(t—¢—A)]¢% *d¢ whereu<1 is a measure of
nonlinear interaction, a continuum approach to the network V1= E+2V,— wéV2, (3.1
leads to the following delay equation

where V,,,=V(7) and V,=V(7—1). By changing vari-

L 4 ) ables
V() =T}y 05 [1+&V({t={=A)—uVi(t—{-A)]d¢,
ué
2.1 = 7>
( ) Un+1 (2+2AM§) (Vn+1+A)u
whered=1,2, ..., andl'y is shape factor of a hypersphere 5 (3.2
in d dimensions. Thé&lewman-Wattgength scald?2] can be 23 V.4A), Ae vi+4ué—1
conveniently defined as U”_(2+2A,u§)( . C 2ué '
1 we can rewrite Eq(3.1) as
£=———, (2.2
(2pkd) Vnr1=Avn(1=v,), A=(V1+4ué+1), (3.3
wherek=const is some fixed range. Rescaliniy which is a standard form of the well-known logistic equation
[10]. This is a well-studied logistic equation and the param-
r=t[[4& %d—1)11", s=A[T4¢ 4d—1)!]M eter range oh for period doubling and chaos is well known.
(2.3 Thus, we can express the length scélim terms of\ as
and rewriting Eq(2.1) in the rescaled form (A—1)2-1

& (3.4)

4p

R d-1 ~d
V(t)_(d—l)!Jo(T_g) [1+&7V(E=9) The system becomes chaotic as is bigger thanh,

~3.5699 but usually below 4.0, so the chaos begins at

—rVA({—6)]d¢. (2.9
1.401
After differentiating the equatiod times, we have &= T (3.5
ddv q o For N\ less than\y~3.0, the system approach to a fixed
ﬁzg +V(1=6)—ué&Vi(7-9), (2.9 point, that is,
. . . . . 0.75
which is a nonlinear delay differential equation, whose ex- E=\/—. (3.6
plicit solutions is not always possible. It is worth pointing ®

out that the present model can degenerate into the previo

simplified mode by Newman and Wafft&] and Moukarzel LEOf afixedu, whengo<£<¢, , thenh<i,, the system is

[3] when x=0 and =0, which produces exponential in a period dpubllng cascade. Whém ¢, , the system be-
growth without limit. However, in reality, the nonlinear in- ﬁgmgrs dcehpezac;;[g:s. gr:et%gyl’ezt; 2C§I*e —c;;os.mTaGEWSOyrlséerTat\?v%_rks
teraction du_e {0 competition exists as In the case of pOIOUIa'i'he system may look chaotic on a large scale greater thaﬁ
tion dynamics where each individual compete for food. 7

the critical length scal€, and the same system may be well

Thus, i is generally nonzero, and this infected voluiwiés lar on the even smaller scale. So the svstem behaves
the results of competitive balance between growth term an ~gu v ' Y v
ifferently on different scales.

nonlinear interaction terms. Similar to the population dynam- .

ics, the system with all initial conditions I[(Javrtjantually s)(/attles (_)n the .olther hand, for a fixed length scale we can
into one of three different types of behavior: fixed state, pe—deflne a critical value ofr, whenh=»x,
riodic, and chaotic, depending on the parameterg ahdé. 1401
In addition, the time delay{) can also have strong effect on oy =——.
the dynamic properties of the small-world networks. &2

(3.7
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FIG. 1. Critical length versus the nonlinear interaction coeffi- FIG. 2. Comparison of chaos and chaos control due to a delay
cient u for a network sizeN =500 000 anch=0.002. All the vari-  feedback. All variables and parameters are dimensionless. The dot-
ables are dimensionless. Numerical resultsarked with open ted points are for the chaotic response when there is no feedback
circles agree well with analytical expregsolid). (A=3.8, «=0), while the solid curve corresponds to the just con-

trol of the chaos by a negative feedback=3.8, «=0.27).
For weak competition or nonlinear interactigi< u, , then
A<\, , so that the system falls into the period doubling ¢dv
cascade. For the case of strong competitjobr u, , —d=§d+V(T— 8) — u&NVA(1—8)— BENV(7— 61y,
>\, , the system becomes chaotic. This clearly shows that = " @.1)
for a given size of networks, too much strong competition or '
nonlinear interaction can make the system chaotic. This cafjhere r,=T[I'y¢ %(d—1)!1*. Ford=1, we can taker,
have important implications in social sciences and financial-j s (j=1,2, ...) without losing its physical importance.
networks. Weak competition can provide the markets varietyy ysing transform(3.2), we have a modified logistic equa-
while too much competition could cause chaos if it is nottjgn
properly controlled.

To check the analytical results, we have also simulated Unr1=Avg(l-vy)+a(vp—vn-), J=1,2,...,
the scenario by using the numeric methag] for a network 4.2
sizeN=500,000,p=0.002, anck=2 on a one-dimensional
lattice. Different values of the nonlinear interaction coeffi-
cient u are used and the related critical length when the N e _
system of small-world networks becomes chaotic. Figure 1 A=(V1+A4petrl), a=p¢, 4.3
shows¢, for different values ofx where all values are non- hich s in agreement with the Escalona and Parmananda
dlmenS|on§1I. The solid curve 1s t'he analytical ,“95@5) form [12] of the OGY algorithm[11] in the chaos control
and the pointgmarked with open circleare numerical simu- strategy. We can also write EG.2) as
lations. The good agreement verifies the analysis. However,
as the typical length increases, the difference between these Uni1=Avg(l-vp)—av,_j, j=12,... (4.4
two curves becomes larger because the governing equation is
mainly for infinite size network. So the difference is due towith
the finite size of the network used in the simulations.

with

A=[V(1-BE*+4ué®+1], a=pE. (4.5

This last form(4.4) emphases the importance of the time
delay and the effect of negative feedback in controlling the
The occurrence of the chaos in small-world networks ischaos.
due to the nonlinear interaction term with a time delay. This For a fixed value ofA=3.8, we find a critical value of
chaotic feature can be controlled by adding a negative feedx, =0.27 forj=1 anda, =0.86 forj=2 to just control the
back tern{11,12. In reality, the influence such as a signal or chaos so that the system settles to a fixed point. For the case
an influence(e.g., influenza only last a certain period of of a>a, , the feedback is so strong that the chaos is sub-
time T, then some of the influenced sites recover to normalstantially controlled, and the system leads to a fixed state
ity. From the derivation of small-world model equati¢hl),  very quickly, and the numerical simulation shows that all the
we see that this adds an extra tegW(t—A—T), which  estimated Lyapunov exponent is nonpositive @
means that a fractiond) of the infected sites at a much ~(1/N)=)_, log,|/A—2Av,|<0. For a<a, , the feedback
earlier time (— A —T) shall recover at. So that we have the is not strong enough and the chaos is not substantially sup-
modified form of Eq.(2.5) as pressed. The chaos-measuring Lyapunov exponent estimated

IV. NEGATIVE FEEDBACK AND CHAOS CONTROL
OF SMALL-WORLD NETWORKS
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from the numerical simulations is usually non-negative,on a smaller scale. So the small-world system behaves dif-
which usually means that system is chaotic for weak feedferently on different scales. The time delay paramétbas a
back. Figure 2 shows that the effect of recovery of the in-very strong effect on properties such as the critical length
fected site or the delay feedback on the system beh#&dor and response time of the networks.

N=1000). The dotted points are for the chaotic response On the other hand, in order to control the possible chaotic
when there is no feedback\(=3.8, «=0), while the solid behavior of small-world networks, a proper feedback or
curve corresponds to the just control of the chaos by a negdiaealthy recovery of the infected sites is needed to stable the
tive feedback A =3.8, «=0.27). This clearly indicates that system response. For a negative delay feedback, numerical
the proper feedback due to healthy recovery and time delagimulations suggest that a linear recovery rgter linear

can control the chaotic response to a stable state. feedback can properly control the chaos if the feedback is
strong enough. This may have important applications in the
V. CONCLUSION management and control of the dynamic behavior of the

) small-world networks such as the financial and business net-
A nonlinear small-world network model has been pre-yorks and world wide webs. This shall be the motivation of

sented here to characterize the effect of nonlinear interacsome further studies of the dynamics of small-world net-
tions, time delay, and recovery on small-world networks.,yorks.

Numerical simulations and analytical analysis for networks

with a time delay and nonlinear interactions show that the

system response of the small-world networks may become ACKNOWLEDGMENT

chaotic on the scale greater than the critical length s¢ale
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