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Phase transition of a quasi-one-dimensional system
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The statistical mechanics of the quasi-one-dimensional system of DNA is studied with the Morse and
Deng-Fan potentials for the interstrand hydrogen bonds of nucleotide pairs. The intrastrand interactions be-
tween nucleotides are characterized by a simple harmonic potential in which the coupling strength has a
significant effect on the phase transition of the DNA system.
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[. INTRODUCTION tential [5] is used for the interstrand hydrogen bonds. Many
subsequent studid$,7] of the denaturation of DNA have
Phase transitions are fascinating physical phenomena dfeen based on this model.
systems that undergo structural changes due to changes in In the following sections, we shall study the Morse poten-
the degrees of freedom or symmetry. To describe the phdial and the Deng-Fan potentig8] for the interstrand hydro-
nomena, it is advantageous to consider exactly solvable mod@en bonds by calculating the delocalization or melting tem-
els with the underlying mechanisms as approximations, sucheratures and the interstrand quantities as a function of
that corrections to the models may then be made to accouf@gmperature. The effects of the intrastrand interactions on the

for any experimental discrepancies. interstrand quantities will be mentioned.
In this paper, we shall study the denaturation of the quasi-
one-dimensional system of the DNA double helix with two Il. QUASI-ONE-DIMENSIONAL SYSTEM OF DNA

exactly solvable potentials. The two DNA strands are held )
together by double and triple hydrogen bonds depending on L€t Xn:(unfvn)/\/z and yn:(“_n_”r])/ﬁ’ the inter-
the types of nucleotide base pairs in the strands. For simplictrand separation of the base pair beigBy., . We shall
ity, we shall consider an average interaction strength be@Ssume that the DNA helix consists bf nucleotide base
tween the strands. As an application, we may considePars: The Hamiltonian for the system has the form
poly(A-T)-poly(A-T) DNA. The intrastrand interactions are N
of the covalent type and are much stronger than the hydrogen — n  An /
bonds. In this sense, the DNA helix forms a quasi-one- : Z am " am | TH K Xe-) T Ya-a),
dimensional structure. (N
The subject of the denaturation of DNA has had a long

history[1], with theoretical studies based on the Ising model Vhere

P> dA

in which each base pair is assumed to be either dpem N
ken) or intact. A more sophisticated approach is the lattice H Xy X 1) = 2 =K(Xg—Xn_1)2,
dynamical theory, which is based on the modified self- n=12

consistent phonon approach introduced in 1p84with the \

real configurations of DNA molecules given by experiment, 1 )

and assumed harmonic potentials for the nonhydrogen bonds f(yn 'yn—l):nzl Sk(Yn=Yn-1)"+V(yn) [, @)
and Morse potentials for the hydrogen bonds. However, for

tractable calculations, a linear lattice dynamical theory ha?bn=M>'<n and Qn:MYn are the canonical momenta, and

generally been considered with Morse potentials replaced by/(yn) is the interstrand potential for the hydrogen bonds

harmonic ones. between nucleotide pairs. The statistical mechanics of the

_Itis well known that a useful DNA model must be non- yoqe| is described by the partition functiofi+ 1/ksT)
linear in nature. The introduction of the idea of nonlinear

excitations with soliton theorief3] suggested a plausible oo N
explanation of the open states of DNA. In these theories,Z= IT dx,dy.d pndqne‘ﬁH(pn'Xn'qnyn)EZnyZqu,
statistical mechanics was not considered and the results do —en=1
not represent the thermal denaturation of DNA. The Peyrard ©)

and Bishop(PB) model was introduced in 1988] to take  \ypare k. is Boltzmann's constant. We have imposed peri-
into account the thermal effect. It consists of two sets of

! odic boundary conditions on the variables. The integrals of
degrees of freedomu(, andv,,) corres_pondl_ng to the trans- the variables, ,q,,,x, are of Gaussian type and give
verse displacements of the bases, i.e., displacements along

the direction of the hydrogen bonds connecting the two bases Zy=Z,=(27M keT)V?, Z.=(2mkgTIK)NZ.  (4)

in a pair. Harmonic coupling is assumed for the neighboring

bases along the strands with a common coupling congtant The remaining configurational partition functic involves
and masM for each base. In the PB model, the Morse po-the nonlinear interstrand potential,
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+°°N 2 T T T T

Z,= H dy e_ﬁf(ynvynfl)' (5) T T T

e Vin(y) —

which can be evaluated by using the transfer-integral methoc VDF (y )
[9] with each integral being defined by 1 5 %

J dynile_ﬁf(ynrYn—1)¢(yn71):e_ﬁfi()o(yn)_ (6)

By expandinge(y,—_1) in Eq. (6) abouty, , we are led, in

the continuum limit, to the following Schdinger-type equa- 15

Vi)
e

tion:
10
1 d%ei(y)
- 25K d—yz el Y, B) @i(y) 05¢ T 35 i
:fi‘Pi(y)y i:O,l,Z..., (7)
where ¢; is an eigenfunction with corresponding eigenen- E\
ergy €;, andUqx(y,B) is a temperature-dependent effective L

potential, 00 1 é é 4I- 5 é 7 8
Bk) y(A)

1
Uer(y,B)=V(y)+ 55In

25 ®

FIG. 1. The Morse potential,(y) and the Deng-Fan potential

F(y) are plotted with D=0.33 eV, a=1.8 A", k=3
The Schrdinger equation is dependent on the harmonic COUx 103 eV/A?, andr,=1.1 A. The inset shows that the Morse

p“ng COI’IStamk Wh|Ch deflneS the IntraStl’and I’IUC|eotIde II”I potent|a| remains finite for unphys|cal negat“/e va|ue§/ of
teractions. The solvability of Eq.7) depends on the inter-
strand potentiaV/(y), for which we shall consider the Morse
and Deng-Fan pgtent@ls. Equati¢n also has an effective horanre. For the purpose of comparison, we shall calculate
massM = BKkA* (% is Planck’'s constait As Me—,  iha first two orders
one expects that the system should be in the condensed
phase; this happens wh@nr-0 or k—oo. For the DNA sys-
tem to be in the condensed phase, we require Thaly, <ym>:f e2(y)y™dy, m=1,2, (10)
whereTg is the delocalization or melting temperature, and as
k—oo the system exhibits only the condensed phase for all
finite temperatures. for the Morse and Deng-Fan potentials.

The phase transition of the DNA system is characterized
by the detachment of the two strands. Hence a measure for
the transition can be defined by the average

comes from the ground statg,(y) below the melting tem-

A. The Morse potential

We first consider the Morse potential for the interstrand
base pairs

N
m e*Nﬂfn
2 (Pn(y)|y |(Pn(y)> V(un_vn):D[efa(unfvnfre)_l]Z’

(y"= : 9

N
Z ‘Pn(y)|§0n(y)>e_NBEn —0o<U,, U,<©, (11

where m is a positive integer. The first-order average ( where we shall use the values for the paramelerand a
=1) gives the mean stretchin@®(y) of the hydrogen bonds from[4], D=0.33 eV,a=1.8 A™!, and the following val-

as a function of temperature, while the second-order averagées for the coupling constaft (a) 2><10‘ eV/A?, (b) 3
(m=2) gives the variance of the separation of the twox10 3 eV/A2, (c) 4x10 3 eV/A% The constantr,
strands and provides a simple measure for the difference be=1.1 A denotes the equilibrium separation of the base
tween the two potentials. pairs. This potential is plotted in Fig. 1 wittkk=3

We expect that the mean stretchin@(y) and higher- X103 eV/A?

order quantitiey™) (m=2,3,...)increase with tempera- We definex,=(u,+v,)/+2 andy,=(u,—v,)/+2, and
ture and diverge whem=T,. Slnce we are interested in the let (y2y,—ro)=/2r. Then the Schidinger equatiorf7) has
thermodynamic limit N—), the dominant contribution the effective potential
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TABLE |. Melting temperatured{"” (n=0,1,2) of DNA with 1
D=0.33 eV,a=1.8 A1 and three values fdk.
0.8 DFP(200Ky —
MP(200K)
. MeWA? . " DFP0n
i — — — —~. 0. 300K) —
Potential 2<10 3x10 4x10 2 DFPESSOK) —
Morse TO (K) 33125 40570  468.46 S04 Hpesno
T (K) 110.42 135.23 156.15
T (K) 66.25 81.14 93.69 0.2
Deng-Fan T (K) 288.27 353.06 407.68
T® (K) 97.02 118.83 137.21 e
T (K) 59.67 73.09 84.39
FIG. 2. The ground state eigenfunctions in the Morse potential
1 K (MP) and the Deng-Fan potentidDFP) are plotted withk=3
Ue(r,B) = D[e\s‘?ar_ 1%+ ——In '8_ (12) X102 eV/A? and for several temperatures.
e 2B '\ 2w/’

separation. In the thermodynamic limit, the ground state

Equation(7) with this effective potential can be solved ex- gominates with the normalized eigenfunction
actly and has eigenfunctions and eigenenergies as follows

[4,10): 2d)9- 12 ‘
pol1)=(\2a) i &R —de” )
en=Npe %£F(—n,25+18), n=01,2..., (19 [F(2d=1)]
1
1 | Bk Za\F 1) a? 1\? Xex;{—(d—i J2ar (18
6n—ﬁnz+g ?n—ki—ﬂ n+§ ,
(14 and eigenenergy
where 1 Bk\| a(D\¥2 a2
=5z 5=+ 2] —— (19
2\2as  |Y2(2s+n)! 2p \2m|  BIK]  4p%
N,= (19
nir(2s+n+1) (2s)! The ground state wave function is plotted in Fig. 2 with

is the normalization constang=2de 22", d=(g/a) kD,
s=d—n—1%, and
(—n)(—n+1) &

(—n)¢ £
(2s+1)(2s+2) 2!

2s+1
(—n)(—n+1)---1
T 2st1)(2s+2)- - (2s+1+n)

F(—n,2s+1¢)=1+

(16)

=3%x10"2 eV/A? and for the temperatures 200, 300, and

350 K.
The averagesy) and(y?) as a function of temperature
are calculated by

o= Cehwymaym-12. @

wherey=r+r./+/2. The results are plotted, respectively, in
Figs. 3 and 4 fok=2x10"3, k=3x10 3, and andk=4
x10°3 eV/AZ,

The existence of bound states requires that the parasieger
positive. Then the number of bound statesust take only
positive integral values from zero to the greatest value for
which d>n+1/2. The temperature for the existence of the
nth bound state is defined by

2JkD

T<(2n+ 1)akB: (7

T, n=012...,
whereT{" denotes the melting temperature of thié state.

The melting temperaturég” (n=0,1,2) are listed in Table
| with the valuesD=0.33 eV,a=1.8 A%, and three val-

15

DFP(k=2x10%) —
DFP(k=3x10-3) =

DFP(k=4x10-%) -~

i [
P |
MP(k=2x103) == P !‘!
" 1
MP(k=3x10-3) wowee i !

ii

i

i i

MP(k=4x103) === i i
: I}

905

L,
T50 200 250 300 30 400 450 500
TK)

ues fork. The melting temperature of the ground state is very  FIG. 3. The averagéy) of the ground state in the Morse and
much higher than for the excited states, which therefore playpeng-Fan potentials is plotted as a function of temperature for three
no significant role in the determination of the interstrandvalues ofk.
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FIG. 4. The averagéy?) of the ground state in the Morse and
Deng-Fan potentials is plotted as a function of temperature for three

values ofk.

B. The Deng-Fan potential

We next consider the Deng-FafDF) or generalized

Morse potentia[8]

V(uy,—v,)=D|1— 0<Up—v,<,

2
ea(unfvn)_ 1‘| ’

(21)
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- J2a(an+n+/)(2ay+n+ 1) (2a,+n+2/)]H?
T N+ AL (2an)(2an+ I (n+27)

is the normalization constant and

(@)n(b)n b),

(a+n—1)!
(a=21)!
(25)

—, (&)=

is the hypergeometric function. For bound states, we must
have integral values such than<\mb(b+2)—/, which
gives

—(b+2+2nb)+ \/b(b+2)(2n+1) +2b+4=/.

Thus, for thenth bound state, we must have a temperature
such that

JkD b
aks /(74 —1)

T< T, (26)

whereT{" denotes the melting temperature of tté state.
For the f|rst three states, the temperat(rgs (n=0,1,2) are

whereb=e%"e—1, andD, a, andr are constants as defined tapulated in Table |.

in the Morse potential. Unlike the Morse potential, the DF

potential is defined only for positive values gf=u,—v,.

As plotted in Fig. 1, the DF potential has a slightly harder
core and a narrower potential well than the Morse potential. Bk azag
We expect a harder core to give a lower delocalization tem- @o(r)=Nor“o(1+r)~Fo, &= 2,8 ( ) +D-

perature, since the ground state in the DF potential will be
pushed more to positive separation than that in the Morse

potential. This difference can be seen in Fig. 2.
The Schradinger equation has the effective potential

+ %In( B:) (22

2
1—

Uer(y,8)=D

e\f‘?ayf 1

Let
r=1/(e?-1),
m=kpB?D/a?,
/=(1+1+4m?)/2,
=[mb(b+2)/(n+/)—(n+/)]/2

andB,=a,+n+/.
The wave functions and energies, respectively, fdad

@n(r)=Npren(1+r)=FnFy

X(—=n,—n+1-2/2a,+1;-r), (23

2a2

€,=So+D~— n=0,1,2..., (29

e %
kB2’

where

In the thermodynamic limit, we need to consider only the
ground state with eigenfunction and eigenenergy

kg2’

(27)
where
[ V2apor(2By) |** 1[mbb+2)
v vermivers) IR v
Bo=aot/ . (28)

To describe the state of DNA below the melting temperature,
the ground state is used to calculate the averages

+ oo
<y”‘>=fO ea(y)y"dy, m=1.2,

where y=In(1+1/r)/\/2a. These averages are plotted in
Figs. 3 and 4 as a function of temperature ker2x 10 3,
k=3x10"3 andk=4x10"3 eV/AZ

Ill. CONCLUSIONS

The main physical property of the phase transition in the
quasi-one-dimensional system of DNA is characterized by
the detachment of the DNA strands. Thus, we have calcu-
lated the ground state wave functions and the interstrand
quantities(y) and(y?) as a function of temperature.

The ground state eigenfunctions are plotted in Fig. 2 for
several temperatures. At low temperatures, the peaks of the
ground states are centered at about the equilibrium separa-
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tion r,=1.1 A. As the temperature increases, the groundhermal denaturation can be considered. For examp[&.2h
state wave functions become less localized, and the wave potential based on the superalgebra formalism was studied;
function in the DP potential delocalizes before that in thethis potential has a very different form from the potentials
Morse potential. studied here. All exactly solvable potentials provide only ap-
Table | indicates that for the same melting temperature @roximations to the real DNA system. A comparative study
smallerk is needed for the Morse potential than for the of solvable potentials should provide useful understanding of
Deng-Fan potential. In particulak=3x10"3 eV/A? for the dynamics of DNA.
the Morse potential givesTq=405.70 K, while k=4 Finally, we note that in order to account for other effects,
x10"° eV/A for the Deng-Fan potential givesTq  gych as the stacking energy between two neighboring base
=407.68 K. This feature is also reflectgg n F|g§. 3 and 4545irs, a modified model with an anharmanic potential for
where the Morse potential witk=3X10 ev/A gIV€S  nonhydrogen bonds has been considered in conjunction with
about the same physical aspects as the DF potential kvith the Morse potential6,7]. However, solving this system re-
=4x10"% eV/AZ Therefore, a stronger intrastrand cou- gires numerical methods, and the determination of all the
pling is needed for the DF potential. parameters in the model for comparing the theory with ex-
The melting temperatur€, is seen to behave &< \k.  periments is still outstanding. Also, a more useful model

Thus, if the coupling strength of the covalent bonds along thehould include the effect of the heterogeneous sequence
DNA strands increases indefinitely, one of the two dimen-composition of DNA[13].

sions freezes out and the system becomes one dimensional.

In essence, this corresponds to an infinite effective rivags

in the Scﬁdinge_r_equation, and we expect no dene}turatiqn. ACKNOWLEDGMENT
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