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Bridge from diffusion-limited aggregation to the Saffman-Taylor problem
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We introduce a Monte Carlo mean-field scheme for the diffusion-limited aggred&tioh) model, in order
to simulate processes of viscous fingering. The patterns obtained demonstrate a striking resemblance to natural
shapes in Hele-Shaw cells, reproducing the Saffman-Taylor analytical solutions in the stable regime. The
corresponding deterministic equations of the mean-field DLA scheme are derived and studied.
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Among natural nonequilibrium growth processes, the visMonte Carlo scheme coincides with the regular Witten-
cous fingering in Hele-Shaw cells has attracted much atterSander algorithm; wheK goes to infinity, it describes the
tion ever since the discovery of this intriguing and puzzlingmean-field limit of the DLA model.
phenomenoil]. It is experimentally observed that the forc-  The issue of this formulation consists in the question of
ing of a liquid into a more viscous one results in the complexhow to define the probability of walker aggregatiBir) in
evolution of a moving interface between the liquids, produc-the general case of neighboring cluster distributions. To
ing a wide variety of patterns—from stable smooth fingers tosolve the problem posed, we discuss the aggregation process
chaotic fractal front$2—5]. The relevant theoretical model is in terms of the Boltzmann theory of irreversible transitions
described by the Saffman-Taylor relatioifd; in the quasi- [21]. By this approach, the DLA model represents a two-
stationary limit the problem involves solving the Laplace particle interaction between walke(r,t) and clustep(r,t)
equation for the pressure fiel?p=0 coupled with speci- fields, the intensity of whichSt(r,t)=dp(r,t)/at (the
fied boundary conditions at the interface, the velocity ofBoltzmann integral of collisionsfollows from the relation
which, v, is proportional to the pressure gradi&hp.

Remarkably, the diffusion-limited aggregatiQbLA) in- St(r,t):f
troduced by Witten and Sander as a stochastic growth algo- r+e
rithm [7,8] obeys the self-same hydrodynamic | 12. ) L o .
In this[ mc]JdeI, %lractal ramified clugters é]lrow via?gg;/er]sible Here the integration is performed inside the collision sphere
attachment of particles randomly walking on a lattice, so thd Teel mclud_lng all the cluster unitp(r +&.1) nelghborl_n_g
role of the pressure field is played by the probability of vis-the walker uniu(r,t); the termw(r,e,t) sets the probability

iting a lattice site. As a consequence, one may conclude th&f & successful interactiofi.e., leading to aggregation
the DLA paradigm should reproduce solutions of the Since the mean-field theory should satisfy the cutoff condi-

Saffman-Taylor problem in the mean-field linjt0—14, in tion of grpvvth rate gt small'cluster de_n;itigs, we suggest_ the
agreement with the known qualitative resemblance betweeflyPOthesis that the interaction probability is & linear function
stable viscous fingers and an ensemble average of DLA clu&f the neighboring cluster field. Based on this assumption,
ters[15]. Although the connection of the models appears toV€ introduce the isotropic measure fo(r,et) as
be obvious, the adequate formulation of a mean-field DLA
theory (i.e., the transition from discrete units to continuum W(f,e,t)ZJ p(r+et)dl. (]
walker and cluster distributiondias been a challenge for the reel
last two decadegl6-20Q.

Beginning from the original on-lattice DLA algorithfit],
its mean-field generalization can in principle be constructe
as follows. Let us consider an integer positive nunbethe
discreteness parameter of the cluster distribufiéry; for a dp(r,t) 2
lattice site, the value op is an element of the finite set o un zl p(r+e.t)) . )
{1,(K-1)/K,(K=2)/K, ...,2K,1/K,0}. Then the mass
diffusion is modeled by the flux of walkers transferring a The |ast relation answers the question about the probability

constant portioru,=1/K from a far source to the growing of walker aggregatiof(r), which is determined by the for-
cluster. Since this scheme provides nonempty spectrum of jyl1a

values between the extremes 0 and 1, the probability of )

walker aggregatiorP(r) depending on the cluster field has _

to be defined. While a walker released from the source ex- P(r)—<§i: p(r+q)> ' @
ecutes stochastic motion, at each time step a random number

Re (0, ...,1) isgenerated and compared wik(r). If R In order to test the capability of the mean-field scheme
<P(r), the walker transforms into the lattice site and ad-introduced, let us consider the Saffman-Taylor configuration
vances the cluster densit(r) by the value ofi,; otherwise, [6] of a long linear channel of widtklV. The translation in-
the wandering is continued. As successive walkers repeat thariance of the problem implies the reflection condition for
procedure, the cluster fiele(r) is modified. ForK =1, this  wandering walkers on the lateral wallg|=W/2. Here we

u(r,t)p(r+et)w(r,et)dl. 1)
el

For on-lattice processes, the integration in EGsand(2) is
éransformed to a finite summation over the vector &eb
adjacent sites, and one obtains
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FIG. 1. Mean-field DLA simulation on a square grig,y) of FIG. 2. Mean-field DLA simulation on a square grig,y) of
spacinga=1 inside a channel of widtW=64a. Aggregation prob- spacinga=1 inside a channel of widttW=64a. Aggregation prob-
ability P(x,y) is set by Eq(5); discretenes& =1, 2%, 28 and 22  ability P(x,y) is set by Eq(7) with £=1, 2, 3, and 3.5 for plotéa),
for plots (a), (b), (c), and(d), respectively. Cluster fielg(x,y) is (b), (c), and(d), respectively; discreteness is fixdt= 212 Cluster
represented by filledg=p) or open p<p) dots, divided by the field p(x,y) is represented by filledpp) or open p<p) dots,
mean density. divided by the mean densify.

take a square grid:(X,y) of Spacinga and assume On|y the microscale frona/2 to 5, this replacement modifies the
nearest-neighborhood interactions, so the aggregation proBggregation probability formula from E¢) to

ility P i lcul h
ability P(x,y) is calculated as£ denotes the sum of and P(x,y)=(p(xxa,y)+p(x,yxa)—ép(x,y)? (7)

— terms

P(x,y)=(p(x*a,y)+p(x,y*+a))? (5)  Where the coefficienf and the scale> are related as

2

In Fig. 1, we summarize results of simulations inside a chan- E=4— a7®5: a _ (8)
nel of width W=64a where the discreteness parameeis 52 \/4—§
varied in the rangél, . ..,2?]. The cas&kK=1 describes a
regular DLA shape; increase Kfleads to a successive thick-  The variation of¢ in the rang€g0, . ..,4) allows us to
ening of cluster branches, and the last two patterns look likenlarge the capillary length & considerably, as illustrated
unstable viscous fingers observed in Hele-Shaw ¢8H5].  in Fig. 2. The patterns for £ <3 represent still unstable

Thus the mean-field scheme yields a capillary lerigtio the  viscous fingers with remarkable effects of tip splitting, side

DLA model that immediately raises the next problem—howbranching, and wobbling, relevant to experimentally ob-

to varyl, e.g., to enlarge it up to values comparable withgaryeq shape8—5]. When one proceeds =33, the cap-

the channel widthW, to reproduce stable Saffman-Taylor jary jength increases enough to provide stable front propa-

fmgers’?. . . . . gation so the cluster field takes the shape of a single
_The simplest solution consists in further increasekof  ga¢fman.Taylor finger. For detailed investigation of the

this is, however, unpromising since the dependen¢s)  geady-state fingering, we have simulated the mean-field

conjectured from our simulations is too wedkylogK, so o . B . a3
stable patterns in the channél=64a cannot be obtained scheme inside a wider chanan— 100a, ,W'th §=33 (¢
=2a); results are shown in Fig. 3. Starting from center of

even atk=2%. In order to find a more efficient way to he of Lin the beqinning. first there | ion of initial
increasel. without substantial increase of computationali ect ar;ne ‘II'T1t ethengntmg’l '[)Stt gre_ IS aregion o |nt|_t|a
time (which is directly proportional t&), let us discuss the _r?jn3|ends. i En ef ztihera oun tgarlesf_ |mposte;] a Ilmte_
length scale origin in our theory. Indeed, the sum of neigh-:(n etpen en ths ap(re] tﬁ he prolpatga mgt l?gelr—_t € ﬁus er
boring cluster densities in E¢5) represents the discrete La- ront moves through the channel at constant velocity whereas
laci the transverse density profife(y) approaches a step func-
placian operator, : ; . : : .
tion as is required.In this steady-state regime, the relative

p(x=xa,y)+p(x,yta)=[1+(a*4)V?p(x,y). (6)

By this relation,|; originates from the termaf/4)'?=a/2, IA liquid flow being modeled by the cluster fiefdnaturally pre-
the characteristic small scale of a square grid of spaaing determines the following step-type conditiops= const inside the
Hence, a valid substitutioa?/4< &% in Eq. (6) transforms liquid region andp=0 elsewhere.
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FIG. 5. Mean-field DLA simulation on a square grig,y) of
spacinga=1 in the open circular geometiighe radial configura-
: (d) tion). Aggregation probability is calculated by the following for-
mula: P(x,y)={p(x=a,y)+p(x,y*a))!" with «=0.5, 1, and
1.5 for plots(a), (b), and(c), respectively; discreteness is fixdf,
:216.
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FIG. 3. Mean-field DLA simulation on a square grig,y) of
spacinga=1 inside a channel of widttW=100a. Aggregation

probability P(x,y) is set by Eq(7) with §=3% (6=2a); discrete-

with [;~57a. At the finger tip, the contour plot of the mean
cluster density precisely fits the Saffman-Taylor analytical
solution[6] (X is the tip position ay=0)

nessK =22, (a) Three-dimensionaBD) representation of the clus- W(1-)) |1 2wy

ter field p(x,y). (b) Longitudinal profile ofp(x,y) alongx axis, X(y)—Xo=Tln 5 1+cosmﬂ. (10)
pL(X)=p(x,0). (c) Transverse profile op(x,y) averaged over 10

sections in the steady-state regipa(y) =(1/10)2,534¢0(x,Y)- (@) Corresponding deterministic equations of the mean-field

Contour plot of the mean densitppen circleg p(x,y)=p, com-  p| A model can be derived directly from the approach used

pared with the Saffman-Taylor solutiduontinuous curvewith X {5 ghtain the stochastic Monte Carlo scheme. Considering

=0.554. the limit K—o, we proceed to continuum distributions for
the clusterp(r,t) and walkeru(r,t) fields. Then the expres-

finger widthA measured at the mid-height of the transversegion for the cluster growth rafé€q. (3)] is rewritten as
profile gives the value.=0.554, the result of the Saffman-

Taylor problem extended for the case of a finite surface ten- ap(r,t)
sion [22.-24 L SurO(p(r )+ OV )2 (A
(@) Here we substitute the Laplacian for the sum of neighboring

cluster densitiefEq. (6)]; the microscale’ is introduced as a
parameter of the theory. For the walker fiel¢r,t), we re-
place the stochastic wandering by a deterministic law that
0 accounts for the mass conservation in a diffusive system:

ap(r,t)
ot

P(x,y)

=V2u(r,t), (12)

(d) where the growth process is considered as quasistationary,
au(r,t)/ot=0. Remarkably, these mean-field relations coin-
cide closely with the ones originally proposed by Witten and
Sande{7]; we have only changed the exponent in Ebjl)
from 1 to 2. The modification is nevertheless crucial since it
provides the linear stability of the cluster front to infinitesi-
. — mal perturbations. The cluster-walker interface is stable,
20 0 0 40 U0 -0 -40 30 %0 10 0 from a theoretical point of view, for all values &f in prac-
Y o , X tical simulations, however, Eql1l) is extremely sensitive to

(12)F]I(§ﬁtsziger:emglg?ilgg(cy;ng?rs]glaeg?ngilflr?r?ggs(f.c(hl;:mae?dof numeric_al noise_coming from unav_oidable residual errors.

' The noise amplitude needed to drive the system unstable

width W=1008a; microscales=2a. (a) 3D representation of the d tiall o uti f the det
cluster fieldp(x,y). (b) Longitudinal profile ofp(x,y) alongx axis, ecreases exponentially wii,” so solutions of the deter-

pL(X)=p(x,0). (c) Transverse profile op(x,y) averaged over 10
sections in the steady-state regipr(y) =(1/10)2% ,e0(x.y). (d)

Contour plot of the mean densitppen circleg p(x,y)=p, com- 2Similar exponential sensitivity to numerical noise is observed
pared with the Saffman-Taylor solutiqoontinuous curvewith \ also for the original Saffman-Taylor equations with surface tension;
=0.554. see, e.g., Ref$§25,24.
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ministic equations are characterized by a length scale afonditionw—0 at p—0 as well as the linear connection
stable behaviot.xé§ as are the patterns grown by the sto- proposed, so why do we consider the special easd.? To
chastic algorithm. clarify this question, we have simulated the relevant Monte

To compare the deterministic and stochastic mean-fieldarlo schemes in the open circular geométhe radial con-
DLA models, we take the Saffman-Taylor configuration of figuration for the general case of the exponentAs a re-
the channel of widthV. On the lateral boundaries, we im- sult, all the valuesx>0 provide linearly stable fronts, but
pose the Neuman condition for thefield and the Dirichlet the underlying lattice drastically influences the overall clus-
condition for theu field, p=0 andou/dy=0 as|y| =W/2; at ~ ter shape by the appearance of preferential growth
infinity, we fix the flux of walkersju/dx= ¢ asx—» (so-  directions: From Fig. 5, on the square grid the patterns ywth
lutions of the problem do not depend on the flux intensitye<1 are oriented along theandy axes, whereas the choice
®). The numerics of Eqs(11) and (12) is performed on a of a>1 leads toxy d|agonal orientation; the golden mean
square grid of spacin@ inside a channel of widthw — @=1 c_orresponds to cwcular-shape_d clL_lster_s. However, the
—100a with 5= 2a; results are presented in Fig. 4. The fin- mean-field DLA theory should describe, in principle, the lig-
gerlike cluster obtained demonstrates surprisingly the samdid flow as isotropic for the background, the result achieved
properties as the corresponding shape simulated by the stgDly with the linear dependence in E@). Is this natural?
chastic scheméFig. 3). We expect further theoretical clarifications of this topic.

In discussion, we would like to justify the hypothesis that
was suggested at the beginning of our theory: “the interac-
tion probabilityw(r,et) is a linear function of the neighbor-  3For a comprehensive analysis of reasons why cluster anisotropy
ing cluster field”[Eq. (2)]. Undoubtedly, any power-law de- systematically appears in on-lattice DLA simulations, see Refs.
pendence with an exponen&>0 satisfies the cutoff [27-30.
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