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Bridge from diffusion-limited aggregation to the Saffman-Taylor problem
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We introduce a Monte Carlo mean-field scheme for the diffusion-limited aggregation~DLA ! model, in order
to simulate processes of viscous fingering. The patterns obtained demonstrate a striking resemblance to natural
shapes in Hele-Shaw cells, reproducing the Saffman-Taylor analytical solutions in the stable regime. The
corresponding deterministic equations of the mean-field DLA scheme are derived and studied.
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Among natural nonequilibrium growth processes, the v
cous fingering in Hele-Shaw cells has attracted much at
tion ever since the discovery of this intriguing and puzzli
phenomenon@1#. It is experimentally observed that the for
ing of a liquid into a more viscous one results in the comp
evolution of a moving interface between the liquids, produ
ing a wide variety of patterns—from stable smooth fingers
chaotic fractal fronts@2–5#. The relevant theoretical model i
described by the Saffman-Taylor relations@6#; in the quasi-
stationary limit the problem involves solving the Lapla
equation for the pressure field¹2p50 coupled with speci-
fied boundary conditions at the interface, the velocity
which, v, is proportional to the pressure gradient“p.

Remarkably, the diffusion-limited aggregation~DLA ! in-
troduced by Witten and Sander as a stochastic growth a
rithm @7,8# obeys the self-same hydrodynamic laws@9–12#.
In this model, fractal ramified clusters grow via irreversib
attachment of particles randomly walking on a lattice, so
role of the pressure field is played by the probability of v
iting a lattice site. As a consequence, one may conclude
the DLA paradigm should reproduce solutions of t
Saffman-Taylor problem in the mean-field limit@10–14#, in
agreement with the known qualitative resemblance betw
stable viscous fingers and an ensemble average of DLA c
ters @15#. Although the connection of the models appears
be obvious, the adequate formulation of a mean-field D
theory ~i.e., the transition from discrete units to continuu
walker and cluster distributions! has been a challenge for th
last two decades@16–20#.

Beginning from the original on-lattice DLA algorithm@7#,
its mean-field generalization can in principle be construc
as follows. Let us consider an integer positive numberK, the
discreteness parameter of the cluster distributionr(r ); for a
lattice site, the value ofr is an element of the finite se
$1,(K21)/K,(K22)/K, . . . ,2/K,1/K,0%. Then the mass
diffusion is modeled by the flux of walkers transferring
constant portionu0[1/K from a far source to the growing
cluster. Since this scheme provides nonempty spectrumr
values between the extremes 0 and 1, the probability
walker aggregationP(r ) depending on the cluster field ha
to be defined. While a walker released from the source
ecutes stochastic motion, at each time step a random num
RP(0, . . . ,1) isgenerated and compared withP(r ). If R
,P(r ), the walker transforms into the lattice site and a
vances the cluster densityr(r ) by the value ofu0; otherwise,
the wandering is continued. As successive walkers repea
procedure, the cluster fieldr(r ) is modified. ForK51, this
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Monte Carlo scheme coincides with the regular Witte
Sander algorithm; whenK goes to infinity, it describes the
mean-field limit of the DLA model.

The issue of this formulation consists in the question
how to define the probability of walker aggregationP(r ) in
the general case of neighboring cluster distributions.
solve the problem posed, we discuss the aggregation pro
in terms of the Boltzmann theory of irreversible transitio
@21#. By this approach, the DLA model represents a tw
particle interaction between walkeru(r ,t) and clusterr(r ,t)
fields, the intensity of whichSt(r ,t)[]r(r ,t)/]t ~the
Boltzmann integral of collisions! follows from the relation

St~r ,t !5E
r1ePI

u~r ,t !r~r1e,t !w~r ,e,t !dI. ~1!

Here the integration is performed inside the collision sph
r1ePI including all the cluster unitsr(r1e,t) neighboring
the walker unitu(r ,t); the termw(r ,e,t) sets the probability
of a successful interaction~i.e., leading to aggregation!.
Since the mean-field theory should satisfy the cutoff con
tion of growth rate at small cluster densities, we suggest
hypothesis that the interaction probability is a linear functi
of the neighboring cluster field. Based on this assumpti
we introduce the isotropic measure forw(r ,e,t) as

w~r ,e,t !5E
r1ePI

r~r1e,t !dI. ~2!

For on-lattice processes, the integration in Eqs.~1! and~2! is
transformed to a finite summation over the vector setei to
adjacent sites, and one obtains

]r~r ,t !

]t
5u~r ,t !K (

i
r~r1ei ,t !L 2

. ~3!

The last relation answers the question about the probab
of walker aggregationP(r ), which is determined by the for
mula

P~r !5K (
i

r~r1ei !L 2

. ~4!

In order to test the capability of the mean-field sche
introduced, let us consider the Saffman-Taylor configurat
@6# of a long linear channel of widthW. The translation in-
variance of the problem implies the reflection condition f
wandering walkers on the lateral wallsuyu5W/2. Here we
©2001 The American Physical Society05-1
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take a square gridr5(x,y) of spacinga and assume only
nearest-neighborhood interactions, so the aggregation p
ability P(x,y) is calculated as (6 denotes the sum of1 and
2 terms!

P~x,y!5^r~x6a,y!1r~x,y6a!&2. ~5!

In Fig. 1, we summarize results of simulations inside a ch
nel of width W564a where the discreteness parameterK is
varied in the range@1, . . . ,212#. The caseK51 describes a
regular DLA shape; increase ofK leads to a successive thick
ening of cluster branches, and the last two patterns look
unstable viscous fingers observed in Hele-Shaw cells@3–5#.
Thus the mean-field scheme yields a capillary lengthl c to the
DLA model that immediately raises the next problem—ho
to vary l c , e.g., to enlarge it up to values comparable w
the channel widthW, to reproduce stable Saffman-Taylo
fingers?

The simplest solution consists in further increase ofK;
this is, however, unpromising since the dependencel c(K)
conjectured from our simulations is too weak,l c} logK, so
stable patterns in the channelW564a cannot be obtained
even atK5220. In order to find a more efficient way to
increase l c without substantial increase of computation
time ~which is directly proportional toK), let us discuss the
length scale origin in our theory. Indeed, the sum of nei
boring cluster densities in Eq.~5! represents the discrete La
placian operator,

r~x6a,y!1r~x,y6a!.@11~a2/4!¹2#r~x,y!. ~6!

By this relation,l c originates from the term (a2/4)1/25a/2,
the characteristic small scale of a square grid of spacina.
Hence, a valid substitutiona2/4↔d2 in Eq. ~6! transforms

FIG. 1. Mean-field DLA simulation on a square grid (x,y) of
spacinga51 inside a channel of widthW564a. Aggregation prob-
ability P(x,y) is set by Eq.~5!; discretenessK51, 24, 28, and 212

for plots ~a!, ~b!, ~c!, and ~d!, respectively. Cluster fieldr(x,y) is

represented by filled (r>r̄) or open (r, r̄) dots, divided by the

mean densityr̄.
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the microscale froma/2 to d; this replacement modifies th
aggregation probability formula from Eq.~5! to

P~x,y!5^r~x6a,y!1r~x,y6a!2jr~x,y!&2, ~7!

where the coefficientj and the scaled are related as

j542
a2

d2
⇔d5

a

A42j
. ~8!

The variation ofj in the range@0, . . . ,4) allows us to
enlarge the capillary lengthl c}d considerably, as illustrated
in Fig. 2. The patterns for 1<j<3 represent still unstable
viscous fingers with remarkable effects of tip splitting, si
branching, and wobbling, relevant to experimentally o

served shapes@3–5#. When one proceeds toj53 1
2 , the cap-

illary length increases enough to provide stable front pro
gation so the cluster field takes the shape of a sin
Saffman-Taylor finger. For detailed investigation of th
steady-state fingering, we have simulated the mean-fi

scheme inside a wider channel,W5100a, with j53 3
4 (d

52a); results are shown in Fig. 3. Starting from center
the channel in the beginning, first there is a region of init
transients. Then the lateral boundaries impose a tim
independent shape of the propagating finger—the clu
front moves through the channel at constant velocity wher
the transverse density profilerT(y) approaches a step func
tion as is required.1 In this steady-state regime, the relativ

1A liquid flow being modeled by the cluster fieldr naturally pre-
determines the following step-type conditions:r5const inside the
liquid region andr50 elsewhere.

FIG. 2. Mean-field DLA simulation on a square grid (x,y) of
spacinga51 inside a channel of widthW564a. Aggregation prob-
ability P(x,y) is set by Eq.~7! with j51, 2, 3, and 3.5 for plots~a!,
~b!, ~c!, and~d!, respectively; discreteness is fixed,K5212. Cluster

field r(x,y) is represented by filled (r>r̄) or open (r, r̄) dots,

divided by the mean densityr̄.
5-2



rs
-
en

n
cal

eld
ed
ring
r

-

ing

hat
:

ary,
in-
nd

it
i-
le,

rs.
able
-

ed
on;

-

r-

RAPID COMMUNICATIONS

BRIDGE FROM DIFFUSION-LIMITED AGGREGATION . . . PHYSICAL REVIEW E63 045305~R!
finger widthl measured at the mid-height of the transve
profile gives the valuel50.554, the result of the Saffman
Taylor problem extended for the case of a finite surface t
sion @22–24#,

FIG. 3. Mean-field DLA simulation on a square grid (x,y) of
spacinga51 inside a channel of widthW5100a. Aggregation

probability P(x,y) is set by Eq.~7! with j53 3
4 (d52a); discrete-

nessK5212. ~a! Three-dimensional~3D! representation of the clus
ter field r(x,y). ~b! Longitudinal profile ofr(x,y) along x axis,
rL(x)[r(x,0). ~c! Transverse profile ofr(x,y) averaged over 10
sections in the steady-state region,rT(y)[(1/10)(x5146

155 r(x,y). ~d!

Contour plot of the mean density~open circles!, r(x,y)5 r̄, com-
pared with the Saffman-Taylor solution~continuous curve! with l
50.554.

FIG. 4. Deterministic mean-field DLA model@Eqs. ~11! and
~12!# on a square grid (x,y) of spacinga51 inside a channel of
width W5100a; microscaled52a. ~a! 3D representation of the
cluster fieldr(x,y). ~b! Longitudinal profile ofr(x,y) alongx axis,
rL(x)[r(x,0). ~c! Transverse profile ofr(x,y) averaged over 10
sections in the steady-state region,rT(y)[(1/10)(x5146

155 r(x,y). ~d!

Contour plot of the mean density~open circles!, r(x,y)5 r̄, com-
pared with the Saffman-Taylor solution~continuous curve! with l
50.554.
04530
e
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l~ l c!5
1

2
10.114S l c

WD 4/3

, ~9!

with l c'57a. At the finger tip, the contour plot of the mea
cluster density precisely fits the Saffman-Taylor analyti
solution @6# (x0 is the tip position asy50)

x~y!2x05
W~12l!

2p
lnF1

2 S 11cos
2py

lW D G . ~10!

Corresponding deterministic equations of the mean-fi
DLA model can be derived directly from the approach us
to obtain the stochastic Monte Carlo scheme. Conside
the limit K→`, we proceed to continuum distributions fo
the clusterr(r ,t) and walkeru(r ,t) fields. Then the expres
sion for the cluster growth rate@Eq. ~3!# is rewritten as

]r~r ,t !

]t
5u~r ,t !^r~r ,t !1d2¹2r~r ,t !&2. ~11!

Here we substitute the Laplacian for the sum of neighbor
cluster densities@Eq. ~6!#; the microscaled is introduced as a
parameter of the theory. For the walker fieldu(r ,t), we re-
place the stochastic wandering by a deterministic law t
accounts for the mass conservation in a diffusive system

]r~r ,t !

]t
5¹2u~r ,t !, ~12!

where the growth process is considered as quasistation
]u(r ,t)/]t50. Remarkably, these mean-field relations co
cide closely with the ones originally proposed by Witten a
Sander@7#; we have only changed the exponent in Eq.~11!
from 1 to 2. The modification is nevertheless crucial since
provides the linear stability of the cluster front to infinites
mal perturbations. The cluster-walker interface is stab
from a theoretical point of view, for all values ofd; in prac-
tical simulations, however, Eq.~11! is extremely sensitive to
numerical noise coming from unavoidable residual erro
The noise amplitude needed to drive the system unst
decreases exponentially withd,2 so solutions of the deter

2Similar exponential sensitivity to numerical noise is observ
also for the original Saffman-Taylor equations with surface tensi
see, e.g., Refs.@25,26#.

FIG. 5. Mean-field DLA simulation on a square grid (x,y) of
spacinga51 in the open circular geometry~the radial configura-
tion!. Aggregation probability is calculated by the following fo
mula: P(x,y)5^r(x6a,y)1r(x,y6a)&11a with a50.5, 1, and
1.5 for plots~a!, ~b!, and~c!, respectively; discreteness is fixed,K
5216.
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ministic equations are characterized by a length scale
stable behaviorl c}d as are the patterns grown by the st
chastic algorithm.

To compare the deterministic and stochastic mean-fi
DLA models, we take the Saffman-Taylor configuration
the channel of widthW. On the lateral boundaries, we im
pose the Neuman condition for ther field and the Dirichlet
condition for theu field, r50 and]u/]y50 asuyu5W/2; at
infinity, we fix the flux of walkers]u/]x5w as x→` ~so-
lutions of the problem do not depend on the flux intens
w). The numerics of Eqs.~11! and ~12! is performed on a
square grid of spacinga inside a channel of widthW
5100a with d52a; results are presented in Fig. 4. The fi
gerlike cluster obtained demonstrates surprisingly the s
properties as the corresponding shape simulated by the
chastic scheme~Fig. 3!.

In discussion, we would like to justify the hypothesis th
was suggested at the beginning of our theory: ‘‘the inter
tion probabilityw(r ,e,t) is a linear function of the neighbor
ing cluster field’’ @Eq. ~2!#. Undoubtedly, any power-law de
pendence with an exponenta.0 satisfies the cutoff
C

. A
l.

a
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condition w→0 at r→0 as well as the linear connectio
proposed, so why do we consider the special casea51? To
clarify this question, we have simulated the relevant Mo
Carlo schemes in the open circular geometry~the radial con-
figuration! for the general case of the exponenta. As a re-
sult, all the valuesa.0 provide linearly stable fronts, bu
the underlying lattice drastically influences the overall clu
ter shape by the appearance of preferential gro
directions.3 From Fig. 5, on the square grid the patterns w
a,1 are oriented along thex andy axes, whereas the choic
of a.1 leads toxy diagonal orientation; the golden mea
a51 corresponds to circular-shaped clusters. However,
mean-field DLA theory should describe, in principle, the li
uid flow as isotropic for the background, the result achiev
only with the linear dependence in Eq.~2!. Is this natural?
We expect further theoretical clarifications of this topic.

3For a comprehensive analysis of reasons why cluster anisot
systematically appears in on-lattice DLA simulations, see R
@27–30#.
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