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Macroscopic dynamics in separable neural networks
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Parallel dynamics of neural networks with separable coupling is given starting from Coolen-Sherrington
theory. Away from saturation, it is shown that this parallel retrieve dynamics is equivalent to the sequential
dynamics for finite temperature. But the finite-size effects were found to be governed by a homogeneous
Markov process, not by a time-dependent Ornstein-Uhlenbeck process in sequential dynamics.
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Ising spin models for neural networks have made incre
ingly significant contributions to the understanding of t
information processing in biotic nervous systems followi
the pioneering work of Little@1#, Hopfield @2#, and Amit
et al. @3#. Moreover, starting from the theory of equilibrium
statistical mechanics of spin-glass-like systems, a surve
the properties of Hopfield model with symmetric synapse
presented by Amitet al. @3,4#, for far and near saturation. A
static analysis was found to be sufficient to investigate
networks with symmetric coupling. However, when o
deals with networks with asymmetric connections, which
ubiquitous in real neurons of living systems@5#, it is more
important to consider the dynamics rather than the equ
rium properties. Recently, Coolenet al.developed a series o
analytic sequential dynamical schemes for systems w
separable synapses@6–8#. It is clear that there exist two type
of deterministic dynamics, sequential and parallel, in
time evolution of states in neural systems. One may ask:~1!
What form does a macroscopic description of these syst
take for the synchronous case and are there differences
tween the two updating cases, synchronous and async
nous?~2! Additionally, how do the finite-size effects in th
parallel case compare with those in the sequential case
sented by Castellanoset al. @9#?

Since the systems studied include the asymmetric c
junctions, a stochastic analysis has been employed. The
of Markovian dynamics has the advantage of providing
simple description of the stochastic processes and inclu
their nonequilibrium properties@10#. For this reason, we tak
up Markov analysis and take Coolen-Sherrington~CS!
theory as the base in our paper.

As usual in an Ising spin model of neural networks co
sisting ofN neurons, the time-dependent state of thei th neu-
ron in time t is described bysi(t)P$1,21%. The network
has p sets of patterns j i

mP$1,21% (m51,2, . . . ,p;
i 51,2, . . . ,N), which are embedded for the purpose of a
sociative memory retrieval through the synaptic connecti
with the Hebb learning rule taken into account@11#. The
separable interaction matricesJ was taken as@6,12#

Ji j 5
1

N (
m,n51

P

j i
mAmnj j

n , ~1!
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where A is a p3p matrix, used to represent all kinds o
conjunctions. Then, the coupling synapses, both symme
and asymmetric, can be represented by Eq.~1!. Furthermore,
the time evolution of the synchronous dynamics in these s
tems can be defined as

si~ t1nt !5sgnS (
j 51

N

Ji j sj~ t !D , ~2!

where nt is the length of each time step. In Eq.~2!, the
threshold of every nerve cell was set as a constant, zero,
the updating function is a step function sgn(x) that has the
value 1 forx>0 and21 for x,0.

Now, the microscopic state probabilityPt(s) denotes the
probability of finding the entire system ofN neurons in a
compound states5(s1 ,s2 , . . . ,sN) at time t. It is well-
known that the continuous time version of Markov proce
can be described by

dPt~s!

dt
5 (

s8Þs
w~s8→s!Pt~s8!2 (

s8Þs
w~s→s8!Pt~s! ~3!

wherew(s8→s) represents the density of unit time for tran
fer probability~it is equal to transition rate!, which the states
of the system change froms8 to s, in the interval betweent
and t1nt. For a parallel evolutionary process, the usu
form of the transition rate can be written as by@12,13#

w~s8→s!5)
i 51

N
1

2
$11si tanh@bhi~s8!#%, ~4!

wherehi(s8)[( j Ji j sj8 is the local field of a stochastic align
ment of the spins andb[1/T denotes a measure of the in
verse magnitude of the amount of noise affecting the n
rons, or we may say thatb21 acts as the role of temperatur
in analogy to a thermodynamic spin system.

This paper focuses, in general, more on the problem
macroscopic features than the microscopic details of a
work. Toward this end, a set of linear order variablesVm is
introduced@6,14#, defined by

Vm~s!5
1

N (
j

j j
msj Pt~V!5(

s
Pt~s!d†V2V~s!‡

m51,2, . . . ,p, ~5!
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where V is pattern overlaps, a macroscopic description
the process, which measure the similarity between the s
of this system and each of theP stored patterns, andPt(V)
denotes the probability of findingV in time t. Using the
above definitions and the Eq.~3!, it is easy to get

dPt~V!

dt
5(

s
(
s8Þs

w~s8→s!Pt~s8!d„V2V~s!…

2(
s

(
s8Þs

w~s→s8!Pt~s!d„V2V~s!… ~6!

Obviously, the above master equation can be simplified
the equivalent expression

dPt~V!

dt
5(

s
(
s8

w~s→s8!Pt~s!$d@V2V~s8!#

2d@V2V~s!#%. ~7!

Following the CS theory@7#, one introduces any function
F(V) and its average iŝF(V)& t[*dVPt(V)F(V). Its
time differential is

^F~V!& t5(
s

(
s8

w~s→s8!Pt~s!@F~V~s8!!2F~V~s!!#

5(
s

(
s8

w~s→s8!Pt~s! (
n51

1

n! (
m151

n

(
m251

n

•••

3 (
mp51

n

@V~s8!2V~s!#m11m21•••1mp

3
]nF@V~s!#

]Vm1
]Vm2

•••]Vmp

~8!

where there exists( i 51
p m i5n. Inserting the unit operato

*dVd„V2V(s)… and then performing partial integration
yields

dPt~V!

dt
52(

s
(
s8

(
n51

1

n! (
m151

n

(
m251

n

•••

3 (
mp51

n

@V~s8!2V~s!#m11m21•••1mp

3
]nw~s→s8!Pt~s!d„V2V~s!…

]Vm1
]Vm2

•••]Vmp

~9!

Briefly, Eq. ~9! is in the form of a Kramers-Moyal-like ex
pansion for the master equation~7! for the macroscopic stat
~pattern overlaps! probability.

The properties of pattern overlaps are now investigated
considering only the lowest-order term in the expansion
Eq. ~9!. Firstly, Eq.~9! can be written as
04190
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dPt~V!

dt
52(

m

]

]Vm
H(s

(
s8

@V~s8!2V~s!#w~s→s8!

3Pt~s!d~V2V~s!!J 1 (
m>2

OS NPS 2

ND mD .

~10!

Then, in the limit of far away from saturation and the pr
supposition of finite temperature, Eq.~10! becomes

dPt~V!

dt
52(

k

]

]Vk
H(s F(

s8
@V~s8!2V~s!#w~s→s8!G

3Pt~s!d~V2V~s!!J ~11!

Next, the following simplification is introduced,n i

5 1
2 @12si tanh(bhi(s))# and n i85 1

2 @11si tanh(bhi(s))#, cor-
responding tow(si→2si) andw(si→si) respectively, in the
Eq. ~4!. According to the definitions of the order paramete
V in Eq. ~5! and the coupling matrixJ in Eq. ~1!, the sto-
chastic local fieldhi(s) of Eq. ~4! can be written as

hi~s!5
1

N (
j

Ji j sj5(
m,n

j i
mAmnS 1

N (
j

j j
nsj D 5j i•AV.

Then, the transition rate of a single neuron becomes

n i5
1

2
~12si tanh@bj i•AV# !

n i85
1

2
~11si tanh@bj i•AV# !

Therefore, for the terms of@•••# on the right side of Eq.
~11!, from the definitions in Eq.~4! and Eq.~5!, we get

(
s8

@V~s8!2V~s!#w~s→s8!

52
2

N S (
i 51

N j isi~n i /n i8!

11n i /n i8
D F)

j 51

N S 11
n j

n j8
D G S )

k

N

nk8D
522

1

N (
i 51

N

j isin i52V~s!1
1

N (
i

N

j i tanh~bj i•AV!

~12!

Substituting the above relation into Eq.~11! yields

d

dt
Pt~V!52(

m

]

]Vm
H Pt~V!S 2V~s!1

1

N

3(
i 51

N

j i tanh~bj i•AV!D J . ~13!
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Finally, on the basis of Markov process theory@15#, the de-
terministic Liouville form of Eq.~13! is

d

dt
Vm5 lim

N→`
S 1

N (
i 51

N

j i
mtanh~bj i•AV!2VmD ~14!

with the initial value can be set asV(0)5V0

5
1
N

( i 51
N j isi(0).

Comparing Eq.~14! with the deterministic time-evolution
equations of sequential dynamics@6,7#, beyond our expecta
tion, the results are completely identical. The reasons for
equivalent result in both cases are found in the prem
of the continuous Markov process and the omitting
higher-order terms in the Fokker-Planck-type approach
the Master equations Eq.~7!. From the Lindeberg continuou
condition for a Markov process@15#, the difference between
the probabilities of contiguous microscopic states g
to zero faster, as the time stepnt goes to zero. To the ex
tent that there only exist one or several updating spins
one time step for the parallel dynamics, it can be trea
approximately as the sequential dynamics. As a res
the macroscopic parallel dynamics is the same exp
sion of macroscopic order variables as sequential dynam
in the case of being far away from saturation and finite
temperature.

Moreover, considering the limit of zero temperature~or
b→`), the transition rate Eq.~4! become w(s8→s)

5) i 51
N 1

2 $11sisgn@hi(s8)#%. It is apparent that this equatio
is not suitable to figure the parallel process. But for the c
of sequential process, the transition rate is easy to be
scribed byw(si→2si)5 1

2 $12sisgn@hi(s)#%. Consequently,
the above solution for parallel dynamics, while being
away from saturation, cannot be extended to the limit oT
→0 or b→`.

Another interrelated important topic is finite-size effec
in networks@9,16#. In other words, the problem is how larg
is a small system. For example, in numerical simulation, i
necessary to consider a system size of up toN.33104 for
calculating certain properties of the Hopfield model@17#.
This puzzle of how to account for the finite size of the n
works and extract useful information about the asympto
N→`, limit from networks of only a few hundred to a few
thousand neurons was investigated by Forrest@18#, Kanter
and Sompolinsky@19#. Furthermore, in the asynchronou
evolutionary case, Castellanoset al. presented a more deta
analytical exploration@9#, that the effects are governed by
time-dependent Ornstein-Uhlenbeck process for cases
away from saturation. In the following context, such effe
are discussed for systems in a synchronous evolutionary
cumstance.

Applying the analogical technical route in Eq.~12!, it is
easy to obtain the quadric term in the right-hand side of
~9! as
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(
s8

@V~s8!2V~s!#2w~s→s8!

5
4

N2 H F(i 51

N
j isi2j i tanh@bhi~V!#

2 G2

1(
i 51

N j i
2$12tanh2@bhi~V!#%

4 J
5FV2

1

N (
i 51

N

j i tanh@bhi~V!#G2

1
1

N2 (
i 51

N

j i
2$12tanh2@bhi~V!#%. ~15!

It is now straightforward to obtain the following Fokke
Planck-type equation by substituting Eq.~15! into Eq. ~9!:

dPt~V!

dt
5(

k

]

]Vk
H Pt~V!FVk~s!

2
1

N (
i 51

N

j i tanh~bj i•AV!G J
1

1

2 (
k,l

]2

]Vk]V l
H Pt~V!F

2S V2
1

N (
i 51

N

j i tanh~bj i•AV!D 2

2
1

N2 (
i 51

N

j i
2@12tanh2~bj i•AV!#G J . ~16!

In there, the diffusion parameter is different from the one
sequential dynamics@9#. This means that the parallel dynam
ics investigated here differ from the sequential dynamics
fluctuations or the internal noise distribution.

Following the approach of Castellanoset al. @9,16#, the
new rescaled variableq and its probability distribution func-
tion P(q) are defined as

q~ t !5AN@V~ t !2V* ~ t !#,

Pt~q!5E dVPt~V!d@q2AN~V2V* !#, ~17!

whereV* is the deterministic solution of the Liouville equa
tion ~14!, and Eq.~17! means that the order vectorV can be
resolved into the sum of a deterministic termsV* and fluc-
tuating terms with the latter terms vanishing in the limit
N→`. Moreover, from the central limit theorem, the fluctu
ating term can be scaled asN21/2 @12,20#.

In the limit of N→` and with the help of Eq.~16!, the
following Fokker-Planck-type equation of rescaled variab
is deduced:
1-3
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dPt~q!

dt
52(

k

]

]qk
$Pt~q!Fk~q,t !%

1
1

2 (
k,l

]2

]qk]ql
$Pt~q!Dkl~q,t !%. ~18!

Here the drift factorFk(q,t) is given by

F~q,t !5b^j~j•Aq!@12tanh2~bj•AV* !#&j2q

1 lim
N→`

ANH 1

N (
i

j i tanh~bj i•AV* !2V* J ~19!

and^g(j)&j5 lim
N→`

(1/N) (kg(jk) with jk5(jk
1 , . . . ,jk

p).

The last term on the right-hand side of Eq.~19! depicts
finite-size corrections to the flow field of pattern overlap
Similarly, the diffusion factor can be given by
A

s.

04190
.

D~q,t !52^j2@12tanh2~bj•AV* !#&j

1H @b^j~j•Aq!@12tanh2~bj•AV* !#&j2q#

1 lim
N→`

ANF 1

N (
i

N

j i tanh~bj i•AV* !2V* G J 2

.

~20!

Obviously, unlike sequential dynamics, the finite-size
fects in parallel dynamics are governed by a homogene
Markov process. More intensive and detailed work, inclu
ing verification of the numerical simulation, is ongoing.

In short, the macroscopic dynamics of neural netwo
were found to yield similar results for two updating way
synchronous and asynchronous, for cases far from satura
of stored capacity and finite temperature. But differenc
found between two cases in the fluctuations of pattern ov
laps are given in Eq.~16!. Moreover, far from saturation, the
finite-size effects in parallel dynamics were described b
homogeneous Markov process, but not by the tim
dependent Ornstein-Uhlenbeck process in sequential dyn
ics.
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