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Macroscopic dynamics in separable neural networks

Chen Yong; Wang Yinghai, and Yang Kongging
Department of Physics, Lanzhou University, Lanzhou Gansu, 730000, China
(Received 18 September 2000; revised manuscript received 27 Novmber 2000; published 16 March 2001

Parallel dynamics of neural networks with separable coupling is given starting from Coolen-Sherrington
theory. Away from saturation, it is shown that this parallel retrieve dynamics is equivalent to the sequential
dynamics for finite temperature. But the finite-size effects were found to be governed by a homogeneous
Markov process, not by a time-dependent Ornstein-Uhlenbeck process in sequential dynamics.
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Ising spin models for neural networks have made increaswhere A is a pXp matrix, used to represent all kinds of
ingly significant contributions to the understanding of theconjunctions. Then, the coupling synapses, both symmetric
information processing in biotic nervous systems followingand asymmetric, can be represented by (Eg.Furthermore,
the pioneering work of Little[1], Hopfield [2], and Amit the time evolution of the synchronous dynamics in these sys-
et al. [3]. Moreover, starting from the theory of equilibrium tems can be defined as
statistical mechanics of spin-glass-like systems, a survey of
the properties of Hopfield model with symmetric synapses is N
presented by Amiet al.[3,4], for far and near saturation. A Si(HAU:Sg"( 2‘1 Jijsi(t))= 2
static analysis was found to be sufficient to investigate the :

networks with symmetric coupling. However, when onewhere At is the length of each time step. In E€®), the
deals with networks with asymmetric connections, which argnreshold of every nerve cell was set as a constant, zero, and
ubiquitous in real neurons of living systerfss], it is more the ypdating function is a step function sgpthat has the
important to consider the dynamics rather than the equilibygye 1 forx=0 and—1 for x<0.

rium properties. Recently, Coolet al. developed a series of — nNow. the microscopic state probabili(s) denotes the
analytic sequential dynamical schemes for systems merobability of finding the entire system & neurons in a
separable synapsgs-8]. It is clear that there exist two types compound states=(s;,S,, . ..,Sy) at timet. It is well-

of deterministic dynamics, sequential and parallel, in theqown that the continuous time version of Markov process
time evolution of states in neural systems. One may @8K: -5 pe described by

What form does a macroscopic description of these systems

take for the synchronous case and are there differences be- dp,(s)
tween the two updating cases, synchronous and asynchro- —g—= 2 W(S'—9)P(s) = 2 W(s—S)Py(s) (3)
nous?(2) Additionally, how do the finite-size effects in the s'#s s'#s

parallel case compare with those in the sequential case prﬁ/‘herew(s’es) represents the density of unit time for trans-

sented by Castellana al.[9]? f S " )
) S . er probability (it is equal to transition rajewhich the states
Since the systems studied include the asymmetric con: b v d e

. . ; : of the system change frosi to s, in the interval betweeh
junctions, a stochastic analysis has been employed. The U3fd t+ At. For a parallel evolutionary process, the usual

O.f Markovian_ dynamics has the _advantage of proyiding_aform of the transition rate can be written as [@2,13
simple description of the stochastic processes and including '

their nonequilibrium propertigdl 0]. For this reason, we take N g
up Markov analys!s and take Coolen-Sherringté@S) w(s’—>s)=H §{1+Sitant[,8hi(s’)]}, (4)
theory as the base in our paper. i=1

As usual in an Ising spin model of neural networks con-
sisting ofN neurons, the time-dependent state ofittheneu- ~ Whereh;(s')=X,J;;s; is the local field of a stochastic align-
ron in timet is described bysi(t) e {1,—1}. The network ~ment of the spins an@=1/T denotes a measure of the in-
has p sets of patternsé“e{1,-1} (u=1,2,...p; Verse magnitude of the amount of noise affecting the neu-
i=1,2, ... N), which are embedded for the purpose of as-'ONS, Of we may say tha * acts as the role of temperature
sociative memory retrieval through the synaptic connectiond @nalogy to & thermodynamic spin system.
with the Hebb learning rule taken into accoUntl]. The This paper focuses, in general, more on the problem of

separable interaction matricdsvas taken a§6,12] macroscopic features than the microscopic details of a net-
work. Toward this end, a set of linear order varialfgg is

introduced[6,14], defined by

P

1
Ji=w X &AL, (1)
N 52 uvs] QM(S):%Ej &l's; Pt(Q)zEs P.(s) [ Q- Q(s)]

*Electronic address: ychen@Izu.edu.cn u=12,...p, (5)
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where Q) is pattern overlaps, a macroscopic description of dP,(Q)

the process, which measure the similarity between the state— g = —E 70 [2 E [Q(s) —Q(s)]w(s—5)

of this system and each of thestored patterns, ané,(€2)

denotes the probability of findin€2 in time t. Using the 2\ m

above definitions and the E(B), it is easy to get X Py(s) 5(9—(2(5))] + 22 O( NP(N) )
m=

d Pt(ﬂ) (10)

=2 2 WS —9P(s) o Q- 0(9)
s#s Then, in the limit of far away from saturation and the pre-

, supposition of finite temperature, EG.0) becomes
—2 2 W(s=S)P(99(Q-Q(9)  (6)
S #S dPt(Q)

d
T @[2 {E [n<s'>—n<s>]w<%s'>}

Obviously, the above master equation can be simplified to
the equivalent expression
th(s)é(Q—Q(s))] (11
dP (Q)
T 2 w(s=¢ )P0~ 0(s)]

Next, the following simplification is introduced/\;
-5 Q—-Q(s)]}. (7) =3[1-sitanh@nh(s))] and A/ =3[ 1+ stanh@hi(s))], cor-
responding tov(s;— —s;) andw(s,—>s) respectively, in the
Following the CS theonf7], one introduces any function Eq. (4). According to the definitions of the order parameters

q)(ﬂ) and its average |$(b(ﬂ)>t5fdﬂpt(ﬂ)q)(ﬂ) Its Q in Eq. (5) and the coupling matri¥ in Eq. (1), the sto-
time differential is chastic local fieldch;(s) of Eqg. (4) can be written as

(@(@)=3 3 w(s—s)P(I[BAS)) B3] ni(s)= E Ysi=2 & “( )y gjvsj)zg"Aﬂ'

Then, the transition rate of a single neuron becomes
=2 E W(s—8')Py(s) E E E
u1=1 pp=1 1
Aizi(l_sitanr[ﬁgi'AQ])
<3 [0 Qe
Mp:]-

A=

I\)II—‘

MD[Q(9)] (1+sitant B¢;- AQ])

8
00,00, 00,

Therefore, for the terms df-- -] on the right side of Eq.

. . (11), from the definitions in Eq(4) and Eq.(5), we get
where there exist&P_,u;=n. Inserting the unit operator

JdQs(Q—Q(9)) and then performing partial integrations

yields > [Q(s)—Q(9)]w(s—5)
s/
dPt(Q) I o < 2 (& asaan\[ "
SIDOIRED T Y -2 Al
O Y N Z:l 1+A A H AJ- 1_k[ “
. 1 Y 1N
X 2, [Q(s) - Q(g]rtrat T =-2 2 &L= -9+ X Gtanh(BE-AQ)
Mp= = i
I"W(s—S")Py(s) 5(Q—Q(9)) © (12
aQ, 00, -0,
! 2 P Substituting the above relation into E@.1) yields
Briefly, Eq. (9) is in the form of a Kramers-Moyal-like ex- d 1
pansion for the master equati¢n for the macroscopic state —P,(Q)=—> [ ()| —Q(9)+ —
(pattern overlapsprobability. dt v 00y N
The properties of pattern overlaps are now investigated by
considering only the lowest-order term in the expansion of % tanh BE - AQ 13
Eq. (9). Firstly, Eqg.(9) can be written as 2 {itanh(B¢; ) 13

041901-2



MACROSCOPIC DYNAMICS IN SEPARABLE NEURAL NETWORKS PHYSICAL REVIEW E3 041901

Finally, on the basis of Markov process the¢iyp], the de-

terministic Liouville form of Eq.(13) is 2 [Q(s) — () °W(s—S')
S
N 2
4 §isi— &itan ghi(Q)]
d (1 =52 2
SQ,=lim | = > ganh(BE-AQ)-Q, | (14 N“ 1=
dt # N o0 N <1 M N
{1 tank[ Bhi(Q) ]}
+2
=1 4
with the initial value can be set asQ(0)=€Q, N )
1 1
= EiLaéisi(0). :[“‘NE fitanrwhim)]}
Comparing Eq(14) with the deterministic time-evolution LN
equations of sequential dynami 7], beyond our expecta- il 201 _ tant?l 8h (O 1
tion, the results are completely identical. The reasons for this N2 Z’l &1~ tanftl Ahi(@)]}. (19

equivalent result in both cases are found in the premises

Of the continuous Markov process and the omitting thejt is now straightforward to obtain the following Fokker-
higher-order terms in the Fokker-Planck-type approach telanck-type equation by substituting E45) into Eg. (9):
the Master equations E(). From the Lindeberg continuous

condition for a Markov procedd 5], the difference between dP,(Q) 9

the probabilities of contiguous microscopic states goes at =E (?T{ Pt(ﬂ){ﬂk(s)
to zero faster, as the time stépt goes to zero. To the ex- k k

tent that there only exist one or several updating spins in

one time step for the parallel dynamics, it can be treated -
approximately as the sequential dynamics. As a result,

Z|l -

N
El &tanh( B¢, -AmH

the macroscopic parallel dynamics is the same expres- 1 2
sion of macroscopic order variables as sequential dynamics > ORI Pt(Q)[
in the case of being far away from saturation and finite of 2 4c Il

temperature.

Moreover, considering the limit of zero temperatyoe _
B—>), the transition rate Eq.(4) become w(s' —¢)
=111, 3{1+s;sgrfh;(s')]}. It is apparent that this equation 1 N
is not suitable to figure the parallel process. But for the case -— 2 giz[l—tanr?(,fg’gi~AQ)]
of sequential process, the transition rate is easy to be de- N%i=1
scribed byw(s;— —s;) =3{1—s;sgri h;(s)]}. Consequently,
the above solution for parallel dynamics, while being farln there,' the diffusjon pargmeter is different from the one in
away from saturation, cannot be extended to the limif of sequential dynamid®]. This means that the parallel dynam-
—0 or B—cs. ics |nve_st|gated he_re differ frqm th_e s_quennal dynamics of

Another interrelated important topic is finite-size effectsﬂucma’['c’hS or the internal noise distribution.
in networks[9,16]. In other words, the problem is how large Following the 'approach' of Castel.lgneﬂs'al.. [9’.16]' the
is a small system. For example, in numerical simulation, it ig1ew rescaled varllable and its probability distribution func-
necessary to consider a system size of uplte3x 10* for tion P(q) are defined as
calculating certain properties of the Hopfield mod&r]. N
This puzzle of how to account for the finite size of the net- q(t)= \/N[Q(t)_ﬂ V1,
works and extract useful information about the asymptotic,
N— oo, limit from networks of only a few hundred to a few
thousand neurons was investigated by Forf&8], Kanter
and Sompolinsky[19]. Furthermore, in the asynchronous
evolutionary case, Castellanesal. presented a more detail whereQ* is the deterministic solution of the Liouville equa-
analytical exploratiori9], that the effects are governed by a tion (14), and Eq.(17) means that the order vect® can be
time-dependent Ornstein-Uhlenbeck process for cases faesolved into the sum of a deterministic ter8 and fluc-
away from saturation. In the following context, such effectstuating terms with the latter terms vanishing in the limit of
are discussed for systems in a synchronous evolutionary ciN—o. Moreover, from the central limit theorem, the fluctu-

N 2
o-5 2 gitanr(ﬁfi-Am)

—

Z| -

(16)

Pt(Q)=f dOP(Q)8[q— N(Q—-0*)], 17

cumstance. ating term can be scaled &5 /2 [12,20.

Applying the analogical technical route in E@.2), it is In the limit of N— and with the help of Eq(16), the
easy to obtain the quadric term in the right-hand side of Eqfollowing Fokker-Planck-type equation of rescaled variables
(9) as is deduced:
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dPt(Q) —_E

{Pt(q)Fk(q )}

1 92
53

2 11 9099,

{P(@)Dy(a,)}. (18

Here the drift facto~(q,t) is given by

F(q,t)=B(£(£-Aq)[1—tanif(BE-AQ*)]) —
+ lim YN %

N—

> &tanhBg-AQ*)— Q% (19

and(g(é))¢=1im _(1/N) 2, g(&) with &= (&, - . . &f).
The last term on the right-hand side of E{.9) depicts
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D(q,t)=—(&[1—tantf(BE-AQ*)]),

+ [ [B(&(¢-AQ)[1—tanif(BE-AQ*)])—q]

+I|m\/—

N—ox

2
2 &tanh( B - AQ* ) — n” :

(20

Obviously, unlike sequential dynamics, the finite-size ef-
fects in parallel dynamics are governed by a homogeneous
Markov process. More intensive and detailed work, includ-
ing verification of the numerical simulation, is ongoing.

In short, the macroscopic dynamics of neural networks
were found to yield similar results for two updating ways,
synchronous and asynchronous, for cases far from saturation
of stored capacity and finite temperature. But differences
found between two cases in the fluctuations of pattern over-
laps are given in Eq.16). Moreover, far from saturation, the
finite-size effects in parallel dynamics were described by a
homogeneous Markov process, but not by the time-

finite-size corrections to the flow field of pattern overlaps. dependent Ornstein-Uhlenbeck process in sequential dynam-

Similarly, the diffusion factor can be given by

ics.
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