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Realistic calculation of the low- and high-density liquid phase separation in a charged
colloidal dispersion
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A realistic statistical-mechanics model is applied to describe the repulsive interaction between charged
colloids. The latter, in combination with the long-range van der Waals attraction simulated under excess salt
environment, gives rise to a total intercolloidal particle potential showing a clear second potential minimum.
Differing from the usual Derjaguin-Landau-Verwey-Overbeek~DLVO! model, the present model is valid at
any finite concentration of colloids and is thus an appropriate model for investigating the low- and high-density
liquid phase transition. Employing this two-body colloid-colloid potential and in conjunction with the Weeks-
Chandler-Andersen@J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.54, 5237~1971!# thermo-
dynamic perturbation theory, we derive analytical expressions for the pressure, chemical potential, and related
thermodynamic functions. These thermodynamic quantities were used to calculate the phase diagrams of
charged colloidal dispersions in terms of the critical parameters: temperature, volume fraction, and electrolyte
concentration parameterkD . Compared with the DLVO model, we find the areas enclosed within the spinodal
decomposition and also the liquid-liquid coexistence curves broader in the present model for an excess salt
conditionk5kDs0&200,s0 being the macroion diameter, in addition to exhibiting a shift in the critical point
kc to lower values; fork.300, the disparities between the two models reduce. The same thermodynamic
perturbation theory has been employed to study also the weak reversible coagulation whose physical origin is
attributed to the presence of the second potential minimum. We examine various colloidal parameters that
affect the structure of the latter and deduce from our analysis the conditions of colloidal stability. In compari-
son with the measured flocculation data for a binary mixture of polystyrene lattices and water, we find that our
calculated results are generally reasonable, thus lending great credence to the presently used model.

DOI: 10.1103/PhysRevE.63.041511 PACS number~s!: 64.70.Ja, 67.40.Kh, 61.43.Hv, 82.70.Dd
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I. INTRODUCTION

A charged colloidal suspension comprises a dispers
host, which consists of macroions in thermal equilibriu
with their dissociated counterions and both species are
mersed in a dispersive medium such as water. For hig
charged macroions, the Coulomb interactions between
loidal particles are often complicated by the opposit
charged counterions, since the number density of counter
is generally very large. The complexity of these multico
ponent species will be further increased by the addition
salts~coions! particularly for polyvalent electrolytes. Fortu
nately, for most charged colloidal dispersions, the macro
size, characterized by the hard-sphere diameters0 , is much
larger than that of the surrounding small ions~counterions
and salt! and this property of size disparity has greatly si
plified theoretical analysis. In fact in the extreme limit
pointlike small ions and within the context of the me
spherical approximation~MSA!, an exact repulsive inter
macroion Yukawa potential,f(x)5L exp@2k(x21)#/x, k
5kDs0 being the reduced Debye Hu¨ckel wave number, has
recently been derived@1,2#. There are two main characteris
tics of this f(x) that differentiate it from the widely use
DLVO model @3#. The first characteristic is the derived co
pling constantL, which depends on the macroion volum
fractionh and, as a result, the model is appropriate for stu
ing colloidal dispersions ranging from a lower-density ‘‘liq
uid’’ phase ~an analog of a gas! to a higher-density liquid
1063-651X/2001/63~4!/041511~12!/$20.00 63 0415
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phase. This feature is in marked contrast to the DLVO p
tential, where theL is h independent and, strictly speakin
the DLVO model should be useful only for a dilute colloid
solution. The second characteristic is on the spatial corr
tions and the electrostatic response of the small ions
charged macroions. Both effects are approximately but r
sonably incorporated through the coupling coefficientL and
the screening parameterk. This effective one-componen
macrofluid modelf(x) has been proposed independen
earlier by Belloni@1# and a year later by Khan, Morton, an
Ronis @2#. The two models were compared favorably@4#
with accurate numerical solutions of the hypernetted-ch
method for the structures of charged colloids. The mode
Belloni, in particular, has been successfully applied to int
pret the micelle static structure factor@5# and to predict the
liquid-glass transition phase diagram@6#. Remarkably good
agreement with measured data has prompted us to proc
in this paper, to a more quantitative evaluation of the mod
The purpose of this paper is to apply the model to study
problems of phase equilibria, focusing in particular on t
widely discussed ‘‘second minimum’’ of the total interactio
potential V(r ) that leads to the liquid-liquid phase separ
tion.

The existence of a second minimum in the intercolloid
particle potentialV(r ) has been an issue of continual inte
est. In their classic monograph, Verwey and Overbeek@3#
discussed the phenomenon of coagulation drawing atten
to the London-van der Waals attractive interaction as
possible cause for the occurrence of a second minimum
V(r ) that gives rise to the weak reversible coagulation. Va
©2001 The American Physical Society11-1
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ous controlled parameters pertaining to a charged collo
dispersion such as thes0 , k, Hamaker constantA, surface
potentialC, etc., have been measured and varied, and th
were analyzed using the simplified model of DLVO theory
show the change inV(r ), in particular the magnitudeV(r m)
at the second minimum positionr m and the accompanie
potential barrier height lying between the primary minimu
and r m . Since this pioneering work, experimental efforts
understanding the second minimum of spherical charged
loids as a possible mechanism for the weak reversible co
lation have been carried out independently by Schenkel
Kitchener@7#, Long, Osmond, and Vincent@8#, Kotera, Fu-
rusawa, and Kubo@9#, and more recently by Gotohet al.
@10#. Theoretically, Grimson@11# proposed a simple mean
field theory to study the phase separation of a wea
charged colloidal dispersion. His results have been critici
by Victor and Hansen@12# to be inadequate for quantitativ
studies of phase equilibria. Victor and Hansen subseque
advanced a first-order thermodynamic perturbation the
and showed from calculated phase diagrams the possib
of predicting the weak reversible coagulation in terms of
V(r m). Their work has been extended by Kaldasch, Lav
and Stein@13# to second-order correction and included stu
ies of the liquid-solid coexistence phases. Since the work
Victor and Hansen and of Kaldasch, Laven, and Stein, th
appears to be no further theoretical work in the literature@14#
devoted to studying the mechanism of the second minim
on the phase separation at the same level of quantita
analysis. It is therefore of great theoretical interest to rev
this problem given that a many-body statistical-mechan
means of calculating the charged intercolloidal particle int
action has emerged and the constructedV(r ) interprets ac-
curately and reliably@4,5# the charge-stabilized colloida
structures.

Our motivation for this paper is twofold. First, we sha
apply the Belloni model to the study of phase separati
Differing from the DLVO model, the Belloni model include
somewhat quantitatively the statistical-mechanics propert
the intercolloidal particle potential. The latter is manifest
by its coupling strength depending explicitly onh whose
limit h→0 is the DLVO model. Second, we shall, wherev
possible, compare the calculated results with experiment
reveal the potential usefulness of the present method. H
fully this will stimulate further experimental endeavors. T
paper is therefore organized as follows. In the next sect
we give a brief account of the repulsive potential betwe
two colloidal particles stressing the statistical-mechanics
ture. Then, we add to this repulsive force the London-van
Waals attractive potential. The total interaction potential
conjunction with the Weeks-Chandler-Andersen~WCA,
@15#! thermodynamic perturbation theory is then employed
construct an equilibrium colloidal Helmholtz free energ
Our numerical results are presented in Sec. III for~a! the
spinodal decomposition,~b! the liquid-liquid phase separa
tion, and~c! the phase diagrams that can be used to un
stand the colloidal stability. We deduce from~c! our calcu-
lated critical colloidal parameters and they are compa
with early experiments of Kotera, Furusawa, and Kubo@9#
whose colloidal conditions closely mimic the ones discus
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here. It appears that considerable improvement can
achieved in bridging theory and experiment if further refin
ment of the present theory is made. Finally, we summariz
Sec. IV all of our calculated results.

II. THEORY

In this section, starting with the theory of integral equ
tion, we construct an effective interparticle potential for tw
charged colloidal particles. Then, following closely the wo
of Victor and Hansen@12#, we apply the WCA perturbation
theory @15# to calculate the Helmholtz free energy of
charged colloidal dispersion.

A. Total potential energy

Let us begin with the multicomponent Ornstein-Zerni
~OZ! equations given by

hi j ~r !5ci j ~r !1(
l 50

r lE hil ~ ur2r 8u!cl j ~r 8! dr 8, ~1!

where r l is the number density and speciesi, j, and l are
defined asi , j ,l 50 for macroions,i , j ,l 51 for counterions,
and i , j ,l 52,3, . . . for other small ions such as an adde
electrolyte. In Eq.~1! ci j (r ) is the direct correlation function
and hi j (r )5gi j (r )21 is the total correlation function writ-
ten in terms of the pair-correlation functiongi j (r ). It was
shown by Adelman@16# that the small ions~counterions and
coions! in Eq. ~1! can be neatly integrated to yield a on
component OZ equation for the macroions whose effec
direct correlation functionc00

eff(r) satisfies

h00~r !5c00
eff~r !1r0E h00~ ur2r 8u!c00

eff~r 8! dr 8. ~2!

Denoting the Fourier transform ofc00
eff(r) by ĉ00

eff(q), it can be
shown further@1,4# that

ĉ00
eff~q!5 ĉ00

s ~q!1(
i 51

@ ĉ0i
s ~q!#22

@a01( i 51a i ĉ0i
s ~q!#2

q21kD
2 ,

~3!

where the ĉi j
s (q) is the short-range part ofĉi j (q),

kD
2151/A( i 51a i

2 is the Debye Hu¨ckel screening length, and
a i

254pLBr iZi
2, LB andZi being the Bjerrum length and th

charge of a macroion or a small ion, respectively. By treat
the small ions as pointlike particles, an analytical formula
the inverse Fourier transform of Eq.~3! can be obtained@1,4#
leading to

c00
eff~r !52Z0

2LBX2 exp2kDs0

exp@2kD~r 2s0!#

r
, r .s0 ,

~4!

where the coupling parameter

X5coshS k

2D1UFk2 coshS k

2D2sinhS k

2D G , ~5!
1-2
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REALISTIC CALCULATION OF THE LOW- AND HIGH- . . . PHYSICAL REVIEW E 63 041511
in which are buried the correlations between macroions
small ions, depends not only onk but also onh5pr0s0

3/6
through U5(8z/k322n/k) in which z53h/(12h), n
5(Gs12z)/@2(11z)1Gs#, and

~Gs
22k2!@2~11z!1Gs#2596h~Z0

2/s0!LB . ~6!

Given Z0
2/s0 , k, andh, Eq. ~6! has to be solved forGs and

henceX in Eq. ~5!. It is easy to show thatX→exp(k/2)/(1
1k/2) in the limit of r0→0, a linearized DLVO result. This
implies that the present model is appropriate for the desc
tion of a suspension of charged colloids at any finite conc
tration.

We turn now to a discussion of the result of Eq.~4!. First
of all, we recall from the literature@17# that the pair distri-
bution functiong(r ) can be defined quite generally in term
of the two-body colloid-colloid potential of mean forcef(r )
by the relation

g~r !5exp@2bf~r !#, ~7!

whereb51/(kBT) is the inverse temperature. If we compa
Eq. ~7! with the hypernetted-chain closure~known to be
highly accurate for Coulomb liquids! which is given exactly
by

g~r !5exp@h~r !2c~r !2bv~r !#, ~8!

we deduce by appealing to Eq.~2! that bf(r )52r0*h(ur
2r 8u)c(r 8) dr 81bv(r ); the v(r ) is therefore adirect two-
particle potential~such as the low-density DLVO potentia!
and thef(r ) is thus to be interpreted as a potential of me
force for any two particles separated a distancer in thermal
equilibrium with all the other particles that play the role
contributing indirectly to f(r ). In the widely used DLVO
model in whichr0→0 the one-component OZ equation
Eq. ~2!, will be described quite well byhDLVO(r )
'cDLVO(r ). SincehDLVO(r )5gDLVO(r )21, and that in the
limit r0→0, gDLVO(r )'exp@2bv(r)#. Linearizing the latter
function yields hDLVO(r )'exp@2bv(r)#21'2bv(r)
5cDLVO(r ), which is none but the MSA closure. In view o
this, it is natural to write Eq.~4! as c00

eff(r)52bf(r) and
interpretf(r ) to be an effective two-body potential of mea
force, for theX in f(r ) depends onh and hence includes
indirect contributions, albeit approximately~in the sense of
utilizing the MSA closure in calculating the various correl
tions between the macroparticles and small ions!. We thus
see at this point that by settingc00

eff(r)52bf(r) in Eq. ~4!, we
are in fact establishing a more realistic repulsive poten
f(r ) for charged macroparticles. The total potential ene
of interaction between two charged colloidal particles is th

V~r !5f~r !1vvdw~r !, ~9!

where, expressed in reduced distancex5r /s0 ,

vvdw~x!52
AH~x!

12
~10!

is the van der Waals attraction@3# with
04151
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H~x!5
1

x221
1

1

x2 12 lnS 12
1

x2D . ~11!

andA is the Hamaker constant. Note that the use off(r ) as
our repulsive potential for the charged colloidal dispersion
physically more realistic than the DLVO counterpart sin
the coupling constantX is h dependent and is appropriate fo
studying phase equilibrium properties such as the~low-
density! liquid-~high-density! liquid phase separation.

B. Week-Chandler-Andersen perturbation theory

For convenience in the following discussion, we rewr
Eq. ~9! in the form

V~x!5LS exp@2k~x21!#

x
2

AH~x!

12L D5Lw~x!, ~12!

where L5Z0
2LBX2e2k in the present model. To apply th

WCA perturbation theory, we first splitV(r ) into two parts,
a repulsivev r and an attractiveva ; the former constitutes a
reference system, while the latter is treated as a perturba
For the charged colloidal dispersion, the separation is d
as follows. In the first place, we note that the structure
V(x) for an excess salt constantk@1 changes asymptoti
cally from a negativeV(x) to a ~second! minimum V(xM),
continues further to a positive maximum barrierV(xm), and
then crosses over to an infinitely deep~first! minimum. Fig-
ure 1 displays schematically a typical structure ofV(x). The

FIG. 1. Schematic diagram for a suspension of charged collo
in the presence of an excess electrolyte. The positions of extr
are thexM at the potential barrier and thexm at the second mini-
mum.
1-3
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extremaV(xm) andV(xM) can be easily determined by th
conditionV8(x)50, which leads

ey2gy2S 11
y11

k D S 11
y

k D S 11
y

2k D 2

50, ~13!

wherey5k(x21) andg524L/(Ak). The existence of the
extrema has two immediate consequences, which have
investigated experimentally. At the second minimum po
tion xm , it was observed by Kotera, Furusawa, and Kubo@9#
and others@7,8# that a charged colloidal solution would un
dergo a reversible coagulation. The characteristic depth
the potential well ranges from a fewkBT to approximately
15 kBT. For such a phenomenon to be realized, the poten
barrierV(xM) at thexM must also be high in order to preve
the energetic colloids falling into the primary minimum
which place an irreversible coagulation occurs. Experime
works on polystyrene charged latices in water@7,9# indicate
that an order ofV(xM)'15kBT would be sufficient for ob-
serving less unambiguously the weak reversible coagulat
In view of this global structure ofV(x), it is natural to write

V~x!5v r~x!1va~x! ~14!

and choose the repulsion

v r~x!5`, x,xM ,

5V~x!2V~xm!, xM,x,xm ,

50, x.xm , ~15!

as the reference system and treat the attraction

va~x!50, x,xm ,

5V~x!, x.xm , ~16!

as a perturbation. Now, in the WCA theory, one can ta
advantage of the strong Coulomb repulsion for charged
loidal particles and make reasonable approximation on
reference part. As displayed schematically in Fig. 1, theV(x)
in the rangexM,x,xm is rather steep and this prompts us
consider replacing thev r by

vS~x!5`, x,S,

50, x.S, ~17!

which is a fluid of equivalent hard spheres characterized b
sizes5Ss0 , S.1 being a dimensionless constant meas
ing the ‘‘softness’’ of the macroparticles. This approxim
tion on v r , in turn, will lead us to rewrite Eq.~16! as

va~x!50, x,S,

5V~xm!, S,x,xm ,

5V~x!, x.xm . ~18!

For a given densityr0 , the volume fractionsh5ps3r0/6
and h05ps0

3r0/6 are accordingly related byh5S3h0 .
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Now, it was shown in Ref.@18# that the reference free energ
can be calculated by carrying out a functional Taylor ser
expansion inD5exp@2bvr(x)#2exp@2bvS(x)#. Keeping to
first order inD, theS can be determined by the equation:

E
0

`

B~x!x2 dx50, ~19!

where the ‘‘blip function’’

B~x!5Yh~x!D. ~20!

The function Yh(x) in Eq. ~20! is Yh(x)
5exp@bvS(x)#gh(x), gh(x) being the pair-correlation function
evaluated ath. Note thatB(x) is nonzero only in the range
xM,x,xm and in conjunction with the fact that both th
Yh(x) and its derivative are continuous at the contact po
x5S, we may perform, as in Verlet and Weis@18#, a sys-
tematic expansion ofx2Yh(x) aroundx5S, i.e., in powers
of (x2S). The leading term in this expansion leads to t
density-independent Barker-Henderson diameterS:

S5xM1E
xM

xm

$12exp@2bv r~x!#%dx. ~21!

This expression forS can be written@18# to vary asS'1
1s/k1O(1/k2) in which s is a numeric constant. Although
we shall be interested in cases ofk@1, we prefer to retain
the exact form forS. Having determinedS, the problem of
modeling v r by equivalent hard spheres has, so to spe
been solved, since an analytical solution for the Perc
Yevick hard-sphere Helmholtz free energyf hs is available.
Using the compressibility equation of state, one obtains

b f hs5
3h~22h!

2~12h!2 1 lnS h

12h D1 ln S lT
3

V D 21, ~22!

wherelT5h/A2pmkBT is the de Broglie wavelength an
V5ps3/6 is the effective hard-sphere volume. We shou
emphasize that, although we have employed the compr
ibility equation of state to derivef hs, an equally permissible
f hs resorting to the energy equation route is also possible,
the Percus-Yevick closure yields just an approximategh(x).

We come now to the calculation of the first-order corre
tion f 1 added tof hs. In terms of the perturbationva(r ), f 1
may be written in the high-temperature approximation as

f 1512h0E
0

`

dx gh~x!va~x!x2. ~23!

This so-called high-temperature approximation, whi
amounts to ignoring the spatial correlation of the attract
perturbation, has been examined by Hansenet al. @19# to be
accurate enough for colloidal liquids. Following Victor an
Hansen@12#, Eqs. ~18! and ~23! can be analytically calcu-
lated to read

b f 152
TAh0~11h/2!@j2a~h!#

2T~12h!2 , ~24!
1-4
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where,TA5A/kB , and

j5 lnS k

ym
D2gkw~xm!~ym2S!2g exp~2ym! ~25!

in which

a~h!5(
i 50

2

d ih
i . ~26!

Here S is the parameter defined in Eq.~21! and d i are nu-
merical constants andym5k(xm21). Note that, differing
from the work of Victor and Hansen@12#, thej in the present
model depends onh through theX in g.

We are now equipped to calculate the pressure and ch
cal potential that both are needed for locating the criti
points and hence the phase diagrams. Utilizing the He
holtz free energyf 5 f hs1 f 1

@20#, we obtain for the pressure

bPV5h0
2 ]~b f !

]h0

5h0

11h1h2

~12h!3 2
TA

T

h0
2

2

1

~12h!3
loc
r

n.

ic

es
y
f
t
n
am
O

in
b
id

to
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3H ~112h!@j2a~h!#1h~12h!~11h/2!

3S dj~h!

dh
2

da~h!

dh D J ~27!

from which the chemical potentialm can be calculated
straightforwardly bybm5b( f hs1 f 1)1bPV/h0 . Further-
more, the isothermal compressibilityxT can be obtained by
differentiating Eq.~27! yielding

~r0kBTxT!215
]~bPV!

]h0

5
~112h!2

~12h!4 2
TAh0

T H 117h/2

~12h!4 @j2a~h!#

1
h~213h/22h2/2!

~12h!3 S dj~h!

dh
2

da~h!

dh D
1

h2~11h/2!

2~12h!2 S d2j~h!

dh2 2
d2a~h!

dh2 D J , ~28!

which on further differentiation leads to
]

]h0
@~r0kBTxT!21#5

4h

h0

~112h!~h12!

~12h!5 2
TA

T H 1110h17h2

~12h!5 @j2a~h!#1
h4/222h3110h215h

~12h!4 S dj~h!

dh
2

da~h!

dh D
1

h422h327h2/2

~12h!3 S d2j~h!

dh2 2
d2a~h!

dh2 D1Fh3~11h/2!

2~12h!2 G S d3j~h!

dh3 2
d3a~h!

dh3 D J . ~29!
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We are now ready to calculate the critical points and the
of points showing the phase separation. The calculated
sults and their implication will be given in the next sectio

III. NUMERICAL RESULTS AND DISCUSSION

This section is devoted to a presentation of our numer
results for phase equilibria followed by an analysis and
discussion of the implication of these data. For concreten
we confine our calculations to cases meeting as closel
possible to experimental conditions~such as the works o
Kotera, Furusawa, and Kubo@9#, Watillon and Joseph-Peti
@21#, Gotohet al. @10# etc.! and employing, if necessary, i
our calculations their measured or proposed colloidal par
eters as reasonable input data in our theoretical analysis.
theoretical results, therefore, are experimentally appeal
We believe that our theoretical analysis below should
very useful for a general understanding of the liquid-liqu
phase separation in charged colloidal dispersions.

A. Spinodal decomposition

From the formulas given in Secs. II A and II B, we need
specify the parametersZ0 , s0 , k, and A in order to solve
i
e-

al
a
s,

as

-
ur

g.
e

Eqs.~28! and~29! for the critical volume fractionhc as well
as the critical temperatureTc below which a liquid-liquid
phase separation is to be expected. However, experiment
it is the surface potentialC of charged colloids that is often
available. We turn therefore to apply the approximate f
mula Z05pC«0es0(21k) @3# for an evaluation of theZ0 .
For a fixedC, the Z0 , however, has to be obtained se
consistently with thek appearing in the formula, which mus
be the same as that in solving Eqs.~13! and ~32! ~see Sec.
III C below!. The C is thus an input parameter numerical
fixed at C&25 mV, which is a range of values consiste
with the linearization approximation used in our theor
Given these governing parameters for the charged collo
dispersion, our numerical work proceeds as follows. Fi
we assign the dispersive host with a monosizes0
56000 Å, characterize the dispersive medium by a dielec
constante578.5, set the surface potentialC525 mV, and
fix the temperature of our aqueous colloidal dispersion aT
5293 K. For convenience in the following discussion a
for the purpose of comparing with experiments, it is perha
more instructive to determine the critical points (hc ,kc)
rather than (hc ,Tc) since the former is more accessible
laboratory measurement. Technically these two critical
1-5
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FIG. 2. Flow chart showing the numerica
procedure that leads to the determination of t
kc, hc , spinodal decomposition, and coexisten
curves. Thekmax in the Belloni model is deter-
mined as in Fig. 4. Note that forh.0.5 the col-
loidal dispersion has fallen into a solid-phase r
gion.
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rameters are obtained by solving Eqs.~28! and ~29! for the
thermodynamic conditions (r0kBTxT)2150 and (]/]h0)
3@(r0kBTxT)21#50. The spinodal decomposition phas
boundary is then obtained by solving Eq.~28! at eachk
.kc for the solutionsh1

s andhh
s following a numerical pro-

cedure as detailed in Fig. 2. We should remark at this p
that, for givenC, the addition of electrolytes will tend to
decrease the potential barrierV(xM) and will eventually
drive the charged colloidal dispersion into an unstable ir
versible coagulation. This would mean that thek will be
bounded above by akmax. For this latter parameter, there a
quantitative differences between the Belloni and DLV
models. In the DLVO model theh independence ofTL has
resulted in a uniquekmax ~vs h!, the correspondingkmax in
the Belloni model is somewhat complicated by the expl
04151
t
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dependence ofTL on h. It can be shown easily from Eq.~5!
that theX generally decreases with increasingh revealing the
more dominant role of the geometrical hard-core effect~over
the strong Coulomb repulsion!. This explains the decremen
of kmax in the Belloni model as theh is increased. We defe
to Sec. III C for a more quantitative discussion of the det
mination of kmax. Figures 3~a! and 3~b! display our calcu-
lated results for a system of monodisperse charged coll
calculated at two different Hamaker constants (A51.3
310220J @9,10# and A53.4310220J @7#! within the con-
texts of the Belloni and DLVO models. Quite generally, w
observe discernible differences in the spinodal decomp
tion areas for the two models considered when the exc
electrolytek&200, whereas for still largerk.300 the dis-
parity is smaller owing to the fact thatX→exp(k/2)/(1
1-6
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1k/2) ~the DLVO model! in this largerk limit. The situa-
tion k&200, depicted in Fig. 3~a!, corresponds to the cas
A53.4310220 J, where both models delineate spinodal d
composition curves covering lowerh values (0.15&h
&0.275) but predict an almost identicalhc ; quantitatively
the spinodal decomposition region~and the critical pointkc)
in the Belloni model is seen to be slightly broader~and
lower! compared with the DLVO model. Similar noticeab

FIG. 3. ~a! Spinodal decomposition~Belloni: thick-dashed
curve; DLVO: thin-dashed curve! and ~low-density! liquid-~high-
density! liquid coexistence~Belloni: thick-full curve; DLVO: thin-
full curve! curves for an aqueous charged colloidal dispersion
temperatureT5293 K. The reduced screening parameter isk
5kDs0 , kD ands0 being the Debye-Hu¨ckel constant and macroio
diameter, respectively. Numerical data used ares056000 Å, 167
,kmax,172 ~chain curve! @for DLVO, kmax5173.56 ~thin-full
curve!#, Hamaker constantA53.4310220 J, surface potentialC
525 mV, hc50.2043~0.2033 for DLVO! andkc5166.5~168 for
DLVO!. ~b! Same notations as in~a! exceptA51.3310220 J, 451
,kmax,453 ~for DLVO, kmax5453.9), hc50.3415 ~0.3415 for
DLVO!, andkc5392.7~393.7 for DLVO!.
04151
-

disparities mentioned above for the caseA53.4310220J
still remain for the situationk.300, shown in Fig. 3~b!,
which corresponds to the caseA51.3310220J, although the
magnitudes of differences are less conspicuous. Note tha
this smallerA case the spinodal decomposition curves fall
the higherh values (0.22<h&0.5).

B. Liquid-liquid coexistence

Having determined the critical points (hc ,kc), it is
straightforward to calculate the liquid-liquid coexisten
curve by the standard formulas:

bP~h1!V5bP~hh!V, ~30!

bm~h1!5bm~hh!. ~31!

Here the low- and high-liquid densities are, respective
characterized by volume fractionsh1 and hh , which are
solutions to the above coupled equations. Given the same
of parameters (s0 ,A,C) as in Sec. II A, Fig. 2 shows also
the numerical procedure leading to the physical rootsh1 and
hh , which are solved at eachk.kc for the aqueous charge
colloids at T5293 K. The liquid-liquid coexistence curve
are included in the same Figs. 3~a! and 3~b!. Together with
the spinodal decomposition curves, the areas in between
scribe the metastable thermodynamic states, custom
termed the supercooled liquids.

C. Irreversible and reversible coagulation

We turn in this section to the study of the phase sepa
tion in charged colloidal solutions. To this end, we calcula
the phase diagrams, which can be used to gloss over
coagulation phenomena in a general and realistic way. Le
start with Eq.~12! for the colloid-colloid potential. If the
potential barrierV(xM) is sufficiently high, the resulting col-
loidal dispersion is in a charge-stabilized equilibrium pha
revealing a distribution of charged colloidal particles therm
dynamically prevented from an irreversible coagulation.
the other hand, whenV(xM)50, one would anticipate the
charged colloids showing an irreversible coagulation char
terized by colloidal particles thermally collided to fall aggr
gately into the deep primary minimum. Thus, as one low
the V(xM)@kBT ~for example, by adding an excess electr
lyte or by decreasing theC! which corresponds to weaken
ing the strong Coulomb repulsion in a charge-stabilized d
persion, one is in fact enhancing the chance for char
colloids to sample contact configurations. On further low
ing theV(xM), a stage will emerge where the interaction
charged colloidal particles, due to increasingly high possi
ity of particles coming close to each other, begins to be
erated jointly by the Coulomb repulsive force and t
London-van der Waals attraction, leading in this case to
appearance of a second minimumV(xm) in the potential
function V(x) ~see the full curve in Fig. 1!. Depending on
the valuess0 andA, the V(xm) varies in magnitude from a
value, for microscopic particle (s0;300– 3000 Å)@7#, gen-
erally of the order of 1;10 kBT @3,7,8,22# to a value, for
largers0 (*4500 Å), of the order ofV(xm).10 kBT @9,10#.

t
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In particular the second minimum position of the former
generally located at a largerxm compared with the latte
whosexm is located distinctly nearer to the contact distan
r 5s0

1 . A subtle and delicate matching of theV(xM) and
V(xm) is thus an important criterion for realizing the rever
ible coagulation. Such a coagulation condition on charg
spherical colloids, deduced from the property ofV(x), has in
fact been employed by experimentalists@7,9,10# to interpret
the observed signature of the reversible coagulation.
question now is: what are the magnitudes ofV(xM) and
V(xm) for a liquid-liquid phase separation to happen, kno
ing that all of the parametersZ0 ,s0 , k, andA can influence
V(x)? In view of the difficulties in stipulating an unambigu
ous criterion, we have chosenV(xM).15 kBT @23# whose
value is selected in consultation with previous experime
@3,7,8,9,10,22#. Subject to this constraint, Eq.~12! reads

w~yM !'exp@2yM#2
1

gyM
5

15T0

TL
, ~32!

whereTL5L/kB , yM is the solution of Eq.~13!, andT0 is a
temperature to be discussed further below. As depicted
Fig. 4, Eqs.~13! and~32! lead to a minimum value ofg and
hence@by the relationk524TL /(gTA)# a maximumkmax
for a given set of (A,TL) values. These parametric values f
the yM and kmax imply that a useful parametric space f

FIG. 4. Flow chart showing the numerical procedure that le
to the determination of thekmax in the Belloni model~see text!.
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studying the liquid-liquid phase separation is to establis
relation between theTL andTA. The former, at fixed param
etersk and C, is a function ofs0 and h, while the latter,
which correlates closely the stability information of the co
loidal dispersion, affects sensitively the structure ofV(x)
nearx'xm @10#. There is, however, one important point th
deserves paying attention to. Since water freezes aT
5273 K, the calculation of the phase diagramTL vs TA has
to be performed to yield a physically acceptable value
Tc>273 K in addition to making sure that its magnitude
not exceedingly large thatkBTc.V(xM). Bearing this in
mind and considering the possibility of correlating the calc
lated results with measurements~such as those reported b
Kotera, Furusawa, and Kubo@9#!, we have therefore setT0
5Tc5293 K. Now, to locate the loci of theTL2TA phase
boundary, it is more convenient to inputTA and solve for the
TL andhc from Eqs.~28! and ~29!. For theTA values, they
are reasonably selected from the empirical range 50
,TA<104 K @24#. This numerical procedure differs from
that of Victor and Hansen@12#, for the TL in the Belloni
model depends onh whose critical valuehc has to be ob-
tained self-consistently as detailed in the flow chart of Fig
Figure 6 shows our determinedTL vs TA compared with the
DLVO results calculated under the same colloidal con
tions.

Let us scrutinize Fig. 6. There are three general asp
that merit emphasis. The first aspect is the occurrence
minimum TL

min550 315 K at TA
min51100 K. Recalling, by

definition,

TL5
Z0

2LBX2e2k

kB
, ~33!

it implies that, for givenk, C, andhc , there exists a mini-
mum s0 below which no liquid-liquid phase separation
anticipated. For the Belloni model, the set of values (hc
50.3137, C525 mV, T05293 K, and e578.5) yields
s0

min55120 Å, which is slightly larger than thes0
min

55095 Å in the DLVO model. At thiss0
min , the Hamaker

constant isA51.518310220 J. At this point, it is perhaps
worthwhile to enquire if the presentTL vs TA curve has any
relevance to previous experiments. As pointed out above,
one early experiment on charged spherical colloids in wa
whose colloidal conditions closely mimic the present theo
is that of Kotera, Furusawa, and Kubo@9#. We now discuss
the experimental findings of the latter work and see if the
results can be correlated with the presently obtainedTL vs
TA curve. In their colloid chemical studies of polystyren
latices, Kotera, Furusawa, and Kubo appealed to the op
and microscopic methods, and investigated the effect of
second minimum on the colloidal stability for a series
‘‘soap-free’’ polystyrene latex particles varying ins0(C)
from 3500 Å ~23 mV! to 13 740 Å ~29 mV!. They deter-
mined the critical flocculation concentration of KCl for eac
s0 using the transmission coefficient of light as well as m
croscopy, and found that the critical flocculation concent
tion varies anomalously with thes0 andC. In consultation
with two earlier publications@21,25# ~see also Ref.@10# for a

s
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FIG. 5. Flow chart showing the numerica
procedure that leads to the determination of t
TL vs TA . Self-consistency in obtaining thekmax

and theh dependence inTL have been fully con-
sidered.
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more recent discussion on theA of the polystyrene-wate
mixture!, these authors proposedA51.3310220J for their
measured polystyrene-water system. Using their meas
data for thes0 , C, and critical flocculation concentration
we plot in Fig. 7 the change ofV(x) function with s0 . A
striking characteristic of theseV(x) can be recognized. In
going froms053500 Å to 13 740 Å, it is clearly seen tha
the V(x) varies from a shallow second minimumV(xm) ac-
companied by a lowerV(xM) ~for s0&4000 Å) to a deeper
V(xm) accompanied by a higherV(xM) ~for s0.5000 Å).
In particular we notice that theV(xm) for the cases0
&4000 Å is located atxm'1.04 @26# somewhat farther than
xm'1.004 for the cases0.5000 Å. Based on their analysi
of the time-variation curves of transmission coefficients
the latex particles, Kotera, Furusawa, and Kubo conjectu
the ‘‘crossover’’s0 , which differentiates an irreversible co
agulation phase from that of a reversible coagulation, ly
04151
ed

r
d

g

roughly in the range 7000–8000 Å. Referring to Fig. 8 f
the s0 vs TA stability curve, at the valueA51.3310220J,
which corresponds toTA5942 K, the correspondingTL

550 691 K yields immediatelys0
min55152 Å, at which place

kmax5374.7. Thiss0
min is lower than the range ofs0 values

noted above. We should remark, however, that thes0
min de-

duced here is fixed atC525 mV and is not exactly the sam
as those given in Kotera, Furusawa, and Kubo’s work. In f
the C in Kotera, Furusawa, and Kubo’s experiments
creases gradually withs0. As clearly displayed in Fig. 7,
such changes inC will tend to raise the potential barrie
V(xM) @3# accompanied by a deepening ofV(xm) due to the
s0 increment. Nevertheless, it is encouraging to note that
theory predicts as0

min55152 Å below which an irreversible
coagulation sets in. This feature is consistent with the exp
mental observation of Kotera, Furusawa, and Kubo wh
both aqueous polystyrene latticess053500 Å and s0
1-9
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54160 Å were found to exhibit irreversible coagulations
confirmed from an analysis of the time variation of the tra
mission coefficients.

The second aspect of theTL vs TA curve is its prediction
of an interesting coagulation feature for a monodispe
charged colloidal dispersion. Stipulating a givens0 , 6000 Å
say, in the range 5120,s0,6200 Å @27#, which corre-
sponds toTL558 320 and 59 209 in the Belloni model, Fi
9 reveals the fact that the agglomeration phenomenon ca

FIG. 6. Plot ofTL vs TA for an aqueous charged colloidal di
persion calculated atT05Tc5293 K and forV(xM)515 kBT ~see
text!. Notations: Belloni, closed circles; DLVO, open circles.

FIG. 7. Intercolloidal particle potential functionV(x) ~in units
of kBT) vs x5r /s0 calculated using the DLVO repulsive part plu
Eq. ~10! at temperatureT5293 K for polystyrene colloids with
s053500 Å ~thick-full curve!, 4160 Å ~thin-full curve!, 7580 Å
~thick-dashed curve!, 10 780 Å ~thin-dashed curve!, and 13 740 Å
~chain curve!. The reduced critical flocculation concentrationsk
and surface potentialsC are ~214.1, 302.4, 746.1, 1011.7, 1188.!
and~23, 25, 27, 28, 29 mV!, respectively. The Hamaker constant
taken to be 1.3310220 J for all s0 .
04151
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realized in an aqueous monodisperse charged colloid c
posed either of a higher density (hc50.4775) colloidal par-
ticles dispersed in a dielectric medium characterized
a smaller A (0.7355310220 J! or of a lower density
(hc50.1961) colloidal liquid having a larger A
(3.679310220 J!. Since the Hamaker constant sensitive
reflects the depth of the second minimum@9,10# as does the
electrolyte concentration, it would be a challenging expe
mental endeavor to explore the ease of observing the w

FIG. 8. Plot of macroion sizes0 vs TA for an aqueous charge
colloidal dispersion calculated atT05Tc5293 K and for V(xM)
515 kBT ~see text!. Notations: Belloni, closed circles; DLVO, ope
circles.

FIG. 9. Intercolloidal particle potential functionV(x) ~in units
of kBT) vs x5r /s0 calculated using the Belloni model for th
repulsive part plus Eq.~10! for charged colloids withs056000 Å
at temperatureT5293 K. The stability ‘‘points’’ for the sames0 ,
which can be read from Fig. 8, areA53.679310220 J, hc

50.1961, kmax5157.2 ~thick-full line!; A50.736310220 J, hc

50.4775,kmax5800.7~thin-full line!.
1-10
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reversible coagulation for monodisperse charged collo
solutions at theseA and to understand the experimental r
sults from the theoretical model~compare, for example, th
V(x) depicted in Fig. 9 for these colloidal conditions!. Such
experimental setups should not be too difficult to acco
plish.

The third aspect is the much less likelihood for a charg
colloidal dispersion to undergo the liquid-liquid phase se
ration if its Hamaker constantA,0.53310220 J, for theA in
this region, has already assumedhc.0.5, which is the re-
gime of solid phase. If one were to accept the range oA
spanning 0.5310220 J&A&5310220 J to be experimentally
accessible and to confine our study to a fixedC<25 mV,
there then exist lower limit ofs0

min values~along the coagu-
lation stability curve given by Figs. 6 or 8! serving the
boundary between the irreversible (s0,s0

min) and weak re-
versible (s0>s0

min) coagulations. To keep within this rang
of A for a largers0 , one would generally have to increaseC
~.25 mV! in order to simulate a higher potential barri
@since theV(xM) decreases with increasings0 but it in-
creases with increasingC @3##.

IV. CONCLUSION

We draw attention to a realistic statistical-mechan
model suitable for delineating the structures and the ther
dynamics of concentrated charged colloidal dispersions.
fering from the usual DLVO model, the model is valid fo
any finite concentration of macroions. The model is theref
physically appropriate for describing the liquid-liquid pha
separation corresponding to a lower- and a higher-den
liquid phase. After justifying the validity of the model withi
the MSA OZ integral equation approach, we proceed to
up an effective two colloidal particle interaction, which
theoretically more general than the usual DLVO model. F
lowing Victor and Hansen, we apply the Weeks-Chandl
Andersen perturbation theory to construct the Helmholtz f
energy to first-order correction. The calculated press
chemical potential, and related thermodynamic functions
ford the determination of critical points, thehc and thekc ,
and hence the spinodal decomposition and the liquid-liq
coexistence curves. We summarize our theoretical findi
as follows.

~1! The calculated spinodal decomposition and liqu
04151
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d
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liquid coexistence curves within the Belloni model show
shift in kc to lower values and enclose a larger area co
pared with the DLVO model.

~2! For an excess salt concentrationk&200, the quantities
indicated in point~1! using the Belloni model differ large
from those obtained by the DLVO model, whereas fork
.300 the differences in the corresponding results betw
the two models are smaller.

~3! The stability curve determined in the Belloni mode
which marks a separation of an irreversible and a revers
coagulation for aqueous charged colloids near room temp
ture, predicts a minimum size of approximately 5000
which is quite consistent with early experiments reported
Kotera, Furusawa, and Kubo who observed, from an anal
of the time variation of transmission coefficients, an irreve
ible coagulation for two aqueous polystyrene lattices wh
macroion sizes ares053500 Å ands054160 Å.

~4! For any monodisperse charged colloids whose mac
ion size falls into range 5120,s0,6200 Å, it is possible to
observe the coagulation phenomenon characterized by e
a higher-density colloidal dispersion having a smallerA or a
lower-density colloidal solution pertaining to a largerA.

~5! For an aqueous charged colloidal dispersion, our th
modynamic perturbation theory disallows the Hamaker c
stantA,0.53310220J for observing the liquid-liquid phas
separation, because in this region the system has already
hc.0.5 and hence has moved into a solid phase.
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51760 Å, A50.5310220 J, 18,C,30 mV, and 150,k
,303) for the aqueous polystyrene lattices, we have chec
that the averagexm for different concentrations of NaClO4 is
located approximately atxm'1.024, which is reasonably clos
to the value expected for thes0 range.

@27# We base our argument on settingV(xM)515kBT. One should
bear in mind an order of approximately 500 Å for a change
setting of V(xM) by about 5kBT ~see the comment in Ref
@23#!.
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