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Information transmission in parallel threshold arrays: Suprathreshold stochastic resonance
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The information transmitted through a parallel summing array of noisy threshold elements with a common
threshold is considered. In particular, using theoretical and numerical analysis, a recently réNor&d
Stocks, Phys. Rev. LetB4, 2310 (2000] form of stochastic resonance, termed suprathreshold stochastic
resonanc€SSR), is studied in detail. SSR is observed to occur in arrays with two or more elements and, unlike
stochastic resonandSR) in a single element, gives rise to noise-induced information gains that occur inde-
pendent of the setting of the threshold or the size of the signal. The transmitted information is maximized when
all thresholds are set to coincide with the signal mean. In this situation, and for large arrays, the noise can
enhance performance up to approximately half the theoretical noiseless channel capacity. The theory is tested
against digital simulation.
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[. INTRODUCTION However, when determining whether SR is in principle ob-
servable, it is the size of the signal compared to the threshold
The study of stochastic resonan(®@R) [2] in threshold level that is the important quantity. Normally, SR is only
based systems has received considerable attention in receiserved if the signal is smaller than the threshold level, i.e.,
years|2—5]. In such systems it is well known that, via the SR it is subthreshold. For larger, suprathreshold signals, the SR
effect, the addition of noise can lead to an enhancement diffect disappearf,25,7. This has led to the common belief
the system’s response to subthreshold signals. Initial studidat SR type effects can only be observed for predominantly
used sinusoidal input signals and the output Signa|_to_nois§ubthreshold signals. However, as will be demonstrated, this
ratio (SNR) to characterize the SR effect—the effect mani-is only true for single element threshold systems. It is dem-
fests itself as a noise induced maximum in the SNR. Moreéonstrated here that parallel arrays can display another form
recently, SR has been extended to include aperiodic broa@f SR—termed suprathreshold stochastic reson&B8&—
band signal$6] and information theoretic measures, such aghat occurs when the signal is predominantly suprathreshold.
the average mutual information, have been introduced té\dditionally, this new form of SR leads to significantly
characterize the dynami¢8,7—11. Both broadband signals 9reater signal enhancements than can be obtained using sub-
and information theory are employed in this study. threshold signal levels. The paper is organized as follows:
The great majority of previous studi¢g] have focused Sec. Il introduces the model array and in Sec. IlI the calcu-
on single element SR systems. Attention has recently turnel@tion of the transmitted information and the theory of the
to the study of networks of SR elements. A large number oSSR effect are presented. Section IV discusses the digital
network configurations and connectivity have been studieg¢imulation and in Sec. V the theory and digital simulation
and include, globally coupled network&2—14, randomly resu_lts are compared and discussed. Finally, in Sec. VI, con-
connected networkil5] and linear chain16—18. In com-  clusions are drawn.
parison, parallel arrays of threshold elements, in WiNCBR

elements are placed in parallel and their outputs summed at a Il. MODEL
common summing point, have received relatively little atten- . . . .
tion with only a handful of studie§19,6,20—-22 Parallel A summing array ol threshold device¢Fig. 1) is con-

arrays(ensemblesare of considerable importance in many s@dered. Each threshold device'is subject to the.same input

signal processing applications. For example, they can ba&ignalx(t) but independent noisey;(t). The devices are

used to model DIMUS sonar arrayi the on target posi- Modeled as Heaviside functions, the outpy(gt), being

tion) [23] and, for regularly spaced thresholds, Flashdiven by the response function,

analogue-to-digital converter@ADC’s) [24]. Additionally, .

parallel arrays have recently been used to model ensembles _ 1 itx@)+m(t)>6;,

of sensory neuroni6,21,23. Consequently, the study of in- 0 otherwise,

ternal system noise and SR effects in these systems are of

importance to a number of signal processing and neurophyswhere 6; are the threshold levels ane-1,2, .. .N. The re-

ological applications. sponse of the array is obtained by summing the individual
Stochastic resonance is commonly understood to be theesponses of each device. Consequent{y) represents the

enhancement, by noise, of the response of a systermeak  number of devices that are triggered at any instant of time.

signal. By weak, one normally means with reference to arThe signal is taken to be aperiodic and broadband. Although

appropriate scale. This scale can either be taken as thbe initial theoretical discussion in Sec. lll assumes no spe-

(internal/external noise intensity or, in a single threshold cific form for the signal distribution—all results presented

system such as a simple comparator, as the threshold levelrte for Gaussian signal and noise.

yi(t) (1)
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yy(0) garded as a semi-continuous chanmeln be writter] 28]
™0
o> | =H(y)~H(X)
o \J2(0 N
0] 2 =~ 2 Py(n)log, Py(n)
n=0
O . —( —f dxP(x) X, P(n[x)log, P(n|x) . (2)
— n=0
o N\ YN H(y) is the information contentor entropy of y(t) and
nN(t)_,ey H(y|x) can be interpreted as the amount of encoded infor-

mation lost in the transmission of the sign&,(n) is the

FIG. 1. A summing array o threshold devices. Each device is Probability of the outputy(t) being numerically equal to
subject to the same sign@ Gaussianly distributed signal with zero and P(n|x) is the conditional probability density of the out-
mean and standard deviatieny) but independent Gaussian noise. put being in state given knowledge of the signal valug,

P,(x) is the probability density functiofpdf) of the signal.

By a suitable choice of threshold settings, the array can behe |ogarithms are taken to base 2Ise measured in bits.
used to model a number of applications arising in engineer- Equation(2) represents the appropriate definition of infor-
ing and neurophysiology. For example, placing the threshmation for a channel that has a continuous input signal but a
olds levels regularly across the signal space results in a ungiscrete outpuf28]. It should be noted that this definition
form quantization SCheme, identical to that found in FlaSI'has no exp“cit time dependence and, therefore, does not
analogue-to-digital converters. This case has been studiegrictly treat the signal as a stochastic process. For this rea-
previously[1,26]. However, in this study, only the situation son,| does not represent an information flgmeasured in
where all the threshold levels are set to same vaiavill  pits/g but the average amount of information, measured in

be considered. Arrays of this form have recently been conpits, that a measurement of the output yields about the in-
sidered in connection with neuronal ensemp®&1,23 and  stantaneous input signal value.

are also applicable to digital-multibeam-steerifig MUS) It will be assumed initially that the noise has an arbitrary
arrays used in passive soriag]. pdf, P, (7), with a standard deviation)( %) — ()=, If
all information is lost in transmissioH (y|x) =H(y) (which
Ill. AVERAGE TRANSMITTED  (MUTUAL ) occurs aso,—) and hencd =0. Alternatively, if all en-
INFORMATION coded information is transmittedr(,=0) H(y|x)=0 andI
A. Theoretical preliminaries =H(y). Given it is straightforward to shoy27] that for any

) ) ) nonzeroao,,, H(y|x)<H(y), it would seem to follow that
An information theoretic measure—the average mutualy,ayimum information transfer occurs when there is no inter-

information—will be used to quantify the amount of infor- 5| hoise. However, this is not necessarily the case because
mation trqnsmltted through the array. AIthqugh, tra.d|t|on'ally,imema| noise also serves to increadéy). Consequently,
the SNR is often used to characterize SR, in practice this hage maximization of by internal noise is a balance between

only a limited utility for nonlinear systems subject to broad- »qgitional useful information generated by the noise and the
band excitation. The SNR only provides a meaningful mea;jncreased loss in information transmitted through the array

sure under the assumption that the dynamics are approxjth increasing,, . It is this ability of noise to maximize the
mately linear and the noise is Gaussian. If these assumptions, smitted information that is termed SR.

are valid then the SNR can be related to the information flow

through the systerfi27]. Consequently, measuring the SNR

is equivalent to mgasuring the trgnsmitted information. pr— B. Calculation of |

ever, for weak noise, the dynamics of these arrays are highly , . ) o )
nonlinear and no simple relation between the SNR and the The calculation of the transmitted information is straight-
transmitted information exist. It is in this regime that the forward when all thresholds are set equal to an arbitrary

SNR fails to give a meaningful characterization of the re-v&lue 6. To proceed, itis first useful to simplify the formula
sponse. For example, passing a signal through a determinif@r |- The conditional probabilityP(n|x), is easily obtained

tic (noiselesy but noninvertable transfer function yields an by noting that for any given signal value, each device acts
infinite output SNR but, by construction, information is lost independently under the influence of its own noise source.
about the signal, i.e., no unique function exists that maps th&onsequently, the probability thatdevices are triggered is
response back into the signal. Other linear signal processir@ven by the binomial distribution and hencg(n|x)

. . > N-— ; - "
techniques, such as cross correlation, also suffer from similar Cn P1xPojx " » WherePy, is the conditional probability of

deficiencies. a device being in state (triggered which is given by the
The average mutugbr transmittedlinformation,|, for the ~ cumulative distributionPy,= [5_,P,(7)d7. cN is the bi-
array shown in Fig. Awhich in information theory is re- nomial coefficient andP,=1—Py,. Using this result and
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noting thatSgnP(n|x)=NP;, and ={P(n|x)=1, the sec-
ond summation on the right-hand siRHS) of Eq. (2) can
be carried out to yield

N
n§=:o P(n|x)log, P(n|x)

N
=n§0 Py(n)log, C) + N(P3 4109, Pyjx+ Pgjxl0g, Pojy).

)

Noting thatPy(n) =~ _P(n|x) Py(x)dx, the transmitted in-
formation can now be written in the simplified form

N

= _Z'o Py(n)log, P’(n)—( —Nf:dex(x)

><(Pllxlc'QZ P1|x+ Po\x|092 P0|x)) ) (4)

Pr(n)=J:oodeX(x)Prl“XPgll;n,

whereP,(n)=C{P’(n).
Given the signal and noise distribution®,(x) and
P.(7), Eq. (4) can be used to calculatenumerically.

C. Suprathreshold SR(SSR

The specific case whefi=(x), where(x) is the first mo-

ment of P,(x), is now considered. It will be demonstrated

PHYSICAL REVIEW E 63041114

are occupied with equally probability; this is the well known
condition for maximum entrop27]. Hence, this leads to the
interesting result thaH(y) is maximized when the signal
and noise distribution are matched. This does not imply,
however, that is also maximized.

To finalize the calculation, the second integral on the RHS
of Eq. (4) can be solved using the same procedure to give
—N/2log.2. Combing this result with the result fd?,(n)
and substituting into Eq4) finally yields the exact result

N

2 (N+1-2n)log, n.

1=logN+ )= S og2 " N1 4
(6)

It is interesting to note that this results states thiatdepen-
dent only on the number of elements in the array and is,
therefore, independent on the exact form of the signal and
noise distributions. Equatio(6) was, however, derived un-
der the assumption that the signal and noise distributions
were the same. If they are not, then no simple change of
variable could be found that removed the functional depen-
dence of the signal and noise PDFs.

Of particular interest is how scales withN. This can be
determined by approximating the summation in Egj.using
the formula =5f(n)= )" (n)dn—1/2(f(1)+ f(N+1)).
This yields

1 1
=5 10g5(N+1) = 57— + O(LN).

2log.2 ™

that under this condition a new form of SR, not observable inconsequently, for largdl, | ~1/2 log N.

a single threshold device, can be anticipated.
Although, in generalP,(x) andP,(») must be specified

It is now straightforward to establish that this result im-
plies that a noise induced maximum must occurl.imlAs

to enablel to be obtained, this is not the case when thesgjready discussed, in the limit,— =, | must tend to zero. In

distributions are of the same form am=(x). Under these
conditions, the integrals and summations in E4.can be

the limit o,—0, | —H(y). Therefore, a noise induced maxi-
mum must occur ifH(y) (evaluated atr,=0) is smaller

solved analytically. However, it should be stressed that thehan the finite noise result given in Ef). It is straightfor-
following analysis only applies under the assumption thatyard to show that this must be the case wins suffi-

P«(x) andP,(7) are identical, i.e., all moments, except the ciently large. In the absence of noise all the devices switch in
first, are the same. This condition applies, for the Gaussiagnison and henceP,(n)=0 for n=1,2...N—1, P,(0)

signal and noise to be considered, when the signal and noise ¢ p (xydx and P,(N)=1-P,(0). This implies

variances are equal.
Assuming identical signal and noise distributiciaspart

from a nonzero signal meaithe signal distribution can be

written asP,(x) =P ,(x—(x)). TakingP,(7) to be an even

I(0,=0)=—Py(0)log, Py(0) = Py(N)log, Py(N). (8)

function of » and, without loss of generality, zero mean, it | (o, =0) is maximized wherP,(0)=P,(N)=1/2. This oc-

follows that, Py,=/7_«P.«((x)—s)ds. Introducing the
change of variabley =Py, , yieldsdy/dx=P,({x) — 6+Xx)
and settingd=(x), gives forP’(n) in Eq. (4),

1
P’(n)=f0dyy”(1—y)’“‘”. (5

The expression foP’(n) is in the form of a beta function
[29], the integral can now be solved to gi® (n)=n!(N
—n)!/(N+1)!. This in turn yieldsP,(n)=1/(N+1) which
is independent ofi. This result states that all output states,

curs whend=(x) [as long ad,(x) is even functioned about
its mear} and givesl (o ,=0)=1bit. In general,l(o,=0)

=<1 for arbitrary and P,(x). Consequently, in the absence
of noise, the maximum information the array can transmit is
only 1 bit; hence from Eq(7) it is easy to infer that for
sufficiently largeN a noise induced maximum must occur.
Unlike conventional SR, this SR effect is to be anticipated
when all thresholds are set suprathresh@tidthe sense that
deterministic signal induced threshold crossings are maxi-
mized with respect to the signal and will, therefore, be re-
ferred to as suprathreshold SBSR.
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D. Gaussian signal and noise
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Given thatPy,—1/2 is always an odd function about

Although much of the above discussion has placed ng=(X), it follows thatd Py, /do, will also be an odd function

restrictions on the signal and noise pdfs, Gaussian signal a

fpoutx=(x) with a negative sign fox>(x). Splitting the

noise are used for the results presented in Sec. V. Here tHategral in Eq.(11) into the ranges-—(x) and (x)—
calculation ofl is considered for this particular case. Taking (that iSPy), between 0 and 1/2 and then 1/2 andtlcan be

P(X) = (12ma2)exp(— (x—(x))%2¢?)  and P.(n)
= (12ma?)exp(—17120%) gives Py, = 3erfc(—u) where
u=(x—6)/\/20>. Substituting these quantities into E@)
and performing a change of variable u@ives

N

=-3 Py(n)logzP’(n)+Nf:du%

xex;{— ( ou— —(0_<X>)
V2o,

1 1 )
1- > erfc(—u))logz< 1- > erfc(—u)) ,

2(1 f o L
Eerc(—u) 0925

Xerf —u)+
)
where
2
P'(n)=f_wdu% ex;{—(au——(e\/%x») 1

N—n

et | 1- 5 eriw)
xierfo(—u) 1—§erfo(—u) ,

and o=0,/0y, Py(n)zch’(n). Equation (9) can be
solved numerically to obtaif. In the particular cased

seen that, the factor lggPy,/(1—Py,)]<0 for x<(x) and
positive otherwise. The integrand is therefore negative for all
x and it follows thatdl/do, <0 for all o,. Therefore SR
can not occur.

IV. SIMULATIONS

To confirm the validity of the theory developed in Sec. llI
digital simulations were also undertaken. Due to the simplic-
ity of the array, the algorithm to generagét) was straight-
forward but some care was required when calculating the
transmitted information. The transmitted information was
obtained by constructing the distributions
Py(n),P«(x),P(n|x) and using Eq(2) directly. To obtain
good statisticSapproximately 1% err9r signal lengths in
excess of 19independent samples were used to obtain the
distributions. The “bin” size used to construét,(x) was
also found to critically affect the results. Becawxss treated
as a continuous variable anycas a discrete one, it is neces-
sary thatx is discretized into many more bins than the num-
ber of states occupied by( which is simply given byN). In
practice, to produce convergent results it was necessary to
discretizex with a resolution better than 1/180 Conse-
quently, increasing the number of elements not only in-
creases the time required to compuytéut also requires an
increase in the signal length to compensate for the finer reso-
lution required when discretizing This was found to limit

=(x) it can be seen thdt depends only on the parameter the number of devices that could be simulated<tb00.

o—whereo? is interpreted as the inverse signal-to-internal-

noise ratio.

E.N=1 and 0=(x)

V. RESULTS AND DISCUSSION

In the previous section, theoretical arguments were for-
warded that suggest a new form of SR is to be anticipated

The results obtained in Sec. lll C indicate that SSR is toyhen all the thresholds are set to coincide with the dc signal

be anticipated iN is sufficiently large—thus suggesting that |evel. In this section a comparison between the theory and
SSR cannot be observed in a single threshold system. This {fe results of the digital simulation are presented. All results

consistent with previous studigs,25| that have demon- presented are for Gaussian signal and noise (k=0 and
strated that SR effects are removed if the threshold is low¢ =0,

ered to suprathreshold levels. However, this can be proved
under general conditions and for completeness a proof is
included here. The only assumption that will be made is that
the signal and noise PDF’s are even functions of their state TO place the multielement results in context, the results

A.N=1

variable. In this case setting=(x) results in P,(0)
=P,(1)=1/2 (independent ofs,) and henceH(y)=1.
Therefore,l =1—H(y|x) for arbitrary a,, where

H(y|x)=— f_ dXPy(X)[Py)x 0g, Pyx
+(1=Pyp)logy(1 =Py ]. (10
Differentiating | with respect too,, gives
i (= Papc | dPax
dT._W— fdePX(Xﬂng(l_Plx Tl',? (11)

for N=1 are first reviewed. Figure 2 shows the dependence
of the transmitted information on noise intensity for a single
element. The threshold valué, is expressed in units of the
standard deviation of the signat, . Clearly, an SR effect
(i.e., a noise is induced maximyns only observed when
0=2.83. Lowering the threshold below this level signifi-
cantly improves the transmitted information but removes the
beneficial role of the noise. This behavior has been reported
previously in a number of different threshold syst€@5,3].
Lowering the threshold removes SR effects by making the
signal “more suprathreshold.” The suprathreshold nature of
the signal is clearly observed by considering the behavior of
I when o=0. Without noise, signal information can only be
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1
0.8r
6=0
0.6
)
£
—0.4
0=1.41
0.2r
0=2.83
G I 1 1 I
0 0.5 1 1.5 2 25

G FIG. 3. Plot of transmitted information against=o,/0 for
variousN and #=0. The data points are the results of the digital
FIG. 2. Plot of transmitted information againet=o, /o for simulation and the solid lines were obtained by numerically evalu-
N=1 and various. The data points are the results of the digital ating Eq.(9).
simulation and the solid lines were obtained by numerically evalu-

ating Eq.(9). The results in Fig. 3 were obtained with =1, however,

the theoretical analysis in Sec. Il indicates that the informa-
transmitted through deterministic threshold crossings—as théon is dependent only on the ratie, /o, and not ono,
threshold is lowered these increase and hence the inform&lone. Hence, the same set of curves can be reproduced
tion increases. As discussed in Sec. IMHEy) (and hence)  for arbitrary o,—as long as the noise is scaled accordingly,
is maximized by settingg=(x); this condition maximizes i.e., SSR occurs for arbitrary signal strengths. This is, of

the deterministic threshold crossings and leads to a transf&PUrse, not true of SR in a single element where SR effects
of 1-bit of information. disappear for sufficiently large suprathreshold signal ampli-

For a single device, it can be seen that the noise-inducewd_?ﬁ' hani - ise to SSR | ite diff tt
enhancements are relatively weak. Consequently, they at[ﬁat c()af Z}ngiglngg';:]ndg igsr?otoconneé?egutloeal ?er\?irc])usol
only observed if the contribution to the information from P y

deterministic threshold crossings do not dominate—it Wasreported form of suprathreshold §R0]. In the absence of

observed that this require#=2.45. In this case the signal noise, all devices switch in unison and consequently the ar-

spends at least 99.3% of its time below the threshold an{® acts like a single bit ADCIE=1). The fact that all de-

hence can be termagtedominantlysubthreshold. It is inter- vices switch in unison in response to the signal implies that

esting to note that, due to symmetry, the same SR effects a}gey als:) carry gl;ntlcall |_m;ormat|_on "?‘bOl‘k'Jt the (sjlgbnalh Con-
also observed ifg<—2.45, i.e., when the signal spends sequently, no additional information Is obtained by having

99.3% of its time above the threshold. This indicates that themore than one device. |deally, one would wish that the de-

fashion of using the term suprathreshold to distinguish th vices carry at least a degree of independent signal informa-

dynamics from the subthreshold case is somewhat ambig%-on' This degree of independence is facilitated by the addi-

ous. Clearly what is meant here is to distinguish between th I%Trgu?iglr? eéfﬁth?gghlglzts TLSI tlirr?eth?r?It?egglssetjoreiﬁzltzimngl
cases of deterministic and non-deterministic threshold cros%— T " ' ’ . 9

. . . eing “sampled” atN randomly spaced points across the
ings. For this reason, the tempredominantly suprathreshold

will be used to indicate the situation where deterministic.Slgnal space. In effect, the noise allows additional bits of

threshold crossings dominate the transmitted information iﬁnfo_r ma_tlon(qutput sta_te)sof the system to be accessed, re-
an individual device. sulting in an increase in the output entroidyy). Although,

the information content of each individual device is reduced
because of the nois@ll of which individually follow the
N=1 curve, the sum total from all the devices results in a
Here it is demonstrated that the situation is quite differeniet gain in information. Consequently, SSR largely arises
if there is more than one device. Figure 3 shows the resultdue to the initial increase ikl (y).
for all #=(x) and various\. It is immediately observed that This can clearly be seen in Fig. 4, which shows the con-
SR type behavior is manifest for al>1. As N increases, tributions of H(y) and H(y|x) to I. For all values ofN,
the maximum value attained Hyalso increases. These re- exceptN=1, H(y) rapidly increases with noise intensity,
sults are in keeping with those presented in Sec. Il andeaches a maximum, and then decreasHs.) reaches its
confirm the existence of SSR. It is noted that SSR occursnaximum value of log(N+1) when all output states are
even if there are only two elements; this was not anticipate@qually probable; as discussed in Sec. lll, this occurs when
because Eq.7) is only valid wheno=o0,/0,=1 and hence the signal and noise PDF'’s are exactly matched which re-
does not predict the value of the maximum. The maximum iqquires o=1. In contrast, the conditional entropii(y|x),
seen to shift to higher noise intensitieshgcreases but, for always increases monotonically with increasing noise inten-
reasons discussed below, cannot pasd. sity but, initially, at a slower rate. It increases asymptotically

B. 6=(x)
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N=7
7 N=7 7 2
— 2 1 N=3
F N=3 2
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1 N=1
N=1 0.5
GO 0.5 1 1.5 2 G0 0.5 1 1.5 2
(o) (o)
FIG. 4. Plot of(a) H(y) and(b) H(y|x) againsto for variousN
and #=0. The curves were obtained from EE).
a . . .
10° 10’ 10° 10°
N

to the entropy given by- EC’\)‘Py(n)Iog2 P,(n) whereP(n)
=C§/2N. The monotonic behavior ofi(y|x) and the fact
thatH(y) always reaches its maximum whet1, implies

FIG. 5. Scaling ofl with N. The crosses and circles are data
points from the digital simulation. The solid line was obtained from
Eq. (6), the dashed line is the approximation E@) and the dot-

that the maximum in must always occur for<1. This  dashed line is a fit to the data.

conclusion is valid independent of the value Mfbut, as
discussed below, is dependent on the threshold level being
set equal to the signal mean. Consequently, althougN as
increases the maximum in the information shifts to higher
noise intensities it cannot exceed unity. all thresholds equal to the mean of the signal, the dependence

These results tend to suggest that at IaXgeq. (6) gives  on 6 is now discussed. Figures 6 and 7 show the effects of
a reasonable estimate for the maximum information attainvarying ¢; Fig. 6 shows the transmitted information and Fig.
able which is approximately equal to half the maximum out-7 the contributions fronH(y) andH(y|x). In these figures
put entropy. In the absence of noise, the maximum outputhe number of elements was held fixédl=€ 63). Considering
entropy of log(N+1) also represents the channel capacity offFig. 6, it can be seen that, similar to the=1 case(Fig. 2),
the array and, hence, these results indicate that SSR can leti@@ information is maximized whed=(x)=0. However,
to information gains which approach half the noiseless chanSR type behavior is now observed independent of the thresh-
nel capacity. This is an interesting result when compared told value and is significantly enhanced—even for the sub-
the performance of a single device. In Fig. 2 the results fothreshold signals. Additionally, a8 is increased the maxi-
0=2.83 indicate that SR effects are relatively weak—themum in | is shifted to higher noise values and can easily
maximum noise-enhanced information gain is only abousurpassoc=1. The reason for this can be seen in Fi(p)6
0.05 bits—compared to a noiseless channel capacity of 1 bit.

Thus, noise only helps to recover at most 5% of the potential 3 : : : : . .
channel capacity of a single device compared to a possible
50% for an array.

In Sec. Il it was predicted that for largd and o=1, |
should scale approximately as 1/2j@d). This is tested in
Fig. 5. The solid line was calculated using Ef) and the
circular data points are the results from the digital simula-
tion. Good agreement is observed thus confirming the valid-;
ity of Eq. (6). The dashed line was obtained from the ap-
proximation derived in Eq.(7). Despite slightly under-
estimating the exact result this approximation clearly pre-
dicts the correct scaling at largd, thus confirming the
1/21og(N) scaling. However, it is important to note this
scaling was derived for the specific case=1. For other
values ofo the scaling breaks down; this is demonstrated by
the simulation results forr=0.2 (crosses—the dot-dashed
line is a fit to the data. The fit predicts a scaling lof
~0.2910g(N) and, therefore, generally the scaling is seen to

C. 6 dependence
All the results discussed so far were obtained by setting

o)

dependent on noise intensity bs f(o)log,(N) wheref(1)
=1/2.

FIG. 6. Plot of transmitted information againsfor N=64 and
various 6. The curves were obtained from E@®).
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@ /60

H(y) (bits)

FIG. 7. Plot of(a) H(y) and(b) H(y|x) againsto for various
N=64 and varioud. The curves were obtained from E§).

the position of the maximum iid(y) is seen to strongly , , 3
depend on the threshold setting. This is, of course, an obvi- F'C- 8. Plot of the signal powef,, againsto for N=64 and
arious 6. The curves were obtained from Ed.3).

ous result—as the thresholds are moved away form the sig”

Phi' {Ere;nﬁ Ollzr?:vr e?sof\?e:nttﬁgss%ensalasrg arcee?uwed to OIISmbmsvhere bars denote time averages. The SNR is defined in the

The results in Fig. 6 raise an interesting point; as thefogvgggglgalhrgaglgg %S;Zeoﬁzgr{gdpi‘rgr%usitrlr?glitliczy)nac;‘eia in
thresholds are increased away from the signal mean there isg™” . ; . .
e time domain. To proceed further with the calculation one

smooth change from suprathreshold to subthreshold signal btes that the signals and noise used in this study are er-

However, there is no obvious change over between SSR a . : .
godm, hence the time averages can be replaced with averages

conventional SR. This implies these two effects cannot b the sianal distribution. For the cas the statisti
distinguished. Obviously when the signal is subthreshold th&VEr the signal distribution. or the ¢ ?<X.>' € Stalistics
mechanism giving rise to SSR does not “switch off’—the of the response follow a Binomial distribution and hence

noise still enables additional output states of the system to be o o

accessed thus resulting in an improvement of the transmitted Sp=N2f Px(x)(P1|X—y)2dx, (14

information. In this respect the term SSR is a bit of a mis- o

nomer, the SSR mechanism does enable noise to enhance the .

detection of suprathreshold signals but not exclusively so. NpINJ P(X)P1y(1— Py 0dx, (15)

Comparing the subthreshold results=2.83 in Figs. 2 and —

6 shows that the subthreshold SR effect is significantly en- o

hanced by increasinly. This is because both SSR and con-where y= [~ P,(x)Pdx. Equations(14) and (15 can

ventional SR effects are now contributing to the informationnow be used to calculate the SNR numerically.

gain. Before discussing the results it is worth noting that the

definition of the SNR differs slightly from that typically used

D. Signal power and signal-to-noise ratio SNR to characterize SR for sinusoidal signals. For a sinusoidal

Traditionally, SR effects have been characterized b signalS; yields thetotal integrated signal output power, i.e.,

Lantities such as the outout sianal power and SNR. It i;‘[he power in the fundamental plus all harmonics. This differs
q . P gnal p L from the conventional definition used for SR which normally
therefore, of some interest to consider these quantities fo

) : 5nly considers the power in the fundamental. However, for
this system. The broadband nature of the signals means th@}oadband signals it is not possible to distinguish individual

;Oelg;rr;iciphne'?ltjﬁes S(?arr:glo t obv(vaerG(Trptlr?ZeSng- fﬁ(geggnnenﬁgc\%pectral components and hence the modified definition is
. Ignai p . > they can, necessaryN, is essentially unchanged from the standard
ever, be easily obtained from a time domain analysis. Th P

response of the array{t), can be split into a signal contri- Befinition and is simply equal to total integrated power of.the
bution, (y(t)) and a noise contribution(t) where y(t) spectral backgrounths opposed to the power at .the fprcm_g
—(y(1))--n(t). The bracketé -y denote an ensemble aver- frequen(_:y) It shoul_d be noted that the SNR defme_d in this
age over the noise and hence, in the lihitoe, y(t) manner(l.e.,fcotal signal power over t_otal noise poWesrthe
Z{y(1)). The signal powerS a{nd noise powerhyl are one copventlonally used in engineering when treating broad-
then given by P P bant_j signal$27]. o _
Figure 8 shows the dependence3)f on noise intensity
—_— for several values off and Fig. 9 shows the SNR. Consider-
So=(y(1)) = (y(1)?, (12 ing the signal power first, it is clear that for predominantly
suprathreshold signalg.e., /=0 and 1.3 no maximum is
R E— observed. Increasing the threshold value, however, does lead
Np,=(n(t)— n(t))?, (13)  to a noise-induced maximum whek»2. These results seem
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50 the exp-x?) factor, do not decay “quickly enough” for SR

effects to occur. The peak-signal-to-threshold distance is not
well defined, as it is in the case of a sinusoid, and hence a
smearing of the SR effect takes place. This is also the reason
why the curves of signal power in Fig. 8 show an initial
decrease with increasing noise intensity. Although a Gauss-
ian distribution is not a good representation of real signals,
for signals such as speech and music the situation is worse.
These distributions tend to have long tails that are typically
characterized by exponential decays and hence have an even
slower decay than a Gaussig1]. Consequently, SR effects
in the SNR are not generally to be anticipated in threshold
based systems when complex signals are used.

These results help to set the SSR effect in context. Based

: - : - : on the SNR it seems that, at least for Gaussianly distributed

0 0.5 1 1'8 2 2.5 3 signals, no form of SR effect is observed; but in the trans-
mitted information both SSR and conventional SR occur.

FIG. 9. Plot of the output signal-to-noise ratio agaiasfor Consequently, the fact that SSR is defined as an improve-
N=64 and variousé. The data points are results from the ment in the transmitted information is not so restrictive as at
digital simulation and the curves were obtained from E@8) and first might appear.
(14).

40

301

SNR

20r

10r

L VI. CONCLUSIONS
to indicate, therefore, that a subthreshold SR effect occurs

but there is no evidence that the SSR mechanism leads to an The phenomenology of a new form of stochastic reso-
enhancement of the signal power. In principle, this raisemance, termed SSR, that occurs in parallel threshold arrays
guestion about whether SSR is truly an SR effect—this is, ohas been discussed in detail. SSR is found to differ from SR
course, purely a matter of definition—but it does illustratein a single threshold element in a number of important ways.
that SSR has to be defined as an improvement in the tran&irst, SSR can be observed with signals of arbitrary magni-
mitted information rather than signal power. The reason whytude; there is not, therefore, the restriction that the signal
SSR improves the transmitted information but not the signamust be weak (subthreshold for SR effects to be
power is straightforward to understand. Fdr(x)=0 and  observed—as is the case in a single threshold element. Sec-
o=0 the output of the array switches between its maximunond, the SSR effect is maximizéchaximum noise-induced
range 0 andN—thus the signal power is maximized. Adding information gainswhen the threshold level is set to coincide
noise can only result in this range being reduced—thus lowwith the dc-signal level. In a single element, this condition
ering the signal power. However, in the noiseless case allemoves the beneficial role of the noise. Third, SSR can
that is known about the signal is its polarity—the whole result in large information gains—for large arrays the noise
array switches td\ when the signal is above zero and to 0 can recovery of up to 50% of the noiseless channel capacity.
when below—thus all but 1-bitassuming both output states This appears to be significantly greater than is attainable in a
are equally probabjeof signal information is lost. The prob- single element. Indeed, these information gains appear to
lem with signal power as a measure of system performance &ignificant. In a recent studyt] it was found that, for signals
that it does not take into account the form of the response butomparable in size to the internal noise, arrays designed
only quantifies the size of the signal-induced effect. Thisaround the SSR effect could outperform those designed
may have some use in the context of signal detecwn-  around conventional quantization techniques. This therefore
vided one does not need to know much about the signadeems to indicate that SSR may well have signal processing
being detectedbut is not so useful when the “quality” of applications for the detection of weak signals. As discussed
signal detection is important. in the introduction, the array studied is a good model of a
The results for the SNRFig. 9) are more surprising. No DIMUS sonar array in the on target position. Although the
form of SR effect, SSR or subthreshold SR, could be denoise sources at the hydrophones are predominantly from
tected regardless of the positioning of the threshold. Thaexternal sources, due to the physical separation of the hydro-
SSR effects do not occur can easily be inferred from theohones they are nevertheless largely independent. Conse-
results in Fig. 8, but the fact that conventional SR effects arguently, the results presented suggest that these noise sources
also not observed is unexpected. This result has been coare actually necessary for high fidelity signal detection and
firmed both numericallysolid line obtained using Eq¢14)  coding and should be taken into account when designing
and(15)] and by digital simulation using Eqél2) and(13)  both the array and the signal-processing stages.
(circular data points The reason that SR does not occur Finally, it is of some interest to discuss the results in the
even for predominantly subthreshold signals is due to theontext of neuronal ensembles. It has recently been demon-
distributed naturgin signal spaceof the signal. Gaussian strated that the SSR effect also occurs in an array of
signals, although appearing to decay relatively quickly due td-itzHugh-Nagumo neuron82]. Therefore, the results pre-
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sented for the simple threshold network should have somg33]. The threshold levels adapt, via chemical changes in the
applicability to real neuronal ensembles. It has been estalzones and rods, to the ambient mean light level. This enables
lished that the transinformation is maximized when allthe eye to operate over a wide range of light intensities cov-
thresholds are set to coincide with the dc-signal level. Thisring a 18 fold change in energy flux. Therefore, it may be
has an interesting analogy to the well established phenonpossible that dc adaptation takes place, not only to increase
enon of dc adaptation in sensory neurons. One well knowithe dynamic range over which the eye can operate, but also
example is in light and dark adaptation of the human eydo enhance signal encoding via the SSR effect.
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