
PHYSICAL REVIEW E, VOLUME 63, 037201
Spectral oscillations in a frequency-modulation laser operation
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Piazza L. da Vinci, 32 I-20133 Milano, Italy
~Received 5 September 2000; published 15 February 2001!

We show the existence of coherent oscillations in the optical frequency spectrum of a laser with internal
frequency modulation. These oscillations arise in presence of a slight detuning between the modulation fre-
quency and the cavity axial mode separation and are analogous to collective oscillation modes of a chain of
weakly coupled pendula with resonance frequencies slightly varying along the chain. Although spectral oscil-
lations are damped due to the finite gain bandwidth of the laser cavity, they can be observed in the transient
dynamics during switch-on of the modulator, or can be resonantly excited by an external forcing.
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Intracavity frequency modulation~FM! of a laser is a
well-established mean for the generation of highly coher
frequency-modulated optical signals and ultrashort pu
since the beginning of the laser era@1–3#. Modulation of the
optical cavity length at a frequency close to the cavity ax
mode separation is known to lead to the generation o
mode-locked pulse train~FM mode-locking! under synchro-
nous modulation, or to the generation of a frequen
modulated optical field~FM regime! for a detuned modula
tion, with more complex dynamical behaviors connecti
these two limiting regimes@2–5#. In recent years there ha
been a renewed interest, both theoretical and experime
in the study of FM-operated lasers, mainly motivated
their potential use in optical communication applicatio
@6–9#. This has lead to the development of new laser devi
and techniques based on intracavity frequency modula
@7–9#, envisaging their potential use in high-bit-rate optic
transmission systems@8,9#. At the same time, some effor
has been devoted to a deeper understanding of the dynam
aspects involved in FM lasers, including detailed theoret
and experimental studies on noise in FM-operated la
@6,9,10# and pulse retiming dynamics in FM mode-locke
lasers@11#.

In this Brief Report we add novel insights into the d
namical behavior of FM-operated lasers, showing the e
tence of coherent oscillations in the laser spectrum un
detuned frequency modulation. In the limit of an infinite ga
bandwidth, these oscillations are undamped and man
themselves as a slow breathing of the Bessel FM laser s
trum at a frequency equal to the detuning frequency.
simple mechanical analogy of this reversible dynamics
elucidated. The finite gain bandwidth of the laser breaks
reversibility of the dynamics, making the spectral oscil
tions damped but yet observable during transient forma
of the FM laser spectrum when the modulator is switched

The starting point of the analysis is provided by a rath
standard model of intracavity laser frequency modulation
a homogeneously broadened laser with a broad gain b
width and a slow relaxation rate for the population invers
@2,4,5#. We consider a ring cavity of lengthL containing a
homogeneously broadened gain medium, a frequency lim
that determines the gain bandwidth of the cavity, and
electro-optic phase modulator that varies periodically the
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tical cavity length at a frequencyvm close to the separation
vc52pc/L of the cavity axial modes.

After expanding the normalized intracavity electric fieldF
on the basis of longitudinal ring cavity eigenmodes by s
ting F(z,t)5(nFn(t)exp(22pint)exp(2pinz), wherez is the
longitudinal spatial coordinate along the cavity, scaled to
cavity lengthL, and t is time normalized to the modulatio
period Tm52p/vm , the coupled-mode equations for th
amplitudesFn read@2,4#

Ḟn5F22p ing1g2 l 2n2S vm

vg
D 2GFn1

iD

2
~Fn111Fn21!

~1!

(n50,61,62, . . . ), where g[(vc2vm)/vm is the fre-
quency detuning parameter (ugu!1); g is the round-trip
saturated gain;l is the cavity loss;vg is the spectral band
width of the gainline (vm /vg!1), which is assumed to be
independent of the gain variableg; D is the single-pass
modulation index introduced by the phase modulator; a
the dot stands for the derivative with respect to time. T
saturated gaing obeys the separate equation:

ġ52g iS g2g01g(
n

uFnu2D , ~2!

whereg0 is the small-signal gain due to the pumping andg i
is the gain relaxation rate normalized to the modulation f
quency (g i!1). Since the mode amplitudesFn are slowly-
varying on the temporal scale of the modulation period,
frequency-domain description provided by Eqs.~1! can be
transferred into an equivalent time-domain description by
troducing an independent slow-time variable, the round-
numberT, which accounts for the slow evolution ofFn andg
at successive round-trips according to Eqs.~1! and ~2!
~see, e.g., Ref. @12#!. After setting c(t,T)
[(nFn(T)exp(22pint), we obtain the following equations
of motion for c andg:

]Tc5~g2 l !c1@D] t
21g] t1 iD cos~2pt !#c

[~g2 l !c1L~ t !c, ~3!
©2001 The American Physical Society01-1



he
th

e

-
ro
th
r
ie
in

di
h
F

s
t

n
g

al
is

ex

to
be

xi-
re
te

t
ic
th

ro

es

-

is
im-

s
he
he
n a

nly

tep-

an
all-
ula

the

e

y
ance

lla-

for

BRIEF REPORTS PHYSICAL REVIEW E 63 037201
dg

dT
52g i~g2g02gE!, ~4!

whereD[(vm /vg)2/(2p)2 is the filtering parameter,L(t)
[D] t

21g] t1 iD cos(2pt), and E(T)[*0
1uc(t,T)u2 dt

5(nuFnu2 is the energy over one modulation period. T
main dynamical features of the FM laser are governed by
eigenmodesua(t)& and corresponding eigenvaluesla of the
operatorL, which are in turn strongly sensitive to the valu
of the frequency detuning parameterg @5,13#. The singular
behavior of the system nearg;0 is responsible for the tran
sition of laser operation from the FM regime under asynch
nous modulation to the pulsed mode-locking regime as
conditiong50 is approached@5#. In the FM regime the lase
emits a field with nearly constant intensity and with a carr
frequency which is sinusoidally swept in time, whereas
the FM mode-locking regime the laser output is a perio
train of mode-locked pulses. In this work we consider t
case where the laser is operated in the asynchronous
regime. For an infinite gain bandwidth (D50), the eigen-
modes ofL reduce to the Bessel normal modesuaB(t)&
[ exp@2iG sin(2pt)22piat# with eigenvalues la
522p iag (a50,61,62, . . . ),whereG[D/(2pg) is the
effective modulation index@2,5#. In addition, the dynamics
conserves the energyE, which is fixed by the conditiong
5 l . In the frequency domain, the Bessel modesuaB(t)& cor-
respond to the normal spectral modesFn

(a)5Jn2a(G), which
diagonalize the dynamics of Eqs.~1!. Since the Bessel mode
uaB(t)& form a complete set of normal modes, the solution
Eq. ~3! with the initial conditionc(t,0)5c0(t) can be writ-
ten as

c~ t,T!5(
a

ca~T!exp~22p igaT!uaB~ t !&, ~5!

whereca(0)[^aBuc0& and^ f ug& stands for*0
1f * (t)g(t)dt.

For D50, the coefficientsca are constants and the solutio
c(t,T) is periodic with period equal to the time detunin
Tdet[1/g, i.e., one hasc(t,T1Tdet)5c(t,T). This means
that the dynamics, besides conserving the energy, is
reversible, in the sense that any initial field distribution
periodically recovered. In particular, we show that there
ists a particular family of solutionsuF&, that we callspectral
oscillons, corresponding to a breathing Bessel mode, i.e.,
Bessel mode whose modulation index varies periodically
tweenuG1Fu anduG2Fu, whereF is a real number. Since
the number of oscillating cavity axial modes is appro
mately twice the modulation index, a spectral oscillon cor
sponds to a slow and periodic variation of the spectral ex
of the FM laser output~see Fig. 1!. As it will be discussed
later, the relevance of these dynamical states stems from
fact that they play a major role in the transient dynam
leading to the formation of the FM laser spectrum when
modulator is switched on. The stateuF& is defined by a co-
herent superposition of normal modes with amplitudes p
portional to the Bessel functions of the first kindJa(F), i.e.,
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uF~ t,T!&5 (
a52`

`

Ja~F!uaB~ t !&exp~22p iaT!. ~6!

Taking into account the expression of the normal mod
uaB(t)& and using the identity (aJa(F)exp(22piat)
5exp@2iF sin(2pt)#, Eq. ~6! can be readily cast in the fol
lowing form:

uF~ t,T!&5exp$2 iW~T!sin@2pt1f~T!#%, ~7!

where we have set

W~T!5AG21F222GF cos~2pgT!, ~8a!

sinf~T!52
F

W
sin~2pgT!. ~8b!

Equation ~7! clearly shows that the stateuF& is a Bessel
mode whose modulation index,W(T), varies periodically
between the valuesuG2Fu and uG1Fu according to Eq.
~8a!; the slow breathing of the corresponding spectrum
schematically depicted in Fig. 1. We can appreciate the
portance of the dynamical statesuF& by observing that, for
F5G, one hasuF(t,0)&51, i.e., the initial state correspond
to the laser oscillating on a single cavity axial mode. T
stateuG(t,T)& thus describes the reversible dynamics of t
laser spectrum that occurs when the laser oscillates o
single longitudinal mode and the modulator is sudde
switched on. More generally, the stateuF& describes the re-
versible dynamics of the laser spectrum induced by a s
wise change of the modulation depthD. It is worth observing
that the reversible laser dynamics, attained in the limit of
infinite gain bandwidth, bears a close analogy with the sm
amplitude oscillations of a chain of weakly coupled pend
whose resonance frequencies are weakly varied along
chain by, e.g., variation of the pendulum lengthLn ~see Fig.
2!. Denoting byvn

25g/Ln the resonance frequency of th
uncoupled nth pendulum in the chain and byD
[(2k/m)/v0

2 the normalized coupling strength provided b
the springs, assuming a weak linear change of the reson
frequency vn

2 along the chain according tovn
25v0

2(1
12pgn), with g!D1/2!1, we can write the following lin-
earized equations of motion for the small-amplitude osci
tion anglesun of the pendula:

FIG. 1. Schematic of the breathing dynamics of the spectrum
the oscillon modeuF&.
1-2
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ün52v0
2~112pgn!un1v0

2 D

2
~un111un2122un!.

~9!

The normal modesun
(a) of oscillation and correspondin

resonance frequenciesVa of the coupled pendula are ob
tained in a standard way by looking for a solution of Eqs.~9!

in the formun
(a)(t)5$ūn

(a) exp(iVat)1c.c.%, with the bound-

ary conditions ūn
(a)→0 for n→6`. Using the identity

2nJn(x)5x@Jn21(x)1Jn11(x)# for Bessel functionsJn ,
the normal modes are readily calculated asūn

(a)5Jn2a(G),
whereG[D/2pg, and the resonance frequencies are giv
by Va5v0(11D12pga)1/2.v0(11D/21pga), with a
50,61,62, . . . . Thenormal modes of oscillation of the
chain thus correspond exactly to the Bessel modesuaB&
found in the laser case, and the coherent superpositionuF& of
normal modes corresponds, in the mechanical system,
collective motion of the pendula in which the excitation
periodically transferred between;uG2Fu and ;uG1Fu
adjacent pendula in the chain. In particular, the coherent
perpositionuG& describes the collective motion of the cha
when only one pendulum is initially excited.

When finite cavity gain bandwidth effects are consider
the eigenmodesua& of L lose their normal nature and th
eigenvaluesla become complex-valued@Re(la),0#, with
one dominant modeu0& having the lowest damping rate@5#.
Due to the existence of a dominant mode, the reversible
namics of the dissipationless case is broken, and the statu0&
is asymptotically and stably reached by the system after t
sient @13#. However, damped oscillations of the spectral e
tent, similar to those found in the reversible dynami
should be transiently observed. In particular, these osc
tions should be present in the transient dynamics descri
the switch-on of the FM laser. To study the laser dynam
for DÞ0, we have numerically integrated the coupled-mo
equations~1!, together with the equation for gain dynami
@Eq. ~2!#, using a high-accuracy Runge–Kutta method w
variable step. As an initial condition, we assumed the so
tion corresponding the laser operated in the single cen
longitudinal mode with the modulator switched off, i.e., w
assumedFn(0)50 if nÞ0, g5 l , and uF0u5(C21)1/2,
whereC[g0 / l is the pump parameter. The spectral width
the oscillating field is measured through the varianceDn
[((nn2uFnu2/(nuFnu2)1/2. A typical behavior of the slow-

FIG. 2. Mechanical analogy of the laser dynamics in the reve
ible case. The massm and spring strengthk are constant along the
chain of pendula, whereas the lengthLn is slightly varying withn,
providing a linear change of the resonance frequencies of the
dula along the chain.
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evolution of Dn at successive round-trips is shown in Fi
3~a!. The normalized laser parameters chosen in the sim
tions are typical for operational conditions of FM solid-sta
lasers@5,7#; in particular, notice that the frequency detunin
has been chosen larger than the gain relaxation rate. Afte
modulator is switched on atT50, the spectral oscillations
are damped out due to the spectral filtering, with the appe
ance of higher-order harmonic components~in particular the
second harmonic! in the frequency response@see the insets in
Fig. 3~a!#. The existence of higher-order harmonic frequen
components can be understood by observing that, owin
the nonvanishing value ofD, the coefficientsca in the ex-
pansion ~5! become time dependent and their dynami
equations read

dca

dT
5~g2 l !ca1(

b
cb^aBuD] t

2ubB&exp@22p ig~b2a!T#

~10!

with ca(0)5Ja(G). Equations~10! are supplemented by Eq
~4! for the gain dynamics withE5(aucau2. Since the sum on
the right-hand side in Eq.~10! is nonvanishing forb5a,a

-

n-

FIG. 3. Evolution of the spectral widthDn ~a! and energyE ~b!
of the laser field versus the normalized round-trip numberT/Tdet,
as obtained by numerical simulations of Eqs.~1! and ~2!, for pa-
rameter valuesg51023, D5231027, D50.1, C51.5, andg i
5231025. The number of cavity axial modes used in the simu
tion is N5101. The insets in the figures are enlargements show
the dynamical evolution ofDn andE on the time scale of the time
detuningTdet. The dashed curve in the inset on the left-hand side
Fig. 3~a! is the behavior ofDn as predicted in the undamped ca
~i.e., for D50).
1-3
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61,a62, higher-order beating terms at harmonics of t
detuning frequency are generated in the dynamical evolut
In addition, when the modulator is switched on, due to
finite gain bandwidth the initial field energy stored in th
cavity is larger than its steady-state value in the FM mode
operation, so that damped relaxation oscillations due to
gain dynamics are excited, as shown in Fig. 3~b!. Notice also
that the behavior of the field energy shows, besides the s

FIG. 4. Evolution of the spectral widthDn ~a! and energyE ~b!
of the laser field in presence of a periodic stepwise modulation oD
with period Tdet: D50.1 for nTdet,T,(n11/2)Tdet and D
50.101 for (n11/2)Tdet,T,(n11)Tdet (n50,1,2,3, . . . ); the
other parameter values are the same as in Fig. 3.
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ing behavior typical of the relaxation oscillations, also a s
perimposed faster modulation at the detuning freque
which is a signature of the spectral oscillations@14# @see the
insets in Fig. 3~b!#. The numerical results shown in Fig. 3 a
derived by a numerical analysis of Eqs.~1! and~4!, however
we checked that the same results are obtained by integra
of Eqs. ~10! and ~4!, i.e., by projecting the fieldc(t,T) on
the basis of Bessel modesuaB(t)& instead of that of the lon-
gitudinal ring cavity eigenmodes. As a final remark, we me
tion that sustained spectral oscillations may be resona
excited by external forcing, such as by a periodic variation
the modulation indexD at the detuning frequency. As a
example, Fig. 4 shows the resonant excitation of spec
oscillations, for the same parameter values as in Fig. 3
obtained by a small-amplitue stepwise modulation ofD at a
frequency equal to the frequency detuningg.

In conclusion, we have shown the existence of coher
oscillations in the spectral output of an FM-operated la
and discussed their relevance in the transient dynamics l
ing to the formation of the FM laser spectrum. In the limit
an infinite gain bandwidth, these oscillations are undam
and the spectral dynamics bears a close analogy with
reversible dynamics of a chain of weakly coupled pend
with varying frequency. It is the dissipative nature of th
laser dynamics, due to the finite gain bandwidth, that ma
the spectral oscillations damped. The present analysis
vides new important insights into the dynamics of FM
operated lasers and may be helpful for a deeper underst
ing and for the control of complex dynamical and noi
behaviors observed in FM-operated lasers@6,9,14#.
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