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Spectral oscillations in a frequency-modulation laser operation
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We show the existence of coherent oscillations in the optical frequency spectrum of a laser with internal
frequency modulation. These oscillations arise in presence of a slight detuning between the modulation fre-
guency and the cavity axial mode separation and are analogous to collective oscillation modes of a chain of
weakly coupled pendula with resonance frequencies slightly varying along the chain. Although spectral oscil-
lations are damped due to the finite gain bandwidth of the laser cavity, they can be observed in the transient
dynamics during switch-on of the modulator, or can be resonantly excited by an external forcing.
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Intracavity frequency modulatiofFM) of a laser is a tical cavity length at a frequenay,, close to the separation
well-established mean for the generation of highly coherentw.=2mc/L of the cavity axial modes.
frequency-modulated optical signals and ultrashort pulses After expanding the normalized intracavity electric fiéld
since the beginning of the laser gda-3]. Modulation of the  on the basis of longitudinal ring cavity eigenmodes by set-
optical cavity length at a frequency close to the cavity axialting F(z,t) == ,F(t)exp(—2mint)exp(27inz), wherez is the
mode separation is known to lead to the generation of &ngitudinal spatial coordinate along the cavity, scaled to the
mode-locked pulse traifFM mode-locking under synchro- cavity lengthL, andt is time normalized to the modulation
nous modulation, or to the generation of a frequencyferiod T,=2m/wy, the coupled-mode equations for the
modulated optical fieldFM regime for a detuned modula- amplitudesF, read[2,4]
tion, with more complex dynamical behaviors connecting
these two limiting regime$2—5]. In recent years there has ) o[ @m 2 iA
been a renewed interest, both theoretical and experimentalFn=| ~2@iny+g—I-n" == |Fn+ —(Fn:1+Fqq)
in the study of FM-operated lasers, mainly motivated by 9 (1)
their potential use in optical communication applications
[6—9]. This has lead to the development of new laser deviceﬁnzoyi 1,42, ...), where y=(w.— o) o, is the fre-

and techn?que_s base.d on int.racavity. fre_quen.cy modulgtioauency detuning parametef{<1); g is the round-trip
[7-9], envisaging their potential use in high-bit-rate optical 55y rated gaint is the cavity losswy is the spectral band-
transmission Syster‘r’{£8,9]. At the same tlme, some effort. width of the gainline (‘)m/wg< 1), which is assumed to be
has been devoted to a deeper understanding of the dynami 'ﬁhependent of the gain variablg A is the single-pass
aspects involved in FM lasers, including detailed theoretica},, jq,1ation index introduced by the phase modulator; and
e dot stands for the derivative with respect to time. The

and experimental studies on noise in FM-operated Iaserl%
saturated gaig obeys the separate equation:

[6,9,10 and pulse retiming dynamics in FM mode-locked
lasers[11].

In this Brief Report we add novel insights into the dy-
namical behavior of FM-operated lasers, showing the exis- g:_VII g—0go+ 92 IFLI2], 2)
tence of coherent oscillations in the laser spectrum under n
detuned frequency modulation. In the limit of an infinite gain
bandwidth, these oscillations are undamped and manifesthereg, is the small-signal gain due to the pumping apd
themselves as a slow breathing of the Bessel FM laser speis the gain relaxation rate normalized to the modulation fre-
trum at a frequency equal to the detuning frequency. Aquency (y<1). Since the mode amplitudés, are slowly-
simple mechanical analogy of this reversible dynamics isvarying on the temporal scale of the modulation period, the
elucidated. The finite gain bandwidth of the laser breaks thérequency-domain description provided by E@%) can be
reversibility of the dynamics, making the spectral oscilla-transferred into an equivalent time-domain description by in-
tions damped but yet observable during transient formatiomroducing an independent slow-time variable, the round-trip
of the FM laser spectrum when the modulator is switched onnumberT, which accounts for the slow evolution Bf, andg

The starting point of the analysis is provided by a ratherat successive round-trips according to E@$) and (2)
standard model of intracavity laser frequency modulation insee, e.g., Ref. [12]). After setting (t,T)

a homogeneously broadened laser with a broad gain baneg=3 F (T)exp(—2mint), we obtain the following equations
width and a slow relaxation rate for the population inversionof motion for ¢ andg:
[2,4,5. We consider a ring cavity of length containing a

homogeneously broadened gain medium, a frequency limiter drih=(g— ) p+[ D2+ ya,+iA cod 2mt) |
that determines the gain bandwidth of the cavity, and an !
electro-optic phase modulator that varies periodically the op- =(g—)y+ L(1) 4, 3
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dg T=0 7=(1/2)T,, T=T,,
gt~ N9=90—9%), (4)

- = - « - 2
where D= (wp/wg)?/(2m)? is the filtering parameter(t)
=Dd’+ yd+iAcos(2rt), and ET)=[3|u(t,T)|?dt
=3,|F,|? is the energy over one modulation period. The
main dynamical features of the FM laser are governed by the Spectral mode number #
eigenmodesa(t)) and corresponding eigenvalugg of the
operator£, which are in turn strongly sensitive to the value  FIG. 1. Schematic of the breathing dynamics of the spectrum for
of the frequency detuning parameter{5,13]. The singular  the oscillon mode®).
behavior of the system neas~ 0 is responsible for the tran-
sition of laser operation from the FM regime under asynchro- *
nous modulation to the pulsed mode-locking regime as the |D(t,T))= >, I (P)|ag(t))exp—2miaT). (6)
conditiony=0 is approachefb]. In the FM regime the laser “=="
emits a field with nearly constant intensity and with a carrier
frequency which is sinusoidally swept in time, whereas inTaking into account the expression of the normal modes
the FM mode-locking regime the laser output is a periodid @g(t)) and using the identity =,J,(®)exp(—27iat)
train of mode-locked pulses. In this work we consider the=ex{d —i® sin(2xt)], Eqg. (6) can be readily cast in the fol-
case where the laser is operated in the asynchronous Fiwing form:
regime. For an infinite gain bandwidtfDEO0), the eigen-
modes of £ reduce to the Bessel normal modess(t)) |D(t,T)y=exp[—iW(T)sin 2a7t+ ¢(T)1}, (7)
= exfg —il'sin(2nt)—2mat] with  eigenvalues A\,
= —2_7riay (a=0.,i 1zi 2,... ),wherer_EA/(Zwy) is thg where we have set
effective modulation inde%2,5]. In addition, the dynamics
conserves the energy, which is fixed by the conditiory
=I. In the frequency domain, the Bessel mofies(t)) cor-
respond to the normal spectral mod&§)=J,,_,(I'), which
diagonalize the dynamics of Eq4). Since the Bessel modes . .
|ag(t)) form a complete set of normal modes, the solution to sing(T) = — {SIN27yT). (80)
Eq. (3) with the initial conditiony(t,0)= io(t) can be writ-
ten as

W(T)=\I'?+®?—2I'd cog2myT), (8a)

Equation (7) clearly shows that the stateb) is a Bessel
mode whose modulation index¥(T), varies periodically
between the value'—®| and |I"+ ®| according to Eq.
P(t,T)=2 c (T)exp —2miyaT)|ag(l)), (5)  (8a); the slow breathing of the corresponding spectrum is
“ schematically depicted in Fig. 1. We can appreciate the im-
portance of the dynamical statgk) by observing that, for
wherec,(0)=(ag| o) and(f|g) stands forf3f* (t)g(t)dt. ~P=I', one ha#@(t,Q)}zl, i.e., the initial state corresponds
For D=0, the coefficients,, are constants and the solution © the laser oscillating on a single cavity axial mode. The
#(t,T) is periodic with period equal to the time detuning state|T'(t,T)) thus describes the reversible dynamlcs of the
Tae=1/ly, i.€., one hasy(t, T+ Tae) = ¢(t,T). This means Ia}ser spectrum that occurs when the laser os_cnlates on a
that the dynamics, besides conserving the energy, is alsgngle longitudinal mode and the modulator is suddenly
reversible, in the sense that any initial field distribution isSWitched on. More generally, the stdte) describes the re-
periodically recovered. In particular, we show that there exversible dynamics of the laser spectrum induced by a step-
ists a particular family of solutionisb), that we callspectral ~ Wis€ change of the modulation depth It is worth observing
oscillons corresponding to a breathing Bessel mode, i.e., to éhf_it _the rgversmle _Iaser dynamics, attained in the limit of an
Bessel mode whose modulation index varies periodically belnfinite gain bandwidth, bears a close analogy with the small-
tween|I"+®| and|I'— ®|, whered is a real number. Since amplitude oscillations of a cham of weakly coupled pendula
the number of oscillating cavity axial modes is approxi-Whose resonance frequencies are weakly varied along the
mately twice the modulation index, a spectral oscillon corre-chain by, e.g., varzlatlon of the pendulum length (see Fig.
sponds to a slow and periodic variation of the spectral exten®)- Denoting by w;=g/L, the resonance frequency of the
of the FM laser outputsee Fig. L As it will be discussed uncoupled nth pendulum in the chain and byA
later, the relevance of these dynamical states stems from tte(2k/m)/wj the normalized coupling strength provided by
fact that they play a major role in the transient dynamicsthe springs, assuming a weak linear change of the resonance
leading to the formation of the FM laser spectrum when thefrequency wﬁ along the chain according t&)ﬁ:wé(l
modulator is switched on. The stdi®) is defined by a co- +2myn), with y<AY2<1, we can write the following lin-
herent superposition of normal modes with amplitudes proearized equations of motion for the small-amplitude oscilla-
portional to the Bessel functions of the first kidg(P), i.e.,  tion angleséd, of the pendula:
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FIG. 2. Mechanical analogy of the laser dynamics in the revers-
ible case. The magw and spring strengtk are constant along the
chain of pendula, whereas the lendthis slightly varying withn,
providing a linear change of the resonance frequencies of the pen
dula along the chain.
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resonance frequencied, of the coupled pendula are ob-

tained in a standard way by looking for a solution of E@&s. 2
in the form 9&“)(t)={§$1“) exp(Q,t)+c.c}, with the bound-

>
o
. . . [0} -
The normal modesﬁff“) of oscillation and corresponding (b) S ‘E
0

ary conditionsgﬁf)—@ for n— *o. Using the identity 0
2nJ,(X) =x[J,_1(X) + I, +1(X)] for Bessel functionsd,,

the normal modes are readily calculated%%);ln_a(l“),
whereI’=A/2my, and the resonance frequencies are given FIG. 3. Evolution of the spectral widthn (&) and energy (b)
by Q,=wo(1+A+27ya) V2 wo(1+ A2+ wya), with a of the laser field versus the normalized round-trip NUMDETyet,
=0+1+2 Thenormal modes of oscillation of the as obtained by numerical simulations of E¢¥) and (2), for pa-

FLE2, .. ume S! ons ot 1
chain thus correspond exactly to the Bessel modggy  'ameter valuesy=10"%, D=2x10"', A=0.1, C=15, andy,
found in the laser case, and the coherent superpositiprof =2x10"%. The number of cavity axial modes used in the simula-
normal modes corresponds, in the mechanical system, to 9N i N=101. The insets in the figures are enlargements showing
collective motion of the pendula in which the excitation is 1€ dynamical evolution oAn andé on the time scale of the time

C detuningT 4. The dashed curve in the inset on the left-hand side in
periodically transferred between |I'—®| and ~|T +d| . . . . .

. . . . Fig. 3(a) is the behavior ofAn as predicted in the undamped case
adjacent pendula in the chain. In particular, the coherent su- _

o . . . . Ltl.e., forD=0).
perposition|T") describes the collective motion of the chain
when only one pendulum is initially excited.

When finite cavity gain bandwidth effects are considered
the eigenmodes$e) of £ lose their normal nature and the
eigenvalues\ , become complex-valugdre(\ ,)<0], with
one dominant modg)) having the lowest damping rafé].
Due to the existence of a dominant mode, the reversible d

namics of the dissipationiess case is broken, and the|State are damped out due to the spectral filtering, with the appear-
is asymptotically and stably reached by the system after tranénce of higher-order harmonic componefitsparticular the

feli?t[éi?g{ilg? Vtvoe vtehr(,):lear?cf)jr?ldois: Iliﬁgor:Zv%fr;?tﬁespdecrE;?L ii );'second harmonjdn the frequency respongsee the insets in
shoLJId be transiently observed. In particular thesye oscillzil-:ig' 3(@)]. The existence of higher-order harmonic frequency
tions should be res}(/ant in the t.ransirt)ant d na;nics describincomponems can be understood by observing that, owing to
the switch-on ofpthe FM laser. To stud t%e laser dynamic fhe nonvanishing value b, the coefficients, in the ex-
. . y y ansion (5) become time dependent and their dynamical

for D+#0, we have numerically integrated the coupled-mod :

. . X ) . __equations read
equations(1), together with the equation for gain dynamics
[Eq. (2)], using a high-accuracy Runge—Kutta method with .
variable step. As an initial condition, we assumed the solu==¢ _ (4 |)c S c{ ap| Do?| Beyexd —2mi y(B—a)T]
tion corresponding the laser operated in the single central T B
longitudinal mode with the modulator switched off, i.e., we (10
assumedF,(0)=0 if n#0, g=I, and |Fo|=(C—1)¥2
whereC=g,/I is the pump parameter. The spectral width ofwith ¢,(0)=J,(I"). Equationg10) are supplemented by Eq.
the oscillating field is measured through the variadae  (4) for the gain dynamics wit§== ,|c,|?. Since the sum on
=(2.n?|F |22, |F|?)Y2 A typical behavior of the slow- the right-hand side in Eq10) is nonvanishing foB=a,«

50 100 150 200 250 300
Normalized round-trip number

evolution of An at successive round-trips is shown in Fig.
3(a). The normalized laser parameters chosen in the simula-
tions are typical for operational conditions of FM solid-state
lasers[5,7]; in particular, notice that the frequency detuning
has been chosen larger than the gain relaxation rate. After the
Ymodulator is switched on af=0, the spectral oscillations
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< 20 ing behavior typical of the relaxation oscillations, also a su-
X< perimposed faster modulation at the detuning frequency
(a) ; 10 which is a signature of the spectral oscillatigiag] [see the
B insets in Fig. 8)]. The numerical results shown in Fig. 3 are
ol derived by a numerical analysis of Eq%) and(4), however
» 0O 30 20 0 50 100 we checked that the same results are obtained by integration
Normalized round-trip number of Eqs.'(10) and (4), i.e., by projgcting the fields(t,T) on
4 —— the basis of Bessel modésg(t)) instead of that of the lon-

gitudinal ring cavity eigenmodes. As a final remark, we men-
3> tion that sustained spectral oscillations may be resonantly

(b) S 2f - excited by external forcing, such as by a periodic variation of
w the modulation indexA at the detuning frequency. As an

example, Fig. 4 shows the resonant excitation of spectral

0 [ | 1 | | 1 1

0 50 100 150 200 250 300 oscillations, for the same parameter values as in Fig. 3, as
Normalized round-trip number obtained by a small-amplitue stepwise modulatiom\oét a
frequency equal to the frequency detuning
FIG. 4. Evolution of the spectral widthn (a) and energy’ (b) In conclusion, we have shown the existence of coherent

of the laser field in presence of a periodic stepwise modulatian of ggcillations in the spectral output of an FM-operated laser
with period Tger: A=0.1 for nTee<T<(n+1/2)Tger @nd A znd discussed their relevance in the transient dynamics lead-
=0.101 for +12)Tye<T<(n+1)Tyer (N=0,1,23...); the  jnq g the formation of the FM laser spectrum. In the limit of
other parameter values are the same as in Fig. 3. an infinite gain bandwidth, these oscillations are undamped

and the spectral dynamics bears a close analogy with the
+1,0* 2, higher-order beating terms at harmonics of thereversible dynamics of a chain of weakly coupled pendula
detuning frequency are generated in the dynamical evolutiorwith varying frequency. It is the dissipative nature of the
In addition, when the modulator is switched on, due to thdaser dynamics, due to the finite gain bandwidth, that makes
finite gain bandwidth the initial field energy stored in the the spectral oscillations damped. The present analysis pro-
cavity is larger than its steady-state value in the FM mode ofiides new important insights into the dynamics of FM-
operation, so that damped relaxation oscillations due to theperated lasers and may be helpful for a deeper understand-
gain dynamics are excited, as shown in Figh)3Notice also  ing and for the control of complex dynamical and noisy
that the behavior of the field energy shows, besides the spikeehaviors observed in FM-operated ladé&®,14.
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