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Unified optimization criterion for energy converters
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We propose a unified optimization criterion for energy converters. It represents the best compromise be-
tween energy benefits and losses for a specific job and neither an explicit evaluation of entropies nor the
consideration of environmental parameters are required. For all considered systems the criterion predicts a
performance regime laying between those of maximum efficiency and maximum useful energy. Such regime
has been invoked as optimum not only in macroscopic heat engines but also in some molecular motors.
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The subject of optimization of real devices has receivedions that some molecular motors seem to be optimized both
continued attention in thermodynamics, engineering and, refrom the velocity and the efficiency standpoifl®,11]. Al-
cently, in biochemistry1—6]. The main goal in optimization though conceptual differences exist between microscopic
is to find the pathway that yields optimum performance in aand macroscopic enging3,10,11, this fact suggests that the
process operating at nonzero rates. To achieve this goal, @foposed optimization could be used as a unified framework
objective function that depends on parameters of the problerf®r dealing with molecular and macroscopic engines.
must be optimized. In principle one has the freedom of Let us consider an energy converter whose task is to pro-
choice of such objective function. It has been pointed ouduce a useful energi,(x;{a}) by the conversion of an
[6,7], however, that ahermodynamiccriterion devoted to input energyE;(x;{a}) along a given(nonideal process.
analyze the optimum regime of operation in a real processlerex denotes an independent variable wHitg denotes a
should meet the following requirement$) its dependence set of parameters which can be considered as controls. The
on the parameters of the process should be a guidance @#®nventional efficiency of this converter, defined as the ratio
order to improve the performance of that proce§s; it  between the useful and input energy(x;{a})
should not depend on parameters of the environment; aneg E,(x;{a})/Ei(x;{a}), satisfies the relationzy({a})

(iii ) it should take into account the unavoidable dissipation of<z(x;{a})<zZna{{c}), wherez\({a}) and z,({a}) are, re-
energy provoked by the process. In this letter we address thgpectively, the minimum and maximum valueszgk;{a})
problem of finding an optimization criterion which, satisfy- in the allowed range of values affor given a’s [we note
ing the above requirements, can be applied to any energipat in some energy convertezg;,{«}#0 (see below for an
converter. example]. Then, for a given input energy, one has

The two methods most widely used in the optimization ofz,;,({a}) Ei(x;{a}) <E (X{a}) <z {{a}))Ei(X{a}). These lim-
traditional thermodynamic heat devices are the entropy gerits suggest to define an effective useful energy as
eration minimization and exergy analysis. Both methods ar&,, .«(x;{a})=E (x;{a}) — znn({a})E(X{a}) and a lost use-
based on the Gouy-Stodola theor¢8j, which quantifies ful energy asE, | (x;{a}) = Znal{a})Ei(X{e}) —Ey(X{a}). TO
the lost available work(or exergy destruction W,  evaluate the best compromise between useful energy and lost
=T(Syen, fOr any system operating under irreversitfieite-  useful energy we introduce the function as the difference
time) conditions in terms of the corresponding entropy gen-between these quantities:
eration,Sye,, and the environment temperatuiig, The ap-
plication of this theorem to a particular design requires theQ(X;{a}): E,ei(X:{ad)—E,  (x;{a})
evaluation ofSye, through a model linking the thermody- ’ ’

namic nonideality of the design to the physical characteris- 2z(x;{a}) — zmn({a}) = Zmad{a})

tics of the system. However, deriving expressionsSgy, is - z(x;{a}) Eu(xi{a}),
a subtle and, sometimes, difficult ta&s it happens for situ-

ations where the system is far from the equilibrjufxer- @

getic methods additionally depend on the parameters of the
environment which can be unknown or far from the averagevhich is our proposal as objective function to analyze the
values[6,7]. A number of different optimization criteria have operation mode of any energy converter giving the best com-
also been proposed, but they suffer from a lack of generalitpromise between energy benefits and losses.
since they apply to particular heat devices, either heat en- We first apply the criterion to macroscopic heat devices
gines, refrigerators, or heat-pump cyc|és. used in thermodynamics, distinguishing among heat engines
An important feature of the proposed criterion is that it (HE), refrigerators(RE), and heat pumpé&dP). In a HE the
gives an optimized efficiency that lies between the maximunuseful energy is the work deliveré@/| and the input energy
efficiency and the efficiency under maximum power condi-is the heat supplyQy|; a RE extracts a refrigeration load
tions. Such operation regime was invoked as optimum Q| from a cold space at the cost of an expenditure of work
traditional heat enginel®] and agrees with recent observa- |W|; and a HP delivers a heating lof@y| to a warm space
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while a given worklW| is supplied. The efficiencies of these
systems are well known:zye=7=|W|/|Qy|, zre=¢€
=|Q.|/|W| is the coefficient of performancegCOP of the
RE andzyp=v=|Qyul|/|W| is the COP of the HP. Note that
7 and e can attain the value zero, while=e¢+1. As a
consequence, in a HP is never below unity and the effec-
tive useful heating load igQy|—|W|. The HP is an explicit
example where,,,#0. From the above considerations and
using Eq.(1) we obtain for these heat devices the following
expressions fof):

0.2 0.4 0.6 0.8 T 1

QHE:2|VV|_|VV|max - . . .
FIG. 1. Efficiency, , and (dimensionless power, W, for an
=(27— max| Qnl irreversible Carnot-type HE model € 0.9, o,.=1, o;,=0.1) ver-
sus 7. Upper part: maximunmy (dashed ling and » under condi-
=(2n—- 77ma><)|W|/7]y (2 . . : - . . .
tions of maximumQ ¢ (solid line) and maximumw (dotted ling.
Qre=2|QL— QLI max Lower part: maximum (dashed lingand W under conditions of

maximquHE (solid line) and maximums (dotted ling.
=(2e— 5ma><)|W|

=(2€— €may) | QLI €, 3 _
ma - the internal heat conductance to the external hot-end conduc-
Qup=2|Qu| — |W|— | Q| max tance. For this mode},,,=0 and the rate-dependent version

of Eqg. (2) becomes
=(2v—1- Vmax)|W|

:(ZV_l_VmaX)lQH|/V, (4) QHE(ah;’T,l,O'hC,O'ih)
which can be considered, respectively, as the best compro-
mise between maximum work performed and minimum lost =[27(an; 71, 0hc,0in) = Tmad 71, 0he Tin) ]
work in a HE, between maximum cooling load and minimum ,
lost cooling load in a RE, and between the maximum heating XW(an; 71,0, 0in)! n(an; 71,00, i) -

load and minimum lost heating load in a HP.

In order to obtain concrete results we focus on the so- . . : :
called irreversible Carnot-type models. They are widely useé:Or given values of cqntrols, the functiong W, and.QHE
in finite-time thermodynamicg5] because, in spite of their always present a maximum for sorag=1. The maximum

relative analytical simplicity, are able to account for the mainefffICIenCy arld the_ efficiencies under con@ﬂons of maximum
ireversibilities that usually arise in real heat devices: finite-W and maximum(},e are plotted versus in the upper part
rate heat transfer between the working fluid and the externdf Fig. 1 for a set of realistic values of controls, while the

heat sources, internal dissipation of the working fluid, andower part shows the maximum power and the power under
heat leak between reservoirs. For an irreversible Carnot-typgonditions of maximumy and maximum(),,z. As it can be

model of a HE, the poweW and efficiencyr are[12] seen, theQ ¢ regime gives efficiencies and powers whose
5 ) values are between those obtained from the maximum effi-
W(a, 7.l _ )ml(ah_l)_ahc(ah_l) — (@~ an) ciency and maximum power regimes. We have checked that
hT:1:The. Tin an(l + The) — Thedl ' this happens for any allowed value of the controls.
(5) For an irreversible Carnot-type RE the cooling ragg,,
and the COPeg, are[13]
( | ) [ 1 anT }
a ; T! !O- 10-- = -1 _ i~ A\
n(ap he+ Tih | —ope(an—1) al I : aa,— B @
a ;Ty 1O hey T L———_~,
a,—1 5 LR eI yap—(y—1)
X
ah_1+0'ihah(l_T) ' ( )
adp—
wherea,=1 is the ratio of the hot reservoir temperature to e(an;7l,0nhc,00h) = h#8 , (8)
: . : . (an—1)(yan—9)
the working fluid temperature in the upper isothermal pro- h Yeh

cess(our independent variabbe) andr, I, oy,., andoy, are

the set{a} of controls accounting for, respectively, the ratio with a=17—oi,(1+lon)(1—17), B=a+on(l—17), vy

of the cold reservoir to the hot reservoir temperature, the=1+10oy,., andé=1(o,.+ 7). Now ap=1 denotes the ratio
internal dissipations of the working fluid, the ratio of the of the temperature of the refrigerant in the upper isothermal
external hot-end to cold-end conductances and the ratio girocess to the temperature of the external hot reservoir,
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FIG. 2. COP, and(dimensionlesscooling powerJQL|, for an
irreversible Carnot-type RE modél<€0.9, op.=1, 0y,=0.1) ver- FIG. 3. As in Fig. 1 but for the efficiencyy, and(dimension-
sus . (@ Maximum e (dashed ling and e under conditions of les9 power,P, of the isothermal linear model versgs.
maximum(')HE (solid line) and maximum|Q, | (dotted ling; (b)
maximum|Q, | (dashed lingand|Q, | under conditions of maxi- best compromise between power production and the product
mum Qe (solid line) and maximume (dotted ling. of entropy production and the cold reservoir temperature

_ Tc: Epe=W—T¢Sgen to the optimization of an endorevers-
emn=0 and Qgrg(an;7l,0ne,0in)=[2€(ap; 7!, 0he,Tin) ible Carnot HE. Later, this criterion was reinterpreted by Yan
— €mad 7,01, 0in) IQLI(@n 71 One 01n) €(@n ) 0, 0)- Fig- [18] in exergetic terms ale=W— T,Sye,With T, denoting
ure 2a) shows the maximum COP and the COP under conthe environment temperature. Thgq,, result was first
dition of maximumQQ e (the COP under condition of maxi- reported by Yan and Chefl9] in the optimization of an
mum |Q, | is zerg and Fig. Zb) shows the maximumQ, | endore_versible (;arnot RE under the ecological criterion
and |Q,| under conditions of maximune and maximum Ere=|QL|— €cToSgen (the best compromise between the

. . . aximum rate of refrigeration and the minimum rate of ex-
Qre. Note again that the proposed criterion gives a COFJenrgy los3 when T, takes the value of the hot reservai, .

belo_vv that corresponding to the maximum COP regime and The optimizedv 5 _ Value can be also obtained from the
cooling power lying between the maximum one and that ob- maxyp

tained under maximum COP. Results for the Carnot-type iroPtimization of an endoreversible HP under the criterion
reversible HP are straightforward and they are not shown. Epp=(|Qu|—|W|) = vcT¢Sgen With To=T¢. Accordingly,

As a second application to heat devices, we consider théhe () criterion is an ecological-like optimization but without
so-calledendoreversiblenodels[1,14]. These models, sub- requiring environmental parameters and explicit calculations
ject to criticisms during the last yeafd5] (see however of Sy
[16]), assume an internally reversible Carnot engine coupled An entirely different energy converter is the isothermal
to two external heat reservoirs through linear finite-rate healinear model for systems in nonreversible steady states as
transfer laws. They emerge from the irreversible Carnot-typeonsidered by Stucki20], Santillan et al. [21], and Prost
models if I=1 and 0;,=0. NOW 7ma=1—7=7c, €max €t al.[3,10] in the analysis of the efficiency in linear biologi-
=1(1-D=¢€c, Vmax=1/(1—7)=v and the values of in- cal motors. For such energy converter poweyr,and effi-

volved functions under maximunf) condition can be CIeNcy,», areP=—TJX; and 7=—J;X;/3,X5, whered,
worked out analytically. In particular, the results for the ef-@nd J2 are the generalized currents axg and X, are the

fici d the COP' S —1— (7 D)2, generalized forces, with;X; <0 andJ,X,>0 denoting, re-
iciency an © S ArC7maxye r(r+1) spectively, the driven and driver processes in the steady

€maxpe= (V2= 7= 7), ANdVia, .= €mag.+ 1. LIS @ISO gate Under a constant driver forke, these magnitudes can
found that 7ca< 7max), < 7c, Where nca=1- J7, isthe be expressed in terms of a relevant variabke-
(Curzon—Ahlborn[14]) efficiency under maximum power —X;L;11/X;L1,[0=<x=1] and a(contro) irreversibility pa-
conditions. Two of the above-dependent values have been rameter q=Lj,/\L1il o [0< g°<1] measuring the cou-
reported previously. Angulo-Brown[17] first derived pling degree between driver and driven processes through
Mmasy by applying the so-called ecological criterigthe  the phenomenological constaritg, as
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92x(1—x) of gravity), and a friction force proportional to the velocity
P(x;q)=TLppX20°X(1—X), 7(X;q)= —— of the massesy. In the steady state this velocity is given
1-g°x o by vse=M1(1— 77)g/2u, the (usefu) power output is

Py= MZQUSSZ(Mlg)Zn(l_ I (2u)

In this case the) function become$ 7,in(4) =0]
. , =(M29)*(1—n)/(2un),
Q(%;9)=TLpX5[ 20°X(1 = X) = 7mad D) (1~ g?X)],

(100 wherenp=M,/M; is the efficiency, and the objective func-

. tion isQ=(27;—1)P /5. If we keepM ; constant, maximi-
where =(1-1-9%/g? In Fig. 3b) we plot the . ;' u g g LA o
resultszg?kt(ﬂze rgaximumqp)oyver and govger) undel? maximunf2ton of power gives an efficiency 1/2 while maximization

: - . . of Q) gives and efficiency 3/4, in full agreement with results
7 andQ and in Fig. %a) the results for the maximum effi for the isothermal linear modéivhere the driver force was

ciency and efficiency under maximumand ). We stress  giso considered as a constaitt the limit g>— 1. Keeping
two main facts(a) For any value ofj? the ) regime yields M, constant, maximization of power gives a nonoperative
a power between the maximum power and the power undejerg efficiency while maximization d gives an efficiency
maximum efficiency condition and an efficiency between they/3.

maximum attainable value and the efficiency under maxi- |, summary, a unified optimization criterion for energy

mum power condition(b) For qzﬁli the maximum effi-  converters has been presented. It represents the best compro-
ciency regime is not operative since it implies zero powennise petween maximum useful energy and minimum lost
and the maximum power regime implies a drastic decr9a3|ngsefu| energy for a specific job, it is independent of any
of the efficiency up to 0.5. Between these two reginfes environment parameter, and does not require the explicit
yields an efficiency approaching 3/4 while power remainsderivation of entropy generation. For endoreversible Carnot-
finite, in agreement with reported resultg80,21]. Similar  type models it recovers in a natural way some temperature-
values to those plotted in Fig(® emerge from an ecologi- dependent efficiency limits obtained under different

cal regime[21], E, which can be obtained frot by replac- ecological-like criteria. For irreversible heat engines it pre-
iNg 7may Dy the unity in Eq.(10). A significant difference dicts an operation regime lying between those corresponding

between them is that tHe regime crosses, for some value of LO mt:;mmum ef30|er&cy andt_ maximum power. _Suchdreglrne
g2, the maximum efficiency and maximum power criteria. as been considered as optimum in macroscopic and molecu-

: o lar engines.
Only wheng?=1, E andQ) coincide.
Finally, with the aim of showing the wide applicability of
the proposed optimization, we analyze a mechanical con- We thank F. Angulo-Brown and M. Sanfitiafor stimu-
verter: an Atwood maching22] with two weightsM,g, the  lating discussions. Financial support from CICYT of Spain
driven force, andvl, g, the driver force § is the acceleration (Grant No. PB98-0261is acknowledged.
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