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Dichromatic nonlinear eigenmodes in slab waveguide withy® nonlinearity
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The existence of purely nonlinear eigenmodes in a waveguiding structure composed of a slab with quadratic
nonlinearity surrounded b§non)linear claddings is reported. Modes having bright and dark solitonlike shapes
and consisting of two mutually locked harmonics are identified. Asymmetrical modes are shown to exist in
symmetrical environments. Constraints for the existence of the modes are derived in terms of parameters of
guiding structure materials.
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In the past several years, much research has been pdnronlinear dielectric media. The constituent media are char-
formed on the dynamics of nonlinear waves in media withacterized by dielectric constangs and quadratic nonlinear
quadratic, ory'?), nonlinearity. The interest in these investi- coefficientsxi(z’zxi , Wherei=1,2,3 fory>I, I>y>0, and
gations is stimulated by their high potential for such appli-y<0, respectively. When considering some of the media as
cations as all-optical signal processing, amplification, etclinear, we will set the corresponding nonlinear coefficignt
(see, e.g[1-4] and references thergirFrom a fundamental equal to zero. It should be noted that in general it is impos-
point of view, the discovery of the solitonic regimes of sible to split the field into noninteracting TE and TM modes.
beam/pulse propagation ig® media is of great signifi- Nevertheless, depending on an associated class of symmetry,
cance. The existence of various soliton families in such asome crystals can support TE or TM modé&s In [9], one
environment was first theoretically predicted[B+9]. Sub-  can also find a detailed description of the corresponding ma-
sequently, quadratic solitons were experimentally observetkrials and their symmetry properties. In what follows, we
both in bulk media and in film waveguid¢0,11. consider the scalar interaction of TE polarized fundamental

The great interest that is always accorded to wave-guidingnd second-harmonic guided waves copropagating along the
structures is due to the possibility of high concentrations ok axis, which is assumed to coincide with the optics axis of
optical power in them and, as a consequence, an easier othe waveguide material.
servation of nonlinear effects. Such investigations were Looking for stationary harmonic solutions, we substitute
mostly performed in the waveguides with cubic nonlinearity.the electric field in the form of a sum of the fundamental
In particular, analytical theories describing nonlinear modesvaves(FW) and the second harmon(8H) waves,
with different symmetries supported by guiding structures _ ) _ )
were developed12-18. Apart from this, some interesting E=A(y)e9 '+ B(y)e' 9 ?“'+c.c., 1)
nonlinear effects, including the existence of nonlinear impu- ) .
rity modes[19] as well as surface modes in media with in- into the Maxwell equations. After that, we arrive ata system
version symmetry20,21], were studied in guided structures ©f two equations for the harmonics amplitudes, which is
with quadratic nonlinearity3,16,22—23 Recently, it was Solvable provided that the conditiay,=2q,=2q is satis-
shown that quadratic waveguides are able to support twdied. Thus the set of equations for the amplitudeand B
component eigenmodes, which are stationary modes withodigkes the following form:
energy exchange between composing harmoh&s. In 2
bulk x?) media, such modes were studied 26] for the cw L Hei(w)—gPJA+2y;A*B=0,
case. The eigenmodes found[&b] have constituted nonlin- d
early perturbed linear modes and therefore they have trigo- 25 (2
nometric form. These modes transform into pure linear ones 2 5
in the case of vanishing nonlinearity. a_y2+4[8i(2w)_q 1B+4xiA™=0.

In this paper, we aim to demonstrate the existence and
study the structure of pure nonlinear eigenmodes irHere we have introduced dimensionless variahleskyy
waveguides with cascadeg® nonlinearity. These modes andg— q/k,, wherek,= w/c is the wave vector of the FW
being of genuine nonlinear nature have no counterparts in th@ vacuum.
linear limit and represent new families of dichromatic eigen- We consider two cases, namely nonlinear film surrounded
states of nonlinear waveguides. In contrast to modes studig@) by two linear media ;= xy3=0) and(ii) by two nonlin-
in [25], they have solitonlike form. ear media. For cas@), in [25] the existence of eigenmodes

We consider a structure consisting of a nonlinear dielecwith profile approximately described by trigonometric func-
tric film of width | disposed between two semi-infinite tions was shown. As was mentioned above, these modes
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transform into linear waveguide modes in the limit of van- w3z =2an sech( nyy)tant 7yo). (7d)
ishing nonlinearity. Along with these approximate trigono-
metric solutions, the se?) possesses different families of An analogous set of four equations appears for the SH. Thus
solitonlike solutiong5-9]. In order to treat the problem ana- we have a set of eight equations for five free parameters of
lytically, we consider here solutions having an exact analytithe modeA,, Az, B;, B3, andy,. Three excessive equa-
cal form. One can easily check by direct substitution that thdions, in the case of solvability of the set, give three con-
functions straints for seven system parameteréw), ¢;(2w), andl.

The nonlinear coefficieny in the considered case of linear

A=asecli[ n(y—y,)], B=bsecfi[n(y—Yyo)], (3@  claddings can be removed from Eqg) by proper normal-

ization of the field amplitudes, i.e.A(B)— x(A,B).

where Equations(7a) and (7¢) can be considered as definitions
a=+bV3. b=3nr: 2 _Ag/3>0 of amplitudesA; andA;. Then the two other equations can
- ' TiXis 7 : ' be rewritten as
2 .. _ )
A"=si(20) ~Asif3, (30) pua=2ntant n(1-yo)], (8a)
and pa=27tanh nyo). (8b
_ 3 _
A=a{1-3 sechl n(y—-yo)l}, Conditions of compatibility of Eqs(8) with analogous equa-
tions for SH are
B=b{1-3 secR[ n(y—yo)1}, (4a)
M1=2py and  u3z=2pu4. 9
where

This gives us two of the three expected constraints,
a=+*b/v2, b=-27%y, n*=Agl3>0,
£1(2w)—Aeg /3= ¢e5(2w) — Aeyl3=e3(2w) — Aes/3.
°=¢;(2w)—A¢g/3 (4b) (10

are solutions of the séP). These solitonlike solutions have Finally, set(8) gives both the position of the mode’s maxi-
only one free parametey, describing the position of the MUMYo,
solution’s center. Contrary to the homogeneous bulk media, 1
where, due to the translation symmetry, this parameter can —_— nh—l(ﬁ) 11

Yo ta ’ ( )
be arbitrarily chosen, in waveguides it is strictly defined by 27
boundary conditions. The material parametes;=¢;(w)
—¢gi(2w)=[nj(w) +nj(2w)]Aq;/2~n;(w)Aqg; character-
izes the dispersion properties of the corresponding medium, © P
wheren;(w) andAq;=2[n;(w) —n;(2w)] are the refractive Inztanhl(z— +tanh1(2—). (12
index and the mismatch, respectively. Note that the solution K K

(3) having the shape of a bright soliton exists only in mediangte that from Eqs(3b), (6), and(10) it follows that
with negative mismatch, while the solutié#) being an ana-

and the third constraint,

log of a dark soliton exists in media with positive mismatch. Misz —4Ag; 43>0. (13
Let us start with casé). The field pattern of the whole
system in this case has the following form: Along with the values of increments of the field decay, these
relations define the sign of mismatch in each cladding. Con-
A=Aer=Y) B=B eV for |<y; sider a symmetric waveguide when media one and three are
(5) identical, thuss;=¢€3. In this case, Eqg11) and(12) imply
A=Azet?Y, B=Bze?*4#Y for y=O0; Yo=1/2, i.e., the maximum of the mode field is located in the

, , middle of the slab. Constrairi2) takes the form
pim P —e1dw), pi~P—e1420), (6)

with A andB taken from Eqs(3a) or (4a for O<y=<l.
Applying ordinary boundary conditions to the two inter-
faces, namely the continuity of the electric field and its
y-derivative, we get the following set of equations for the _ -4 20)— (2
FW amplitudes for solutiori3a): s1(@)~8x(w) =4[1(20) ~5(20)]

A,=aseck 7(1-yo)], (78

Ae,=Ag,tantf(l 7/2). (14

It is useful to rewrite constraintd0) and(14) in the follow-

ing form:

=(4]|Ae,l/3)sech(19/2)>0, (15

which permits us to define dielectric constants of the clad-
wiA;=2ansech n(1 —yo) Jtani »(1—yo)], (7b)  ding in terms of the waveguide core parameter§w),
&,(2w), andl. For example, ale,=—0.01 andl =10 we
Az=aseck(7yo), (70  getAe;=—0.008 ands;(w)=¢,(w)+0.0123.
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Thus one may conclude that for a bright solitonlike mode
to exist, (i) the mismatches of the slab and cladding media
must be negativgsee Eqgs(3b) and(13)] and (ii) refractive 2
indices of cladding media for both frequencies must be
greater than the corresponding refractive indices in the core
[see Eq(15)]. The second condition means that such a non-
linear mode exists when the structure under consideratiori.5
does not support any guided modes in the linear limit. It is
also worth noticing that condition®) mean that the incre-
ments of field decay out of the slab are equal for both har-
monics.

Consider now the existence of the eigenmode based or
the solution(4), which is valid for the core material with
positive mismatch. A procedure analogous to that describec
above leadsi) to expressions similar to Eq$7a) and (7¢)
for field amplitudes in claddings,

A} [a 3
B, b (1—3sech n(1-yo)]), 0.01 0.02 0.03 0.04

(16) FIG. 1. Paramete=|Az,/As,| as a function ofAe,| for |
_(a =10. Thin line, “bright” mode; thick line, “dark” mode.
\b

) . _ the dependences of the parameser|Ae;/Ae,| on [Ag,)|

(ii) to the constraint$9) and(10); and(iii) to the equations  for “pright” and “dark” modes are shown in Fig. 1.

Now we continue with cas@i), for which all three media
p1  tan (1 —yo) {1 —tank[ 7(1 —yo)1} are assumed to be nonlinear. The solution to(2ein clad-

0.5

| A€> |

(A3 (1—3secB(nyo));

Bs

67 1—3 tanif[ (1 —yo)] >0, dings should be taken in the form of a bright solit(8),
(178  because it is the only solution having a zero asymptotic value

aty— * . In the core region, fields with both “bright(3)
p3  tanh 7Yo)[ 1—tantt(nye)] 0 178 and “dgrk” (4) shape can fc_)rm the modes. Thus we suppose
67 1—3 tanf(7yo) =0, (17D that mismatches in claddings are negative and take the

“bright” solutions {A;,B;}={a;,b;}sech7(y—y)] in all
which, being analogs of Eqé8), define the parametgy, and ~ three media provided the core material mismatch is also
give the third constraint. Equatid3) is valid in this case as Negative, and we replace the “t;nght” solution by the
well, thus “dark” modes exist when the core material has“‘dark” one {A;,B5}={ay b {13 sechn(y—y,)]} in
positive mismatch while claddings have a negative misihe core region when its mismatch is positive. The condition
match. in which the wave vectoq is common for the claddings and

It can be proven that in the symmetric case, i.e.gat the core in both cases again gives us the constréifisThe

— ¢4, set(17) has a single solutiog,=1/2 and leads to the Poundary conditions applied to the FW field after some sim-
relation plifications lead, in the case of a “bright” solution, to the

following equations:
tanh 71/2)[1—tantt(51/2)]
1—3 tanit(7!/2)

\/|A81|:3\/A82

>0, (18 a; sech[ 71(1—y1)1=a, sech[ 7,1 —y,)], (193

which in turn gives the conditionyl <2 tanh {(1#/3)
~1.317. This inequality, or equivalently sé¢hy/2)>%,
means that only the central part of the dark solution, which is
situated between its two zeros, participates in the mode for- ag sech( n3y3) =a, seck( 7,y,), (190
mation. Thus the field in the waveguide core has no nodes.

There is also no solution with the field amplitudes equal to

zero on the interfacey=0,. Otherwise, such a solution 73 tant(73y3) = 7 tank(7,y5). (199
would be an example of an optical compacton with the field

exactly equal to zero outside the waveguide core. NevertheSince the relations, /b;=a,/b,=as/b; are satisfied re-
less, by proper choice of material parameters, the field amgardless of the sign dd; [see Eq.(3b)], the corresponding
plitude A=A;=A3; can be made very small. In this case, set of equations for the SH coincide with $&8) and do not
Ala~+Ae,/3|Ae,|<1 and practically all of the optical bring additional restrictions, except thgs and y; should
power propagates in the core. To illustrate the restrictions fohave equal signs. Analysis of 4419) shows that its solutions
material parameters resulting from relatiofigh and (18), are

ntan n1(1—yq) 1= tant 7,(1-y,)], (190
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1 1
yi=I— Etanh‘l y<l, 0<y, I= %[tanh‘l(pl)+tanh‘1(p3)], (24)

1 1 the positions of the solution maxima are
=—tanh‘1(% y3) <, y3=77—tanh‘1 v3>0, P
2 3

72 2
1 372p1(1-p7) 1
20 :I——tanhl(— , =—tanh?! ,
(20) Y1 " 771(1_3pi) Y2 7 (p3)
_1| 73 _4( T 2
|=—|tanh l(—y3 +tanh 1(—)/1”, (21 1 (3772p3(1—l33))
i 7 i =—tanh | ————|. 25
2 ? : V2=, 7(1-3p3) 29
and . : :
The parameterp, ; are the solutions of algebraic equations
.t C1 _1 —1 718 )b )t w2
y1=I+ ﬂ_tanh y1>1, yz—n—tanh PRRE >1, 27(1— )PP —27(Bi+ 2= a;)pi +9(2Bi+ 3~ a;) pi + o
1 2 2

) —38,=0 (26)
y3=%tanh‘l ¥3>0 at y3n3>vy17m1, (228 with additional conditions

1 p’<i for ;>0 andi<p?<1l for a;<0. (27)
y;=l——tanh !y, <l,
m Parametersy; and B; were defined in Eq(23). Among the
six solutions of Eq(26), the only solutions that provide posi-
(ﬁ ) tiveness of in Eq. (24) and real-valued; in Eq. (25) should
v3| <0, . . ;

7 be chosen. It is important to emphasize that in the case of the
symmetric waveguide, due to the equalites= a3=« and
B1=B3= B, the parameterp,; andp; satisfy a single equa-
tion, but they are not necessarily equal. That can lead to a
nontrivial consequence. In the case of the existence of two or
more rootsp) of Eq. (26) satisfying all the restrictions
(23)  originating from Eqs.(24), (25), and(27), one can choose

p;=p") andp;=p™ with j#n. At such a choicep;# p3
where and it follows from Eqgs(24) and (25) thaty,#1/2 andy;
+y,#1. The modes with such parametgrsare asymmetric
Bi— . ones with respect to the middle plagye=1/2 of the guiding
%:[m Y X2’ Bi ‘A_az i=13. structure. These modes are reminiscent of the asymmetric
! ! modes found for the first time ifil2] in the case of linear
In addition, for y; to be real-valued, either inequalities 0 film surrounded by media with Kerr nonlinearity. The nature
<a;<1la;<B; or a;>B;,e;>1 should be satisfied. Equa- Of the asymmetric modes is purely nonlinear and they are
tions (21) or (23) give an additional constraint to constraint @bsent in symmetric linear structures. Omitting details here,
(10) for the system parameters, where unlike the analogou&® briefly summarize some results of the analysis of system
constraints(12) and (18), the nonlinear coefficienty; are  (24—(27) and show that the above-mentioned two-
involved. It can be inferred from Eq20) that for this solu- COmponent asymmetric modes indeed can exist. To illustrate
tion the mode maximum is located in the core and that thdhis, consider the case>0. There is only a single solution
fields monotonically decay in the claddings. In the particula?™ to the set(24—(27) in the parameter domain <O
casey; (0rys)=0, we gety,=y,=| (or y,=ys=0), i.e., <38, B<3. Hencep;=ps=p™ and we arrive at a sym-
the mode maximum coincides with one of the core-claddingnetric ~ mode  with y,=1/2 and  yz+y;=I
interfaces. Contrary to Eq20), for solution(22) the mode = (2/n;)tanh Y(p). For instance, atr=8=0.1, the wave-
maximum is situated outside the core. For the symmetricaguide core width and parametersarel ~3 (or using dimen-
waveguide, only solutior{20) survives and Eqs(20) and  sion variabled ~0.48\, where\ is the wavelength of the
(21) imply y,=1/2 andys+y;=1. Thus the corresponding FW in vacuum, y;~—61, y,~1.5, andy;~64; ata=4
mode is symmetric with respect to the middle of the core. In=0.5, they arel~6.4, y;~—23.3,y,~3.2, andy;~29.7.
this case, constrairi21) can be rewritten as a dependence of The field of the modes in claddings is described by the tails
the parametep=3,= 85 on other material parameters in of the “bright” solutions and therefore decays monotoni-
the following form: B=a+(1—a)tant(l\|As,]/12), cally outside the waveguide core. Bt=3, a bifurcation oc-
wherea=a;= a;. curs and for >3 in the domain B<a<a,~2B-5
Finally, an analogous analysis of the corresponding set of- 2\/87— 2B+ 13 of the parameter plare, B), along with
equations in the case of a “dark” solution shows that underthe rootp®), two additional roots & p?<p® andp'®=
the condition —p® appear. If in Egs.(25 we choosep;=p;=p®

_1t ht
=——tan
Y2 7

-1
y3=ztanh’1 v3<0 at y3n3<vy1m1, (22b)

72

tanhl(ﬁ Y3 —tanh1<ﬂ 'yl)
72 72

1/2
X
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(p®), we get symmetric modes. While choosipg=p™® balanced up- and down-conversion processes. The existence
and p;=+p® or vice versap;=p*) andp,;=+p?®, we of eigenmodes based on solutions with different topology,
arrive at two pairs of asymmetric modes, wherepag= viz., “bright” and “dark” ones, is demonstrated. The sys-
—p® a negative root comes into the play in combinationtem of equations defining the mode’s parameters is derived
with the greater positive root. It can be inferred from Eqgs.and resolved. The conditions required for the modes to exist
(24) and(25) that 0<y,<| when two positive roots are cho- are obtained, e.g., the fulfilling of constraint0) and a

sen and/,>1 ory,<0 when the negative root is used. In the negative mismatch of cladding materials are necessary for
latter case, the center of the mode is shifted out of the wavethe existence of all considered modes. The asymmetric
guide core. As an example, considg=5. Then a,  modes are found in a symmetric waveguide in the case in
~15.58, and takingr=15.4 we getp('~0.298 andp®®  \yhich the core and the claddings are supposed to be nonlin-
~ *+0.157. Equation§24) and(25) imply that the parameters ear and the field in the core is described by the “dark”
of two asymmetric modes are as followsi~18.04y;  ggjitonlike solution(4). The domain in system parameter
~8.58y,~6.13y3~3.9 and [|~5.79y;~-3.67y,~  gpace where this nonlinear break of symmetry can take place
—6.13y;~—3.9. For two complementary asymmetric s getermined. We expect that the consideration of TM or

modes that are mirror images of the two modes describegympined TM-TE composing fields will bring new interest-

above, the parameters "’Vé:l_yi_- _ _ing features of nonlinear mode formation in guiding struc-
In conclusion, we have analytically studied the nonlinear,reg.

eigenmode formation in a slab waveguide when the core ma-

terial exhibits a quadratic nonlinearity while claddings are S. D. gratefully acknowledges the hospitality of the
either linear or nonlinear. These modes represent stationatgboratory of Electromagnetic Optics of the Marseilles
coupled states formed by FW and SH waves with mutuallyUniversity.
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