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Dichromatic nonlinear eigenmodes in slab waveguide withx „2… nonlinearity
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The existence of purely nonlinear eigenmodes in a waveguiding structure composed of a slab with quadratic
nonlinearity surrounded by~non!linear claddings is reported. Modes having bright and dark solitonlike shapes
and consisting of two mutually locked harmonics are identified. Asymmetrical modes are shown to exist in
symmetrical environments. Constraints for the existence of the modes are derived in terms of parameters of
guiding structure materials.
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In the past several years, much research has been
formed on the dynamics of nonlinear waves in media w
quadratic, orx (2), nonlinearity. The interest in these inves
gations is stimulated by their high potential for such app
cations as all-optical signal processing, amplification, e
~see, e.g.,@1–4# and references therein!. From a fundamenta
point of view, the discovery of the solitonic regimes
beam/pulse propagation inx (2) media is of great signifi-
cance. The existence of various soliton families in such
environment was first theoretically predicted in@5–9#. Sub-
sequently, quadratic solitons were experimentally obser
both in bulk media and in film waveguides@10,11#.

The great interest that is always accorded to wave-guid
structures is due to the possibility of high concentrations
optical power in them and, as a consequence, an easie
servation of nonlinear effects. Such investigations w
mostly performed in the waveguides with cubic nonlineari
In particular, analytical theories describing nonlinear mod
with different symmetries supported by guiding structu
were developed@12–18#. Apart from this, some interestin
nonlinear effects, including the existence of nonlinear imp
rity modes@19# as well as surface modes in media with i
version symmetry@20,21#, were studied in guided structure
with quadratic nonlinearity@3,16,22–24#. Recently, it was
shown that quadratic waveguides are able to support t
component eigenmodes, which are stationary modes with
energy exchange between composing harmonics@25#. In
bulk x (2) media, such modes were studied in@26# for the cw
case. The eigenmodes found in@25# have constituted nonlin
early perturbed linear modes and therefore they have tr
nometric form. These modes transform into pure linear o
in the case of vanishing nonlinearity.

In this paper, we aim to demonstrate the existence
study the structure of pure nonlinear eigenmodes
waveguides with cascadedx (2) nonlinearity. These mode
being of genuine nonlinear nature have no counterparts in
linear limit and represent new families of dichromatic eige
states of nonlinear waveguides. In contrast to modes stu
in @25#, they have solitonlike form.

We consider a structure consisting of a nonlinear diel
tric film of width l disposed between two semi-infinit
1063-651X/2001/63~3!/036613~5!/$15.00 63 0366
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~non!linear dielectric media. The constituent media are ch
acterized by dielectric constants« i and quadratic nonlinea
coefficientsx i

(2)5x i , wherei 51,2,3 fory. l , l .y.0, and
y,0, respectively. When considering some of the media
linear, we will set the corresponding nonlinear coefficientx i
equal to zero. It should be noted that in general it is imp
sible to split the field into noninteracting TE and TM mode
Nevertheless, depending on an associated class of symm
some crystals can support TE or TM modes@9#. In @9#, one
can also find a detailed description of the corresponding
terials and their symmetry properties. In what follows, w
consider the scalar interaction of TE polarized fundamen
and second-harmonic guided waves copropagating along
x axis, which is assumed to coincide with the optics axis
the waveguide material.

Looking for stationary harmonic solutions, we substitu
the electric field in the form of a sum of the fundamen
waves~FW! and the second harmonic~SH! waves,

E5A~y!eiq1x2 ivt1B~y!eiq2x22ivt1c.c., ~1!

into the Maxwell equations. After that, we arrive at a syste
of two equations for the harmonics amplitudes, which
solvable provided that the conditionq252q1[2q is satis-
fied. Thus the set of equations for the amplitudesA and B
takes the following form:

]2A

]y2 1@« i~v!2q2#A12x iA* B50,

~2!
]2B

]y2 14@« i~2v!2q2#B14x iA
250.

Here we have introduced dimensionless variablesy→k0y
andq→q/k0 , wherek05v/c is the wave vector of the FW
in vacuum.

We consider two cases, namely nonlinear film surround
~i! by two linear media (x15x350) and~ii ! by two nonlin-
ear media. For case~i!, in @25# the existence of eigenmode
with profile approximately described by trigonometric fun
tions was shown. As was mentioned above, these mo
©2001 The American Physical Society13-1
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transform into linear waveguide modes in the limit of va
ishing nonlinearity. Along with these approximate trigon
metric solutions, the set~2! possesses different families o
solitonlike solutions@5–9#. In order to treat the problem ana
lytically, we consider here solutions having an exact anal
cal form. One can easily check by direct substitution that
functions

A5a sech2@h~y2y0!#, B5b sech2@h~y2y0!#, ~3a!

where

a56b/&, b53h2/x i , h252D« i /3.0,

q25« i~2v!2D« i /3, ~3b!

and

A5a$12 3
2 sech2@h~y2y0!#%,

B5b$12 3
2 sech2@h~y2y0!#%, ~4a!

where

a56b/&, b522h2/x i , h25D« i /3.0,

q25« i~2v!2D« i /3 ~4b!

are solutions of the set~2!. These solitonlike solutions hav
only one free parametery0 describing the position of the
solution’s center. Contrary to the homogeneous bulk me
where, due to the translation symmetry, this parameter
be arbitrarily chosen, in waveguides it is strictly defined
boundary conditions. The material parameterD« i5« i(v)
2« i(2v)5@ni(v)1ni(2v)#Dqi /2'ni(v)Dqi character-
izes the dispersion properties of the corresponding medi
whereni(v) andDqi52@ni(v)2ni(2v)# are the refractive
index and the mismatch, respectively. Note that the solu
~3! having the shape of a bright soliton exists only in me
with negative mismatch, while the solution~4! being an ana-
log of a dark soliton exists in media with positive mismatc

Let us start with case~i!. The field pattern of the whole
system in this case has the following form:

A5A1em1~ l 2y!, B5B1e2m2~ l 2y! for l<y;
~5!

A5A3em3y, B5B3e2m4y for y<0;

m1,3
2 5q22«1,3~v!, m2,4

2 5q22«1,3~2v!, ~6!

with A andB taken from Eqs.~3a! or ~4a! for 0<y< l .
Applying ordinary boundary conditions to the two inte

faces, namely the continuity of the electric field and
y-derivative, we get the following set of equations for t
FW amplitudes for solution~3a!:

A15a sech2@h~ l 2y0!#, ~7a!

m1A152ah sech2@h~ l 2y0!#tanh@h~ l 2y0!#, ~7b!

A35a sech2~hy0!, ~7c!
03661
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m3A352ah sech2~hy0!tanh~hy0!. ~7d!

An analogous set of four equations appears for the SH. T
we have a set of eight equations for five free parameter
the modeA1 , A3 , B1 , B3 , and y0 . Three excessive equa
tions, in the case of solvability of the set, give three co
straints for seven system parameters« i(v), « i(2v), and l.
The nonlinear coefficientx in the considered case of linea
claddings can be removed from Eqs.~2! by proper normal-
ization of the field amplitudes, i.e., (A,B)→x(A,B).

Equations~7a! and ~7c! can be considered as definition
of amplitudesA1 andA3 . Then the two other equations ca
be rewritten as

m152h tanh@h~ l 2y0!#, ~8a!

m352h tanh~hy0!. ~8b!

Conditions of compatibility of Eqs.~8! with analogous equa
tions for SH are

m152m2 and m352m4 . ~9!

This gives us two of the three expected constraints,

«1~2v!2D«1/35«2~2v!2D«2/35«3~2v!2D«3/3.
~10!

Finally, set~8! gives both the position of the mode’s max
mum y0 ,

y05
1

h
tanh21S m3

2h D , ~11!

and the third constraint,

lh5tanh21S m1

2h D1tanh21S m3

2h D . ~12!

Note that from Eqs.~3b!, ~6!, and~10! it follows that

m1,3
2 524D«1,3/3.0. ~13!

Along with the values of increments of the field decay, the
relations define the sign of mismatch in each cladding. C
sider a symmetric waveguide when media one and three
identical, thus«15«3 . In this case, Eqs.~11! and~12! imply
y05 l /2, i.e., the maximum of the mode field is located in t
middle of the slab. Constraint~12! takes the form

D«15D«2 tanh2~ lh/2!. ~14!

It is useful to rewrite constraints~10! and~14! in the follow-
ing form:

«1~v!2«2~v!54@«1~2v!2«2~2v!#

5~4uD«2u/3!sech2~ lh/2!.0, ~15!

which permits us to define dielectric constants of the cl
ding in terms of the waveguide core parameters«2(v),
«2(2v), and l. For example, atD«2520.01 andl 510 we
get D«1520.008 and«1(v)5«2(v)10.0123.
3-2
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Thus one may conclude that for a bright solitonlike mo
to exist, ~i! the mismatches of the slab and cladding me
must be negative@see Eqs.~3b! and ~13!# and ~ii ! refractive
indices of cladding media for both frequencies must
greater than the corresponding refractive indices in the c
@see Eq.~15!#. The second condition means that such a n
linear mode exists when the structure under considera
does not support any guided modes in the linear limit. I
also worth noticing that conditions~9! mean that the incre
ments of field decay out of the slab are equal for both h
monics.

Consider now the existence of the eigenmode based
the solution~4!, which is valid for the core material with
positive mismatch. A procedure analogous to that descri
above leads~i! to expressions similar to Eqs.~7a! and ~7c!
for field amplitudes in claddings,

S A1

B1
D5S a

bD ~12 3
2 sech2@h~ l 2y0!# !,

~16!

S A3

B3
D5S a

bD ~12 3
2 sech2~hy0!!;

~ii ! to the constraints~9! and ~10!; and ~iii ! to the equations

m1

6h
5

tanh@h~ l 2y0!#$12tanh2@h~ l 2y0!#%

123 tanh2@h~ l 2y0!#
.0,

~17a!

m3

6h
5

tanh~hy0!@12tanh2~hy0!#

123 tanh2~hy0!
.0, ~17b!

which, being analogs of Eqs.~8!, define the parametery0 and
give the third constraint. Equation~13! is valid in this case as
well, thus ‘‘dark’’ modes exist when the core material h
positive mismatch while claddings have a negative m
match.

It can be proven that in the symmetric case, i.e., at«1
5«3 , set~17! has a single solutiony05 l /2 and leads to the
relation

AuD«1u53AD«2

tanh~h l /2!@12tanh2~h l /2!#

123 tanh2~h l /2!
.0, ~18!

which in turn gives the conditionh l ,2 tanh21(1/))
'1.317. This inequality, or equivalently sech2(lh/2). 2

3 ,
means that only the central part of the dark solution, whic
situated between its two zeros, participates in the mode
mation. Thus the field in the waveguide core has no nod
There is also no solution with the field amplitudes equal
zero on the interfacesy50,l . Otherwise, such a solutio
would be an example of an optical compacton with the fi
exactly equal to zero outside the waveguide core. Never
less, by proper choice of material parameters, the field
plitude A5A15A3 can be made very small. In this cas
A/a'AD«2/3uD«1u!1 and practically all of the optica
power propagates in the core. To illustrate the restrictions
material parameters resulting from relations~14! and ~18!,
03661
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the dependences of the parameterb5uD«1 /D«2u on uD«2u
for ‘‘bright’’ and ‘‘dark’’ modes are shown in Fig. 1.

Now we continue with case~ii !, for which all three media
are assumed to be nonlinear. The solution to set~2! in clad-
dings should be taken in the form of a bright soliton~3!,
because it is the only solution having a zero asymptotic va
at y→6`. In the core region, fields with both ‘‘bright’’~3!
and ‘‘dark’’ ~4! shape can form the modes. Thus we supp
that mismatches in claddings are negative and take
‘‘bright’’ solutions $Ai ,Bi%5$ai ,bi%sech2@hi(y2yi)# in all
three media provided the core material mismatch is a
negative, and we replace the ‘‘bright’’ solution by th
‘‘dark’’ one $A2 ,B2%5$a2 ,b2%$12 3

2 sech2@h2(y2y2)#% in
the core region when its mismatch is positive. The condit
in which the wave vectorq is common for the claddings an
the core in both cases again gives us the constraints~10!. The
boundary conditions applied to the FW field after some s
plifications lead, in the case of a ‘‘bright’’ solution, to th
following equations:

a1 sech2@h1~ l 2y1!#5a2 sech2@h2~ l 2y2!#, ~19a!

h1 tanh@h1~ l 2y1!#5h2 tanh@h2~ l 2y2!#, ~19b!

a3 sech2~h3y3!5a2 sech2~h2y2!, ~19c!

h3 tanh~h3y3!5h2 tanh~h2y2!. ~19d!

Since the relationsa1 /b15a2 /b25a3 /b3 are satisfied re-
gardless of the sign ofai @see Eq.~3b!#, the corresponding
set of equations for the SH coincide with set~19! and do not
bring additional restrictions, except thatx2 and x i should
have equal signs. Analysis of set~19! shows that its solutions
are

FIG. 1. Parameterb5uD«1 /D«2u as a function ofuD«2u for l
510. Thin line, ‘‘bright’’ mode; thick line, ‘‘dark’’ mode.
3-3
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y15 l 2
1

h1
tanh21 g1, l , 0,y2

5
1

h2
tanh21S h3

h2
g3D, l , y35

1

h3
tanh21 g3.0,

~20!

l 5
1

h2
F tanh21S h3

h2
g3D1tanh21S h1

h2
g1D G , ~21!

and

y15 l 1
1

h1
tanh21 g1. l , y25

1

h2
tanh21S h3

h2
g3D. l ,

y35
1

h3
tanh21 g3.0 at g3h3.g1h1 , ~22a!

y15 l 2
1

h1
tanh21 g1, l ,

y25
21

h2
tanh21S h3

h2
g3D,0,

y35
21

h3
tanh21 g3,0 at g3h3,g1h1 , ~22b!

l 5
1

h2
Utanh21S h3

h2
g3D2tanh21S h1

h2
g1D U ~23!

where

g i5F b i2a i

b i~12a i !
G1/2

, a i5
x i

x2
, b i5UD« i

D«2
U, i 51,3.

In addition, for g i to be real-valued, either inequalities
,a i,1,a i,b i or a i.b i ,a i.1 should be satisfied. Equa
tions ~21! or ~23! give an additional constraint to constrai
~10! for the system parameters, where unlike the analog
constraints~12! and ~18!, the nonlinear coefficientsx i are
involved. It can be inferred from Eq.~20! that for this solu-
tion the mode maximum is located in the core and that
fields monotonically decay in the claddings. In the particu
caseg1 (org3)50, we gety25y15 l ~or y25y350!, i.e.,
the mode maximum coincides with one of the core-cladd
interfaces. Contrary to Eq.~20!, for solution ~22! the mode
maximum is situated outside the core. For the symmetr
waveguide, only solution~20! survives and Eqs.~20! and
~21! imply y25 l /2 andy31y15 l . Thus the corresponding
mode is symmetric with respect to the middle of the core
this case, constraint~21! can be rewritten as a dependence
the parameterb5b15b3 on other material parameters
the following form: b5a1(12a)tanh2(lAuD«2u/12),
wherea5a15a3 .

Finally, an analogous analysis of the corresponding se
equations in the case of a ‘‘dark’’ solution shows that und
the condition
03661
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l 5
1

h2
@ tanh21~p1!1tanh21~p3!#, ~24!

the positions of the solution maxima are

y15 l 2
1

h1
tanh21S 3h2p1~12p1

2!

h1~123p1
2!

D , y25
1

h2
tanh21~p3!,

y35
1

h3
tanh21S 3h2p3~12p3

2!

h3~123p3
2!

D . ~25!

The parametersp1,3 are the solutions of algebraic equation

27~12a i !pi
6227~b i122a i !pi

419~2b i132a i !pi
21a i

23b i50 ~26!

with additional conditions

pi
2, 1

3 for a i.0 and 1
3 ,pi

2,1 for a i,0. ~27!

Parametersa i and b i were defined in Eq.~23!. Among the
six solutions of Eq.~26!, the only solutions that provide pos
tiveness ofl in Eq. ~24! and real-valuedyi in Eq. ~25! should
be chosen. It is important to emphasize that in the case o
symmetric waveguide, due to the equalitiesa15a35a and
b15b35b, the parametersp1 andp3 satisfy a single equa
tion, but they are not necessarily equal. That can lead
nontrivial consequence. In the case of the existence of tw
more rootsp( j ) of Eq. ~26! satisfying all the restrictions
originating from Eqs.~24!, ~25!, and ~27!, one can choose
p15p( j ) and p35p(n) with j Þn. At such a choice,p1Þp3
and it follows from Eqs.~24! and ~25! that y2Þ l /2 andy3
1y1Þ l . The modes with such parametersyi are asymmetric
ones with respect to the middle planey5 l /2 of the guiding
structure. These modes are reminiscent of the asymm
modes found for the first time in@12# in the case of linear
film surrounded by media with Kerr nonlinearity. The natu
of the asymmetric modes is purely nonlinear and they
absent in symmetric linear structures. Omitting details he
we briefly summarize some results of the analysis of sys
~24!–~27! and show that the above-mentioned tw
component asymmetric modes indeed can exist. To illust
this, consider the casea.0. There is only a single solution
p(1) to the set~24!–~27! in the parameter domain 0,a
,3b, b,3. Hencep15p35p(1) and we arrive at a sym
metric mode with y25 l /2 and y31y15 l
5(2/h1)tanh21(p(1)). For instance, ata5b50.1, the wave-
guide core width and parametersyi arel'3 ~or using dimen-
sion variablesl'0.48l, wherel is the wavelength of the
FW in vacuum!, y1'261, y2'1.5, andy3'64; at a5b
50.5, they arel'6.4, y1'223.3, y2'3.2, andy3'29.7.
The field of the modes in claddings is described by the t
of the ‘‘bright’’ solutions and therefore decays monoton
cally outside the waveguide core. Atb53, a bifurcation oc-
curs and for b.3 in the domain 3b,a,acr'2b25
12Ab222b113 of the parameter plane~a, b!, along with
the rootp(1), two additional roots 0,p(2),p(1) and p(3)5
2p(2) appear. If in Eqs.~25! we choosep15p35p(1)
3-4
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(p(2)), we get symmetric modes. While choosingp15p(1)

and p356p(2) or vice versap35p(1) and p156p(2), we
arrive at two pairs of asymmetric modes, where atp1,35
2p(2) a negative root comes into the play in combinati
with the greater positive root. It can be inferred from Eq
~24! and~25! that 0,y2, l when two positive roots are cho
sen andy2. l or y2,0 when the negative root is used. In th
latter case, the center of the mode is shifted out of the wa
guide core. As an example, considerb55. Then acr

'15.58, and takinga515.4 we getp(1)'0.298 andp(2,3)

'60.157. Equations~24! and~25! imply that the parameter
of two asymmetric modes are as follows:l'18.04,y1
'8.58,y2'6.13,y3'3.9 and l'5.79,y1'23.67,y2'
26.13,y3'23.9. For two complementary asymmetr
modes that are mirror images of the two modes descri
above, the parameters areyi

c5 l 2yi .
In conclusion, we have analytically studied the nonline

eigenmode formation in a slab waveguide when the core
terial exhibits a quadratic nonlinearity while claddings a
either linear or nonlinear. These modes represent statio
coupled states formed by FW and SH waves with mutua
um

a
v,
ch

iz.

d
et

D

03661
.

e-

d

r
a-

ry
y

balanced up- and down-conversion processes. The exist
of eigenmodes based on solutions with different topolo
viz., ‘‘bright’’ and ‘‘dark’’ ones, is demonstrated. The sys
tem of equations defining the mode’s parameters is deri
and resolved. The conditions required for the modes to e
are obtained, e.g., the fulfilling of constraints~10! and a
negative mismatch of cladding materials are necessary
the existence of all considered modes. The asymme
modes are found in a symmetric waveguide in the case
which the core and the claddings are supposed to be no
ear and the field in the core is described by the ‘‘dar
solitonlike solution ~4!. The domain in system paramete
space where this nonlinear break of symmetry can take p
is determined. We expect that the consideration of TM
combined TM-TE composing fields will bring new interes
ing features of nonlinear mode formation in guiding stru
tures.
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