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Anomalous scaling in two models of passive scalar advection: Effects of anisotropy
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The problem of the effects of compressibility and large-scale anisotropy on anomalous scaling behavior is
considered for two models describing passive advection of scalar density and tracer fields. The advecting
velocity field is Gaussiang correlated in time, and scales with a positive exponerixplicit inertial-range
expressions for the scalar correlation functions are obtained; they are represented by superpositions of power
laws with nonuniversal amplitudes and universal anomalous expoi@éapendent only ore and «, the
compressibility parametgrThe complete set of anomalous exponents for the pair correlation functions is
found nonperturbatively, in any space dimensibrusing the zero-mode technique. For higher-order correla-
tion functions, the anomalous exponents are calculate@(t) using the renormalization group. As in the
incompressible case, the exponents exhibit a hierarchy related to the degree of anisotropy: the leading contri-
butions to the even correlation functions are given by the exponents from the isotropic shell, in agreement with
the idea of restored small-scale isotropy. As the degree of compressibility increases, the corrections become
closer to the leading terms. The small-scale anisotropy reveals itself in the odd ratios of correlation functions:
the skewness factor slowly decreases going down to small scales for the incompressible case, but starts to
increase ifa is large enough. The higher odd dimensionless rdtigperskewness, ejdncrease, thus signal-
ing persistent small-scale anisotropy; this effect becomes more pronounced for larger values of
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[. INTRODUCTION agreement with what was expected on the basis of cascade
ideas[18—20. On the other hand, the exponents describing
Much attention has been paid recently to a simple modethe inertial-range scaling exhibit universality and hierarchy
of passive scalar advection by a self-similar Gaussian whiterelated to the degree of anisotropy, which gives some quan-
in-time velocity field, the so-called “rapid-change model,” titative support to Kolmogorov’'s hypothesis on the restored
introduced by Kraichnafl]; see, e.g., Ref§2—-9] and ref-  local isotropy of inertial-range turbulen¢#7,21-28.
erences therein. Despite its simplicity, the model reproduces In this paper we analyze the effects of the large-scale
many of the anomalous features of genuine turbulent heat @nisotropy induced by a random source on a passive scalar
mass transport observed in experiments. On the other hand Ry two methods: First, we carry out a zero-mode calculation
appears more tractable theoretically: the anomalous exp@f the correlation function of the passive scalar with an an-

nents have now been calculated on the basis of a microscopigOtropic source field and in an isotropic compressible veloc-

model and within regular expansions in formal small param/tY field decorrelated in time. Second, for the same model,

eters[3—8]. Therefore, passive advection by a “synthetic” & performe(_:i a two—I_oop renormalization—grqup analysis of

velocity with prescribed statistics, of practical importance in;?\?eaigggrtcg]!ca?;gi\r';ogget?e_l_itirsu;:‘ngrfli":gtr'ggzig;éhgsp%?:

itself, may also_be _V|ewed as the starting point in StUdyIngIows. In Sec. Il, the zero-mode solution for the correlation

anomalous_ s_calmg n turbulence as a WhOIPT' o function for both passive density and passive tracer is con-
In the original Kraichnan model, the velocity field is taken

. ) . _ structed. Two-loop renormalization-group analysis of the
FO pe Gaussian, !sqtroplc, mcompresgble, anq decorrelat ructure functions of the passive scalar is carried out in Sec.
in time. More realistic models should involve anisotropy and,; with the use of the operator-product expansion. Section
compressibility. Recent studies have pointed out significany is devoted to discussion of the results.

differences between the compressible and incompressible
cases[10-17. It is noteworthy that the potential velocity
field remains nontrivial in the one-dimensional case, which is Il. ZERO-MODE SOLUTION FOR PASSIVE DENSITY

more accessib_le to numerical simulati(_)ns and aIIows_ inter- AND TRACER
esting comparison between the numerical and analytical re-
sults; see Ref.10]. There are two types of diffusion-advection problem for a

Another important question recently addressed is the efcompressible velocity fielf29]. Passive advection of a den-
fect of large-scale anisotropy on inertial-range statistics osity field 6(x)= 6(t,x) (say, the density of an impurityis
passively advected scalpt8—23 and vectof24—24 fields  described by the equation
and the velocity itself27,28. These studies have shown that
the anisotropy present at large scales has a strong influence
on the small-scale statistical properties of the scalar, in dis- 8,0+ ,(v;0)=ved*0+1, (1)
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while the advection of a “tracer’(say, temperature, specific
entropy, orconcentrationof the impurity particles is de-
scribed by

3.0+ (vid;) 0=vod*6+f. 2)
Here o,=dldt, 9;=3dld%;, vy is the molecular diffusivity
coefficient, 9% is the Laplace operatow(x) is the velocity

field, andf=f(x) is an artificial Gaussian scalar noise with

zero mean and the covariance
(f)f(x"))=6(t—t")C(r), r=x—x’, ©)

whereC(r) varies noticeably om=|r|~L, the integral tur-
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S;j(r)=Dr* (d+g—1+a)5ij—g(a—1)r7‘r2—j .9

with

- Dol—‘(_S/Z)

D= %25 (d+ o) T (di2+ e12)

, @=D}/Dy, (10)

wherel is the Euler gamma functiofnote thatD and « are
both positive. In the renormalization-groufRG) approach,
the exponentk plays the same role as the parameier4
—d does in the RG theory of critical behavior; see RES,
[16]. The relationDy/vo=A® defines the characteristic ul-

bulence scale. In the presence of a preferred direction spedfaviolet wave-number scalk.

fied by a unit vecton, the functionC(r) can be written in
the form

c(n=3 C(mnP(2), 2= —, (@
i=o r

wherem=1/L, C,(mr) are coefficient functions such that
C(r) becomes constant ahr=0 and decays rapidly for
mr—oo, z is the cosine of the angle betweanandr, and
P,(z) are (d-dimensional Legendre polynomials satisfying
the equations

(1-22)P(2) +2(1—d)P (2) +1(1+d—1)P,(2)=0.
®)

The issue of interest is the behavior of various correlation
functions in the inertial range specified by the inequalities
Ar>1, mr<1. In the modelg1)—(9), odd multipoint corre-
lation functions of the scalar field vanish, while the even
equal-time functions satisfy linear partial differential equa-
tions; see, e.g[1-7]. The equation for the equal-time pair
correlation functiorD(r)=(6(t,x) (t,x")) is easily derived
from the Schwinger-Dyson equatiofeee Refs[16,25]) and
has the form(here and below in equal-time functions, we
omit time arguments common to all the quantities

2vd°D(r)+[S;j(r);d;1D(r)=C(r) (1)
for the model(2) and
2v0d*D(r)+ ;[ S;j(r)D(r)]=C(r) (12)

The anisotropy makes it possible to introduce also a

mixed correlatorvf)ecnd(t—t")C’(r) with some function
C’ similar to C in Eq. (4). This violates the evenness im

for the model(1), with C(r) from Eq. (4) and §;;(r) from
Eqg. (9). In the presence of the preferred direction the

and gives rise to nonvanishing odd correlation functiong,of correlation function can be decomposed into Legendre poly-
but leads to no serious alterations in the analysis. We shatiomials,
discuss this case later on, and for the time being we assume

(vf)=0.
In the real problem, the field(x) satisfies the Navier-
Stokes equation. In the simplified model consideredlin7]

D(r)=>, Dy(r)P\(2), (13
=0

it obeys a Gaussian distribution with zero mean and the cowhere the coefficient functions are sought in the powerlike

variance
(i)vj(x"))=8(t—t")Kjj(r) (6)
with
dk DgPji(k)+D;Q;i (k) )
Kij(r):f (27T)d o(k]2+m2)d/g+sjl2 exm(k-r)],
(7)

Where Plj(k) = 5” - klkj /k2 and Q”(k) = ki k] /k2 are the
transverse and longitudinal projectors, respectiviely k|,

D, and D are positive amplitude factors, amtis the di-
mensionality of the coordinate space. =0 (the incom-
pressible cagethe models(1) and (2) coincide. For <e

<2, the so-called eddy diffusivity

Sj(r)=K;;(0) —Kjj(r)

has a finite limit form—O0:

8

form

D|(r):D|r§|. (14)
Owing to the evenness im, only even polynomials contrib-
ute to Eq.(13).

It is well known (see, e.g., Ref$3—6]) that the nontrivial
inertial-range exponents are determined by the zero modes,
i.e., solutions of Eqs(11) and(12) neglecting both the forc-
ing [C(r)=0] and the dissipationi;=0). The homoge-
neous equations are S@)(covariant, and the equations for
the coefficient functions in Eq13) foliate. Substituting the
representation$13),(14) into Egs.(11),(12) and using the
relations 4,S;;(r)=as(d+&)Drjr 2*¢, 4,0;S;(r)=as(d
+¢&)(d—2+¢)Dr ?"¢, then gives quadratic equations for
the exponentg in Eq. (14), namely,

(g —1e(a—1) _o

H(g+d=2)—-I1(1+d-2)+ (d=1+ate)

(15
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for the tracer, which has two solutiong=2—d—1+0O(¢)
and

- I(1-1)(a—1)
g'_l_s(d+2l—2)(d—1+a)

+0(&?), (16)

and

{(g+d=2)—1(1+d—2)

GG—D(a—1)+a(d+e)(2+d—2+e)
Te (d=1+a+te) =0

17

for the density, with two solutiong;;=—-d—1+0O(e) and

I(1—=1)(a@—1)+ ad(d+ 21 — 2)
(d+2(—2)(d—1+a)

+0(&?).
(18)

|=|_8

The standard argumenit8—6] show that only the second

solution =1+ 0O(e) is “admissible.” It has the form

L=[2(-1+d+a+ae)]™?
x{—2+3d—d?+2a—da+e—de+ae
+[(2-3d+d%-2a+da—e+de— as)?
—41(—2+3d—d?+1—dl+2a—da—la
+2s—de—le)(—1+d+a+as)]¥3 (19

for the tracer and

L=[2(—1+d+a+ae)] Y-2+3d—d?’+2a—da
+e—de+ae—2dae—2ae?+[(2—3d+d?—2a
+da—e+de—as+2das+2ae?)?
—4(—1+d+a+ae)(—21+3dl—d? +12—dI?
+2la—dla—1?a+2le—dle—1%c —2das

+d%ae —2ae?+ 2dae?+ aeg)]llz} (20

for the density. For=0, these solutions coincide with each

other and with the exponents obtained earlier in Reg9)]
for the incompressible case.
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Although the hierarchy holds for all values af(d¢, /4l
>0), the corrections become closer to leading terms as
a increasess?{, /9l da<0. This behavior is illustrated by
Fig. 3.

Since Eq.(2) is invariant with respect to the shift— 6
+ const, the relevant quantities for the tracer are the so-called
structure functions,

Sa(n)=([o(t,x)— 6(t,x")]"), r=x-x, (22

with the Legendre decomposition

sq<r>=|§0 SurénPy(2) (23)

with some numerical coefficients,. Comparison with Eqgs.
(13) and (14) gives ¢, =¢, with ¢, from Eq. (19) for all |
>0. Forl=0, the constant term witljo=0 drops out from
the difference in Eq(22), and the behavior of the isotropic
shell is determined by the subleading exponent €2; see,
e.g., Ref[17]. Note that the hierarchy relatiori21) remain
valid also forS,=[D(0)—D(r)]/2.

For the density case, the exponent

B —eg(d+e)a
go_(d—l)-ﬁ-a(l-ﬁ-s)

[the square root in Eq(20) is taken explicitly gives the
leading contribution for both the pair correlation function
D(r) and the structure functio8, in Eq. (22), in agreement
with the exact solution df16] (for d=1, see Ref[10]). Note

that for this case the anomalous scaling emerges already for
the pair correlation function, as in the model of a passively
advected magnetic field studied in RE30].

Ill. TWO-LOOP RENORMALIZATION-GROUP ANALYSIS
OF STRUCTURE FUNCTIONS

The higher-order structure functions can be studied using
the field theoretic renormalization group and operator prod-
uct expansion. A detailed exposition of these techniques
and practical calculations can be found in R€#®,16,17,
21,25; below we confine ourselves to only the necessary
information.

The field theoretic models corresponding to the stochastic
equationg1) and(2) are multiplicatively renormalizable; the
corresponding RG equations have infrared stable fixed
points. In particular, this leads to the following representa-
tions for the structure functions in the mod@) in the iner-

The exponent$19) and(20) exhibit a hierarchy related to tial range Ar>1, mr<1):

the degree of anisotropy:

a>40 it 1>17, (21)

S,=Dy AN C (r,z)(mr) e, (24)
a

i.e., the smaller the indek the smaller the exponent and, Here C4(r,z) are coefficients analytical im and finite for
consequently, the more important the contribution to then—0, andA, are the critical dimensions of the composite
inertial-range behavior. The leading term is given by the ex-operators entering in the operator product expansion.

ponentZ, from the “isotropic shell.” This behavior is illus-

trated by Figs. 1 and 2.

The leading zero-mode contribution in thté shell forS,
is determined by the critical dimensiayy,, of the irreducible
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FIG. 2. Behavior of the exponengs (=0, 2, 4, and 6 from the
bottom to the top from Eq. (20) vs ¢ in three dimensions fow

FIG. 1. Behavior of the exponents (I=2, 4, and 6 from the
bottom to the top from Eq. (19) vs ¢ in three dimensions for

=0 (thin lines and a=2 (thick lines. =0 (thin lines and a=c (thick lines.
_ . o D 1 (n=1)(d+n+1)

tracelesdth rank tensor operator built offields # and mini- L' =—

! e (d+2) 2
mal possible number of derivatives. Heen such an opera-
tor has the form I(I-1)(a—1)+a(n—1)(n+1-2)

+ (26)
(d=1+a)
;0 ++0; 0(3,00;0)P+---, n=1+2p. (25)

For the incompressible model, the exponent from the iso-
_ o _ tropic shell (=0) was obtained in Ref$3,4] to the order
Here the dots stand for the appropriate subtractions involvingd(1/d) and in Refs[5,6] to the orderO(¢); the results for
the Kroneckeré symbols, which ensure that the resulting n=3 are given in Ref[7]. The general case can be found in
expressions are traceless with respect to contraction of argef. [21]; see alsd22,31]. For general>0, the exponent
given pair of indices, for exampled;09;6— 89,09, 0/d, (. was found in Ref[14] [see alsd15]; in the notation of
309,00 0— (6 00+ 6ikd; 0+ 60 6)/(d+2), and so on.  those papers; = a/(d—1+ a)]. The result for genera,| is

The exponentg, =n(1—e&/2)+ A, are calculated in the given in Ref.[21] (for more details, sefl7]).

form of series ine, Where§n|=n+2;°:1§§1'?sk. In the first We have performed the two-loop calculation of the expo-
order ing, nents¢,,; and obtained:
|
(2 [—d(d+ 1)+d(d®>—2d—4)a+(3d+4)a®](dk,— ky) (n—2)
i’ = d(d12)%(d—1+a)? T A+ 2)%(d A (d=1+ a)?

X (8d[ — (d?2+5d+10)— (d—2)(d+4)a+ (2d*+ 7d+2) a?] k;
+4[(d+1)(3d3+17d%+ 20d — 24) — (d+ 4)(d3>+ 7d*—2d— 4) a+ (d+ 1) (5d2+ 8d — 24) a?] k,
+3(d+2)h(d){4d[3+(d—4)a—(d—1)a?]k;+[—3(d+1)(d?*+5d—4)

+2(d3+10d°—d—4)a—3(2d*-3d—4)a?]«,)}), (27
|
where we have writterk;=n(n—1), k,=(n—1)(n+1-2 For the incompressible case=0, Eq.(27) becomes
+d), h(d)=F(1,1d/2+1;1/4), andF(a,b;c;z) is the hy-
pergeometric function; see, e.g., RE2]. For integer space (d+1)(dry— k) (n—2)

dimension d one has h(1)=2m/(3v3) and h(2)  {i'=- YAy 3 —?
=41n(4/3), and the others can be obtained from the recur- (d+2)%d-1) 4d(d+2)%(d+4(d-1)

sion relation X {—8d(d?+5d+10)k;
d +4[(d+1)(3d3+ 17d%+ 20d— 24) ] «,
3h(d)+ ——h(d+2)=4, (28)
d+2 +9(d+2)h(d)[4dk;— (d+1)(d2+5d—4) k,]}.
valid for all d. (29
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0 0.5 1

5

FIG. 3. Behavior of the exponents (I=2, 4, and 6 from the
bottom to the topfrom Eq.(19) vs g =al/(d—1+«) for e=1,d
=3 (thin lines, andd=2 (thick lines.

The results fol=0 and 2 were obtained earlier in Ref.
[8]. In that paper, they were expressed in terms of the func-

tions h;(d)=h(d+2) andh,(d)=h(d+4), which can be
reduced to the forni29) using the relation28).

For d=1, only the exponentg,, and {,,; make sense
(traceless operators of the rark=2 vanish identically.
They are independent af (the velocity is purely potential
and have the forml&0 if nis even and =1 if nis odd

e n’
=n+n5;——+
gn 2 2

n(n—1)(n—2)&%mx
6v3

+0(&d).
(30)

The expressiori30) is in agreement with th®(e) result of
Ref.[10] and theO(&?) result of Ref[16] (in the latter, the

PHYSICAL REVIEW E 63 036302

The leading terms in the Legendre decompositions for the
scaling functions,

an<r>=§0 C{"(mnP(z), (33)

are given by the contribution from the scalar operatYsP
without derivativesC{"™ec(mr)“n+p,

The operators that determine corrections-Q) to the
leading term with =0 necessarily contaihderivatives and,
in contrast to the tracer case, the correction exponents differ
from the leading ones by a few unitst O(e). In particular,
the leadingl =2 correction is related to the operator

[6,00;0— 5;( 0, 0)/d]6" P2,

whose dimension equals

2+(n+p)(—1+el2)—

(d=1+a)
(n+p)(n+p—21)ad 2(a—1)
5 + d72) +0(&?).

Note also that the exponen{sin Egs.(19) and(20) are
related to the composite operators with two fiefdand| free
indices, which(up to total derivatives and subtractions with
the 6 symbolg reduce to the fomﬂ&il---aile; the one-loop

calculation confirms th®(e) results(16) and (18).

Since the leading terms of the even functidi28) are
determined by the exponents of the isotropic sfiadl, those
related to scalar composite operajotie inertial-range be-
havior of the former is the same as in the isotropic model.

density case was studied, but in one dimension these modeldlis gives quantitative support both to Kolmogorov’s hy-

can be related by the replacemeht: 76).

pothesis on the restored local isotropy of the inertial-range

For I>n, the leading operators contain more derivativesturbulence and to the universality of anomalous exponents

than fields, the corresponding exponents behavé as|

with respect to the way in which the turbulence is excited.

—n+0(e), and the corresponding terms in representation On the contrary, the small-scale anisotropy reveals itself

(23) rapidly decrease fonr—D0.

Now let us return to the density modél). It is not in-
variant with respect to the shii— 6+ const, the operators
0" have nontrivial critical dimensions,

8) an(n—1)de
2] 2(d-1+a)
a(a—1)n(n—1)(d—1)e?
2(d—1+ )2
a’n(n—1)(n—2)dh(d)e?
4(d—1+ a)?

An=n(—1+

+0(e%, (31

and different terms in the structure functions have different
scalings(see Ref[16]). The relevant quantities are then the

equal-time pair correlation functions of the powers @&f
which have the form

(6700 ") MTPIEA TR A ) T An” A6F (1) (M) Anee,
(32)

in odd correlation functiongwhich are nonzero in the pres-
ence of a mixed correlatqvf) or the constant mean gradi-
ent of the scalar field It follows from the above analysis that
the dimensionless ratioB,= S, 1/S>"* 1’2 for the tracer
case in the inertial range have the form

Rnoc(mr)AZnJrl.l, (34)
where A,y 11=0{on+11—(2n+1)(2—¢) is the critical di-
mension of thevector composite operato25) built of 2n
+1 scalar gradients. From E{6) we find, to the first order
in e,

Apni11=e[(d—1+ @)(d+2—4n?)—8an?]/2(d+2)

X(d—1+a). (35

For small o, the skewness factoR, decreases fomr
—0, but more slowly than expected on the basis of cascade
ideas(the latter suggest that the odd ratios should vanish for
smallmr, where the turbulence is expected to become isotro-
pic), while the higher-order ratios increase, thus signaling the
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persistence of small-scale anisotropy. WheimcreasesR |
also becomes divergent fanr—0 provided « is large
enough[namely,a>(d—1)(d+2)/(10—d) +O(e)], while
the higher-order ratios diverge even faster.

It was argued in Ref§13—15 that the anomalous scaling
regime in the models at hand breaks dowa @#nd« are both
large enougH p=a/(d—1+ a)>d/£?] and an inverse en-

PHYSICAL REVIEW E63 036302

related to the degree of anisotropy; the leading contributions
to the even correlation functions are given by the exponents
from the isotropic shell, in agreement with the idea of re-
stored small-scale isotropy.

This picture seems rather general, being compatible with
that established recently for Navier-Stokes turbulef2&,
passive scalar advection by the two-dimensional Navier-

ergy cascade with no anomalous scaling takes place. Thigtokes field[23], and passive advection of scal&l] and

effect obviously cannot be detected within thexpansion.

vector[24,25 fields by a white-in-time incompressible syn-

It is noteworthy that the exact nonperturbative exponentshetic velocity field.

(19) and (20) show no hint of anomaly at the threshaid

As the degree of compressibility increases, the corrections

=d/£2, in contrast to the exact exponents for the magnetidecome closer to the leading terms; cf. Ri6] for the
case which become complex when the anomalous scaling@ssive advection of a magnetic field.

regime breaks down; see Ref80,24.

IV. CONCLUSION

In contrast, the small-scale anisotropy reveals itself in the
odd ratios of correlation functions: the skewness factor
slowly decreases down to small scales for the incompressible
case[7], but begins to increase ik is large enough. The

To conclude, we have studied the effects of compressibilhigher-order odd dimensionless ratigs/perskewness, ejc.
ity and large-scale anisotropy on the anomalous scaling béncrease, thus signaling the persistent small-scale anisotropy;
havior in two models that describe passive advection of sceef. Refs.[17,21,23. This effect becomes even more pro-
lar tracer and density fields. The advecting velocity field isnounced for larger values of, cf. Ref.[26] for the magnetic
Gaussian and correlated in time, and its spatial correlations case.

scale with a positive exponest Explicit inertial-range ex-

pressions for the scalar correlation functions have been ob-
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