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Singularities in the Boussinesq equation and in the generalized Korteweg–de Vries equation
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In this paper, two kinds of analytic singular solutions~finite-time and infinite-time singular solutions! of two
classical wave equations~the Boussinesq equation and a generalized Korteweg–de Vries equation! are ob-
tained by means of the improved homogeneous balance method and a nonlinear transformation. The solutions
show that special singular wave patterns exist in the classical models of shallow water wave problem.
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I. INTRODUCTION

All kinds of wave patterns@1#, from linear systems to
nonlinear systems, contribute to understanding comp
wave phenomena. Generally, the wave patterns are sym
ric, resulting from the fascinating effects of instability. Whe
the instabilities of a nonlinear system are violent, the ene
may focus into a spike at a point where special wave patte
~singularity in the nonlinear system! appear; the special wav
patterns are local divergences in the amplitude or gradi
of some physical field. As is known, a lot of spatiotempo
systems exhibit this phenomena, e.g., in the turbulence p
lem it is observed in Ref.@2# that large fluctuations in the
derivatives occur and the dissipation field appears multifr
tal ~a set of nested singularities!; in the surface wave prob
lem, the singularity formation has been observed and stu
@3,4#: nonlinear optical systems exhibit self-focusing effec
which may lead to the collapse of the optical power dens
into local divergences that may have important conseque
on the integrity of optical fibers and laser systems: etc.

For understanding singularities of nonlinear physical s
tems, it is helpful to study singular solutions of partial d
ferential equations~PDEs! that model nonlinear physical sys
tems, and many papers have been written on the problem
example, near-singular solutions of the Navier-Stokes eq
tions and singular solutions of the Euler equations@5#; the
possibility of singularities arising in Burger’s equation@6#;
some methods were presented for the investigation of
singularity formation in the NLS equation@7#; near-singular
solutions of the complex Ginzberg-Landau equation from
viewpoint that the NLS equation is the conservation limit
the complex Ginzberg-Landau equations@8#; etc. However,
most methods used in studying singular solutions are ba
on perturbation techniques or the singular point analy
Also, the explicit forms of singular solution are seldom d
cussed, except for rational solutions. In this paper, we try
obtain the analytic singular solutions of nonlinear PDEs
two direct methods: an improved homogeneous bala
~HB! method@9# and the invariant-Ba¨cklund transformation
@10# based on a special nonlinear transformation.

The homogeneous balance method@11# has shown its ef-
ficiency in finding analytic solitary wave solutions of man
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PDEs. Its essence can be presented as follows: the nonl
PDE is given by

P~u,ux ,ut ,uxx ,uxt ,utt , . . . !50. ~1!

Supposing the solution of Eq.~1! is of the form

u5(
i 50

N

ai f
~ i !
„w~x,t !…, ~2!

wherei is an integer,ai are constant coefficients,f „w(x,t)…
is a function ofw(x,t), w(x,t) is a function ofx and t, and
superscript~i! represents the derivative index. According
the assumption of homogeneous balance, in the PDE~1!, the
nonlinear terms and the highest-order partial derivative te
ought to be partially balanced. ThenN is obtained, the ex-
pression off „w(x,t)… and the relation off ( i )

• f ( j ) and f ( i 1 j )

can be derived. Assumingw(x,t)5b ln(11eax1bt1g) and
substituting formula~2! into Eq. ~1!, after deciding coeffi-
cientsai ,b,a,b,g, the solitary wave solution of the nonlin
ear PDE is obtained. Recently, an improved HB method@9#
has been reported: after balancing the nonlinear and
highest-order partial derivative terms, substitutingf „w(x,t)…
and the relation off ( i )

• f ( j ) and f ( i 1 j ) into Eq. ~1!, we get

F~ f 8, f 9, . . . ,wx ,wxx , . . . ,w t ,w tt , . . . ,wxt , . . . !50,

where F is a function of f 8, f 9, . . . ,wx ,
wxx , . . . ,w t ,w tt , . . . ,wxt , . . . . Obviously, F is a linear
polynomial of f 8, f 9, . . . . Setting the coefficients o
f 8, f 9, . . . to zero yields a set of partial differential equatio
of w(x,t). Taking note of the terms off 8, their forms must
be f 8wx1 ,x2 , . . . ,xp ,t1 , . . . ,tq

. So the coefficient of f 8 in

F( f 8, f 9, . . . ,wx ,wxx , . . . ,w t ,w tt , . . . ,wxt , . . . )50 is a
linear polynomial S i 51

k aiwx1 ,x2 , . . . ,xpi ,t1 , . . . ,tqi
), and then

the set of partial differential equations has an important f
ture, i.e., the equation from the coefficients off 8 is a linear
PDE ofw(x,t), while the other equations can be regarded
constraint conditions to the linear equation. Thus solving
set of PDEs reduces to solving the linear PDE with so
constraint conditions, and then the analytic solution~includ-
ing traveling and nontraveling wave solutions! of nonlinear
PDEs can be obtained by the improved HB method.

As an example, the Boussinesq equation and
Korteweg–de Vries~KdV! equation~fundamental models o
©2000 The American Physical Society01-1
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the shallow water wave problem! are discussed. Analytic sin
gular solutions of the equations are obtained by the impro
homogeneous balance~HB! method. In particular, a finite
time singular solution of the Boussinesq equation is obtai
in this paper, which was produced from a nonsingular phy
cal field in the process of time evolution. The finite-tim
singular solution is relevant to a conjecture—in hydrod
namics many authors have shown that singularities of fl
motion can be formed in finite time, and some simplifi
models of fluid motion have been presented to demonst
the conjecture@12#. Here, the Boussinesq equation gives a
other simplified model of fluid flow to do the same job, sin
this equation is a fundamental model of the shallow wa
wave problem.

The Bäcklund transformations were developed in t
1880s for use in the related theories of differential geome
and differential equations. Afterward, the relationships
tween the Ba¨cklund transformations and the inverse scatt
ing transform@13# or the bilinear form@14# were presented
and the Ba¨cklund transformations have been used to fi
analytic solutions of nonlinear PDEs. In this paper, based
a special nonlinear transformation, the invariant-Ba¨cklund
transformation of a generalized KdV equation is obtain
and the analytic singular solution of it is obtained.

This paper is organized as follows. In Sec. II, an analy
singular solution of the Boussinesq equation is obtained
the improved HB method, which shows that the finite-tim
and the infinite-time singularity both exist in the Boussine
equation. In Sec. III, an analytic singular solution of the Kd
equation is obtained by the improved HB method and
analytic periodic singular solution in space of the generali
KdV equation is obtained by the invariant-Ba¨cklund trans-
formation. In Sec. IV, the main results are given.

II. BOUSSINESQ EQUATION

The Boussinesq equation@15# is a classical model of long
wavelength hydrodynamic waves and other physical syst
and is written in the form
03630
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utt2uxx2a~u2!xx1buxxxx50. ~3!

where a, b are real constants. It can be derived from t
incompressible fluid equations

] tu52
1

r
]xp8,

] tw52
1

r
]zp8, ~4!

]xu1]zw50,

whereu, w are velocities in thex, z directions, andp8 is the
relative pressure. Equation~3! can be derived from the Tod
lattice also. The Boussinesq equation~for wave propagation
in both directions! describes wave motion in weakly nonlin
ear and dispersive media, and a suitable approximation
ables the KdV equation~for which wave propagation is re
stricted to one direction! to be derived from this equation
Much work has been reported for this equation, for examp
the soliton and the Painleve´ expansion@16#, the soliton and
the bilinear form~Hirota’s method! @17#, periodic wave so-
lutions and the structure of the rational solution to Bou
inesq equation@18#, etc.

Here, the improved HB method is employed to obtain t
singular solution of the Boussinesq equation. Supposing
solution is of the form

u5(
i 50

N

f ~ i !
„v~x,t !…, ~5!

whereN is an integer, substituting formula~5! into Eq. ~3!,
and balancing the nonlinear terma(u2)xx and the linear term
buxxxx, we getN52, and then

u5 f 9vx
21 f 8vxx . ~6!

Substituting formula~6! into Eq. ~3!, and collecting all ho-
mogeneous terms in partial derivatives ofv(x,t), we have
@b f ~6!22a f- f-22a f9 f ~4!#vx
61@15b f ~5!224a f9 f-22a f8 f ~4!#vx

4vxx

1@ f ~4!v t
2vx

22 f ~4!vx
41~45b f ~4!224a f9 f 9212a f8 f-!vx

2vxx
2 1~20b f ~4!28a f9 f 924a f8 f-!vx

3vxxx#

1@~v ttvx
21v tvxvxt1v t

2vxx26vx
2vxx! f-1~15b f-26a f8 f 9!vxx

3 1~60b f-220a f8 f 9!vxvxxvxxx

1~15b f-22a f8 f 9!vx
2vxxxx#1@~2vxt

2 12vxvxtt1v ttvxx23vxx
2 12v tvxxt24vxvxxx! f 91~10b f922a f8 f 8!vxxx

2

1~15b f922a f8 f 8!vxxvxxxx16b f9vxvxxxxx#1~vxxtt1bvxxxxxx2vxxxx! f 850. ~7!
Setting the coefficient ofvx
6 in Eq. ~7! to zero yields an

ordinary differential equation forf, namely,

b f ~6!22a f- f-22a f9 f ~4!50. ~8!

The solution of Eq.~8! is obtained as
f 52
6b

a
ln v, ~9!

which yields
1-2
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f 9 f-5
b

2a
f ~5!, f 8 f ~4!5

3b

2a
f ~5!, f 9 f 95

b

a
f ~4!,

~10!

f 8 f-5
2b

a
f ~4!, f 8 f 95

3b

a
f-, f 8 f 85

6b

a
f 9.

Substituting formulas~10! into Eq.~7!, it can be simplified to
a linear polynomial off 8, f 9, . . . ; then setting the coeffi-
cients off 8, f 9, . . . to zero yields a set of partial differentia
equations forv(x,t),

v t
22vx

223bvxx
2 14bvxvxxx50, ~11!

v ttvx
214v tvxvxt1v t

2vxx26vx
2vxx23bvxx

3 19bvx
2vxxxx

50, ~12!

2vxt
2 12vxvxtt1v ttvxx23vxx

2 12v tvxxt24vxvxxx

22bvxxx
2 13bvxxvxxxx16bvxvxxxxx50, ~13!

vxxtt1bvxxxxxx2vxxxx50. ~14!

We note that the Eq.~14! from the coefficients off 8 is a
linear PDE forv(x,t). Then Eqs.~11!–~13! can be regarded
as constraint conditions to the linear equation~14!; thus solv-
ing Eq.~3! reduces to solving the linear PDE~14! with some
constraint conditions~11!–~13!.

Equation~14! may be integrated once to yield

vxtt1bvxxxxx2vxxx5p~ t !, ~15!

wherep(t) is an arbitrary function of time. It is easy to kno
that Eq.~14! has the solution

v~x,t !5S~j!1q~ t !, ~16!
e

y
t

f

03630
whereS(j) is the traveling wave solution of equationvxtt
1bvxxxxx2vxxx50, and q(t) satisfies equation
(d2/dt2)„q(t)…5p(t). So the solution of Eq.~14! is of the
form

v~x,t !5d01d1~x2vt !1d2~x2vt !21d3eb~x2vt !

1d4e2b~x2vt !1q~ t !, ~17!

whereb5A(12v3)/b.0; note that solution~17! is a non-
traveling wave solution of Eq.~14!. Substituting formula
~17! into the constraint conditions~11!–~13!, a set of ordi-
nary differential equations are obtained. Solving this set
equations, we find

d250,

d35
bd1

2~2114v2!

12d4v2~211v2!
,

~18!

q~ t !52
d1~211v2!

v
t.

Thus the solutions of Eqs.~11!–~14! are obtained as

v~x,t !5d01d1~x2vt !1
bd1

2~2114v2!

12d4v2~211v2!
eb~x2vt !

1d4e2b~x2vt !
d1~211v2!

v
t, ~19!

whereb, v, d0 , d1 , andd4 are arbitrary constants. Subst
tuting solution~19! into formulas~9! and ~6!, the analytic
solution of Eq.~3! is obtained, namely
u~x,t !5

6bS d12d4e2b~x2vt !b1
bd1

2~2114v2!beb~x2vt !

12d4v2~211v2!
D 2

aFd01d4e2b~x2vt !2
d1

v
~211v2!t1

bd1
2~2114v2!eb~x2vt !

12d4v2~211v2!
1d1~x2vt !G2

2

6bS d4e2b~x2vt !~12v2!

b
1

d1
2~12v2!~2114v2!eb~x2vt !

12d4v2~211v2!
D

aFd01d4e2b~x2vt !2
d1~211v2!t

v
1

bd1
2~2114v2!eb~x2vt !

12d4v2~211v2!
1d1~x2vt !G , ~20!
la
ble
in
.5

.

wherea, b, v, d0 , d1 , andd4 are arbitrary constants. Herea
just is a parameter to decide the relative value ofu(x,t), and
when d150, the solution~20! decays to the solitary wav
solution.

Solution ~20! is very complex and includes six arbitrar
constants, so it needs discussion. It’s easy to understand
the singularity of solution~20! comes from the zero value o
formula ~17!, namely, it is decided byv(x,t)50. If the ana-
hat

lytic solutionx5T(t) or t5X(x) of v(x,t)50 is obtainable,
the main property of the solution can be given, but formu
~17! includes the transcendental function, so it’s impossi
to get an explicit solution. By numerical analytics, the ma
property of the solution is reported as follows: when 0
.v or v,20.5, b,0, d1,0, d4,0, the unlimited-time
blowup solution exists, and when 0.5>v>20.5(vÞ0), b
.0, d1.0, d4.0, the finite-time blowup solution exists
1-3
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FIG. 1. A finite-time blowup evolution is shown of a finite-time singular solution; the values of the parameters are as fo
a520.1, b51, v520.5, d050.5, d151, d251. In the figure, the max valueu(x,t) and the asymptotic blowup time is indicated.
a
nu

e

up
Figure 1 shows a finite-time blowup solution. Note th
quantities plotted in all figures are dimensionless. The
merical results suggest that:~1! the constantv decides the
region of the singularity, when 0.5>v.0, the singularity
exists in the half-line@2`,t0# and when 0.v>20.5, the
singularity exists in the half-line@ t0 ,`#; ~2! the constanta
just decides the relative values ofu(x,t), and the constants
03630
t
-
b, d0 , d1 , and d4 decide the values oft0 , which is the
blowup time; and~3! there are two kinds of finite-time
blowup evolution modes atv520.5 or v50.5 and 0.5.v
.20.5. Figure 2 (v520.5) shows a time evolution mod
of the finite-time blowup solution. Figure 3 (0.v.20.5)
shows another time evolution mode of the finite-time blow
solution.
at

FIG. 2. A finite-time blowup solution is shown; the values of the parameters are as follows:a520.1, b51, v520.5, d050.5, d1

51, d251. At t50, u(x,t) looks like a hump~a standard solitary wave!, the height of the hump becomes higher and higher, andt
.1.0, the height of the hump tends to infinity.
1-4
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FIG. 3. A finite-time blowup solution is shown; the values of the parameters are as follows:a520.1, b51, v520.2, d050.5, d1

51, d251. At t50, u(x,t) looks like two humps, one hump runs to another hump, att.1.0, two humps come into collision and becom
a single hump, after which the height of the hump tends to infinity.
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III. KdV EQUATION AND GKdV EQUATION

As is known, the KdV equation is not only of mathema
cal interest but also of practical importance. It has be
shown to describe small amplitude shallow water waves,
dromagnetic waves in a cold plasma, ion-acoustic wav
acoustic waves in an anharmonic crystal, and wave mot
in other biological and physical systems. The standard K
equation is given by

ut1auux1buxxx50, ~21!

where a,b are real constants. When the improved H
method is applied to the KdV equation, the following an
lytic solution of the KdV equation is obtained:

u~x,t !5„48d4eb~x2vt !v$3b2d13e2b~x2vt !b

1bd1v@2d1eb~x2vt !~8d41d0eb~x2vt !!

18d4
2b1d1

2e2b~x2vt !~3vt2x!#

14d4
2@d01d1~x23vt !#%…/†a„bd1

2e2b~x2vt !

24d4v$d41eb~x2vt !@d01d1~x23vt !#‰…2‡.

~22!

It is easy to show that solution~22! is an unlimited-time
singular solution.

Recently, some generalized KdV equations~GKdV! have
been discussed widely, including a few high-order Kd
equations@19#, the q KdV equation@20#, and some general
ized KdV equations@21#. One generalized KdV@10#
03630
n
y-
s,
ns
V

-

ut1~n11!~n12!unux1uxxx50, ~23!

has been presented and a more generalized form

ut1a~um!x1b~u8!xxx50, ~24!

has been introduced by Rosenau and Hyman@22#. Equation
~24! has yielded the compactons solution~23! for certain
values ofm and l, which, like solitons, have the remarkab
property that after colliding with other compactons, they
emerge in the same coherent shape. In the paper, a con
equation of the GKdV Equation~23! ~in the casen53)

ut120u3ux1uxxx50, ~25!

is considered. For a discussion of Eq.~25!, the nonlinear
transformation

u~x,t !5
g~x,t !

f ~x,t !2/31u0~x,t !, ~26!

is introduced. Then, substituting solution form~26! into Eq.
~25!, and making the coefficients of like powers off (x,t)
vanish, we obtain the following set of equations,
1-5
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2 40
27 g fx~9g312 f x

2!50 for f 211/3,

240g3u0f x50 for f 29/3,

10
3 ~6g3gx1 f x

2gx1g fxf xx!50 for f 28/3,

240g2u0
2f x50 for f 27/3,

20g2~3u0gx1gu0x!50 for f 26/3, ~27!

2 2
3 ~g ft120gu0

3f x13gxf xx13 f xgxx1g fxxx!

50 for f 25/3,

60gu0~u0gx1gu0x!50 for f 24/3,

gt120u0
3gx160gu0

2u0x1gxxx50 for f 22/3,

whereu0(x,t) satisfies the equation

u0t120u0
3u0x1u0xxx50, ~28!

which is the same as Eq.~25! for u(x,t); thus the set of Eqs
~26!–~28! constitutes an invariant-Ba¨cklund transformation
of the GKdV Eq.~25!.

It is obvious that Eq. ~28! has the trivial solution
u0(x,t)50, then substitutingu0(x,t)50 into formula ~26!,
the transformation is simply

u5
g~x,t !

f ~x,t !2/3 ~29!

and Eq.~27! become

gt1gxxx50,

g ft13gxf xx13 f xgxx1g fxxx50,
~30!

6g3gx1 f x
2gx1g fxf xx50,

9g312 f x
250.
b,

-

,

03630
The first and last equations are easily solved~the other equa-
tions can be treated as constraint conditions!, from which
solutions of Eq.~30! can be obtained. Substituting the sol
tions into transformation~29!, the analytic solution of the
GKdV Eq. ~25! is obtained as

u~x,t !52

v1/3sec4/3S 216c19v~x1vt !

12Av
D

2 tan2/3S 216c19v~x1vt !

12Av
D , ~31!

wherec is a constant, andv is the velocity of the traveling
wave. It’s easy to understand that the singularity of solut
~31! is decided by equation tan2/3$@216c19v(x
1vt)#/12Av%50. Thus the solution~31! is a space periodic
singular solution, i.e., the GKdV equation contains t
unlimited-time singular solution, which is periodic in spac

IV. CONCLUSION

In conclusion, two methods to seek analytic solutions
nonlinear PDEs are introduced: an improved HB method
the invariant-Ba¨cklund transformation based on a spec
nonlinear transformation, and two kinds of analytic singu
solutions~finite-time and infinite-time singular solutions! of
the Boussinesq equation and a GKdV equation~including the
KdV equation! are obtained. A finite-time singular solutio
of the Boussinesq equation is discussed, which is relevan
singularity formation in finite time in hydrodynamics. A pe
riodic in space unlimited-time singular solution of the GKd
equation is obtained, and the invariant-Ba¨cklund transforma-
tion of the equation is presented. In addition, the nonlin
transformationu5(g/ f n

2)1u0 is useful in finding solutions
of Eq. ~23!.
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