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Singularities in the Boussinesqg equation and in the generalized Kortewegle Vries equation
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In this paper, two kinds of analytic singular solutidfisite-time and infinite-time singular solutionsf two
classical wave equationishe Boussinesq equation and a generalized Korteweg—de Vries equationb-
tained by means of the improved homogeneous balance method and a nonlinear transformation. The solutions
show that special singular wave patterns exist in the classical models of shallow water wave problem.
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[. INTRODUCTION PDEs. Its essence can be presented as follows: the nonlinear
PDE is given by
All kinds of wave patternd1], from linear systems to
nonlinear systems, contribute to understanding complex
wave phenomena. Generally, the wave patterns are symm
ric, resulting from the fascinating effects of instability. When
the instabilities of a nonlinear system are violent, the energy N
may focus into a spike at a point where special wave patterns u= E afV(e(x,1), 2
(singularity in the nonlinear systérappear; the special wave i=0
patterns are local divergences in the amplitude or gradients . . -
of some physical field. As is known, a lot of sp61ti0temporaly"h(:“rel IS an Integera; are constant cogfflmenti;(go(x,t))
systems exhibit this phenomena, e.g., in the turbulence pr0l5§ a func.t|or_1 ofp(x,1), @(x1) is a fupcnpn ofx andt, a.nd
lem it is observed in Ref[2] that large fluctuations in the superscript(i) represents the derivative index. According to

derivatives occur and the dissipation field appears multifract € @ssumption of homogeneous balance, in the PIDEhe
tal (a set of nested singularitiesn the surface wave prob- nonlinear terms and the highest-order partial derivative terms

lem, the singularity formation has been observed and studie@ught to be partially balanced. Theis obtained, the+ex-
pression off (¢(x,t)) and the relation of . f0) and f(+)

[3,4]: nonlinear optical systems exhibit self-focusing effects, ) . oy
which may lead to the collapse of the optical power density*@n be derived. Assuming(x,t)=bIn(1+e 7) and

into local divergences that may have important consequencédPstituting formula2) into Eq. (1), after deciding coeffi-
on the integrity of optical fibers and laser systems: etc. ~ Cientsa ,b,a,B,y, the solitary wave solution of the nonlin-

For understanding singularities of nonlinear physical sys&a" PDE is obtaineq. Recently, an improved HB metf@jd
tems, it is helpful to study singular solutions of partial dif- @S been reported: after balancing the nonlinear and the

ferential equationéPDES that model nonlinear physical sys- Nighest-order partiz(a_l)de(r;vative (tgrgns, substitutfiig (x,t))
. H I I H

tems, and many papers have been written on the problem: f@nd the relation of *- f” and " into Eq. (1), we get
example, near-singular solutions of the Navier-Stokes equa- Y _o
tions and singular solutions of the Euler equatiff the (1@ PP - P -2 2) =0,
possibility of singularities arising in Burger's equap{)&]; where F is a functon of ", ... 0,
some methods were presented for the investigation of the Obviouslv. E i i
singularity formation in the NLS equatidiv]; near-singular ~ £ - @r@uts - oo @ty e - 2 viously, - 1 a finear

. . ' . olynomial of f',f” ... . Setting the coefficients of
solutions of the complex Ginzberg-Landau equation from the,” 7, . S . .

. . s S f”, ... to zero yields a set of partial differential equations

viewpoint that the NLS equation is the conservation limit of ; , .

. o of ¢(x,t). Taking note of the terms df’, their forms must
the complex Ginzberg-Landau equatidi®y; etc. However, by So the coefficient off’ in
most methods used in studying singular solutions are base%e , (fxl*xz ----- Xpotas-otg” ]
on perturbation techniques or the singular point analysist(f',f", - - - .@x, @x0 @0 Py -+ Pty -+ )=0 IS @
Also, the explicit forms of singular solution are seldom dis-linear polynomial%i_;ai¢y, x,, ... x, .t;.... ) and then
cussed, except for rational solutions. In this paper, we try tdhe set of partial differential equations has an important fea-
obtain the analytic singular solutions of nonlinear PDEs byture, i.e., the equation from the coefficientsféfis a linear
two direct methods: an improved homogeneous balancPDE of ¢(x,t), while the other equations can be regarded as
(HB) method[9] and the invariant-Beklund transformation constraint conditions to the linear equation. Thus solving the
[10] based on a special nonlinear transformation. set of PDEs reduces to solving the linear PDE with some

The homogeneous balance methad] has shown its ef- constraint conditions, and then the analytic solutimeiud-
ficiency in finding analytic solitary wave solutions of many ing traveling and nontraveling wave solutiorf nonlinear
PDEs can be obtained by the improved HB method.
As an example, the Boussinesq equation and the
*Email address: yangkq@Izu.edu.cn Korteweg—de VriegKdV) equation(fundamental models of

P(U,Uy ,Ug ,Uyy Uy, Ugiy - .. ) =0. (N)

%’upposing the solution of Eq1) is of the form
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the shallow water wave problerare discussed. Analytic sin- Ugt— Uyy— A(U2) g+ DUyyy=0. 3
gular solutions of the equations are obtained by the improved

homogeneous baland&iB) method. In particular, a finite- wherea, b are real constants. It can be derived from the
time singular solution of the Boussinesq equation is obtaineéhcompressible fluid equations

in this paper, which was produced from a nonsingular physi- 1

cal field in the process of time evolution. The finite-time du=——dyp’,

singular solution is relevant to a conjecture—in hydrody- p

namics many authors have shown that singularities of fluid

1
motion can be formed in finite time, and some simplified HW=——4d,p’, (4)
models of fluid motion have been presented to demonstrate P
the conjectur¢12]. Here, the Boussinesq equation gives an- du+d,w=0,

other simplified model of fluid flow to do the same job, since

this equation is a fundamental model of the shallow wate(Nhereu w are velocities in the, z directions, and’ is the
wave problem. ' ’ '

The Baklund transformations were developed in therelatlve pressure. EquatidB) can be derived from the Toda

1880s for use in the related theories of differential geometr)l/attlce als_o. The Boussinesg equat(cbor wave propagation
and differential equations. Afterward, the relationships be-" both dlr_ect|on_§; descnbes wave motion in weakl_y no_nlln-
tween the Beklund transformations and the inverse scatter—:glreznt?]ed'Egs/rivia?ggf'; V%Eir? v?/;cgbleroapap;ﬁl)r?sorg-en-
ing transform[13] or the bilinear form14] were presented, . quatr . propag .

and the Baklund transformations have been used to findstrlcted to one directionto be derived from this equation.

analytic solutions of nonlinear PDEs. In this paper, based oﬁ:gcgo\l’;/tgrnk gr?j tbheeer;;(iarﬁ)lg\rg(d ;?]rstigﬁleé}u?ﬁf@’oﬁﬁgﬁ)ﬁﬂple’
a special nonlinear transformation, the invariantBand b '

transformation of a generalized KdV equation is obtaine Steioa"sm:r?c: {ﬁremé:::jg:uarz rgfemgdrgiz]ﬁ:Seggﬂlt(i:o\gat\éeBS&ss-
and the analytic singular solution of it is obtained.

: : . . inesq equatioh18], etc.
This paper is organized as follows. In Sec. Il, an analytic Here, the improved HB method is employed to obtain the

singular solution of the Boussinesq equation is obtained by. : . ) )
the improved HB method, which shows that the finite-time%mgu.Iar .SOIUUO” of the Boussinesq equation. Supposing the
solution is of the form

and the infinite-time singularity both exist in the Boussinesq

equation. In Sec. lll, an analytic singular solution of the KdV N

equation is obtained by the improved HB method and an u=2>, fw(x1), 5)

analytic periodic singular solution in space of the generalized =0

KdVv equatlon is obtained by_ the mvanant-&_&dund trans-  \whereN is an integer, substituting formul®) into Eq. (3),

formation. In Sec. IV, the main results are given. and balancing the nonlinear tem(u?),, and the linear term
bu,,x, We getN=2, and then

ll. BOUSSINESQ EQUATION )

U=f"oi+ T wyy. (6)
The Boussinesq equati¢h5] is a classical model of long

wavelength hydrodynamic waves and other physical systemSubstituting formula6) into Eq. (3), and collecting all ho-

and is written in the form mogeneous terms in partial derivatives«@fx,t), we have

[bf®—2af"f”—2af"f*]w+[150f) —24af"f" — 2af f ] wiwy,
H P wlwi— D i+ (450 —24af"f"— 12af' f") w2, + (200f@ —8af"f"—4af' f") w3 wyyy]
0y + 000+ OF o — Bwlwg) "+ (150" —6af’ f") w, + (600" — 20af ") 0wy @y

+ (150" = 2af ") 0 00d + [ (205 + 20,0511+ 0105~ B0yt 201051~ 40,0,00) "+ (10017 — 22 f7) iy

+ (150" =2af" ") 0@ yxxxt BB " 0y @yxxx] + (@yxitF DOyxxx @xxxd f=0. (7)
|
Setting the coefficient ofuf in Eq. (7) to zero yields an 6b
ordinary differential equation fok, namely, f=—7 o, 9)
bf®—2af”f”—2af"f#=0. (8)
The solution of Eq(8) is obtained as which yields
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frEm = if(S),

3b b
1£(4)__ " £(5) men — — £(4)
a frf 2af , f'f af ,

(10)

2b 3b 6b
f'f’":—f(4), frfrr:_fm, frfr=—f"

a a a
Substituting formula$10) into Eq.(7), it can be simplified to
a linear polynomial off’,f”, ...; then setting the coeffi-
cients off’,f”, ... to zero yields a set of partial differential
equations forw(x,t),

2

o; —w)2(—3bw)z(x+ dbw,wyy =0, (11

C’)tt")>2(+ 4oyt wtzwxx_ 6w>2(wxx_ Sbwix—i_ 9bwi“’)xxxx

=0, (12

2 2
205 2wy 0x T 0@y~ Wi T 20105y dOxWyyx

(13

2 _
- 2bwxxx—’_ 3Dy 0y xxxt BD W@y xxx= 0,

(14

OyxttT DOy Oxx= 0-

We note that the Eq(14) from the coefficients off’ is a
linear PDE forw(x,t). Then Egqs(11)—(13) can be regarded
as constraint conditions to the linear equatid4); thus solv-
ing Eq.(3) reduces to solving the linear POE4) with some
constraint condition$11)—(13).

Equation(14) may be integrated once to yield
(15)

Oyt F DOy Oy = P(1),

wherep(t) is an arbitrary function of time. It is easy to know
that Eqg.(14) has the solution
w(X,t)=3(§) +q(t), (16)

6b(d1—d4e—ﬁ<x—vt>/a+

u(x,t)=
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where S(¢) is the traveling wave solution of equatia,,
Fhowyu— oxxx=0, and q(t) satisfies equation
(d?/dt?)(q(t))=p(t). So the solution of Eq(14) is of the
form

(,U(X,t) = d0+ dl(X— Ut) + dz(X_ Ut)2+ d3eﬂ(X7Ut)

+de PxU 4 q(t), (17
where 8=+/(1—0v%)/b>0; note that solutior{17) is a non-
traveling wave solution of Eq(14). Substituting formula
(17) into the constraint condition6l1)—(13), a set of ordi-
nary differential equations are obtained. Solving this set of
equations, we find

bd(—1+4v?)
3T 12d02(—1+0?)’

(18

di(—1+v?)
q(t)y=— 7t.
Thus the solutions of Eq$11)—(14) are obtained as
bd?(—1+4v?)
= — B(x—vt)
w(X,t)=dg+d{(Xx—vt)+ 120,02(— 1+ 09 e

dy(—1+02

4 dw*ﬁ(X*vUMt, (19

v

whereb, v, dy, d;, andd, are arbitrary constants. Substi-
tuting solution(19) into formulas(9) and (6), the analytic
solution of Eq.(3) is obtained, namely

bd(—1+4v?)gefx—vY) 2

12d,0°(—1+0v?)

aj

d
do+dae PO = —E(~1+v2)t+

dse P v0(1-v?)

bdi(—1+4v?)efoY
12d,0%(—1+0v?)

+ dl(X_ Ut)

ol

di(1-v?)(—1+4p?)efx—v
12dv?(—1+0v?)

do+d,e A0 —

dl(_1+02)t

bd2(—1+402)efxD ! 20

a

v

wherea, b, v, dy, d;, andd, are arbitrary constants. Heae
just is a parameter to decide the relative value©f,t), and
when d; =0, the solution(20) decays to the solitary wave
solution.

Solution (20) is very complex and includes six arbitrary

+dy(x—0t)

12dv?(—1+0v?)

Iytic solutionx=T(t) ort=X(x) of w(x,t)=0 is obtainable,

the main property of the solution can be given, but formula
(17) includes the transcendental function, so it's impossible
to get an explicit solution. By numerical analytics, the main
property of the solution is reported as follows: when 0.5

constants, so it needs discussion. It's easy to understand thatv or v<—0.5, b<0, d;<0, d;<0, the unlimited-time

the singularity of solutior{20) comes from the zero value of
formula(17), namely, it is decided bw(x,t) =0. If the ana-

blowup solution exists, and when &= —-0.5w #0), b
>0, d;>0, ds>0, the finite-time blowup solution exists.
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FIG. 1. A finite-time blowup evolution is shown of a finite-time singular solution; the values of the parameters are as follows:
a=-0.1,b=1,v=-0.5,dy=0.5,d,=1, d,=1. In the figure, the max valug(x,t) and the asymptotic blowup time is indicated.

Figure 1 shows a finite-time blowup solution. Note thatb, dy, d;, and d, decide the values of,, which is the
guantities plotted in all figures are dimensionless. The nublowup time; and(3) there are two kinds of finite-time
merical results suggest thdtt) the constanv decides the blowup evolution modes at=—0.5 orv=0.5 and 0.5v
region of the singularity, when 0%5v >0, the singularity > —0.5. Figure 2 {=—0.5) shows a time evolution mode
exists in the half-lind —o,t5] and when 0>v=—0.5, the  of the finite-time blowup solution. Figure 3 v >—0.5)
singularity exists in the half-lingty,]; (2) the constane  shows another time evolution mode of the finite-time blowup
just decides the relative values ofx,t), and the constants solution.

100

80

Height 60
40

20

FIG. 2. A finite-time blowup solution is shown; the values of the parameters are as fobows:0.1,b=1, v=-0.5,d,=0.5,d;
=1,d,=1. At t=0, u(x,t) looks like a hump(a standard solitary wayethe height of the hump becomes higher and higher, artd at
=1.0, the height of the hump tends to infinity.
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Height

FIG. 3. A finite-time blowup solution is shown; the values of the parameters are as fobews:0.1,b=1, v=-0.2,dy=0.5,d;
=1,d,=1. Att=0, u(x,t) looks like two humps, one hump runs to another humpzat.0, two humps come into collision and become
a single hump, after which the height of the hump tends to infinity.

IIl. KdV EQUATION AND GKdV EQUATION Ui+ (N+1)(N+2)U"U+ Uy, =0, (23)

As is known, the KdV equation is not only of mathemati-
cal interest but also of practical importance. It has beeq1
shown to describe small amplitude shallow water waves, hy-
dromagnetic waves in a cold plasma, ion-acoustic waves,
acoustic waves in an anharmonic crystal, and wave motions

as been presented and a more generalized form

m ! —
in other biological and physical systems. The standard KdV Ue+a(u™)y+b(U") =0, (24)
equation is given by
Ui+ aUU + BU =0 (21) has been introduced by Rosenau and Hyii2#j. Equation

(24) has yielded the compactons soluti¢23) for certain
where a,B are real constants. When the improved HB values ofm andl, which, like solitons, have the remarkable
method is applied to the KdV equation, the following ana-property that after colliding with other compactons, they re-
lytic solution of the KdV equation is obtained: emerge in the same coherent shape. In the paper, a concrete

equation of the GKdV Equatiof23) (in the casen=3)

u(x,t)= (48d,e*"vVy{382d13e2*vVp

+ Bdyu[ —d,€°* UV (8d,+ doeP* ) U+ 20030+ Uy, =0, (25)
+8d3b+d?e?*>* ") (3pt—x)]
+4d2[dy+dy(x—3vt)]})/[a(Bd2e?Px vV is considered. For a discussion of E5), the nonlinear

transformation
- 4d4U{d4+ eb<x*vt)[d0+ dl(X_ 3Ut)]})2]

(22
u(x t)—ﬁg(x’t) + Ug(X,1) (26)
It is easy to show that solutiof22) is an unlimited-time T f(x, )28 OV

singular solution.

Recently, some generalized KdV equatig@<dV) have
been discussed widely, including a few high-order KdVis introduced. Then, substituting solution fo&6) into Eq.
equationd 19], the g KdV equation20], and some general- (25), and making the coefficients of like powers ffx,t)
ized KdV equationg$21]. One generalized KdV10] vanish, we obtain the following set of equations,
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—399f(9g°+215)=0 for 11
—40g%ugf,=0 for =983
L (69%,+ f0,+gfif)=0 for f%3

—4092udf,=0 for f~753

209%(3UoGx+gUp,) =0 for f~°73 (27)
—5(gf+ 209U5fy+ 3gxf ot 3f Gyt 9o
=0 for 573
60gUo(UgTx+ gUgy) =0 for 43,
9+ 20U50x+ 60gUgUox + Oyy=0  for 723,
whereuy(x,t) satisfies the equation
Ugt+ 20U§Uox + Ugyxx= 0, (28

which is the same as E5) for u(x,t); thus the set of Egs.
(26)—(28) constitutes an invariant-B&lund transformation
of the GKdV Eq.(25).

It is obvious that Eq.(28) has the trivial solution
Uo(x,t) =0, then substitutingip(x,t)=0 into formula(26),
the transformation is simply

U= g(x,t) 29
B f(X,t)z3
and Eq.(27) become
gi T 9= 0,
gfi+30xfxxt 34 0ux T 9f=0,
(30)

6939x+ figx"_ gff=0,

9g3+2f2=0.

PHYSICAL REVIEW E 63 036301

The first and last equations are easily solvi other equa-
tions can be treated as constraint conditjpricom which
solutions of Eq.(30) can be obtained. Substituting the solu-
tions into transformatior(29), the analytic solution of the
GKdV Eg. (25) is obtained as

13 gedl 16¢c+9u(x+uvt)
12\v
13| —16c+9v(x+vt)
2 tarf
12\v

wherec is a constant, and is the velocity of the traveling
wave. It's easy to understand that the singularity of solution
(31 is decided by equation tAR[—16c+9v(x
+vt)]/12\v}=0. Thus the solutiorf31) is a space periodic
singular solution, i.e., the GKdV equation contains the
unlimited-time singular solution, which is periodic in space.

IV. CONCLUSION

In conclusion, two methods to seek analytic solutions of
nonlinear PDEs are introduced: an improved HB method and
the invariant-Baklund transformation based on a special
nonlinear transformation, and two kinds of analytic singular
solutions(finite-time and infinite-time singular solutionsf
the Boussinesq equation and a GKdV equaftionluding the
KdV equation are obtained. A finite-time singular solution
of the Boussinesq equation is discussed, which is relevant to
singularity formation in finite time in hydrodynamics. A pe-
riodic in space unlimited-time singular solution of the GKdV
equation is obtained, and the invarianteBRind transforma-
tion of the equation is presented. In addition, the nonlinear
transformationu=(g/fﬁ)+u0 is useful in finding solutions
of Eq. (23).
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