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Fractals and dynamical chaos in a two-dimensional Lorentz gas with sinks
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We consider a two-dimensional periodic reactive Lorentz gas, in which a moving point particle undergoes
elastic collisions on fixed hard disks and annihilates on absorbing disks, called sinks. We present clear evi-
dence of the existence of a fractal repeller in this open system. Moreover, we establish a relation between the
reaction rate, describing the macroscopic evolution of the system, and two characteristic quantities of the
microscopic chaos: the average Lyapunov exponent and the Hausdorff codimension of the fractal repeller.
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[. INTRODUCTION chain[20,21]. For those systems, Kaufmann generalized the
escape-rate formula of Rdf3] (see Ref[21]).

Many recent works have been devoted to an understand- The purpose of the present paper is to study a two-
ing of macroscopic irreversible processes, such as diffusiodimensional2D) periodic reactive Lorentz gas with the pos-
or reaction, studied from a microscopic point of view, usingsible escape of particles from inside the system due to the
deterministic chaotic modeld—7]. An efficient way to es- presence of absorbing disks, modeling reactive centers where
tablish relations between the characteristic quantities of mithe moving point particle is annihilated. In a previous paper
croscopic chaos and the macroscopic transport coefficients [22], we considered a 2D periodic reactive Lorentz gas,
the escape-rate formalisf3—7]. In this formalism, a dy- where the reaction is a reversible isomerization of the point
namical quantity called the Helfand mome®t® is associ- particle between states and B, also known as a color dy-
ated with each transport propefi§]. For large enough sys- namics. In the present paper, our aim is to study a similar
tems and long enough times, this Helfand moment has model but with a reaction of annihilation, instead of an
diffusive evolution determined by the transport coefficient isomerization. As in Ref[22], the point particle undergoes
considered. This diffusionlike process can be characterizeg@lastic collisions on hard disks fixed in the plane. Some of
by the escape rate of trajectories out of a phase-space regitie disks—called sinks or absorbers—have absorbing bound-
defined by bounds on the Helfand momenty/2<G{®  aries: the point particle is absorbed upon collision on one of
<x/2, x being real and positivf4]. Almost all trajectories those absorbing disks. All the other disks are inert for the
escape after a finite time. The trajectories that remain trappei@action, so that the reaction scheme is the following if we
forever in the prescribed bounds form an unstable fractal se@ll X the moving particle:
in the phase space. This set is called the fractal repeller. In

the case of diffusion, the Helfand moment is simply the po- X+inert disk— X +inert disk, (1)
sition r: the particle itself escapes out of a region defined in
the configuration space. X+ sink— J+ sink. 2

The fractal repeller is characterized by its chaotic and
fractal properties, which can be studied in the large-deviationn the periodic case, the inert disks and the sinks form regu-
formalism, in particular, in terms of the topological pressurelar arrays. This system is an open Lorentz gas in the sense
P(B) [9]. This function depends on a real paramegr that the point particle escapes when colliding on a sink.
Varying its value allows us to scan the dynamical structureTherefore, most particles will disappear from the system ex-
of the system. Moreover, the average Lyapunov exponerntept for a set of zero probability forming a fractal repeller
and, for a system with escape, the escape rate and the dimesemposed of the trajectories which move forever between
sion of the fractal repeller, can be calculated from the topothe sinks. The decay in the number of particles due to the
logical pressuré?(B). This formalism has already been ap- annihilation is characterized by an escape rate which is
plied to diffusion in the one-dimensional lattice Lorentz gasequivalent to the reaction rate in such models.
[10-14. In the present paper, one of our aims is to establish a

Escape processes have been considered for different sy®lationship between the reaction rate, on the one hand, and
tems such as one-dimensional mappind5,16, chaotic- the characteristic quantities of the fractal and chaotic prop-
scattering systemg7,17,1§, and systems with a color dy- erties of the repeller, on the other hand, which are its Haus-
namics[19], as well as in spatially extended systems withdorff dimension and the average Lyapunov exponent.
absorbing boundaries on the external borders of the system The paper is organized as follows. The model is intro-
[3,6,7]. Until now, little work has been devoted to the escapeduced in Sec. Il. The escape process and the fractal repeller
of particles or trajectories from inside the system. In thisare studied in Sec. lll. A nonequilibrium measure defined on
direction, Kaufmanret al. studied processes of transient cha-the fractal repeller is defined in Sec. IV, which allows us to
otic diffusion in one-dimensional mappings and in chainscalculate the average Lyapunov exponent in Sec. V. The
with lateral escape besides an escape from the ends of thessure function defined in the case of the Lorentz gas is
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respectively. The phase-space coordinates of the particle are
its position and its velocityX,y,vy,vy). The collisions with
the disks being elastic, the energy of the particle is conserved
and the magnitude of the velocity is a constant of motion
[vl[=v. In the numerical calculations, we shall take it equal
to unity, |v|=1. The energy shell defines a three-
dimensional phase space where the coordinates of the par-
ticle are §,y, ), & being the angle between the velocity and
the x axis. Using the periodicity of this system, we can study
its dynamics in an elementary cell of the sinks superlattice,
containingN=3n? disks. We shall use the Birkhoff coordi-
FIG. 1. (a) Elementary cell of the superlattice of the sinks, in the nates x= (j,0,@), with 1<j<N= 3n2, 0<#<2w, and
casen=1; (b) in the casen=2. —1<w=<1. The integej defines the disk of the elementary
cell on which the collision takes placé,is an angle giving
presented in Sec. VI, with the derivation of relations betweerthe position of the impact on this disk, amgl=sin¢ is the
the escape rate, the dimensions of the fractal repeller, and tlgine of the anglep between the velocity after collision and
average Lyapunov exponent. Finally, the dependence of thihe normal at the impact. At an elastic collision, the velocity
escape rate and of the codimension of the fractal repeller oof the point particle changes instantaneously according to the
the density of sinks is presented in Sec. VII. The conclusiongollision rule
are drawn in Sec. VIII.

Vi =vi =2 Vi), (5)

!l DESCRIPTION OF THE MODEL wherev{™) is the velocity after théth collision, v{ ™) is the

In a two-dimensional periodic Lorentz gas, a point par-velocity before thdth collision, andn; is the normal at the
ticle undergoes elastic collisions on hard disks fixed in theémpact point. We notice that, in Birkhoff coordinates, the
plane and forming a regular triangular lattice. Let us denotelynamics reduces to a mapping which is known to be area
the distance between the centers of the diskd, @d their  preserving 7].
radius, being equal to unity in the numerical calculations, as
a. We shall work in the finite horizon regimeazd
<4al\/3, for which the diffusion coefficient is known to be
finite [23,24). In our model, some of the disks are sinks Our model is an open Lorentz gas: the point particle es-
which absorb the moving particle upon collision. These sinksapes when it is absorbed by a sink. Another type of open
form a regular triangular superlattice over the disk lattice.Lorentz gas, without reaction but with absorbing boundaries
The fundamental vectors of the disk lattice axe=d(1,0) of large spatial extension, was studied in Ré{. The meth-

and e,=d(},V3/2). Those of the sink superlattice afg ods developed in Ref6] extend to the present model, as we

— A3 _ . . explain below.
—nd(z,\/§/2) andg;=nd(0,~ ‘/5)’ wheren is an integer For a typical initial conditionl’ 3= (Xq,Yo, %), the par-

parameter controlling the density of sinks in the system: ince will collide on a sink and escape after a finite time: this
the directions of, andE,, one disk oven is a sink. Con-  ime s called the escape tini(I'), wheren refers to the
figurations withn=1 andn=2 are depicted in Fig. 1. FOr configuration of the sinks. Although this time is finite for
n=1, the fundamental cell of the superlattice contains thregn st trajectories, there exist trajectories that never collide on
disks, among which one is a sink which can be chosen ag sjnk and remain trapped forever in the Lorentz gas. These
shown in Fig. 1a). The shape of this fundamental cell is ygjectories can be periodic or nonperiodic. Because of the
used as the building block for the fundamental cell for largergefocusing character of the collisions on the disks, these tra-
n, as shown in Fig. () for the casen=2. Therefore, for H’ectories are unstable and form a fractal set of zero Lebesgue
largern, the fundamental cell of the superlattice is made ofeasyre in phase space: this set is therefore called the fractal

nxn of the;e blocks of three disks. Accordingly, one diskepeller 7,. This fractal repeller is typical of the chaotic-
overN=23n"is a sink, so that the density of all the disks  scattering processés,7,16—18.

IIl. ESCAPE AND FRACTAL REPELLER

and the density of the sinks; are: An evidence of the fractal character of this repeller is
given by the escape time as a function of the initial condi-

2 tion, as shown in Fig. 2. This function is finite for almost all
pdzﬁ (3) initial conditions, since the particle collides on a sink after a

3d finite time. However, this time is infinite for trajectories

trapped in the fractal repeller. They correspond to initial con-
and ditions on the stable manifold of a trapped trajectory. The
singularities of the escape-time function are thus on a fractal
2 set formed by the stable manifolds of the fractal repeller,
po=bd___° @ W(F).
N 3\/§(nd)2 Figure 2 shows this escape time as a function of the initial
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position at an anglé, around a next-nearest-neighbor disk This decay is expected to be exponential since the trapped

of the sink, shown in black in Fig.(8), in the case where trajectories are exponentially unstable and the system is spa-

n=2, andd=2.15. The velocity is normal to the disk. As tially periodic. The escape rate is thus defined as

can be seen in Fig.(B), the singularities seem to occupy 1

most of the initial conditions, although they are of zero Le- e T

besgue measure. This is due to the fact that the Hausdorff y_tlTx N o[ Y (0] ©

dimension of the fractal set is close tgske below. The two

largest windows of the escape time are centere@yatw/6  The escape rate is a characteristic quantity of the system,

and 77/6. They correspond to the trajectories directly collid- independent of the initial measurg chosen, as long as this

ing on the two nearest sinks. The self-similar character of théatter is smooth enough. The escape rate is easily accessible

fractal set appears in Figs(@ and 2d). by numerical computations, as shown in Fig. 3. The loga-
The escape dynamics of this system can be further deithm of the fraction of particles remaining in the system

scribed by a quantity called the escape &g Let us take after a timeT, Nt/Ny, is plotted as a function df. The slope

Ny initial conditions, forming a se{tl“(()')}, chosen according gives the escape rate. In this exampies 2 and d=2.25,

to an initial measure/y so that and we obtainy=0.0378.
N 0 o
1 zo (j))dF (6) **ek
dvo(I')= lim — S(I'—r , * .
o= i N 2o 1
- ",

wherel’=(x,y, ¢). After a timet, only a numbeiN, of par-
ticles will remain in the system. This number will decrease InN/N, ot
monotonically witht. The set of particles remaining in the ****
Lorentz gas at timeis given by those having an escape time *¥y
T,(T) larger thant: 37 *\

Yo () ={To:t<Ty(Tp)}. (7) 4 . . . .

0 20 40 60 80 100

The decay of the number of particles is then described by T

FIG. 3. Logarithm of the fraction of particles remaining in the

N, Lorentz gas at tim&, N+ /Ny, as a function of tim€l, in the case
lim W:VO[Yn(t)]:f dvo(Ty). (80  whenn=2 andd=2.25. The slope gives the escape rate: here
No—2 10 Ya(® y=0.0378.
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IV. NONEQUILIBRIUM PROBABILITY MEASURE time T over theNy particles still in the system at this time
For a system with escape, the ergodic hypothesis is ncgt6]’
appropriate since most trajectories escape after a finite time: Nt
a time average does not provide interesting information. On A=1lm lim =— > In AT, (12)
the contrary, we are expecting that the important information T—oo Ng—o Ti=1

is contained in the trajectories forever trapped inside the sys-

tem. The invariant measure we are interested in thus has tHe the case of the Lorentz gas, the stretching factor can be
fractal repeller, as support. This invariant measure can beobtained as follow$6].

constructed by considering statistical averages over all the Consider a front of particles issued from the same initial
trajectories which have not yet escaped during a timeposition but with different velocity angles. This front is char-
reversal symmetric intervdl—T/2,+ T/2] and, thereafter, acterized by a radius of curvatuR(I';), I'; being a refer-
taking the limitT—c°. Indeed, the trajectories which do not ence trajectory considered at tirhé=or I';, theith collision
escape durin§0,+ T/2] have initial conditions on the stable is supposed to occur at the timhe Between two collisions,
manifolds of the repelle\V(F;), in the limit T—. Onthe  this radius of curvature increases linearly with the time as
other hand, the initial conditions of the trajectories which do

not escape during— T/2,0] approach the unstable manifolds Ry =v(t—t_1)+R), 13

W, (F,) in the same limit. In the limifT—c, imposing no ) . ) ) _

escape over the whole intervat T/2,+ T/2] selects trajec- Wherev is the particle velocityt; , is the time of the pre-

. . a . .. + . .
tories which approach closer and closer the repeller given byious collision, andR(*) is the radius of curvature after the
the intersection: previous collision. Therefore, the radius of curvature before

theith collision is given byRi(_)=R(Fti). At an impact, the
Wo(Fn) "Wy (Fn)=Fp. (10 radius of curvature is modified according to the geometry of
the collision: the relation between the curvature before and

Statistical averages over these selected trajectories define er theith collision is given by

invariant measure having the fractal repeller for support
[5,7].

. . . - 1 1 2

In systems with a time-reversal symmetric collision dy- = +

namics such as the present one, statistical averages calcu- R(M)  R(T) - acose;’
lated over the aforementioned invariant measure are equiva-
lent to statistical averages over a conditionally invariantwhere ¢, is the angle between the vectarS”, andn; in-
measure defined by selecting the trajectories which do ndtoduced in Eq(5).
escape during0,+ T/2] only and taking the limifT— o« (for Using Egs.(13) and(14), we can calculate the stretching
further information, see Ref$5—7,29). This conditionally  factor[6,7], and we obtain
invariant measure was shown in RE8] to be given by

(14)

)
dpndT) AT(Fo)ZEXpJT R&Jdt
im 1det Sy (@ T)du(@T) Ll (t—t-o) (Tt
= lim = | dt————=ly (7 Yo : _h ol oo
T+l JoO vol Yn(T)] _To{iﬂz + Rl(i)l H[l+ Rg+) 1
(11 (15)

wherel ¢(T") is the indicator function of the set in phase ) ) .

space and, is the initial measur§Eq. (6)]. The ensemble fOr @ segment of trajectory witm collisions such that
average is here taken over the trajectories which are still i®<To<t1 andt,<T. The time integral in Eq(15) should

the system at timd. In the limit of low densities of sinks, Start from a strictly positive tim&,>0 since here we as-
we note that the system tends to the closed Lorentz ga§Ume that the radius of curvature is set equal to zero at the
whereupon the invariant and the conditionally invariant meadnitial condition, R§")=0. We note that several choices are
sures reduce to the microcanonical equilibrium invariantere possible, which all lead to the same value for the aver-
measure. In this limit, the escape process stops and the fragge Lyapunov exponefEq. (12)].

tal repeller fills the whole phase space. Using meaélite Numerically, the positive Lyapunov exponent is obtained
we shall now define the average Lyapunov exponent, th8Y plotting the average of the logarithm of the stretching

topological pressure and the fractal dimensions of the repefactor as a function of time according to E42), the slope
ler for the open system. giving the Lyapunov exponent. An example is depicted in

Fig. 4, in the case when=2 andd=2.25: here\=1.9. An
important observation is that the Lyapunov exponent varies
very slightly with the density of sinks: the dependence is

According to the conditionally invariant probability mea- smaller than the numerical error. A similar robustness was
sure[Eq. (11)], the positive Lyapunov exponent is defined asobserved for the open Lorentz gas with external absorbing
the average of the logarithm of the stretching factarsat  boundarieg6].

V. AVERAGE LYAPUNOV EXPONENT
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As can be seen from Eq16), for <1, the dominant
400 * contribution toP(B) is due to the most unstable trajectories
=19 %/ corresponding to the largest values &f Conversely, for
300 | 7 B>1, the less unstable trajectories dominate. Berl, Eq.
K (17) reduces td9]
2
< 200 t re P(1)=-y. (18
/% Moreover, the derivative oP(3) with respect tg3 taken at
100 | * B=1 gives us the Lyapunov expondi¥
0 . . . . AN=-—P'(1). (19
0 50 100 150 200 250 . .
T The topological pressure has been computed numerically,

using Eq.(16), in the case when=2 andd=2.25, as shown
FIG. 4. Average of the logarithm of the stretching factors, as ain Fig. 5. The value of the escape rate obtained from Eq.
function of timeT, in the case when=2 andd=2.25. The slope (18), y=0.0378, is equal to the simulation result shown in

gives the average Lyapunov exponant 1.9. Fig. 3. In Fig. 5, corresponding to a periodic Lorentz gas
with a finite horizon, we observe that the pressure function is
VI. LARGE-DEVIATION FORMALISM regular, so that no dynamical phase transition occurs in this

case.

A. Topological pressure

The dynamics on the fractal repeller can be characterized
in an efficient way thanks to the large-deviation formalism ) )
and, in particular, in terms of the topological pressure. This mportant tools to characterize the fractal properties of the
function depends on a real paramegelby varying its value, rep(_aller are its gt_anerallze_d fractql dimensions. When a prob-
we are able to scan the dynamical structure of the syf#m ability measure is associated with a fractal, as is the case

In the case of a Lorentz gas, the topological pressure can e, it forms most often a multifractal with nontrivial gen-
defined as followsg6]: eralized fractal dimension®,. The embedding dimension

of the repeller is here equal to three, since we are working in
1 1 M , a three-dimensional phase space. Therefore, the fractal di-
P(B)=_lim lim =In <~ > [ATY)]*A. (16  mensions of the repeller belong to the intervat D, <3.
T=+= No—e 0J=1 We are not going to calculate immediately the dimensions
D of the fractal repeller of the flow itself. Instead, we con-
Using the definition of the escape rgfqgs.(8) and(9)], Eq.  sider a lineL across the stable manifolds of the fractal re-

B. Generalized fractal dimensions

(16) can be rewritten as peller 7, . The intersection of this line with the stable mani-
folds of the fractal repeller is another fracth], which is
1 1 M characterized by so-callgghrtial fractal dimensions belong-
P(B)=—vy+ lim lm ZIn_— > [AT{)] A ing to the interval 6<d,<1.
Totoe Ng—oe T NT =1 For giveng, the dimensionD, is related to the partial

17 dimensiond, by

0.025
. d,=0.98
-0.025 ¢
P(B) P(P) ¥=0.0378
-0.05
-0.075 ¢
0.1 :
0.98 1.0 1.025
B
(b)

FIG. 5. (a) Topological pressur®() in the case when=2 andd=2.25.(b) Zoom of the region aroung=1; the zero ofP(B) gives
the value of the Hausdorff dimensiah,=0.98, and the value d?(B8=1) gives the escape rate=0.0378.
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Do=2dy+1, (20 qv=—Pla+(1-0q)d,]. (27)

because the system is time reversal symmetric, so that theyr q=0, the Hausdorff dimensiod,, is thus found to be
partial dimension in the stable direction is equal to the one iyiven by

the unstable direction. Furthermore, the direction of the flow
contributes a partial dimension equal to unity. 0="P(dy) (28)
. . H/-

If we suppose a covering of the fractig] by intervals of
equal length, the generalized dimensions are define@8  Numerically, in the case whem=2 andd=2.25, the zero of
1 N, the topological pressure gives dg=0.98, as can be seen in
~In a o1)  Fig. &b).

| jzl Pi @1 By differentiating Eq.(27) with respect tog and taking
g=1, the escape rate is obtained as

d,=li —1
q_|T:) q—11In

whereN, is the number of intervals. Fay=0, we find the

usual definition of the Hausdorff dimension vy=—P'(1)(1-d)=\(1-d)). (29
InN i i i
Ay = do= lim — = II _ 22) We introduce the fractal codimensions[&$
1—0
CH: 1_dH : (30)
Forq=1, we obtain the so-called information dimension
N C| =1- d| . (31)
1 |
d|=d1=(:|Ln1 dq=|I|_r:r(1) Inl 121 pilnp;. (23 Equation(29) can thus also be written as
For a uniform probability measurg;=p=1/N for all the Y=ACy, (32

intervals, and the information dimensiah is equal to the ) _ _
Hausdorff dimensiom, . In general, we expect the probabil- Which expresses the escape rate—or reaction rate—in terms
ity measure to be nonuniform and, therefore, the repeller t®f the positive Lyapunov exponent and the information codi-

be multifractal, in which casd,#dy . mension.
A more general definition od, implies a covering of the
fractal by intervals of various lengths, |;<I [26]. The C. Hausdorff codimension by the algorithm of Maryland
dimensiond, is obtained by imposing the quantity A numerical algorithm developed by the group of Mary-
N q land allows us to calculate the Hausdorff codimension of the
lim > Pj (24 fractal repellel{6,31]. The basic idea of this algorithm is to
N (=1 {872 consider an ensemble of pairs of initial conditions, separated

by ¢, along the lineC defined in Sec. VIB. A pair is said to

to be of the order of unity. This is only the case for a critical be uncertain if there is a singularity of the escape-time func-
valued=d, which defines the generalized dimensih tion between both initial conditions. On the other hand, when

In order to evaluatel, in the case of our fractal repeller, the pair is certain, the initial conditions belong to an interval
let us consider the escape-time function along thedinéhe  of continuity of the escape-time function. The fraction of
set of initial conditions for which the escape time is largeruncertain pairs is known to depends oras
thanT is composed of many small intervals forming a cov-
ering of the fractalf,,. If we consider a reference initial f(e)~e. (33
conditionT'§" in a given interval, the lengthl; of this in-

terval is inversely proportional to the stretching factor up toln the case of the Lorentz gas, a pair will be certain if the two
time T [6,15,16,29,30) trajectories undergo their successive collisions on the same

disks. If we associate with each trajectory a symbolic se-
1 quencewgw; - - - w,, w; labelling the disk on which théth
it (25 collision takes place, the sequences are identical for a certain
A+(I'g") pair. The details of the algorithm used here are described in
Ref.[6].
In Fig. 6, we have plotted the logarithm of the fraction of
uncertain pairs as a function of the logarithm of the small
pi~ exp( 7’T) (26) separating the two initial conditions of a pair. The linear
J AHTP) curve confirms the power-law behavifiEq. (33)] and the
slope gives us a value of the Hausdorff codimension equal to
Considering this covering, definitiof24) of the generalized c¢y=0.02. This is in perfect agreement with the value of the
dimensiond, can be rewritten in terms of the topological Hausdorff dimensiord,,=0.98 obtained as the zero of the
pressure given by Eq17), as shown in Refd6,15,16,30: topological pressure in Fig.(B).

and the probability of this interval is given by
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FIG. 6. Maryland algorithm: the logarithm of the fraction of 1.5
uncertain pairs as a function of the logarithm of the differeace
between the two initial conditions of the same pair, in the case
whenn=2 andd=2.25, corresponding to Fig. 5. The slope gives 1.25
the Hausdorff codimensioo,=0.02.
i imensi (cM)/ A, S :
D. Escape rate in terms of the Hausdorff codimension and the CMY e e e e
average Lyapunov exponent
Thanks to the Maryland algorithm, we have numerically 075 |
access to the Hausdorff codimension. It would therefore be
interesting to rewrite the reaction rdteq. (32)] in terms of
the Hausdorff codimensior,, instead of the information 0.5
codimensionc, . For this purpose, we expand the pressure 2 21 22 23
aroundB=1 to the second order i and use expressions (b) d

(18) and(19), as shown in Refl6]: ) _ ) . .
FIG. 7. (a) Hausdorff codimension as a function of the interdisk

P(B)=—y—N(B—1)+ %P”(l)(,@— 1)2+ o[ (B— 1)2]_ distanced, in the casen=2. (b) The ratioc,,/(y/\) as a function of
(39 d, in the casen=2.

This expansion is justified as long as the pressure function ifgrmation codimension given bg,=y/\. We observe that
regular aroung3=1, as observed in Fig. 5. The Hausdorff this ratio is very close to the unit value, already for the con-
dimension being defined by E(®8) and the Hausdorff and  figurationn=2 with only N=12 disks for one sink in the
information codimensions by Eq&30) and(32), we obtain  fundamental cell of the superlattice. This result confirms ex-
pectation(36).
The remarkable feature of relatigB6) is that it connects
directly two quantities characterizing the microscopic cha-
(35)  oftic dynamics of the Lorentz gas, namely, the average
Lyapunov exponenk and the Hausdorff codimensian, of
From this relation, we can deduce that the difference bethe fractal repeller, together with a third quantity describing
tweency andc, will become smaller and smaller whep ~ the global macroscopic behavior of this open system,
itself decreases, which means when the information dimenaamely, the escape ratewhich is identical to the reaction
sion of the fractal repelled, increases. The dimension of the rate.
fractal repeller increases when the escape rate decreases, that

2 " 1)

Y " Y 2
R —+ -0 - —
P(1) 2 5 +ol¥)=a~

CH:)\

c2+o(cd).

means for a low densityg of sinks, i.e., of reacting centers. VIl. DEPENDENCE OF THE ESCAPE RATE AND
We can thus expect that the reaction ridfe. (32)] is given HAUSDORFF CODIMENSION ON THE DENSITY OF
by SINKS
y=\cCy inthelimit ps—0, (36) If the sinks are dilute in the periodic Lorentz gas, the

densityp of the moving particle may be assumed to evolve
i.e., in the limit where the geometric parameterof our  according to the diffusion equation
model defined in Sec. Il is large enough. Relati@6) is
well verified numerically, as can be seen in Fig. 7 for differ- dp=DV?p (37
ent values of the interdisk distanck in the casen=2. In
Fig. 7(b), we depict the ratiac,/(y/\) of the Hausdorff on spatial scales larger than the interdisk distadcbut
codimension obtained by the Maryland algorithm to the in-smaller than the mean distance between the sinks. For the
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periodic Lorentz gas with a finite horizon, the diffusion co-
efficient D is positive and finitd 23,24, and its values are 6 %
known numerically{7,27]. »
For low enough sink densities, the annihilation reaction is e
thus controlled by the diffusion of the moving particle I /
among the disks of the Lorentz gas. In the limi—0, we /Ny «
can therefore obtain an estimation of the reaction rate by a 4l e
method first proposed by Smoluchow§BP]. Because of the /
annihilation reaction at each sink, the moving particle es- &
capes at a rate, which causes the solutions of E@7) to 3 e
decay exponentiallyp~exp(—yt). The escape ratey can /
thus be estimated by the eigenvalue problem *

Y

2 InN
+_
v D

p=0. (39)

FIG. 8. Dependence of the escape raten the sinks density:
Because of the absorption of the moving particle at the sinkone disk oveiN is a sink,N taking the values 12,27,48,75,108, and
the densityp should be assumed to vanish on the border of-47 (With d=2.25). The dependence~1/NInN, predicted by
the sink, where we impose a Dirichlet boundary condition SMoluchowski's theory, is verified here.

p(r=a,t)=0. (39  the leading eigenfunction of E{38) is simply given by a
linear superposition of the zeroth-order Bessel functions,
Strictly speaking, Eqs(38) and (39) are not valid in the 3 (qr) andY,(qr) with y=Dg?, and the boundary condi-
small scale =a, but we must impose an absorbing boundaryiions are satisfied if

condition at the sink, and Eq39) is a convenient way to
satisfy this condition within Smoluchowski’s thea$2].

Furthermore, the triangular symmetry of the superlattice Yo(ga)Jd,
implies that Neumann boundary conditions should be consid-

ered on the border of hexagonal cells centered on each sink ] )
of the superlattice, Using the known expansions of the Bessel functions near

g=0 [28], we obtain as asymptotic expressipiq. (41)]
Inp (1, 1) |hex=0, (40)  with an approximate valu€=16 for the approximation of
the hexagon by a circle. We remark that the constanirns
where (9n denotes a derivative perpendicular to the borderout to be determined On'y by the Neumann boundary condi-

Indeed, the escape rate should correspond to the leadifgn [Eq. (40)] and not by the small scale where the absorb-
eigenfunction of Eq(38), which is expected to be extremum ing boundary conditioEq. (39)] is taken.

on the borderlines between the sinks. These borderlines form when the Neumann boundary conditiig. (40)] is im-
hexagons centered on each sink. posed on a hexagon, a numerical approximation can be com-
The solution of the eigenvalue probleiigs. (38)—(40)]  puted for the same constaBt as performed in a previous
can be obtained in polar coordinates by expanding the eigeRyork devoted to another type of two-dimensional reactive

function in a basis formed by the Bessel functions of integel orentz gag22]. In Ref.[22], the continuous diffusion pro-
order,Jn(qr) andYy(qr), multiplied by the trigonometric  cess of Eq(38) was approximated by a random walk model,
functions cosfif) and sind), with y=Dg? The coeffi-  and the numerical approximatioB=15.5 was obtained in
cients of this expansion should be determined by imposinghe [imit N—o for boundary conditions corresponding to
boundary conditiong39) and (40) on the eigenfunction. Eqs. (39) and (40) with a hexagon. We should thus expect
Moreover, the escape rate should be given by the leadinghat the exact dimensionless constant is close to the value
eigenvalue. In this way, we obtain the following asymptoticc~ 155 in Eq.(41).
dependence for the escape rateNon 3n?, In order to verify the theoretical predictiofEq. (41)]
here, we have computed the escape ratey simulation of
f the deterministic and reactive Lorentz gas for
or N—oo, (41 - .
d?NInN N=27,48,75,108, and 147, with=2.25. We have then plot-
ted 1Ny as a function of IlN, as can be seen in Fig. 8. The
whereD is the diffusion coefficientd is the interdisk dis- linear behavior of this curve confirms the dependence
tance, one disk oveN is a sink, andC is a dimensionless y~1/NInN. Moreover, the value of the slope, here 1.526,
constant. We note that the logarithmic correctiolNlm the  allows us to check the value of the const&ht Since the
escape rat@Eq. (41)] has its origin in the two-dimensional diffusion coefficient for the Lorentz gas in the case
character of the Lorentz gas. d=2.25 is equal toD=0.205+0.003 [6], our simulation
In Eq. (41), the dimensionless consta@tcan be approxi- gives the valueC=16.15-0.40, which is in reasonable
mated by imposing boundary conditigd0) on a circle of agreement with the value expected from Smoluchowski's
radiusr =nd/2, instead of a hexagon. In this approximation, theory. We attribute the deviation to the relative smallness of

d d
) =saam ). @

y=C
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¥ VIIl. CONCLUSIONS

11t . . . I
& In this paper, we have studied an annihilation process

* induced by the dynamical chaos of the two-dimensional Lor-
o1 /7 entz gas, for periodic configurations of disks and sinks. We
A have shown the existence of a fractal repeller formed by the
1/Nc,, e . . .
71 / trajectories of particles that never escape out of the system.
K We have defined a nonequilibrium measure on the fractal
e repeller, which allows us to characterize its chaotic and frac-
ST . tal properties. In this way, we have obtained the different
* characteristic quantities of the repeller, which are the escape
3 . . . rate, the positive Lyapunov exponent, and the fractal dimen-
2 3 4 5 sions. From the expression of the topological pressure, rela-
InN tion (36) between the escape raje the positive Lyapunov

FIG. 9. Dependence of the Hausdorff codimens@gpon the exponeni, and the Hau_sdorff codim_en_sicn:rp, of the fra_qtal
sinks density: one disk oveN is a sink N, taking the values e€peller has been obtained in the limit of low densities of
12,27,48,75,108, and 14With d=2.25). Considering the relation Sinks. This relation has been numerically verified. In the
y=\cCy, We expect a dependence of on N of the form cy present model, the importance of rEIatiCBﬁ) holds in the
~1/NIn N, that is indeed observed here. fact that the escape rate gives the reaction rate, which can

thus be expressed in terms of the underlying microscopic
the configurations for which the present simulation has beeshaos. On these grounds, we have studied the dependence of
carried out. The agreement should improve if the simulatiorthe escape ratg and of the Hausdorff codimensiar on
was pushed to still larger sizé the density of sinks.

According to relation(36), we can expect the same de- In the periodic system with one sink ovél disks, we
pendence o for the Hausdorff codimension,, with a  have observed that the escape rate decreases with a depen-
constantC’ =C/\. We have computed,, using the Mary- dence of the formy=C(D/d?NInN), as predicted by the
land algorithm, forN=27,48,75,108, and 147, amg=2.25.  diffusion theory of two-dimensional systems. We have nu-
Figure 9 depicts Ncy as a function of IlN. Again we ob- merically verified that the Hausdorff codimensiop has a
serve a linear behavior, the slope being equal to 2.@85. similar dependence oN, which is in good agreement with
is then equal to 8.5, which is in good agreement with theEq. (36). This result led us to derive expressi@#8) for the
value C/A==85 expected from the direct numerical Hausdorff codimension as a function of the densities of disks
simulation of the escape rate. or sinks. The two-dimensional character of the Lorentz gas,

Combining Eqs(36) and(41) and expressing the result in together with the periodicity of the system, is at the origin of
terms of densitie3) and(4), we obtain a theoretical estima- @ logarithmic correction on the densities.
tion for the Hausdorff codimension of the fractal repellerina  In conclusion, this work reveals that fractals are of special

periodic Lorentz gas with a superlattice of sinks importance in chaotic models of reactions by annihilation in
spatially extended systems, and that the properties of such
J3c D(pq) Ps reactive processes can be quantitatively studied by the

CH= T2 Npg) IN(pg/pe) for ps—0. (43  escape-rate formalism. In particular, the reaction rate can be
expressed in terms of the Lyapunov exponent and the Haus-

This Hausdorff codimension is given in terms of the diffu- dorff dimension of fractal sets dynamically generated by the
sion coefficientD, the positive Lyapunov exponeit, the  reaction.
density of diskspy, the density of sinkg, and a dimen-
sionless constant determined only by the geometry of the
superlattice of sinks. We note that, in the limpig—0, both
the diffusion coefficientD and the Lyapunov exponemnt We thank Professor G. Nicolis for support and encourage-
tend to their value for the periodic Lorentz gas without sink.ment in this research, as well as Professor H. van Beijeren
In this limit, both quantitiesD and A depend only on the for fruitful discussions. The authors were financially sup-
density of diskspy and on the geometry of the lattice of ported by the National Fund for Scientific Resea(ENRS
disks, provided that the horizon is finite in order @(py4) to ~ Belgium). This research was supported, in part, by the Inter-
take a finite value. Formulé43) confirms that the fractal university Attraction Pole program of the Belgian Federal
repeller fills the whole phase space as the density of sink®ffice of Scientific, Technical and Cultural Affairs, by the
decreases because the Hausdorff codimension vanishes Tnaining and Mobility Program of the European Commis-
this limit. sion, and by the FNRS.
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