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Localization transition in incommensurate non-Hermitian systems
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A class of one-dimensional lattice models with an incommensurate complex poté(fet 2[ A, cos(®)
+i\;sin(d)] is found to exhibit a localization transition &,|+|\j|=1. This transition from extended to
localized states manifests itself in the behavior of the complex eigenspectum. In the extended phase, states with
real eigenenergies have a finite measure, and this measure goes to zero in the localized phase. Furthermore, all
extended states exhibit real spectra provifled=|\;|. Another interesting feature of the system is the fact
that the imaginary part of the spectrum is sensitive to the boundary conditiiyigit the onset to localization
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Incommensurate systems such as the Harper equdflon parity and time reversdPT) symmetry{2]. Here we seek the
provide an important class of models exhibiting both ex-criterion for a real spectrum in non-Hermitian lattice models
tended and localized states in one dimension. In this papegxhibiting localization transitions.
we study the localization transition in systems with compet- We study periodic boundary conditiofBBC’s), antiperi-
ing length scales where the underlying potential is complexodic boundary conditionSAPBC'’s), and free boundary con-
The systems under investigation are described by the class dftions to investigate the sensitivity to the boundary effects.

lattice tight binding model$TBM'’s), As expected, only extended states are sensitive to the bound-
ary conditions, and this sensitivity to the boundary effects
Unr1t Yn_1+2[N,cod6,)+iN;siN6,) ]k, =E,, can be used to distinguish extended and localized states. We

(1) useAE,, which is the real part of difference in the eigenen-

ergies between PBC’s and APBC'’s, summed over all states,
wherefd,=2mon+ a. Herea is a constant phase factor and to distinguish extended and localized states: The extended
o is an irrational number, which we choose to be the golderstates are characterized by a finite valué\&, while in the
mean. This lattice model describes a system where the periddcalized phaseAE,=0, reflecting its insensitivity to
of the potential is incommensurate with the periodicity of thechanges at the boundaries. Our detailed numerical study,
lattice. Forh;=0, this reduces to a Harper equation, whichbased on sensitivity to various boundary conditions and
exhibits a localization transition ah,|=1. Recently, non- wave functions, shows that the non-Hermitian system exhib-
Hermitian systems have been the subject of various theoreits a localization transition di |+ |\;|=1. This implies that
ical [2-5] and experimenta[6,7] studies. In certain one- the Hermitian and non-Hermitian parts of the potential carry
dimensional random systems, where all states for théhe same weight in determining the transport characteristics
Hermitian problem are localized, the addition of a complexof the model. Figure 1 showAE, and AE; for the weak
vector potential has been shols] to result in a delocaliza-  dissipation limit\,=\;=X\, which is discussed in detail be-
tion of states, accompanied by the eigenvalues becominigw. A rather intriguing result is that the imaginary part of
complex. The system we investigate exhibits both extendethe AE is sensitive to the boundary effects only at the onset
and localized states, and hence facilitates a study of norte the localization transition. This result, found to be true for
Hermiticity in both these phases. By investigating how theother parameter values, implies that the lifetime of the meta-
non-Hermiticity alters the localization transition as well asstable system depends upon the boundary conditions only at
the eigenenergies in the complex plane, we are able to studjie transition point.
the correlation between the nature of the eigenspectrum and In order to explore the relationship between the localiza-
the transport characteristics of the model. It is implicit in thetion character and the behavior of the eigenenergies, we have
literature[8] that non-Hermiticity corresponds to dissipation extensively studied the eigenspectrum in the two-parameter
and decoherence, and as such we arguably explore the inx, ,\;) space. Figures 2—4 show the variation in eigenener-
pact of these effects on the localization transition. Two in-gies with the parameters for some special cases. These stud-
teresting limits that we explore in detail are the case ofies suggest that it is the localized phase of the non-Hermitian
purely imaginary potentiah,=0, and the case where the |attice model[Eq. (1)] that is characterized by a complex
real and imaginary parts are equal, €\;), which can be spectrum, in contrast to previous resfiB$where the spectra
described as the strong and weak dissipative limits, respe&ecome complex when the localized states become delocal-
tively. Further, we also study the case of non-Hermitian latized. In the extended phase, the spectrum is real provided
tice models with real spectra. This is an interesting problem|x |=|\;. Furthermore, fof\,|<|\;|, @ number of extended
since certain complex potentials in quantum mechanics arstates with real eigenenergies have finite measures. There-
known to have real spectra provided the potentials exhibifore, the fraction of states with real spectra is finite in ex-

tended phase, and vanishes in localized phase. This provides

a new order parameter for the localization transition, as

*Email address: isatija@gmu.edu shown in Fig. 5.
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In contrast with earlier resul{8], where a non-Hermitian We now discuss two limiting cases: the strong and weak

vector potential was found to delocalize the localized statedlissipation limits. The first case corresponds to a purely
of the random system, the addition of a non-Hermitian poimaginary potential X,=0). It is interesting to note that a
tential to a Harper model which exhibits both extended andnodel with a purely imaginary potential exhibits a duality
localized states does not alter the localization character of theery similar to that of the purely Hermitian problefs].
system. Furthermore, our results associate a complex spednder the Fourier transformatidifT)

trum with the localized states, in marked contrast with the

earlier result where a complex spectrum implied delocaliza- " =2 et p @)
tion. This is one of the central results of our analysis. It n m>

implies that previous results relating complex eigenvalues

and delocalization must be understood as specific to the typ&e TBM [Eq. (1)] with A=\, reduces to

of system investigated, namely, a random system with a non- oi i

Hermitian vector potential, and may not describe the generic A _ =

property of non-Hermitian systems exhibiting localization. $ms 1t Pm1F (75O bn) m= = = b ©

(N)

FIG. 2. (a) and (b) show the variation in ei-
genvalues as a function af=\,=\; for PBC for
o=34 and 55, respectively. The extended phase
of this non-Hermitian system exhibits a real spec-
trum. Note that in contrast to the Harper equation,
there is a bending and merging of levels at the
transition. Furthermore, unlike the Harper equa-
tion, the spectrum is not symmetric about 0.
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Comparing this with the original model, we obtain E,=E; resembles that of the Harper equation. It is intriguing

, that even in this strong dissipative limit, extended states with
E*(\)= — LE 1) @ real spectra have a finite measure. In this lattice model with
NN competing length scales, it therefore appears that extended
states are essential for obtaining real eigenenergies. This is to
This implies that the real and imaginary parts of the eigenenbe compared with earlier formal results, where PT symmetry
ergies are related ag,(\)=(1/\)E;(1/\). Therefore, the was a key for obtaining real spectrum for complex potentials.
case of the purely imaginary potential has the interesting We next discuss the weak dissipation limit,=A; =N\,
property that the localization transition interchanges the reatlescribed by the following TBM:
and imaginary parts of the spectrum. At the onset to local- _
ization (\=1) the model is self-dual, witk,=E; . Figure 6 Uni1t Un_1+2Ne' Iy =Eif,. (5)
shows eigenenergies at some values of the parameter in the
extended phase. Due to duality these figures also show th&s shown in Fig. 1, the system exhibits a localization tran-
spectrum in the localized phase with the interchang&of sition atA =.5. The localization threshold is half of that of
and E;. At the onset of localization, the spectrum with the Harper equation, because both the real and imaginary

FIG. 4. Same as Figs. 2 and 3 for the purely
imaginary potentiah,=0.
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1 FIG. 5. Fraction of states with real eigenener-
gies as a function ol for A;=0.25 (a) and A,
=0 (b). Hereoc=233 and 377. The steps seen in
this plot are due to finite size effects.
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parts of the potential contributes toward localization. In theergies lie on a circle. Therefore, the localized phase is meta-
extended phase, the spectrum is found to be real and idenstable, with the lifetime determined by the localization
cal to that of thex=0 limit, namely, E=2 cos@,). This length.
explains the constant value AfE, in the extended phase, as  The FT of model(5) can be analyzed further as transfor-
seen in Fig. 1. In the localized phase the eigenenergies argation (2) reduces the tridiagonal matrix to the following
complex, and appear to be described by the following exiriangular matrix:
pressions:
2 cog 6 +2Ndp-1=Edp. 8

Er:2 COSN y)COS( an), (6) S( m)¢m ¢m 1 d’m ( )

With PBC's, the eigenvalues of this triangular matrix are the

Ei=2 sinf(y)sin(6n). @ solution of the following algebraic equation:

Herey is the inverse localization length of the system, which

is found to be equal to the corresponding value for the N
Harper equatiory=1og(2\). In the limit A —«, the eigenen- (2)) _H [E—2cos6y)]. ©)
A=05 A=0.75 A=1
@ 2@ 2@
1 1 1 a'e
v
-0 ——‘_’——— SO = _}' '{_ -0 * . b
w l ‘ w . w - -
PN
-1 -1 -1 Ry
_2 -2 -2
-2 0 2 -2 0 2 -2 0 2
EI Ei i
2 (b) Ve 2 (b) e 2 (b) FIG. 6. Spectrum for different values affor
1 / 1 1 o=55 and 89, respectively, for a purely imagi-
- 0 / - 0 ~ w0 — nary potential. The three vertical columns corre-
J — spond toA=0.5, 0.75, and 1, respectively. The
- S - A~ e three rows showa) E,; vs E; (b) E; vsn and(c)
-2 -2 -2 E; vs n (sorted independently of the real part
0 200 400 600 0 200 400 600 0 200 400 600
n n n
{c) © ©
1 1 A 1 -
ol ——"1 I i I B
-1 -1 -1 .
-2 -2 -2
0 200 400 600 0 200 400 600 0 200 400 600
n n n

036222-4



LOCALIZATION TRANSITION IN INCOMMENSURATE . .. PHYSICAL REVIEW E 63 036222

FIG. 7. (a) and(b) show the real and imagi-
nary parts of the spectrum for the model de-
scribed by Eq(10) with g=0.2 ando =144 and
233, respectively. In contrast to the case where
non-Hermiticity appears in the diagonal part, the
localized phase is characterized by real eigenval-
ues.

For A<0.5, asN—, we obtainE=2 cos@,), which is €9, 1+e 9,1 +2\ cod 6,) Y, =Ei,. (10
found to be identical with numerically obtained spectrum of
model (5). For A>0.5, the FT of the model allows real so-
lutions: E=2 cos@,)+2\. These real energies were not The parameteg is related to the complex vector potential.
found to be the solutions of moded). The FT of the model As shown in Fig. 7, the localized phase of this model is
also exhibits complex solutions. It is easy to see that in theissociated with the real eigenspectrum, as was the case for
A—oo limit, the algebraic equatiof®) has a solution where the random potential studied in Ré#].
E/(2\) lies on the unit circle, which is also the solution for  In summary, the localization transition of the Harper
model (5). This indicates a deep relationship between thesquation remains unaffected by the non-Hermitian perturba-
spectra of mode(5) and its FT — the details have so far tion. The correlation between the nature of eigenstates and
proven elusive. the behavior of the energy spectrum in the complex plane
Another aspect of modéb) is that at the onset to local- depends upon whether the non-Hermiticity appears in the
ization A=0.5, the FT of the model describes the strongdiagonal or off-diagonal part of the model. For a lattice
coupling limit of the fluctuations of the Harper equation oncemodel with a non-Hermitian diagonal potential, the case that
the exponentially decaying part is factored ¢@0]. This  has been studied in detail here, a weakly dissipative system
also describes the Ising model at the onset to long rangg characterized by real eigenenergies in extended phase. As
order forE=0 [12]. This limit has been shown to be univer- the strength of the non-Hermitian potential increases, the
sal using renormalization methoffs0] as well as more rig-  {ymber of extended states with real eigenenergies decrease,
orous analytic tool§11]. This result therefore establishes the approaching zero at the onset to localization. In the localized
multifractal character of the FT of the wave function at the hase, states with complex spectra have a full measure. The
onset of the Iocalizati.on transition. It should be noted that th ocalized phase is metastable, with state lifetimes determined
tion, in contrast to the Harper equation, which is characterby the localization length. The question of real eigenvalues is

. ) : .. determined by both the transport character of the states as
ized by a singular-continuous spectrum at the transition,

Therefore, thex, = \; limit of model (1) provides a class of well as the amount of dissipation. An interesting result is that

. ! . n with real eigenenergi Iw hav i-
ncommensurate systems where the eigenspecirum is gapldfS°T . SAICE L BE OSSR SIS TRl S E0S
and remains continuous except in the localized phase. ure, 9

In contrast with earlier results on localization in non- 2€r0 measure. Therefore, the measure of real eigenenergies

Hermitian system$3], the system studied here associates &rovides an order parameter for the localization-
complex spectrum with the localized phase. This differencél€localization transition. _ _

appears to be related to the fact that the non-Hermiticity One future aspect of study is the extension of these results
appears in the diagonal part of the potential while the noni0 a classical nonintegrabl@erhaps a kickedsystem, thus
Hermitian vector potential studied earlig] affects the off-  investigating the effect of dissipation on nonintegrable sys-
diagonal part of the lattice model. To confirm this view, we tems exhibiting localization. Furthermore, it should be noted
studied a Harper equation with a non-Hermitian off-diagonalthat Eq. (1) is the fermion representation of isotropkY
term: spin+ chain in a complex magnetic field which is spatially
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modulating[12]. The consequences of a localization transi-Therefore, the results of this paper may have important im-
tion with a complex spectrum on the magnetic properties oplications in the study of SNA’s in complex maps.

the system is another interesting open question. Finally, a

localization transition in incommensurate tight-binding lat-  The research of I.I.S. was supported by a grant from Na-
tice models corresponds to a transition to strange nonchatotonal Science Foundation Grant No. DMR 097535. We
attractors (SNA’s) [13] in quasiperiodically driven maps. would like to thank Arjendu Pattanayak for useful discus-

sions.
[1] P. G. Harper, Proc. Phys. Soc., London, Sect6® 874 (1997; 77, 4980(1996.
(1955. For a review, see J. B. Sokoloff, Phys. R&g6 189 [7] K. Schaadt and A. Kudrolli, Phys. Rev. @, 7203(1999.
(1985. [8] D. Ferry and J. R. Barker, Appl. Phys. Let4, 582 (1999.

[2] C. Bender and S. Boettcher, Phys. Rev. L&.5243(1998. [9] S. Aubry and G. AndreAnn. Isr. Phys. Soc3, 133(1980.
[3] N. Hatano and D. R. Nelson, Phys. Rev. L&, 570(1996; [10] J. Ketoja and I. Satija, Phys. Rev. Let6, 2762(1995.

Phys. Rev. B56, 8651(1997). [11] Ben Mestel, Andy Osbaldestin, and B. Witumpublished
[4] P.G. Silvestrov, Phys. Rev. Let82, 3140 (1999; e-print,  [12] E. Lieb, T. Schultz, and D. Mattis, Ann. Phy&\.Y.) 16, 407

cond-mat/9804093. (1962); 1. I. Satija, Phys. Rev. BI8, 3511(1993; 49, 3391
[5] M. V. Berry, J. Phys. A31, 3493(1998; M. Berry and O. (1994).

Dell, 31, 2093(1998. [13] A. Bondeson, E. Ott, and T. M. Antonsen, Phys. Rev. L%t.
[6] K. Keller, M. K. Obertaler, S. Bernet, R. Abfalterer, J. 2103 (1985; J. Ketoja and |. Satija, Physica D761, 1

Schmiedmayer, and A. Zeilinger, Phys. Rev. L&®, 3327 (1997.

036222-6



