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Analysis of a parametrically driven pendulum
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We study in this paper the behavior of a periodically driven nonlinear mechanical system. Bifurcation
diagrams are found which locate regions of quasiperiodic, periodic, and chaotic behavior within the parameter
space of the system. We also conduct a symbolic analysis of the model which demonstrates that the symbolic
dynamics of two-dimensional maps can be applied effectively to the study of ordinary differential equations in
order to gain global knowledge about them.
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[. INTRODUCTION one-dimensional maps on the interval is well understood
[1,2]. For the simplest case of the unimodal map, a binary
In this paper we conduct an investigation of the behaviomgenerating partition may be introduced by splitting the inter-
of a periodically driven nonlinear mechanical system. Theval at the critical point. By assigning the lettBror L to a
system is of interest both from the point of view of the rela-point of an orbit, depending on whether it falls to the right or
tively rich structure it possesses and also because it is fairlieft side of the critical point, the orbit can be encoded with a
easy to construct a mechanical model of it. symbolic sequence. The kneading sequence, which is the for-
We begin with some standard techniques used to analyasard sequence of the critical value, determines all the admis-
such systems. Bifurcation diagrams are plotted which locatsible sequences of the map. By means of the kneading
regions of quasiperiodic, periodic, and chaotic behaviotheory, all sequences are well-ordered. The kneading se-
within the parameter space of the system. Dimensions of thguence is the greatest. There is no allowed sequence which
attractor are calculated for different values of control paramhas a shifted subsequence greater than the kneading se-
eters and compared with dimensions estimated fronguence.
Lyapunov exponents. Numerical results obtained are in The symbolic dynamics of the unimodal map can be ex-
agreement with the Kaplan—Yorke conjecture. Multiple at-tended to that of two-dimension&D) maps. Two much-
tractors are found in different regions in parameter spacestudied 2D models are the Hen map[3] and its piecewise
The most interesting is the coexistence of a chaotic attractdinear version, the Lozi maf,5]. First of all, one needs to
and a limit cycle, which implies that initial conditions may construct a “good” binary partition for them. In R€f6], by
determine whether the system will exhibit periodic or chaoticconsidering all “primary” homoclinic tangencies of the
behavior. Boundaries of the basins of attraction appear to belenon map, a method for determining a partition line was
smooth for high dissipation in the system, and they showproposed. Once the binary partition is determined, any orbit
fractal structure as the dissipation decreases. Creation amday be associated with a doubly infinite symbolic sequence
destruction of multiple attractors in this model are caused bys="---sy - +S,51-S¢S1" * Sy - - Wheres, indicates the code of
tangent bifurcations and crisis phenomena. This illustrateghe initial point. The forward sequencss;---s, -+ and
how even a simple nonlinear mechanical system may exhibibackward sequence-s;; - -S;51+ correspond to the forward
fairly complex behavior and posses a variety of chaotic feaand backward orbits of the initial point, respectively. In Ref.
tures. [7] the ordering rules for forward and backward sequences
We also conduct a symbolic analysis of the system. Symwere discussed, and by introducing a metric representation of
bolic dynamics provides almost the only rigorous approactsequences the symbolic plane was constructed. It was
to study the motion of dynamic systems. Such an analysis ghointed out that every primary homoclinic tangency cuts out
a rectangle of forbidden sequences in the symbolic plane.
The rectangles so deleted build up a pruning front which is
*Present address: Winnipeg Institute for Theoretical Physicsmonotonic across half the symbolic plane. By generalizing
Winnipeg, Manitoba, Canada R3B 2E9. Electronic addressstable and unstable manifolds of an unstable fixed or periodic
randy@theory.uwinnipeg.ca point to forward and backward foliations of any poi],
"Electronic address: jliu@tikva.chem.utoronto(@epartment of homoclinic tangencies are generalized to tangencies between
Physics, University of Winnipeg, Winnipeg, Manitoba, Canadathe two classes of foliations. In terms of the generalization,
R3B 2E9. we can make symbolic analysis of the orbits not only in but
*Electronic address: peles@theory.uwinnipeg.ca also out of attractor, including transient orbits. The extension
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of symbolic dynamics of maps from 1D to 2D is made by
decomposing a 2D map into two 1D maps based on forward
and backward foliations. The coupling between the two 1D y
maps is described by the pruning front or the symbolic rep-
resentation of the partition line. An attractor is associated
with backward foliations.

It has been convincingly demonstrated that a properly
constructed two-dimensional symbolic dynamics, being a [0)
coarse-grained description, provides a powerful tool to cap- \v 9
ture global, topological aspects of low-dimensional dissipa-
tive systems of ordinary differential equation©DES9
[9-19. Therefore to have a further global understanding of 0}
the bifurcation and chaos “spectrum” in the system we have
studied[20], i.e., the systematics of stable and unstable pe- X
riodic orbits at varying and fixed parameters, the types of
chaotic attractors, etc., we shall carry out a full analysis of
symbolic dynamics for this mechanical model. Based on the
primary tangencies between forward and backward foliations
in the Poincaresection the appropriate partition of the phase
space is made and three letters are used to describe the dy- FIG. 1. Two gears and the rod.
namics. From the ordering rules and metric representation of
forward and backward sequences symbolic planes are coiits center of mass can move nor can it rotate around its axis.
structed and the admissibility conditions for allowed se-The second, the planetary gear, is of radsnd is attached
quences derived. Unstable allowed periodic orbits embedde the first gear so when it rotates around its axis at the same
in a chaotic attractor are predicted through symbolic analysiime it goes around the fixed gear. We assume that the mov-
and verified numerically as well. In the parameter space peable gear is powered by some device which keeps it moving
riod windows are located and the corresponding periodvith constant angular velocity,. When the planetary gear
words are determined according to the partitioning of phaseotates for the angle» around its axis it moves around solar
portraits. gear for an anglep’ (Fig. 1). The relation between two

The paper is organized as follows. In Sec. Il a brief de-angles is
scription of the mechanical system and a derivation of the
equations of motion is given. In Sec. Il chaos is detected, R'¢'=Ré. 1)
and regions of periodic, quasiperiodic, and chaotic behavior
are located within the parameter space. Lyapunov exponents ) o
and associated dimensions are calculated for certain attrafr uniformly dense rod of length is at one end joined to the
tors, and the Kaplan—Yorke conjecture is established. In Sedinge of the movable gear. The rod can rotate around the
IV crisis phenomena and coexisting attractors are studied®int, @assumed without friction. Both gears and the rod lie in
We next turn to the symbolic dynamics of the module. In@ horizontal plane so the potential energy of the system is
Sec. V the global dynamical behavior of the system Wh”ecqnstant'durlng the motion. We phoose a coordinate system
parameters vary are shown in phase space, and the partiti$fth origin at the center of the fixed gear. The system has
lines are determined from tangencies between forward anfvo degrees of freedom, and a convenient choice of coordi-
backward foliations in the Poincasection. In Sec. VI by Nates arep’, the angle that the second gear makes withxthe
introducing a metric representation of forward and backward@Xis, and#, the angle that the rod makes with tReaxis.
sequences according to their ordering rule the symboli(,s'nce the potential energy for the system is constant as vyell
plane is constructed, and the admissibility condition of seS the angular velocity of the planetary gear, the Lagrangian
quences is discussed. We then analyze the admissibility dfT the system is determined by the kinetic energy of the rod
periodic sequences based on a finite number of points on tHY- A general expression for the kinetic energy for the rigid
partition lines and give the numerical results of allowed pe-P0dy that moves in two dimensions is
riodic orbits in Sec. VII. In Sec. VIIl we also locate the
period windows for some range of parameters, assign words . o
to the stable period orbits based on the partitioning of phase T= Ef dm(X+y). )
space, and discuss their ordering properties as parameters

change. In Sec. IX we discuss some aspects of this model §Ve may express the position coordinates for the mass ele
used in a mechanical propulsion device. Finally, in Sec. Xmentdr%/ovee coordinaFt)eas and 9 as
we present some conclusions.

Il. THE EQUATION OF MOTION x=(R'+R)cos¢’ —Rcoq ¢’ + ¢)+1 cosd,

The system we study consists of two gears and a rod. The
first one, the solar gear, has radRsand is fixed so neither y=(R'+R)sing’ —Rsin(¢’ + ¢)+1 sin, 3
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wherel is the position of the mass elemethin at the rod.

Deriving x andy over time and eliminating’ rather thang,
using Eq.(1), we get

x=—(1+r)Repsinr¢+R(1+r)psin(1+r)ed]
—19sind,

y=(1+r)Repcosr —Rp(1+r)cog (1+r) ]
+19 cosd, (4)

wherer =R/R’. Our initial assumption was that angular ve-

locity of the planetary gear was constapt wy. For sim-

plicity, we will assume that the initial condition is chosen so
that ¢p= w4t. Substituting derivative$4) into (2) and inte-
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This equation is nonlinear with a coupled term and must be
solved numerically. Therefore for convenience we will write
it in a dimensionless form by introducing the dimensionless
time variabler= wyt. Equation(10) then becomes

grating over the whole rod, assuming its linear mass is con-
stant, we get the kinetic energy, and therefore the Lagran"

ian, to be
L=T=2192+3(1+r)mLRogd{cog 9—r ¢)
—co§ 90— (1+r)e]}. 6)

0+ 1'0+ ino ar+1+r in(6— ¢) (12)
= 6@+sinf=——+——sin(6— ¢),
Q Q r
where
_wd_ 2L
2= e V3r(1+nR
(OF] 1+r
Q=—1\/r——mIRlI, (12
7 2
d=wst=ar. (13

Since we assume throughout this paper thatis constant,
the state of this system can be uniquely described in three-

dimensional phase spac@,b,qﬁ). Furthermore, from the

Herel is the moment of inertia of the rod, and we droppedgact that ¢ depends linearly on time we may infer that tra-
terms that can be written as a total time derivative of SOMgactories in phase space will be “smooth” in tiedirection

function and therefore do not contribute to the Lagrangiangnq that all chaotic features, if any, can be observed in the
Substituting this Lagrangian into the general expression foPoincafesection¢=constant. In this way the problem of

the Euler—Lagrange equations of motion of dissipative sysanalyzing this three-dimensional dynamical flow is reduced

tems

d JL

&E:Qa, a=1,..5s (6)

and choosing) and ¢ for coordinates we obtain the equation

of motion to be

. 1+ o .
|9+ TmLRwd{r sin(9—r¢)

—(1+n)sifd—(1+r)¢1}=Qy, (@)

whereQ 4 is some friction force that acts upon the rod, and
is its moment of inertia. If we assume that the friction, as is

commonly done for a pendulum, has the simple fapy=
— 79(%>0), we may write the equations of motion as

.. 5| 1+r
19+|—1‘}+w0 sm(ﬂ—rd;)—Tsw[ﬁ—(lJrr)qS] =0,
8

where
w5=1(1+1) —— j. 9

If we introduce now a new variablé=J—r ¢ we can bring
the equations of motion to the arguably simpler form:

. . 1+r
0+|26+wgsin0=—lzwd+ Tm%sin(@— ).

(10

to the analysis of a two dimensional map.

Equation(11) has a similar form to that of the equation of
motion for the driven pendulum, as well as to the Mathieu
equation; however, there are some essential differences. The
virtual drive frequencya in the normalized equatioiill)
does not depend upon the drive frequengy, the angular
velocity of the moving gear, as it is constant which depends
only on the dimensions of the rod and gears. On the other
hand, the “quality” factorQ is proportional towy, SO a
change of drive frequency will eventually appear as a change
of dissipation in the system.

IlI. ROUTES TO CHAQOS

For our system, we observe three characteristic regions in
the parameter space, quasiperiodic, periodic, and chaotic. In
order to locate these regions we investigate the parameter
space using bifurcation diagrams. Such diagrams show the
evolution of the attractor for a dissipative system with a
change of the system’s parameters. We choose to plot a pro-

jection of the Poincarsectiong=0 on the axis against the
system’s parameteD, while keeping the other two param-
eters fixed. We repeat this procedure for various values of
andr.

With the increase of) from zero on, the motion of the
system is quasiperiodic, which is observed as a smeared re-
gion in the bifurcation graph. For a certain value @fthe
motion suddenly becomes periodic, and with a further in-
crease of the quality facto® the system reaches chaos
through a sequence of period doublings. For the parameters
a,r<0.5, the quasiperiodic region is relatively short, and
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8 ; ; - ; : PR with a bifurcation diagram plotted for parametars 1.2 and
25| e ] 0.9 [Fig. 2(@)]. The smeared region in the bifurcation dia-

; - s ’ gram that is observed for the valuesc@<0.6378... corre-
sponds to a quasiperiodic behavior of the system. Although it
is generally possible to notice differences between chaotic
and quasiperiodic regions in a bifurcation graph, it is neces-
sary to employ other methods in order to have solid evidence
of a system’s behavior.

Analysis of the power spectrum of the numerical solution
i i Si T is one of the methods that is particularly suitable for exam-
05 - SR SR 2 ining quasiperiodic motion. A power spectrum f@=0.5

SR : ' [Fig. 3(@] shows that the motion of the system is a superpo-
sition of a finite number of harmonic modes, and therefore is
: : . not chaotic. The motion is not periodic though, since fre-
0 quencies of harmonics are incommensurate, and the trajec-
tory in phase space never retracts itself. The attractor for the

' ' ' ' ‘ ' system is a smooth two-dimensional surface in phase space.
o WMW The Poincaresection forQ=0.5[Fig. 4a)] indeed reveals a
. i | smooth attractor.
V" ”f For values of 0.7442<.Q<0.9300... it is clear from the
o1 1 bifurcation graph that the system’s behavior is periodic with

de/dt

a period that is equal to the virtual drive period/a. This is

also seen in the power spectrum f@=0.9 in Fig. 3b).

With an increase o) over 1.2040...the system becomes cha-
o4l | otic through a period doubling sequence. The smeared region
in the bifurcation diagram indicates that the attractor for the
system has a complex structure in that region of the param-

08} 1 eter space. The power spectrum also shows complexity of

. . . ‘ ‘ . the system’s behavior and indicates chaos in that region of

o 1 2 3 4 5 6 7 parameter space. The power spectrum does not consist of a
®) Q finite number of harmonics and their integer multiples any-
more, but is rather a broadband over the frequency axis
[Figs. 3c) and 3d)]. In order to obtain a solid evidence of
chaos one has to show that at least one Lyapunov exponent
for the system is positive in that regid@7]. Indeed, Fig.
chaos is found only in a narrow region f values. The 2(b) shows that the largest Lyapunov exponent is positive in
richest chaotic structure is found for the choice of parameterthis region of parameter space, apart from windows of peri-
a,r~1. Finally, for a,r>1 quasiperiodic motion becomes odic behavior.
dominant over the range dP, and periodic and possible In particular, atQ=1.8 andQ=6.5 the largest Lyapunov
chaotic behavior are found only in narrow isolated regions.exponents are found to be;=0.093-0.005 and \;

Solid proof of chaos is the existence of at least one posi=0.106+0.005, respectively. The system’s attractors for
tive Lyapunov exponent. The spectrum of Lyapunov expothese values of parametgi&gs. 3b) and 3c)] show a char-
nents gives us, besides qualitative information about a sysacteristic stretching and folding pattern, indicating their frac-
tem’s behavior, a quantitative measure of the system’sal structure.
stability [21—24. Evolution of the Lyapunov exponent spec-  In the quasiperiodic region the attractor has dimension 2,
trum with a change of parameters gives us information abouas the motion is performed over a smooth surface, while the
the system’s behavior in addition to that from bifurcation limit cycles have dimension 1. Since motion takes place in
graphs. Combined, these two methods are reliable tools fdhree-dimensional phase space it is reasonable to expect that
examining a system’s behavior and routes to chaos. Figure $range attractors have dimension between 2 and 3. We can
gives a comparison of the bifurcation diagram and Lyapunowse the fact that the attractor is always smooth in ¢he
spectrum evolution for a range @. Since the system is direction, so in order to estimate its dimension we can esti-
represented in three-dimensional space it is sufficient to demate the dimension of its Poincasection and obtain the
termine only the largest Lyapunov exponent. The other twattractor’'s dimension simply by adding one to it.
can be inferred from Haken’s theord26], and the fact that In order to estimate the dimension of an attractor lying in
the dissipation of the system is constant throughout phase-dimensional phase space, the attractor first has to be cov-
space, so the sum of Lyapunov exponents must be equal &red by a grid ofn-dimensional hypercubes of sizeand
its numerical value\;=1/Q. then the probability of finding a point of the attractor in each

A detailed description of the parameter space for this syshypercubeP; has to be determined. The indekere refers to
tem is given in Ref[26]. Here we illustrate its main features a particular cube. In our case we consider a two-dimensional

03

-05

FIG. 2. Bifurcation graph showing a broad chaotic region over
segment of (top). Corresponding change of the largest Lyapunov
exponent(bottom). a=1.2,r=0.9.
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FIG. 3. Power spectra for different values of quality fadfpr(a) Q= 0.2, motion is quasiperiodic¢b) Q= 0.9, motion is periodic with
period one(c) Q=1.8, and(d) Q=6.5, motion is chaoticB(w) is the Fourier transform of(t). The frequency on the axis is expressed
in terms of the virtual drive frequency.

Poincaresection, so the hypercubes are actually squares. &, =D, [29,30. It is to be expected though that numerical
general expression for the dimensions of dftie order is then  values of these four dimensions fall pretty close to each other

given by [31].
We test this conjecture on our calculations for the quasi-
1 InIP} periodic attractor(Fig. 3), and as expected we obtain the
Dg=lim =1 ] , (14 Lyapunov, capacity, information, and correlation dimensions
-0 d ne to be equal to 2, within the limits of uncertainty of our nu-

merical methods. Furthermore, we can estimate these dimen-

where the summation is over all hypercubes where0 sions for the attractors in Figs(t3 and 3c). Both chaotic
[28]. The parameteq ranges from—~<q<e, and forq,  attractors have noninteger dimensigiisble ), confirming
>(, we haveDg,;<Dg,. The most commonly used dimen- their fractal structure. In all three cases the inequalty
sions areD,, D;, andD,, or the capacity, information, and =D, holds, suggesting that this system conforms Kaplan—
correlation dimension, respectively. We will limit ourselves Yorke conjecture.
to estimating these three dimensions only.

On the other hand, the Lyapunov dimension of the attrac- IV. COEXISTING ATTRACTORS AND CRISIS

tor is defined as ) ) ) ) )
An interesting feature of this system is that it often has

periodic and chaotic attractors coexisting at the same point in
, (15) parameter space. This means that the stability of this system
|)‘j+1| may depend on the initial conditions, whether we choose it in
the basin of periodic or chaotic attractor. Here we shall
wherej is a largest integer for which;+\,+---+\;=0.  present two examples which illustrate the importance of un-
Kaplan and Yorke conjectured that the Lyapunov dimensiorderstanding system’s dynamics in order to properly assess its
represents an upper limit to the information dimension, i.e.stability.

NptApte N
DL:J+;
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FIG. 4. (a) The Poincaresection of the quasiperiodic attractor is

a smooth linea=1.2,r=0.9, andQ=0.5.(b) The Poincareection
of the chaotic attractor reveals a kneading seque@cel.8. (c)
Higher dimensional chaotic attractd.=6.5.

TABLE |. Various dimensions of the attractors.

Q D, Do D, D,

0.5 2.000-0.001 2.00Z20.003 2.00%0.006 1.9990.002
18 2.14-0.01 2.1%*-0.01 2.044-0.007 2.012-0.003
6.5 24r0.01 2.3%0.01 2.38%0.004 2.299-0.001
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FIG. 5. Bifurcation diagram indicating coexisting attractors. The
dashed line shows the unstable limit cycle.

In Fig. 5 the bifurcation diagram shows that a tangent
bifurcation[32] occurs,Q=1.0105..., which creates a pair of
stable and unstable limit cycles in the phase space, while a
chaotic attractor still exists. Accordingly, the phase space
splits into a basin of the stable limit cycle and a basin of the
chaotic attractor. The boundary between the two basins ap-
pears to be a smooth curyEig. 6). With an increase of the
control paramete@ the basin of attraction for the limit cycle
expands until the unstable limit cycle, which lies on its
boundary, collides with the chaotic attractor. The chaotic at-
tractor experiences a boundary cri$3] and disappears
along with its own basin. The basin of the limit cycle then
suddenly expands, occupying the whole phase space. With a
further increase of the control parameter the limit cycle
evolves into a chaotic attractor through a sequence of period
doublings. The newly created chaotic attractor expands in
size as the paramet&) increases, and eventually collides
with the unstable limit cycle. The system comes to a crisis
again, but since the unstable orbit is not at the basin bound-
ary anymore the crisis is internal, and the attractor suddenly
expands its siz€33]. This expanded attractor contains fea-

de/dt

]

FIG. 6. Poincaresection of the chaotic attractor at the verge of
crisis, shown within its basin of attraction in. White dot represents a
stable and black dot an unstable limit cyog@=1.1.
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25 r T T - - " ' =X and write the equations of motion in their nonautono-
‘ mous form as

15k — 5(=y,

oo N T y=—yIQ+[—ar/Q—sin(2mx)
s m, +(141)/r sin2mx—ar)]/(2m). (16)
T

; e — To show its richer properties in the phase and parameter
08 b T e T ] spaces we fix =1.088 and vary the values @ anda in
such a way that=0.8+0.3Q. All Poincare sections are
constructed in theb=277/64 plane of phase space.
s . . s s . . , To observe the dynamics changes for varyihgnda we
2829 * o 3Qz 8. 8 %s 88 juxtapose the Poincarsections(x, y) of attractors, thex,
—Xpyq first return map and the.— v portraits whereu
FIG. 7. The bifurcation diagram shows creation of coexisting=1—(0.4+Yy)cos(2rx) and »=1—(0.4+y)sin(2mx) at Q
attractors. =0.57,0.76, 1.2577, 1.68, and 2.0 from top to bottom in Fig.

. . .. 9. i ly, wh i 1) th trait th
tures of the chaotic attractor destroyed in the boundary cr|5|§?h2nbg\/ ézgiégDi?éﬁigiiisieiurﬁ I.pn(;rp:al ffgdiﬁc?wse
. y n+ n

:gg;g?%g?uégaéfg fﬁ;?ﬁgﬁrvisggy ttggecr?sy‘/iztem s behavior ata subcritical circle map without any decreasing brantie

As we increase the control paramet@rfurther, we ob- appearance of decr(_aasing brandqassupqritical cir_cle map,
serve another occurrence of coexisting attraci@iig. 7). ~ nd (3) the dynamical behavior exhibits quasiperiodicity
Tangent bifurcations &)= 3.2398... and)=3.4177... create —Chaos-quasiperiodicity. o
stable—unstable pairs of period-one and period-three orbits, The quasiperiodic attractor and forward foliations @t
respectively, so we have three coexisting attractors. Basifr 0-57 are shown in Fig. 10, from which one can clearly see
boundaries are now locally disconnected fractal cufgdg, ~ that there is not any tangency between the attraart of
as shown in Fig. 8. Basins of attraction are highly interwo-backward foliationsand the forward foliations. As a matter
ven in this region, and for practical purposes it is difficult to of fact, whenQ increases to a value the tangencies begin to
determine initial conditions that would lead to a particularappear, and correspondingly one can obtain a critical circle
attractor. The newly created period-3 orbit quickly evolves toor annular mapx,,. ;—X,. If Q keeps increasing, then the
a chaotic attractor with an increase of the control parametemap would be supercritical. Finally there is no tangency and
(Fig. 7) and disappears in a boundary crisis. Basins of attracthe map becomes subcritical agasee Fig. 9. This shows
tions in Figs. 6 and 8 are plotted using the software packagge close connection between the geometric propefties
DYNAMICS 2 [35]. tangenciesof an attractor and the dynamical behaviqua-
siperiodicity and chagsof a system.

In Fig. 11 we show the attractor and two primary partition
We now turn to a symbolic analysis of this model. Forlines(-B and-C) on the background of the forward foliations

this we shall choose convenient phase Spmeeglzﬂ-, y (daSh CUrVEBfor Q:076 The line marked withRA is the
preimage ofB. The areas in between these lines are labeled

by ‘R, -L, and-N. The corresponding first return map is
plotted in Fig. 12. The three monotone segments in Fig. 12
are assigned the lettets R, andN, in accordance with the
two-dimensional partitions in Fig. 11.

A more interesting case is encountere@at 1.2577. The
attractor, three forward foliations passing tangencies, and the
primary partition lines are shown in Fig. 13, which mani-
festly exhibits a two-dimensional feature. We also separately
plot in Figs. 14 and 15 the,, ;—X, first return map con-
structed from Fig. 13 by using the coordinates and its
swapped fornx,,, ; — x;, with

V. PARTITIONING OF THE POINCARE ~SECTION

3

dé/at [

x'=x+1—Xg for x<xg,

or X'=x—x—xg for x=xg, a7

wherexg is thex coordinate of the attractor tangency on the
FIG. 8. Three coexisting attractors. The period-three limit cyclepartition line -B in Fig. 13. Actually the partition linesB
(black point$ and the period-one limit cycléwhite poiny are en-  and-A are not, respectively, parallel to thg, ; axis andx,
larged for clarity.Q=23.515. axis in Figs. 14 and 15.

036219-7



RANDY KOBES, JUNXIAN LIU, AND SLAVEN PELES

PHYSICAL REVIEW E 63 036219

-0.05 T -0.05 T
(a) (@) Y
\
v v \
“x
\
3
2\
017 | . -0.17 ‘Ti‘\ 4
\‘.
-0.29 1 -0.29 '
0 0.5 % 1 0 0.5 % 1
1 T ~ 1 T %
(b) ()
Xn+1 Kn+1 ) ,. /// J——
S
0.5 [ 0.5 - [ l
0 /// 1 o /// 1
0 0.5 x 1 0 0.5 x, 1
T T
12 (c . 12F ¢ e i
() ) ® \,\_‘\\
e ‘\«\
/ | y
v // v // N
0.95 - 0.95 - -
0.7 | . 07 F , |
0.8 1.1 M 1.4 0.8 1.1 u 1.4

FIG. 9. Attractors shown in th&—y, X,—X,.1, andu— v planes atQ=0.57, 0.76, 1.2577, 1.68, and 2.0 from top to bottomrfor
=1.088 anda=0.8+0.3Q.

VI. ORDERING RULE AND ADMISSIBILITY CONDITION A metric representation for symbolic sequences can be

introduced by assigning numbers [ii, 1] to forward and
backward sequences. We first assign an integer—1 or 1
to the symbok; when it is the letteN or otherwise. Then we
assign to the forward sequenegs,:--s, - the number

After the partition lines are determined, each point, or its
orbit, may be encoded with a doubly infinite symbolic se-
qguence consisting of the letterR L, and N, say, S
=-S5 ++S,51°51Sy Sy, Wheres, is the code for theath
point of the forward orbit, andy, the code for thenth point
of the backward orbit. The “present” position is indicated
by a solid dot, which divides the doubly infinite sequence
into two semi-infinite sequences, i.e., the backward sequence
Sy +S,81- and the forward sequenes; Sy -+S, - - . where

aIZl Misii, (18)
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0 Y ' -0.05 .
(9) / (]) e
/ T
/ TS y
Y v \
.‘\\ \\
AN \
-017 \ ‘\\: - 0.2 / \ i
s \vv
x‘\
-0.34 1 0.35 | -
0 0.5 x 1 0 05 X !
1 ' ~ 1 — .
h o L P
\ (h) ; P (k) ;
] I Xoin
AN H // / //
- e A
\ J oV i/
05 A 1 os5pF- A e
l,f’ﬁ“\ - e /
//// ! \\ //,/ /
0 //l/v 1 O /// I
0 0.5 %, 1 0 05 - p
1.26 . 1.16 :
n T | T
- f’“\\ () - “
v ra s W v y \
/ . E \ 3
,'t \‘ %
0.92 : .‘I - 0.94 i /i a
\‘.
0.58 L 0.72 ]
0.72 1.05 n 1.38 0.86 1.11 n 1.36

FIG. 9. (Continued.

0 L i-1 Similarly, the B assigned to the backward sequence
w={1 for s={R if H =1 (19) ~SworS2Sris defined by
2 NI .
B=2 v37, (2
i=1
or
where
2 L i-1 0 R i-1
wi=11 for 5=y R if [] ¢=-1. (20) =11 for 5={N and[] &=1 (22)
0 N =1 2 L j=1
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/
e

s s
s

-0.05

-0.17

FIG. 10. Attractor(dot9 and forward foliations(dash curves

for Q

0.57.

=1/3.

B(L"R:)

B(L*N-)

a(-\LNL*)=1/3,

a(-RL”)

In this representation a bi-infinite symbolic sequence with

the present dot specified corresponds to a point in the unit

0.5

square of thew— 8 plane, the so-called symbolic plane. In

-0.08

-0.23 -

-0.38

the plane, forward and backward foliations become vertical

and horizontal lines, respectively. We may define the order-
ing rules of forward(or backward sequences according to

their a (or B) values. From Eq(18) we then have

3

1

!
1.08

0.94 |

0.86

0.72

FIG. 9. (Continued.

(23

-1

€

or

According to the definition we have

FIG. 11. The Poincarenap (dotg and forward foliationgdash
curves at Q

a(-L*)=B(R":)=0,

)=1,

a(*NL*)=pB(L"

0.76. The primary partition linesB, -C, and the

preimageA of -B divide the attractor into three parts labeled by the

lettersL, R, andN.

=2/3,

=B(R*N)

B(R"L:)

a(*NNL®)= a(-RNL*)=2/3,

(24

036219-10



ANALYSIS OF A PARAMETRICALLY DRIVEN PENDULUM

1 T ; >
L/ 7
Xn+1 /'; // N
L N / P
B / /’/ /, ' C
— | S 47 R
05 ii -
I
— A
L
0 ’/ 1 &
0 0.5 1
Xn
FIG. 12. Thex,,—X, first return map aQ=0.76.
‘EL---<-ER---<-EN---, -OL--->-OR--->-ON:--
(25
and

--RE-<--*NE-<:--LE+, ---RO->:-NO->---LO-,
(26)

where the finite stringk andO consist of letterd, R, andN
and contain an even and odd number of lefterrespec-

PHYSICAL REVIEW E 63 036219

Xpa1 R N

0.5 -

0 0.5 1
Xn
FIG. 14. Thex,;1—X, first return map constructed from Fig.
13.

When foliations are well-ordered, the geometry of a tan-
gency places a restriction on allowed symbolic sequences. A
point on the partition lineC- (image of-C) may symboli-
cally be represented &3C-P. The rectangle enclosed by the
linesQN-, QR:, :P, and-NL* forms a forbidden zoné&-2)
in the symbolic plane. Therefore a symbolic sequehte
with |- betweenQN- and QR-, and at the same timel
>-P must be forbidden by the tangen®C-P. In the sym-
bolic plane the sequendé corresponds to a point inside the

tively. This ordering rule is similar to that for sequences offorbidden zone oQC-P. Similarly, UB-V stands for a tan-
the dissipative standard map at some values of the parar@ency on the partition lin&- (image of-B). The linesUL -,

eters[10].

0

017k S

-0.34

FIG. 13. The chaotic attract@dots, forward foliations(dashed
lines), and partition linesA, B, and-C at Q=1.2577.

UN-, -V, and-L” enclose a rectangle FZ in the symbolic
plane. Any sequenc&T with K- betweenUL- and UN-

1 . T >

X net

05 ; ’ /'/~._ .

o K Y\ |
0 0.5 1
X'n
FIG. 15. Thex;,;— X, swapped return map constructed from
Fig. 14.
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1 1

N7
NT™T

FFZ — — Fez

0 o 1 0 o !
FIG. 16. The symbolic plane #&=0.76. Ten-thousand points FIG. 17. The symbolic plane &= 1.2577. Together with the

of real orbits generated from the Poincanep are also shown to-  FFz, 10 000 points representing real orbits are drawn. None of them
gether with the FFZ in which no point falls. falls inside the FFZ.

while -T<-V is forbidden by theJB-V. Each tangency point sembles thgt of a one-dimensional c_ircle map except for a
on a partition line rules out a rectangle in the symbolic planeS€gment with two sheets, one of which without tepart
The union of the forbidden rectangles, determined from onésS€e Figs. 11 and 12From the two primary partition lines
and the same partition line, forms the fundamental forbidderiC and-B in Fig. 11, we get the following sequences for
zone (FF2), a boundary of which is the so-called pruning attractor points:

front. Consider a _f|n|te set of tangencig¢®;C-P;} (or T,:--NN---NNABLRRLNLNLNLRRRLLRRR,
{U;B-V;}). If the shift of a sequence s, S 1°SSi+ 1"
satisfies th? condition that the backward sequence T,:-*NN---NNLC-RRLRLNLRRRLRLNRLNL: .
“+*S¢_2S—1° IS not betweerQ;N- and Q;R- (or U;N- and

UjL), and at the same timeP;>-sS.,q - (or -V In order to reduce the two-dimensional attractor to a one-
<5841 ) for somei(j), then this shift is not forbidden dimensional return map, we need to determine two kneading
by any tangencies o€- or B+, owing to the property of sequenceKgandK.. They are the forward sequenceslaf
well-ordering of foliations. Thus we may say that the shiftisandT,, respectively.

allowed according to that tangency. A necessary and suffi-
cient condition for a sequence to be allowed is that all of its
shifts are allowed according to the two sets of tangencies. To ‘
check the admissibility condition, we consider again the two _ } ‘
casexQ=0.76 andQ=1.2577, and draw 10 000 points rep- o

resenting real sequences generated from the Poirmage '
together with the FFZ in the symbolic plane, as seen in Figs.
16 and 17. One can see that the FFZ indeed contains no poin
of allowed sequences. A blowup of the right-hand-side prun-
ing front in Fig. 17 is displayed in Fig. 18. The structure B FFz
represents a two-dimensional feature, related to the two tan-
gent points in the upper part of the attractor on the partition
line -C (see Fig. 13 We shall use the two tangencies to

make a 2D analysis of the periodic sequences latefser
T5; and T, in the next section .

VII. UNSTABLE PERIODIC ORBIT SEQUENCES

0.65

The attractor atQ=0.76 does not show much two- 0?8794 0.87965
dimensional nature, so the reduction to symbolic dynamics *
of a one-dimensional circle map may capture much of the FIG. 18. A blowup of the symbolic plane Fig. 17 in the intervals
essentials. We start from this simple case. The attractor rex=[0.8794,0.879 6band 8=[0,0.65.
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Kg=LRRLNLNLNLRRRLLRRR, RRLRLRI=NRLRLRI=NRLRLNL-=NRLNLNL

Compared with the original 2D map, the 1D circle map given —RRRLLNI-NRRLLNL=NNRLLNL
by Kg andK¢ puts less constraint on allowed orbits. Since 5

the attractor has only one sheet crossing each primary parti-

tion line almost no difference between the 1D and 2D maps NRLRLNL-=NRLRRLL-RRLRRLL
can be recognized if the sequences of short periodic orbits
are concerned. as candidates for the fundamental strings in not-well-ordered

The knowledge of the two kneading sequen@® deter-  sequences of period 7. Among these sequences,
mines everything in the symbolic dynamics of the circle map(NNRLLND™ and RRLRRLD™ are forbidden byK¢ and
[19]. For example, one may define a rotation numemlso  Kg, respectively.
called a winding number, for a symbolic sequence by count- In this way we have determined all periodic sequences up

ing the weight of letter® andN in the total numben of all o period 8 allowed by the two kneading sequen@ds. The
letters: result is summarized in Table Il. We have examined the

admissibility of all these sequences by checking if all their
shifts fall into the FFZ in the symbolic plane of Fig. 16. They
turn out to be totally allowed. In fact, by determining the
symbolic sequence of every point in the attractor, we have
A chaotic regime is associated with the existence of a rotafumerically found all these orbits easily and listed the coor-
tion interval, a closed interval in the parameter plgag). ~ dinate of the first letter in a sequence in Table II. ,
Within a rotation interval there must be well-ordered orbits. _For the more interesting casg=1.2577, based on Fig.
We can construct some of these well-ordered sequences ek3 We list the following five tangencies along tBe andC-
plicitly, knowing the kneading sequenckg andK. lines:

In our case it can be verified that the ordered periodic o . )
orbits (RL)” and RRL)™ are admissible. These two se- TyooLLLAB-LRNNRLLNNNNNRLRLLA-,
quences have rqtation numbers. 1/2 and 2/3, SO the .rotation T,:--N---NNRGNRLLRNNNNRLRLRNNRN,
interval of the circle map contaifd/2, 2/3, inside which
there are rational rotation' numbers 3/5, 4/7, and 5/8. with T ..L---\LLNC-NRLLNNNRNRNNRNRNNR,
denominators up to 8. Their corresponding ordered orbits are
(RLRL)", [RPL(RL)?]”, and[(R?L)’RL]". A very easy  T,:---N---NNNGNRLLNNNRLRNNNNRLLN:,
way to construct a longer well-ordered periodic sequence
with a given rational rotation number from two shorter well- ~ T:---N---NRLGNNNNRLRLNRNRLNNNRN,
ordered periodic sequences can be found in Fig. 12.9 of Ref.
[2]. Take, for examplew=3/5, From T, and T, whose forward sequence is the greatest

among the tangencies alo@y, we get

1
W= Iimﬁ(number of R and N). (28

n—oo

3_ 2 1 2+1
§_§®E_m’ Kg=LRNNRLLNNNNNRLRLLN-,

RRLRI=RRL+RL. Kc=NRLLRNNNNRLRLRNNRN.

We can further construct not-well-ordered sequences from I_:o(;.the 1D circle map, we r:jave dﬁtehrmmelq aI(Ij E.IHOW%?
well-ordered ones by the following transformation. One PENodIC SEqUENCES up to period 7, which are listed in Table

notes that in Fig. 12 the lower limit oA is the greatest point gle'n\i:\{gshc?;/ fheex;[gn g‘gi?]ég l:;gd;'jigﬂl% 51yatu tselago'[fhaézz-
on the subinterval, while the upper limit ofA is the small- ; :
estR. When-A is crossed by a continuous change of initial cycles are now forbidden by the tangeriTy. An asterisk

. . . denotes those forbidden sequences in Table Ill. The allowed
points the corresponding symbolic sequences must change Sgriodic orbits have been located numerically.

follows:
greatestLN---=smallestRL:---. VIII. PERIOD WINDOWS
Similarly, on crossingC another change of symbols takes _ S° far we have discussed only unstable periodic orbits
place: which are embedded in a chaotic attractor for fixed param-
eters. In fact, the symbolic dynamics we have constructed is
greatestR=smallest N. also capable of treating stable periodic orbits appearing

while parameters vary once the partition lines are determined
Neither change has any effect on rotation numbers. As aim the Poincaremap. But a more convenient way to deter-
example, starting with the ordered period 7 orbitmine the symbols of a periodic orbit is to use the 1 —X,
[R%(LR)?L]” we obtain first return map. Take, for instance, a stable period ®at
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TABLE II. Allowed unstable periods up to 8 fa@=0.76. The
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(0.417925742243, 0.515459734623and the other

(x,y) is the coordinate of the first letter in a sequence. Only nonre{0.678 580 462 575, 0.299 669 053 8G8so on the left side

peating strings of the sequences are givedenotes the period and of 6 (0.679571 155041, 0.299 669 061 32HAence the let-
W the rotation number.

=1.26055. We show it and the chaotic attractor Gt
=1.26005 in thex,; 1—X,, map in Fig. 19. Comparing Fig.
19 with Fig. 14, one can easily find=IN, 4=L, and 5

ters for points 2, 3, and 6 should Bg L, andN, respectively.
We have determined all stable periodic words with period up

P W Sequence X y to 7 encountered a® is varied from 0.78058 to 1.322 80

2 12 RL 0.680655071 —0.184 044078 with an increment 0.000 01, as listed in Table IV. Naturally,
> 12 NL 0.269335571 —0.128 679 398 those_ p(_erlods with window width !ess than 0.00001 wogld
3 5/3 RLR 0666418156 —0.163 903 964 be missing. In Taple IV we also list the changes'of period
3 213 RLN 0679742958 —0.172914732 words ywth Q, which show the ordering properties: The
¢ 24 NRwo osmaosiss —oastessess RN VE ST ROC L esponc o the
5 3/5 RRLRL 0.754061730  —0.232614919 tangency in tghge upper branch of the attractorF:)n the partition
S 8/5 NRLRL 0153005251 —0.198571 214 line -C (see Fig. 18 while the words in forms--C" and

5 8/5  NRLNL 0069305032 0242724621 . A \yould do the opposite, i.e., change from bigger to
5 3/5 NRRLL 0.004459397  —0.266 933 087 smaller, whereC' is the tangency in the lower branch of the

5 3/5 RRRLL 0.818461882 —0.262557 048 attractor along theC (see Fig. 13

5 3/5 RRLNL 0.805821652 —0.257 789 205

6 3/6 NRLRLL 0.162899971 —0.192734 200

6 3/6 NRLLNL 0.176235170 —0.184748719 IX. PROPULSION ASPECTS

6 4/6  RRRLRL 0.876 708867  —0.277086130 Apart from its fairly rich nonlinear structure, another in-

6 4/6  NRRLRL 0941828668 —0.278808659 teresting aspect of the model considered here is its use in a
6 4/6  RRLNRL 0.781248148  —0.246 935351 mechanical propulsion device. To see these aspects, let us
7 A7 RRLRLRL 0.753419555 —0.232248988  5e Eqgs(4) and(3) to solve for the coordinaten Cartesian

7 47 NRLRLRL 0.159195421 —0.194929335  gpace of the center of mass of the rod. We are particularly
7 417 RRLLNRL 0.744687447 —0.227153254  nterested in this section in the acceleration; two representa-
7 4/7 NRLRLNL 0.151174731 —0.199641399 tive graphs of the acceleration in tRelirection are shown in

7 4/7  NRLLNRL 0.185646405 —0.179051255  Figs. 20 and 21. Similar results hold for the acceleration in
7 4/7  NLNLNRL 0.289007234 —0.134664855  they direction. These graphs were generated with a particu-
7 4/7 RRRLLNL 0.850218105 —0.272009133 lar set of parameters and initial conditions of the model
7 4/7 NRRLLNL 0.981762965 —0.272665749  whose precise values are not important for our purposes here.
7 4/7 RRRLRLL 0.858495739 —0.273871030  The interesting aspect is that the acceleration in, sayxthe
7 4/7 NRRLRLL 0.964283072 —0.275994309  direction shows a definite bias in favor of being larger in
8 4/8 NRLRLRLL 0.160408189 —0.194212 064 magnitude for, in this case, positive values over negative
8 4/8 NRLRLLNL  0.162092260 —0.193213633  values.

38 4/8 NRLLNLNL 0.177 466 432 —0.184 005 818 Let us imagine that we place this mechanical model on a
8 5/8 RRLRRLRL 0.759627678 —0.235734676 cart which is reSting on a surface and let it begin its motion.
8 5/8 NRLRRLRL 0.143963347 —0.203824 391 The accelergtlon of thg rod will, by Newtpn's 3rd law, cause
8 5/8 NRLNRLRL 0093629167 —0.231107382 a.back reaction, causing the cart to oscillate back and forth.
8 5/8 NRRLRLRL  0.953347043 —0.277574 465 First assume the surface is f(lctlonless. _Even thouglh the ac-
8 558 RRRLRLRL  0.869038801 —0 275879784 celeration _of the rod is Iarger_ in one particular direction than
8 S8 NRLNLNRL 0070703635 —o2e20ess00 @ PRERRE NG JEE EE B B e compen.
8 5/8 NRLNRRLL 0111829461  ~0.221687 365 sated by the smaller acce’Ierati’0n in the directions which

8 5/8 NRLRRRLL 0131212194 —~0.211077481 lasts for comparatively longer periods of time. However, let
8 5/8 RRLNLNRL ~ 0.792783112  —0.252286 399 us now imagine that there is some friction between the cart
8 5/8 RRLNRLRL 0782318121 —0.247450423 5,4 the surface. It is possible, with the right combination of
8 5/8 NLNRRLRL ~ 0.351020175 —0.087 984499 parameters and initial conditions, that this friction “ab-

8 5/8 NLRRRLRL 0.353562509 —0.086 982096

sorbs” the back reaction in the direction for which the ac-
celeration is smallest, but does not completely absorb the
back reaction in the other direction. In this case the cart can
“push off” the surface, and exhibit a net motion.

Similar effects will hold for motion in the direction, and
so the net motion will be a combination of motion in both

=R since the two chaotic attractors look very similar. To directions. However, if we place two such mechanical de-
identify the symbols of the rest points we need to specificallyices on the cart and have them rotate in opposite directions,
locate the tangencies close to 3 and 6 on partition lies the back reactions in, say, tlyadirection can be arranged to
and-C. As a result, we found a tangen(¥.409 421 208 764, cancel, leaving a net motion in only thedirection. Such a
0.513670945215 on the left side of point 3 device has been constructdd.S. Patent No. 4,631,971 and
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TABLE lll. Allowed unstable periods up to 7 fa@=1.2577 in the 1D case; those with an asterisk are
forbidden by 2D tangencys.

P W Sequences
1 1/1 R N
2 212 RN
2 1/2 RL NL
3 3/3 NRR RNN
3 2/3 RLR RLN
4 4/4 RRRN RRNN RNNN
4 2/4 NRLL
4 3/4 RRRL NRRL NNRL*
5 5/5 RRRRN RRRNN RRNNN RNNNN RNNRN RRNRN
5 3/5 RRLRL NRLRL NRLNL NRRLLNNRLL*
5 4/5 RRRRL NRRRL NNRRL NNNRL RNRRL RNRLN RNRLR
6 6/6 RRRRRN RRRRNN RRRNNN RRNNNN RNNNNN RRRNRN
6 6/6 RRNNRN RNNNRN NNRRNR
6 3/6 RLRLLN RLLNLN
6 4/6 RRRLRL RLNRRLRLNNRL* NLNNRL* RLRRLN RRLNLN
6 5/6 RRRRRL NRRRRL NNRRRL NNNRRINNNRL* RNRRRL
6 5/6 NRNRRL RRNRRLNNRNRLE RNRNRE RRRNRL RRNNRL
6 5/6 RNNNRL
7 717 RRRRRRN RRRRRNN RRRRNNN RRRNNNN RRNNNNN
7 717 RNNNNNN RRRRNRN RRRNNRN RRNNNRN RRNRNRN
7 717 RNNNNRN RNNRNRN RRNRNNN RNNRRRN
7 a7 RRLRLRL NRLRLRL RRLLNRL NRLRLNL NRLLNRL NLNLNRL
7 4/7 RRLLNLN RRLRLLN NRLLNLN
7 5/7 RRLRRLR RRLRRLN RRLNRLN NRLNRLRIRLNLNN NRLNLNN
7 6/7 RRRRRRL NRRRRRL NNRRRRL NNNRRRL NNNNRRL NNNNNRL
7 6/7 RNRRRRL NRNRRRL RRNRRRL NNRNRRL RNRNRRL RRRNRRL
7 6/7 NNNRNRL NRNRNRL NRRRNRL RRRRNRL NRRNRRL RNNNNRL
7 6/7 RNNRNRL RRNRNRL
U.S. Patent Application No. 268,9t4one rather striking
illustration of its operation is that the device, self-contained
! T within a box, when placed in a canoe in a swimming pool,
6P =NRLLAN , ill propel the canoe in one particular direction, without the
q=1.26055 . will prop . P ) '
‘ / need for a propeller in contact with the water.
SR Although perhaps surprising, the principle behind this de-
Xn1 g7 vice is intuitively known to many children. Have a child sit
N 5%, on a piece of cardboard on a smooth floor and then tell her to
AN :'X4s5 move forward by rocking. If one watches closely, the child
\1 // will rock in one direction quickly and return in the other
05 | e | 4 direction slowly. The change in momentum of the child leads
] to a reactive force being transferred to the cardboard, but the
2x uneven rocking results in this force overcoming the frictional
6 force in only one particular direction. The net result is that
7 *‘““"‘*-\\\ the child will propel herself in one direction.
S ! ‘\_\
Ny X. CONCLUSIONS
0 0’/ ‘ 0'5 In this paper we have studied a simple mechanical model

FIG. 19. Stable period 8IRLLRNat Q=1.26055 and the cha-
otic attractor alQ=1.260 05 in thex,,,;—X,, map.

1 of a periodically driven nonlinear mechanical system. Bifur-

cation diagrams, dimensions, power spectra, and Lyapunov
exponents were derived in order to locate regions of quasip-
eriodic, periodic, and chaotic behavior within the parameter

Xn
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TABLE IV. Period windows with period up to 7 along the lime=0.8+0.3Q.

P Range inQ Word and its change wit®

1 0.78058-1.030 32 C(R—C—N)

2 1.03033-1.184 22 NC (NN—NC—NR)

4 1.18423-1.20583 NRNC(NRNR—-NRNC—-NRNN

6 1.21727-1.217 83 NRNNNC(NRNNNR-NRNNNC-NRNNNN

7 1.22590-1.225 96 NRNNNNCGNRNNNNN-NRNNNNC-NRNNNNR

5 1.23171-1.23228 NRNNC(NRNNN-NRNNC—-NRNNR

7 1.23667-1.236 73 NRNNRNQNRNNRNR>NRNNRNC-NRNNRNN

3 1.24492-1.24591 NRC(NRN—-NRC—NRR

6 1.24592-1.246 31 NRRNRQNRRNRR>-NRRNRCGC-NRRNRN

5 1.250853-1.250 87 NRRNC(NRRNR-NRRNC-NRRNN

7 1.255025-1.255 03 NRLNNNC(NRLNNNR->NRLNNNC-NRLNNNN

7 1.256 45-1.256 457 NRLRNNC(NRLRNNN-NRLRNNC-NRLRNNR

6 1.26055-1.261 73 NABLRC(NRLLRN-NRLLRC-NRLLRR~
NABLRR-NLNLRR-NLNLRC—NLNLRN

6 1.267 35-1.267 38 LRRNAB(LRRNLN-LRRNAB-LRRNRD

4 1.27539-1.276 92 NLNC(NLNR—NLNC—NLNN)

7 1.28907-1.28909 NLNNNRC(NLNNNRR->NLNNNRC-NLNNNRN

7 1.31289-1.31293 NLRNNRCINLRNNRN-NLRNNRC-NLRNNRR

7 1.31700-1.31713 NNRNNLd(NNRNNLNHNNRNNLC*HNNRNNLB

3 1.32043-1.32199 LAB(LRL—LLN—LLN)

6 1.32200-1.322 80 LLNLAB(LLNLLN—LLNLAB—LLNLRL)

space of the system. Within the parameter space is the coeit the phase and parameter spaces. Up to now, the symbolic
istence of a chaotic attractor and a limit cycle, which impliesdynamics has been applied to the analysis of the NMR-laser
that initial conditions may determine whether the system willchaos mod€]12,13, the two-well Duffing equatiofl1], the
exhibit periodic or chaotic behavior. We also discussed soméorced Brusselatof9,10], and the Lorenz mod¢lLl5-17, in
aspects of the model as it relates to a propulsion device. Thigddition to the system discussed in this paper. Along a cer-
system, although relatively simple, exhibits a rich behaviortain direction in the parameter space this model exhibits vari-
with a number of interesting nonlinear effects being presentous properties, such as, periodicity, quasiperiodicity, chaos,
We have also performed a symbolic analysis of thelD and 2D features, etc. In some other directions or regions
model. By constructing the proper Poincasection in the of the parameter space the model would also display more or
phase space for a system of ODEs, the symbolic dynamidgss similar behavior. We have established the three-letter
can be constructed based on the appropriate partitioning afymbolic dynamics for the model and found that the ordering
the phase portrait and it turns out to be an efficient and powrules of sequences, the forced Brusselator in the regime of
erful way to explore the global properties of the system bothannular dynamics, and the dissipative standard map at some
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FIG. 20. Acceleration in th& direction of the center-of-mass of
the rod as a function of timdow friction).

FIG. 21. Acceleration in th& direction of the center-of-mass of
the rod as a function of timéhigh friction).
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parameters are the same. As a matter of fact, the NMR-las¢he guidance of symbolic dynamics to day are quite limited
chaos model, the forced Brusselator in the regime of intervathough.
dynamics, and the H®n map with a positive Jacobian also

have similar two-letter symbolic dynamics and share the

same ordering rules of sequences. It therefore is meaningful

in a sense to classify the systems of ODEs according to their This work was supported by the Natural Sciences and
ordering rules of sequences. The ODEs investigated undétngineering Research Council of Canada.
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