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Cluster synchronization modes in an ensemble of coupled chaotic oscillators
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Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine
the possible states of cluster synchronization and ensure their stability is presented. The method, which may
find applications in communication engineering and other fields of science and technology, is illustrated
through concrete examples of coupled biological cell models.
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Studying the emergence of coherent spatiotemporal patA peculiarity of this type of nonlocal coupling is that each
terns in large ensembles of coupled nonlinear systems is @lement of the array in principle is coupled with each other
fundamental problem in theoretical physics with applicationthrough its local diffusive interaction with the nearest neigh-
to many areas of science. The simplest mode of such sp&ors. Note, however, that the matieEG is an arbitrary
tiotemporal patterns in a discrete medium of coupled identiNX N matrix, and that the systeil) may be considered as
cal oscillators with chaotic dynamics fall synchronization an ensemble oN oscillators with an arbitrary global cou-
[1-9]. Here all oscillators of the ensemble acquire identicalpling having the property that the sum of all elements of each
chaotic behaviors even though their initial conditions may bdine of the matrixA equals to zero. This implies the possi-
different. Cluster synchronization is observed when the os-bility of the full synchronization mode. In the case that the
cillators synchronize with one another in groups, but there igliagonal matrix=E&.=¢ly, wherely is a unitNxXN ma-
no synchronization among the group0—15. Oscillators trix, the systen{1) becomes a system of diffusivefiocally)
with identical temporal dynamics form one cluster. coupled oscillators in a chain with zero-flux boundary con-

An intriguing problem in the study of such spatiotemporal ditions, and written in a form similar to Heagy al.[5], Wu
patterns is how to select a particular structure from the wholand Chud6], or Pecord9].
collection of possible modes and to provide for its stability. Our main objective is to show that in the case when the
This is of interest, for instance, in connection with manylocally coupled systems with the matri do not exhibit
applications in communication engineerifip]. stable cluster synchronization and only fidhe-clustersyn-

We have recently presented a family of embedded synehronization occurs, the famil§ of nonlocally coupled sys-
chronization manifolds defining the cluster synchronizationtems may exhibit the desired cluster synchronization patterns
in the wide class of locally coupled identical systemswhereas the state of full synchronization is unstable.
[14,15. In this paper, we consider the phenomenon of clus- We first present the conditions on the coupling ma#fix
tering in an array ohonlocallycoupled oscillators described for the globally coupled systeiti) to have the same cluster

by the following system: synchronization manifolds as the locally coupled_sys(e)n
with £=¢ly [14]. Denote E,=1,®I,, and E,=1,®I,,
X=F(X)+(EG®P)X, (1)  Wherel, andl, are unit matrices, ant}, is annxn matrix

whose nonzero elements are all equal to one and lie in the

secondary diagonaK)e=(EnEn)T for an even number of

where X=(X1,X,, ... Xy) " is the set of dynamical vari- oscillatorsN=2n.

ables of N oscillators forming the array,X; is the

m-dimensional vector of theéth oscillator variables, and

F(X)=(F(Xy),F(Xy), ... F(Xy))". Elements of them En-a O
X'm matrix P that are equal to 1 determine by which vari-
ables the oscillators are coupled. The matfiiss an NXxX N
matrix with elementse;; that define the nonlocal type of E,.y O

coupling as well as the coupling strengths between the oscil-

lators.G is theN X N diffusion or nearest-neighbor coupling for oddN=2n—1, Ca:(EnaEn E.....)T, whereE, alter-

matrix nating with E, is repeatedr times, for N=rn, and U
=(U;,U,, ... ,U,)T. The following assertion then holds.
-1 1 0 ... O 10 0 Proposition Let the matrix€Cs be defined as the first
1 -2 1 0 lines of the matrixtCs and let
G= , P=[{0 0 O
o ... 0 1 -1 0900 Co(ECy)=ECs, @
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wheres stands foro,e, anda. Then the systenfl) with the As an effective method, we propose in this paper to con-
global coupling matrixt has the followingn-cluster synchro-  sider the cross matrig having only nonzero elements in the
nization manifolds: M¢(2n,n)={X=C.U} for even N principal and secondary diagonaél other elements are ze-
=2n, M¢2n—-1n)={X=C,U} for odd N=2n—1, and ros). Such a matrix defines a nontrivial nonlocal coupling
M?&(rn,n)={X=C,U} for N=rn. between the oscillators. Note that the effectiveness of the
Condition (2) implies that to preserve these manifolds in cross matrixt with the two diagonals is obvious in the prob-
the case of global coupling, the matéx which in the gen- lem of the selection of the manifolds because we involve the
eral case is filled out by nonzero elements, must be such thasscillators forming the cluster in direct coupling interaction
those lines of the matri€C, that belong to the same cluster and thus we expect the emergence of all negative transversal
are identical. Lyapunov exponents of the cluster manifold and of a positive
We shall illustrate the conditions of the proposition transversal Lyapunov exponent of the diagonal manifold
through an example wittN=5 oscillators. In the case of M(N,1). Hence, full synchronization does not occur.
local diffusive coupling, the systeiid) (with the matrices’, Clustering of chaotic oscillators is considered to be par-
andG) has only two in-phase synchronization manifolds: theticularly significant in the biological sciences where one of-
diagonalM(5,1)={X;=X,=--- =Xz} that corresponds to ten encounters coupled cells or functional units that each
full synchronization of the oscillatoréne-cluster synchro- display a complicated nonlinear behavid0]. As an ex-
nization and the manifolaM ¢(5,3)={X;=Xs,X,=X,} that ~ ample, we consider an array of coupled Sherman models for
determines the central symmetry of synchronized oscillatorpancreatics cells [17]. The coupled Sherman models with
in pairs with respect to the middighird) non-synchronized scalar diffusive coupling and zero-flux boundary conditions
element, i.e., a three-cluster synchronization manifold. are described by the systefh) with the matricesG and &,
In the case of global “diffusive” coupling, by virtue of and the following individual oscillator equations:
the proposition, the cluster manifoM (5,3)={X; =Xz, X5
=X,} does exist iff each sum of pairs of column elements
symr}ﬁetrical with respect to the middle one has similar pairs Tigp — ledV) T k(Vin) = gsS(V = Vi),
of the elementgsums of pairs symmetrical with respect to

the middle row. dn
As an illustration, we present the mati®, that defines T2 g; ~ oln=(V)—n], ©)
the cluster manifoldVi¢(5,3) and a curious case of the ma-
trix &:
S
s g =S-(V) =S,
1 9 4 3 5 1 00
9 6 52 0 010 where
E=14 1 9 7 3], C=|001 lcd V) =09cdN(V)(V—=Vca),
1 7 5 1 8 0 1 0
4 7 4 5 2 1 0 O lK(Vun):gKn(V_VK)a
and

At first sight, the matrix€ seems to be disorderédrbitrary) VRV
and therefore to allow only the manifoldl(5,1) defining 14+ o _
full synchronization. But in fact, the produéiC, satisfies wa(V)=| 1+ex 0, for o=m.n, andS.

condition (2), and the required manifol(5,3) exists and

defines a cluster synchronization with three clustére el-  Here,V represents the membrane potentiais the opening

ements of€={gj}; j=1,.. s satisfy the conditiong;+&,5  probability of the potassium channels, @dccounts for the

=eg51t E55, €211 €25= €411 €45 and so forth. presence of a slow dynamics in the systegp,=3.6, V¢,
Numerous examples of locally coupled identical continu-=25, V,,=—-20, 6,=12, gx=10, Vx=—75, gs=4, o

ous time oscillators in a chain show that usually cluster syn=1, V,=—-16, 6,=5.6, Vg=—35.245, s=10, and r;

chronization regimes cannot be achieved via the change of &0.004, 7,=0.0045, 7s=10 are model parameters, ,/ 75

single coupling strength parameter, and only a few exampledefines the ratio of the fas¥/(andn) and the slow(S) time

of locally coupled identical systems demonstrate such a clusscales. The individual Sherman model may display chaotic

ter synchronizatiortfor instance x-coupled Rasler systems dynamics in a wide region of the parametgt3,18.

[5,9,14). Now the problems arise of how to find the mini-  With the assumed coupling configuration the systém

mum number of nonzero elements of the maffigroviding  with the individual system3) represents a chain of locally

conditions of both the existence and stability of cluster syncoupled pancreati@ cells (resistive electrical coupling via

chronization regimes defined by the synchronization manithe variablesV;). Similar to most other diffusively coupled

folds from the local coupling case and how to realize thesystems, the coupled Sherman models do not exhibit the phe-

required stable cluster pattern from the whole collection ofnomenon of cluster synchronization when changing the cou-

all possible modes. pling strength, and only full synchronization takes place.
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FIG. 1. Established cluster synchronization of five nonlocally
coupled Sherman models. The coupling paramete#. Different
shades of gray represent different ranges of amplitude¥; @
(top). Chaotic attractor, in the phase spabg (n,S;), defining the
temporal behavior of the firgand the fifth cell in the regime of
chaotic bursting behavior with cluster synchronizat{bottom).

First, we consider five coupled Sherman models in th
form (1)—(3). To select the cluster synchronization with three
clusters defined by the existence of the maniftd(5,3)
={X;=X5,X,=X,4}, where X;=(V;,n;,S), i=15, we
consider the cross matri& that has its only nonzero ele-
ments lying in the two diagonalst,,=e33=e44=¢ and
€15= &51= — €. The systen{l)—(3) with this coupling matrix
£ may be rewritten in the following simple form:

X1=F(X;)—eP(X4—Xs),
Xo=F(Xp)+eP(Xz—2X,+Xy),
X3=F(X3)+eP(X;—2X5+Xy), (4)

Xa4=F(X,)+eP(Xsg—2X4+ X3),

Xs=F(X5)—eP(X,—X).

N
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FIG. 2. Symmetrical cluster synchronization of six coupled
Sherman models for different nonlocal coupling configurations.
Three-cluster pattern defined by the maniféid(6,3) (top). Cou-
pling strengthe =4. Two-cluster pattern defined by the manifold
M¢(6,2) (bottom). The coupling parameters aee=6, £,=4, and
g,=0.5.

umerical simulations confirm our assumptions about the
transversal stability of the diagonal synchronization mani-
fold, and the stable mode of cluster chaotic synchronization
with three clusters is observed in the system over a fairly
wide range of the coupling parameter(see Fig. L

Consider now an array of six coupled Sherman models.
ForN=6, the system of locally coupled Sherman models
well as the general syste(t) with the matrix&,] aside from
the diagonalM(6,1), has the invariant manifolt°(6,3)
={X1=Xg,X5=Xs5,X3= X4}, which defines the same cen-
tral symmetry of synchronized oscillators with respect to the
middle of the array as in the previous example. But in con-
trast to the cas& =5, two additional invariant manifolds
ME(6,2)={X;=X3=X,=Xg,X,=X5} and M?(6,2)={X;
=X,=X5,X,=X3=Xg} exist. Therefore, arrays of the form
(1) that are composed from five and from six diffusively
coupled elements may exhibit completely different regimes
of cluster synchronization.
Our purpose is to select and provide the stability of all
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i

| pose, we change the coupling configuration in the cross ma-
| | || Il | || || trix £ such that the elements ag=e33= 4= cg5=¢,
£95= £50= — €1, ande = e55=£5. The other elements of the
‘ ‘ ” ‘ ” “ matrix equal to zero. The required synchronization with two

clusters of synchronized cells is observed in the system and
remains stable in a fairly large region of coupling parameters

i (index)

nization regimes for the cad¢=6, we need to provide the
existence and stability of the manifold?(6,2) that is re-
lated to another alternating symmetry and defines the follow-

I (e,e1,8,) [see Fig. 2bottom)].
I‘ “ “ “ " To complete the selection of all possible cluster synchro-

ing clustering: the first, the fourth, and the fifthcells are
synchronized and define one cluster and the others are in-
0 500 1000 1500 2000 volved in the second cluster. For this we consider the nonlo-

time cal coupling matrix& with the principal diagonal elements
£11= €99= £33= £44= €55= £g6= &, and the only nonzero ele-
FIG. 3. Nonsymmetrical two-cluster synchronization pattern de-ments far from the principal diagonak;=e41=e5,= — &1,
fined by the manifoldM?®(6,2). The coupling parameters ase  ande,g=£3,= 3= — £,. Note that after this change of cou-
=1.3,e;=2, ande,=3.4. pling configuration, aside from the diagonsill(6,1), there
exists only one nonsymmetrical cluster manifditf(6,2)
and the symmetrical manifoldd °(6,3) andM¢(6,2) are no
longer preserved from the local coupling case. Thus we pro-
; . . . vide the selection of the cluster synchronization regime from
First we select the cluster dynamical regime defined by[he whole set of the possible cluster synchronization regimes.

i c i _ .
tEe man;fold:\/l (6’3|.)' S|Ln|lar to thehcasﬁ __”5 we '””_Oducﬁ 6This coupling configuration does realize the stability of this
the nonloca coupling etween the oscillators using L € %luster dynamical regime in some region of coupling param-
X 6 cross matrixt with the only nonzero elements lying in

. A > VYT eters(see Fig. 3
the two diagonalse = e33=e44=55=€ aNd £16=£61= In summary, we have selected the structure of global cou-
—e. Note that d_ue to Cthe proposition, the mgmfthf(6,3) pling providing the persistence of all cluster manifolds exist-
and its submanifoldV”(6,2) of the system with local cou- j,4in |ocally diffusively coupled systems. We have pre-
pling are preserved for such a nonlocal coupling but thesgnteq an effective method to provide the stability of cluster
manifold M*(6,2), defining nonsymmetrical clusters of Syn- qynchronization modes, which are unstable in the case of
chronized oscnlatprs, no longer eX|sts._ It is shown in F|g. 2Ioca||y coupled systems, by introducing an additional nonlo-
(top) that the required cluster synchronization regime defined, coupling, and we have shown the effectiveness of the

by the manifoldM(6,3) is indeed realized in the six coupled method through concrete examples of coupled systems.
Sherman models in some region of the coupling parameter.

The cells of the array are synchronized in three pairs with This work was supported in part by RFE&Brant No. 99-
respect to the middle of the array. 01-01126 and by grant “Universities of Russia’(No.

We study now the selection of the stable cluster regimel905. I.V.B. and V.N.B. acknowledge support from the
that is determined by the manifolsl®(6,2). For this pur- Danish Research Academy.

cluster synchronization manifolds¢(6,3), M¢(6,2), and
M?(6,2) by introducing the nonlocal coupling defined by the
Cross matrixe.
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