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Cluster synchronization modes in an ensemble of coupled chaotic oscillators
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Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine
the possible states of cluster synchronization and ensure their stability is presented. The method, which may
find applications in communication engineering and other fields of science and technology, is illustrated
through concrete examples of coupled biological cell models.
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Studying the emergence of coherent spatiotemporal
terns in large ensembles of coupled nonlinear systems
fundamental problem in theoretical physics with applicat
to many areas of science. The simplest mode of such
tiotemporal patterns in a discrete medium of coupled ide
cal oscillators with chaotic dynamics isfull synchronization
@1–9#. Here all oscillators of the ensemble acquire identi
chaotic behaviors even though their initial conditions may
different. Cluster synchronization is observed when the o
cillators synchronize with one another in groups, but ther
no synchronization among the groups@10–15#. Oscillators
with identical temporal dynamics form one cluster.

An intriguing problem in the study of such spatiotempo
patterns is how to select a particular structure from the wh
collection of possible modes and to provide for its stabili
This is of interest, for instance, in connection with ma
applications in communication engineering@16#.

We have recently presented a family of embedded s
chronization manifolds defining the cluster synchronizat
in the wide class of locally coupled identical system
@14,15#. In this paper, we consider the phenomenon of cl
tering in an array ofnonlocallycoupled oscillators describe
by the following system:

Ẋ5F~X!1~EG^ P!X, ~1!

where X5(X1 ,X2 , . . . ,XN)T is the set of dynamical vari
ables of N oscillators forming the array,Xi is the
m-dimensional vector of thei th oscillator variables, and
F(X)5„F(X1),F(X2), . . . ,F(XN)…T. Elements of them
3m matrix P that are equal to 1 determine by which va
ables the oscillators are coupled. The matrixE is an N3N
matrix with elements« i j that define the nonlocal type o
coupling as well as the coupling strengths between the o
lators.G is theN3N diffusion or nearest-neighbor couplin
matrix

G5S 21 1 0 . . . 0

1 22 1 . . . 0

A A A A A

0 . . . 0 1 21

D , P5S 1 0 0

0 0 0

0 0 0
D .
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A peculiarity of this type of nonlocal coupling is that eac
element of the array in principle is coupled with each oth
through its local diffusive interaction with the nearest neig
bors. Note, however, that the matrixA[EG is an arbitrary
N3N matrix, and that the system~1! may be considered a
an ensemble ofN oscillators with an arbitrary global cou
pling having the property that the sum of all elements of ea
line of the matrixA equals to zero. This implies the poss
bility of the full synchronization mode. In the case that t
diagonal matrixE5Ee[«I N , whereI N is a unit N3N ma-
trix, the system~1! becomes a system of diffusively~locally!
coupled oscillators in a chain with zero-flux boundary co
ditions, and written in a form similar to Heagyet al. @5#, Wu
and Chua@6#, or Pecora@9#.

Our main objective is to show that in the case when
locally coupled systems with the matrixEe do not exhibit
stable cluster synchronization and only full~one-cluster! syn-
chronization occurs, the familyE of nonlocally coupled sys-
tems may exhibit the desired cluster synchronization patte
whereas the state of full synchronization is unstable.

We first present the conditions on the coupling matrixE
for the globally coupled system~1! to have the same cluste
synchronization manifolds as the locally coupled system~1!

with E5«I N @14#. Denote En5I n^ I m and Ēn5 Ī n^ I m ,
whereI n and I m are unit matrices, andĪ n is ann3n matrix
whose nonzero elements are all equal to one and lie in
secondary diagonal.Ce5(EnĒn)T for an even number of
oscillatorsN52n,

Co5S En21 0

0 I m

Ēn21 0
D

for oddN52n21, Ca5(En ,Ēn ,En , . . . )T, whereEn alter-
nating with Ēn is repeatedr times, for N5rn, and U
5(U1 ,U2 , . . . ,Un)T. The following assertion then holds.

Proposition. Let the matrixECs be defined as the firstn
lines of the matrixECs and let

Cs~ECs!5ECs , ~2!
©2001 The American Physical Society16-1
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wheres stands foro,e, anda. Then the system~1! with the
global coupling matrixE has the followingn-cluster synchro-
nization manifolds: Mc(2n,n)5$X5CeU% for even N
52n, Mc(2n21,n)5$X5CoU% for odd N52n21, and
Ma(rn,n)5$X5CaU% for N5rn.

Condition ~2! implies that to preserve these manifolds
the case of global coupling, the matrixE, which in the gen-
eral case is filled out by nonzero elements, must be such
those lines of the matrixECs that belong to the same cluste
are identical.

We shall illustrate the conditions of the propositio
through an example withN55 oscillators. In the case o
local diffusive coupling, the system~1! ~with the matricesEe
andG) has only two in-phase synchronization manifolds: t
diagonalM (5,1)5$X15X25•••5X5% that corresponds to
full synchronization of the oscillators~one-cluster synchro
nization! and the manifoldMc(5,3)5$X15X5 ,X25X4% that
determines the central symmetry of synchronized oscilla
in pairs with respect to the middle~third! non-synchronized
element, i.e., a three-cluster synchronization manifold.

In the case of global ‘‘diffusive’’ coupling, by virtue o
the proposition, the cluster manifoldMc(5,3)5$X15X5 ,X2
5X4% does exist iff each sum of pairs of column eleme
symmetrical with respect to the middle one has similar pa
of the elements~sums of pairs! symmetrical with respect to
the middle row.

As an illustration, we present the matrixCo that defines
the cluster manifoldMc(5,3) and a curious case of the m
trix E:

E5S 1 9 4 3 5

9 6 5 2 0

4 1 9 7 3

1 7 5 1 8

4 7 4 5 2

D , Co5S 1 0 0

0 1 0

0 0 1

0 1 0

1 0 0

D .

At first sight, the matrixE seems to be disordered~arbitrary!
and therefore to allow only the manifoldM (5,1) defining
full synchronization. But in fact, the productECo satisfies
condition ~2!, and the required manifoldM (5,3) exists and
defines a cluster synchronization with three clusters~the el-
ements ofE5$« i j % i , j 51, . . . ,5 satisfy the conditions«111«15
5«511«55, «211«255«411«45 and so forth!.

Numerous examples of locally coupled identical contin
ous time oscillators in a chain show that usually cluster s
chronization regimes cannot be achieved via the change
single coupling strength parameter, and only a few exam
of locally coupled identical systems demonstrate such a c
ter synchronization~for instance,x-coupled Ro¨ssler systems
@5,9,14#!. Now the problems arise of how to find the min
mum number of nonzero elements of the matrixE providing
conditions of both the existence and stability of cluster s
chronization regimes defined by the synchronization ma
folds from the local coupling case and how to realize
required stable cluster pattern from the whole collection
all possible modes.
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As an effective method, we propose in this paper to c
sider the cross matrixE having only nonzero elements in th
principal and secondary diagonals~all other elements are ze
ros!. Such a matrixE defines a nontrivial nonlocal couplin
between the oscillators. Note that the effectiveness of
cross matrixE with the two diagonals is obvious in the prob
lem of the selection of the manifolds because we involve
oscillators forming the cluster in direct coupling interactio
and thus we expect the emergence of all negative transve
Lyapunov exponents of the cluster manifold and of a posit
transversal Lyapunov exponent of the diagonal manif
M (N,1). Hence, full synchronization does not occur.

Clustering of chaotic oscillators is considered to be p
ticularly significant in the biological sciences where one
ten encounters coupled cells or functional units that e
display a complicated nonlinear behavior@10#. As an ex-
ample, we consider an array of coupled Sherman models
pancreaticb cells @17#. The coupled Sherman models wit
scalar diffusive coupling and zero-flux boundary conditio
are described by the system~1! with the matricesG andEe
and the following individual oscillator equations:

t1

dV

dt
52I Ca~V!2I K~V,n!2gSS~V2VK!,

t2

dn

dt
5s@n`~V!2n#, ~3!

tS

dS

dt
5S`~V!2S,

where

I Ca~V!5gCam`~V!~V2VCa!,

I K~V,n!5gKn~V2VK!,

and

v`~V!5F11expH Vv2V

uv
J G21

for v5m,n, and S.

Here,V represents the membrane potential,n is the opening
probability of the potassium channels, andSaccounts for the
presence of a slow dynamics in the system.gCa53.6, VCa
525, Vm5220, um512, gK510, VK5275, gS54, s
51, Vn5216, un55.6, VS5235.245, uS510, and t1
50.004, t250.0045,tS510 are model parameters.t1,2/tS
defines the ratio of the fast (V andn) and the slow~S! time
scales. The individual Sherman model may display cha
dynamics in a wide region of the parameters@17,18#.

With the assumed coupling configuration the system~1!
with the individual system~3! represents a chain of locall
coupled pancreaticb cells ~resistive electrical coupling via
the variablesVi). Similar to most other diffusively coupled
systems, the coupled Sherman models do not exhibit the
nomenon of cluster synchronization when changing the c
pling strength, and only full synchronization takes place.
6-2
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First, we consider five coupled Sherman models in
form ~1!–~3!. To select the cluster synchronization with thr
clusters defined by the existence of the manifoldMc(5,3)
5$X15X5 ,X25X4%, where Xi5(Vi ,ni ,Si), i 51,5, we
consider the cross matrixE that has its only nonzero ele
ments lying in the two diagonals:«225«335«445« and
«155«5152«. The system~1!–~3! with this coupling matrix
E may be rewritten in the following simple form:

Ẋ15F~X1!2«P~X42X5!,

Ẋ25F~X2!1«P~X322X21X1!,

Ẋ35F~X3!1«P~X422X31X2!, ~4!

Ẋ45F~X4!1«P~X522X41X3!,

Ẋ55F~X5!2«P~X22X1!.

FIG. 1. Established cluster synchronization of five nonloca
coupled Sherman models. The coupling parameter«54. Different
shades of gray represent different ranges of amplitudes ofVi(t)
~top!. Chaotic attractor, in the phase space (V1 ,n1 ,S1), defining the
temporal behavior of the first~and the fifth! cell in the regime of
chaotic bursting behavior with cluster synchronization~bottom!.
03621
e
Numerical simulations confirm our assumptions about
transversal stability of the diagonal synchronization ma
fold, and the stable mode of cluster chaotic synchronizat
with three clusters is observed in the system over a fa
wide range of the coupling parameter« ~see Fig. 1!.

Consider now an array of six coupled Sherman mod
For N56, the system of locally coupled Sherman models@as
well as the general system~1! with the matrixEe] aside from
the diagonalM (6,1), has the invariant manifoldMc(6,3)
5$X15X6 ,X25X5 ,X35X4%, which defines the same cen
tral symmetry of synchronized oscillators with respect to
middle of the array as in the previous example. But in co
trast to the caseN55, two additional invariant manifolds
Mc(6,2)5$X15X35X45X6 ,X25X5% and Ma(6,2)5$X1
5X45X5 ,X25X35X6% exist. Therefore, arrays of the form
~1! that are composed from five and from six diffusive
coupled elements may exhibit completely different regim
of cluster synchronization.

Our purpose is to select and provide the stability of

FIG. 2. Symmetrical cluster synchronization of six coupl
Sherman models for different nonlocal coupling configuratio
Three-cluster pattern defined by the manifoldMc(6,3) ~top!. Cou-
pling strength«54. Two-cluster pattern defined by the manifo
Mc(6,2) ~bottom!. The coupling parameters are«56, «154, and
«250.5.
6-3
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cluster synchronization manifoldsMc(6,3), Mc(6,2), and
Ma(6,2) by introducing the nonlocal coupling defined by t
cross matrixE.

First we select the cluster dynamical regime defined
the manifoldMc(6,3). Similar to the caseN55 we introduce
the nonlocal coupling between the oscillators using the
36 cross matrixE with the only nonzero elements lying i
the two diagonals«225«335«445«555« and «165«615
2«. Note that due to the proposition, the manifoldMc(6,3)
and its submanifoldMc(6,2) of the system with local cou
pling are preserved for such a nonlocal coupling but
manifold Ma(6,2), defining nonsymmetrical clusters of sy
chronized oscillators, no longer exists. It is shown in Fig
~top! that the required cluster synchronization regime defin
by the manifoldMc(6,3) is indeed realized in the six couple
Sherman models in some region of the coupling parame
The cells of the array are synchronized in three pairs w
respect to the middle of the array.

We study now the selection of the stable cluster regi
that is determined by the manifoldMc(6,2). For this pur-

FIG. 3. Nonsymmetrical two-cluster synchronization pattern
fined by the manifoldMa(6,2). The coupling parameters are«
51.3, «152, and«253.4.
.

n-
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pose, we change the coupling configuration in the cross
trix E such that the elements are«115«335«445«665«,
«255«5252«1, and«225«555«2. The other elements of the
matrix equal to zero. The required synchronization with tw
clusters of synchronized cells is observed in the system
remains stable in a fairly large region of coupling paramet
(«,«1 ,«2) @see Fig. 2~bottom!#.

To complete the selection of all possible cluster synch
nization regimes for the caseN56, we need to provide the
existence and stability of the manifoldMa(6,2) that is re-
lated to another alternating symmetry and defines the follo
ing clustering: the first, the fourth, and the fifthb cells are
synchronized and define one cluster and the others are
volved in the second cluster. For this we consider the non
cal coupling matrixE with the principal diagonal element
«115«225«335«445«555«665«, and the only nonzero ele
ments far from the principal diagonal«515«415«5452«1,
and«265«325«6352«2. Note that after this change of cou
pling configuration, aside from the diagonalM (6,1), there
exists only one nonsymmetrical cluster manifoldMa(6,2)
and the symmetrical manifoldsMc(6,3) andMc(6,2) are no
longer preserved from the local coupling case. Thus we p
vide the selection of the cluster synchronization regime fr
the whole set of the possible cluster synchronization regim
This coupling configuration does realize the stability of th
cluster dynamical regime in some region of coupling para
eters~see Fig. 3!.

In summary, we have selected the structure of global c
pling providing the persistence of all cluster manifolds exi
ing in locally diffusively coupled systems. We have pr
sented an effective method to provide the stability of clus
synchronization modes, which are unstable in the case
locally coupled systems, by introducing an additional non
cal coupling, and we have shown the effectiveness of
method through concrete examples of coupled systems.
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