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Interacting pairs of periodic solutions lead to tori in lasers subject to delayed feedback
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Models of class-B lasers subject to either an optoelectronic or an optical feedback are investigated analyti-
cally and numerically. We derive slow time amplitude equations from the laser delay differential equations and
find multiple bifurcating and isolated branches of periodic solutions. We then show that secondary bifurcations
to tori result from the interaction of pairs of Hopf bifurcations. The branches emerging from these bifurcations
are followed numerically using a continuation method developed for delay differential equations.
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[. INTRODUCTION cal field and the electronic carrier density. Numerical simu-
lations of these equations successfully reproduce the domi-
Most class-B laserEl], among which include C§ solid  nant effects observed experimentally, such as mode-hopping,
state and semiconductdBC) lasers, are very sensitive to coexisting dynamical regimes and different forms of chaotic
optical or optoelectronic delayed feedback. For instance, attractors such as LFF.
tiny optical feedback such as the back-reflection of a SC The simplest model of a laser controlled by an incoherent
laser beam into the laser cavity can lead to chaotic regimesptical feedback was first proposed and studied by Otsuka
[2]. The poor stability of these lasers is due to the fact thaand Chern[8] with the goal of designing high-frequency
they are weakly damped nonlinear oscillatf8s-6]. While  self-pulsating lasers. This model is a simplification of the
feedback may lead to unwanted instabilities, a small feedfeedback scheme proposed by Yasakal.[17] for stabiliz-
back rate and a judicious choice of the delay may also proing the laser frequency and reducing its linewidth. By con-
duce desired high-frequency pulsating outdts 1Q). trast to the coherent optical feedback experiment, the laser
Because lasers subject to a delayed feedback are nonlindasgam passes through a polarization-rotation element that ro-
infinite-dimensional systen{d.1], they display a wide range tates the beam polarization by2 rad. As a result, the feed-
of steady, oscillating, pulsating and chaotic regimes. Coexback field does not interact coherently with the intracavity
istence between those regimes is also very common. Sonfield since their respective polarizations are orthogonal. The
dynamical responses such as the low frequency fluctuationsodel of Otsuka and Chef®] is formulated using two non-
(LFF) [12,13 have only been observed for particular laserslinear DDEs, one for the laser intensity and the other for the
but other bifurcation features are shared by different class-Bopulation inversionor the carrier densily Yen and co-
laser system§l4,15. workers[ 7] have successfully set up a SC laser system using
Four types of feedback are commonly associated with lathis feedback to produce optical impulsions in the GHz
sers, namely, the coherent optical feedback, the incohererénge.
optical feedback, the optoelectronic feedback acting on the In the case of optoelectronic feedback, a photodetector
pump and the optoelectronic feedback acting on the lossesonverts the light intensity into an electrical signal that con-
The coherent optical feedback consists in the partial backirols either the pump or the cavity lossgs3,19. The sim-
reflection of the light beam into the laser cavity. Becauseplest models of these laser systems are described by two
light propagates at a finite speed, it takes time for the beamonlinear DDEs for the laser intensity and the population
to reenter the cavity. SC lasers are particularly sensitive tinversion. A third equation taking into account the dynamics
this type of feedback because they combine low facet refleasf the electronic feedback loop is sometimes added
tiveness and high gain. Moreover, dynamical frequencies of18,20,21.
SC lasers are typically a few GHz. Therefore, a delay of a Whatever the feedback scheme, most of our knowledge
few hundreds of picoseconds, or equivalently an extra-cavitpn the dynamics of lasers controlled by delayed feedback
round-trip of a few centimeters, is enough for the delay tocomes from experiments or numerical simulations of the
play a major role in the system dynamics. The simplesimodels. Indeed, except for the steady states, analytical re-
model describing a longitudinal single mode SC laser subjecsults remain rare. This comes from the simultaneous pres-
to a weak optical feedback has been formulated in 1980 bgnce of two mathematical difficulties: the laser intrinsic non-
Lang and KobayashiLK) [16]. It consists in two nonlinear linearity and the time lag involved in the feedback. To
delay differential equation€@DDEs) for the complex electri- overcome these difficulties, different analytical methods
have been proposed. Lasers exhibiting strongly pulsating in-
tensities have been studied[i®,22,23 and approximations
*On leave from the Institute of Mathematical Problems in Biol- of the solution for specifically chosen time intervals have
ogy, Pushchino, Moscow region, Russia. been determined. A second method consists in looking for
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small amplitude periodic solutions. Using bifurcation tech-MATHEMATICA and we chose the coefficients in the perturba-
nigues, it is then possible to derive amplitude equations detion expansions so that the final result is similar for each
scribing the long time behavior of the ladd5,24. We may feedback scheme.

also take advantage of the weak damping of the laser relax-

ation oscillations and reformulate the original laser equations A. Optoelectronic and incoherent optical feedback

as the equations for a weakly perturbed conservative oscilla- i i ) )

tor [10,14,25. Simple analytical expressions for the small  1he behavior of the intensityand excess carrier number
amplitude nearly harmonic regimes as well as the large aml™ ©f @ longitudinally single mode SC laser subject to either
plitude pulsating regimes can then be obtained. Giacomelft" optoglectronlc or an |n.coherent optical delayed feedback
and coworkers proposed a fourth approach valid for largéS described by the following set of DDES,9,20:

delays by formulating a partial differential equation from the dl

DDEs [26]. —= L—l—aﬁ I+ess(N+Ny), (18
In this paper, we use bifurcation techniques and derive dt  |1+gsad

slow time equations for the amplitude of the laser relaxation .

oscillations. Amplitude equations have been derived in the dN N(I1+ 1)

past for lasers subject to feedback but our analysis differs by FTE 1+0ed +l (1b)

the following points. First, we assume that the delay is suf-

flc(ljently large so that r']t stlllr?pp.ee}rs in the s!g:/v tflme ar7|1_ph|— where the delay appears ifl =1(t— 7). In these equations,

qu € eq'uat|on.. V\{e sdok;/v t aht It 'Sf respogg eI or mu tSIp time t is measured in units of the photon lifetime,, T
ffurcating or isolated branches of periodic solutions. Sec- 75/ 7, with 74 the carrier lifetime,P is the pumping rate

ond, we concentrate on the multiple branches of time-

o -~ ) : . above thresholdes, is the spontaneous emission rag, is
periodic intensities and propose a bn‘u_rcanon mec_h_amsm fo{he excess carrier number at transparencygpgs the gain
the appearance of quasiperiodic regimes. Specifically, w

. : . ; &aturation coefficienf30]. The coefficientsy, 8 and y are
shgwnanfamlcﬂly tfhgitft?ls {??}Cha?rﬁm I:e;l:)tslvfror?v\fhe 'nrtier'proportional to the feedback rafg5]. For an optoelectronic
ggig brgnchgs (;‘poppgsﬁg cci)ireg'(t)ionsénd is ?esepsons?blgefo_r geedback acting on the laser lossas; 0 andg=y=0. For
secondary bifurcation to @2 torus followed by a tertiary an optoelectronic feedback acting on the pump;0 and

bifurcation to aT® torus[27,28. Moreover, the torus bifur- a=f=0. For an incoherent optical feedbagk#0 anda

. . ; . _=vy=0. Equations(1a and (1b) also hold for two-level
c_atlon perS|sts even if one or both of th_e tWO.HOPf. bifurca class-B lasers withN being the population inversion and
tion points have disappeared from the bifurcation diagram as

a parameter is changed. The bifurcations to tori are importa sat=0.

because they are quickly followed by more complex time-_. In the absence of feedba_ck, Edga) a.”d (.1b) adm't a

. single stable steady state ) =(14,Np). Itis given in para-
dependent outputs as the control parameter is furtherrnetric form as
changed. This motivates our combined analytical and nu-

merical study of these bifurcations. Third, we investigate the

validity of our asymptotic results by comparing diagrams P=No| 1+ I—O) (2a)
obtained from the amplitude equation and from the original 1+0salo

laser equations. To this end, we use a continuation method

which has recently been developed for DORS]. It is the N ~ (1+Jsado)(lo—€spNa) (2b)
first application of a continuation method for a laser problem O+ €sp(1+0sado)

formulated in terms of delay differential equations.

The plan of the paper is as follows. In Sec. Il, we briefly wherel ;>0 is the parameter. If the feedback is sufficiently
review a series of laser problems and derive a common slowmall, the laser operates in the vicinity df,(Ny). In order
time amplitude equation. In Sec. Ill, we investigate the bi-to study small amplitude oscillating solutions, it is math-
furcation diagram of a laser subject to a weak optoelectroniematically convenient to rescale time with respect to the la-
feedback acting on the pump. Steady, periodic and quasker relaxation oscillation frequenay, = \/I,/T and to intro-
periodic solutions are found and their stability properties arejuce the deviations of and N from 1=1, and N=N,.
investigated. In Sec. IV, we compare the bifurcation dia-Specifically, we introduce the tingand the variableg and
grams obtained from the laser original equations and fronn defined by
the amplitude equations. Finally, we summarize in Sec. V
the main points of our combined analytical and numerical S=w,t, (33
study of lasers subject to delayed feedback.

I=19(1+6Yy), N=Ng+ 6 wn. (3b)
Il THE REDUCED MODELS The coefficients ofy andn in Eqg. (3b) are chosen such

In this section, we consider the four feedback schemethat the largeT parameter that ranges from®ifor SC lasers
described in the introduction and derive a common slow timeup to 5x 10° for solid-state lasers can be removed from Eq.
amplitude equation for the intensity of the laser field. We(1b). The feedback rates, 8 and y as well as the sponta-
carried out the analysis with the symbolic manipulatorneous emission raig, and the gain saturation tergy,; are
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typically small. This suggest to simplify Eq&la) and (1b)
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where c.c. means complex conjugate. The evolution of the

by properly scaling all parameters. We first introduce a smalslow time amplitudeA is determined by the following equa-

parametere<1 defined by

(4)

€=

(1+1g)2 1|4
4, T

and then expand the parametersg, v, €s, andgg,; as

a= 1+|064C“+ , (5a)
B=2€Cyt- -, (5b)
y=2€°C + -, (50
4 4
Gsar= 77 € g+---, (5d)
412
esp=m64e+ el (5¢)

In Egs. (4) and (5), coefficients depending oh, are in-

tion:

dA

go =~ (1+etg+iCy—iC)A-ilA]A

—(C,—iC4+iC,)e 1A, (10

with A =A(0—0). We discuss the solutions of this equa-
tion in the next section.

B. Coherent optical feedback

The LK model for a longitudinally single mode SC laser
controlled by a weak optical feedback[ik6]

df 1+ia N tesnei®E (11
_ = i e 7',
dt™ 2 149,482 7
TdN_ N|&J? (11
dt 1+gsat|€|2'

with £ the complex electromagnetic fieIE,ES(t— 7), a the

troduced in order to simplify our final amplitude equation. In inawidth enhancement facton; the normalized feedback

what follows, we consider one of the feedback rates as o
control parameter. Consequently, is always constant and
the limit e small means the limif large. The new param-
etersg, e, C,, Cg, andC, are treated a®(1) quantities in
this limit. After introducing Eqs(3)—(5) into Egs.(1a and
(1b), we seek a two-time solution of the form

y=e€ya(s,0)+ €%y,(s,0)+ -, (63)
n=eny(s,0)+e’ny(s,o)+ - - -, (6b)

whereo is a new slow time variable defined by
o=€’s. (7

We note thaty=y(s— 6)=y(s— 6,0— ©) with the rescaled
delays6 and ® defined by

6=ow,7 and O =€20.

8

Furthermore,s and o are treated as independent variables

and this implies the chain rule/ds= g/ ds+ €29/ do. Intro-
ducing Eqgs(6a and(6b) into the equations foy andn and
equating to zero the coefficients of each powee ¢téad to a

Wate and() the dimensionless optical frequency of the laser

without feedback. The other variables and parameters are
defined in the previous section. Equatiofida and (11b

also model two-level class-B lasers subject to optical feed-
back if gs5; and « are set to zero. As previously, we inves-
tigate the response of the laser to a weak feedback. Our
analysis of Egs(11a and(11b) is similar to that of Eqs(1a)

and (1b). We write the field asS(t)=7R(t)e'?" and intro-
duce the deviations oR andN relative to then=0 steady
state. Specifically, we introduce the new variableand n

defined by
2 ) NT R T

with Ro=lo, lo=(P—1)/(1+gs) and No=1+gsado.
We also introduce the slow timsdefined by Eq(3a and we
expandzn as

R= RO (12)

41,
=141, €

C, e, (13

with C,=0(1) ande defined by Eq.(4). We then seek a
solution of the form

sequence of linear problems for the unknowns functions

(y;,n;), i=1,2,.... Wesolve each problem sequentially. r=ery(s,o)+eXy(s,a)+---, (149
The analysis requires to solve the first two problems and then
to apply a solvability condition to th©(e®) problem. The n=eny(s,0)+e>ny(s,o)+- - -, (14b)

procedure is tedious but straightforward and we omit all de-
tails. The leading solution is given by

b= o(S,0) +\3I2ep1(5,0) + € py(s,0)+ - - ).

. 14c¢
y(s,0)=€(A(o)e'S+c.c)+O(€?), (93 (149
. Introducing Eqgs.(143@-(140 into the equations for, n
n(s,o)=e(A(o)ie'S+c.c)+O(€?), (9b)  and ¢ lead to a sequence of problems for the functiops
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TABLE I. Values of the paramete#s , &, andy appearing in  right hand side of Eq(19). The term —(1+e+g)A ac-

Eq. (19. counts for the linear damping of the laser oscillation in the
absence of feedback. The nonlinear tef|?A is the first
Feedback scheme & &i ¥ order nonlinear correction to the laser frequency. The term

Optoelectronidlosses 0 0 - — (& +1§&)CA takes into account the change of the damping
Optoelectroniapump 0 1 2 rate and the shift of the laser optical frequency caused by the
Incoherent optical 0 1 /2 feedback. Finally, the terr® e '(?~¥A is the delayed con-
tribution of the feedback.

Coherent optical +1 0 . ) )

If #=0(1), then ®=¢€2¢ is a small quantity and this

_ . _ impliesA=A. As a result, Eq(19) simplifies to an ordinary

r, ... which we solve sequentially. The first two problemsdifferential equation(ODE) at first order. Similar normal-

for ¢ imply that ¢, depends only on the slow time and  form ODEs have been proposed previously for lasers sub-

satisfies jected to moderate incoherent optical feedb&24] or to
q moderate optoelectronic feedba€k5|. However, if 6 is
ﬂ: —Csin(rQ+arctaria) + ¢0_$0)' (15) O(e ?) large, we need to investigate the D) [15,34.

do

- _ Ill. STEADY, PERIODIC, AND QUASIPERIODIC
whereC=21+ aZC,?, ¢o=do(c—0) and O is defined REGIMES
by Eqg. (8). Note that this phase equation can be obtained
directly from the LK equations by neglecting the intensity In this section, we analyze the bifurcation diagram of a
variation [31]. Equation(15) admits a solution of the form class-B laser controlled by a weak optoelectronic feedback
$o=wo Wherew is the optical frequency shift caused by the acting on the pump. We s€,=Cz=0 andC,=C in Eq.
feedback. Substitutingy,= wo into Eq.(15) leads to a tran-  (10) and, by rescaling\, o, andC, we eliminate the param-

scendental equation fas: eterse andg. Equation(10) then becomes
w+Csin(rQ +arctaria) + ® w)=0. (16) j—':=—(1—iC)A—i|A|2A—iCe*”’K (20)

The roots of Eq(16) correspond to the so-called modes

and anti-modes of the external cavity. A linear stability ~The results presented here extend those foun{34).
analysis shows that solutions are stable Gf© cos() Note that, as discussed in the previous section, similar results

+arctang) +©®w)+1>0. Assuming thatp, has reached a are expected for the other feedback schemes.
stable steady state, the solution foandn is time-periodic o
and is given by A. Steady and periodic states

The trivial solutionA=0 corresponds to the laser steady
state (,N)=(l9,Ng) and solutions of the formA
=Rexp(vo) with R and » constant correspond to periodic
regimes of the laser. Substitutily=R exp(vo) into Eq.
(20), using Eq.(8) and separating the real and imaginary
parts lead to two following equations f& and v:

r(s,0)=e(A(c)e'S+c.c)+0(e?), (173
n(s,o)=e(A(o)ie's+c.c)+0O(e?), (17b)

whereA, the complex envelope of the oscillations, satisfies

dA R Ny .
do = (1+g+OA-ilAPA+Ce A, (18) 1+Csin(1+€°1))=0, (219
A ) 5 (1+€%v)0
with C=1+ a2cos(rﬂ—arctan@)+®w)c,7. We have veri- R+ v+ta — =0 (21b
fied that Eq.(18) linearized aroundA=0 admits a periodic
solution A=exp(uo) and that the conditions for and C As demonstrated by E¢21a), periodic regimes exist only

match the Hopf bifurcation conditions derived by Ritter andfor |C|=1. The multiple solutions of Eq€218 and (21b
Haug[32] (see review in33]) in the absence of gain satu- are best analyzed by changimgcontinuously from—ee to

ration. ., As shown in Fig. 1, there are several branches of periodic

In summary, Eqs(10) and(18) are particular cases of the solutions. We first consider the branches that emerge from
more general equation the zero solution at Hopf bifurcation points. These are found
dA by settingR=0 in Eq.(21b). We then obtain an equation for
io= —(1+e+g+(&+i&)C)A—i|APA+C e (0~ oy the Hopf bifurcation frequencies= vy given by

2
(19 0= vy + tar( w> . 22)

with A=A(c— ) and® = €29. The parameters, , &, and
¢ are documented in Table | for the four feedback schemedAs illustrated in Fig. 2, Eq(22) admits an infinite number of
It is instructive to review the significance of each term in thesolutionsv,, for each fixed value of the delag. Knowing
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FIG. 2. Hopf bifurcation curves obtained from the reduced
model Eq.(20). We representa) Cy, and(b) v as functions of the
delay 6. They are obtained from Eq§22) and (23) using Eq.(4)
with 1,=1 and T=1000. The circles mark the Hopf bifurcation

FIG. 1. Periodic regimes obtained from the reduced model Eq
(20). We representa) the amplituderR and (b) the frequency as
functions of C. The trivial solutionR=0 corresponds to the laser
steady state and the constd®# 0 solutions correspond to time- : o
periodic regimes. Circles mark Hopf bifurcations. Fixed param-pOInts shown in Fig. 1.

eters:#=63.25 and® =2. They are determined using Ed@4) and ) o
(8) with 1,=1, T=1000 andr=2000. Figure 1 shows that there also exist isolated branches of

periodic solutions. For clarity, we shall restrain our discus-
vy, we determine the feedback ra@e=C,, from Eq.(21g.  Sion to the branches located in tkg,>0 half plane, but

Using trigonometric identities, it comes similar arguments hold for the other branches. The existence
of isolated branches can be explained simply by considering

1+ Vﬁ a Hopf bifurcation line in Fig. 2 and by following its behav-

Cu= ZE (23)  ior as the delay is increased continuously from zero. We

note that then'™ Hopf bifurcation point exhibits a decreasing

The direction of bifurcation is determined by analyzing Eqs.Cw and is supercritical ford< 67, [Fig. 3@)]. At 6= 6,
(218 and(21b) in the neighborhood of the Hopf bifurcation Cn=1 and the bifurcation is vertical. Far> 6, the bifur-
point. We find that the Hopf bifurcation is supercritical or cation is subcritica[Figs. 3b) and 3c)] and Cy quickly
subcritical if co$(1+ €?vy)0)<0 or cog(1+ €’vy)0)>0, increases. The emerging branch folds back at a limit point
respectively. If co1+ €%vy)6)=0, or equivalently if located atC=1. Finally, Cy— as#— 6, where 6}, is the
limit of § asC—c. Using Egs(213 and(22), we find that
v;=0 andd;,=m2. If 6>6,,, the Hopf bifurcation point
has disappeared but the periodic solution remains in the form
of two branches connected by the limit point of the previ-
the Hopf bifurcation is vertical, in first approximation. From ously bifurcating branchrig. 3(d)].

Egs. (219 and (22), we then findCy=+*1 andvy=+1.

ar
(1+62VH)0=i§+m27T, (24)

Finally, substitutingvy= *1 into Eq.(24) gives B. Stability analysis
o In [34], we investigated the stability of the steady and
r—+m2mw periodic solutions of E¢(20). We found that the steady state
2 e - .
6= 0% = _ (25) A=0 is stable for sufficiently low values ¢€|. Increasing
15 € |C| progressively from zero, a Hopf bifurcation leads to a

stable(unstablé periodic solution if the bifurcation is super-
By analyzing the direction of bifurcation in the neighbor- critical (subcritica). All branches emerging from the other
hood of %, we conclude that then™™ Hopf bifurcation is  primary Hopf bifurcations for larger value dtc| are un-
supercritical ford< 6y, and subcritical foro> 6, . stable. Both subcritical and isolated branches of periodic so-
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FIG. 3. Qualitative bifurcation diagrams deduced from the reduced mode(2Bg.CaseC>0. The maximum of the oscillations is
represented as a function 6f Cy; andCy, (Cqp) denote Hopf(torus bifurcation points. Labels S, P, and QP design branches of steady,
periodic and quasiperiodic regimes, respectively. Fddtted lines represent stabl@instablé regimes. Circles mark Hopf bifurcation
points, squares denote torus bifurcation points and triangles correspond to limit points. The sequence dffigures shows how a
periodic branch evolves asis gradually increased. The arrows indicate figtdecreases if the bifurcation is supercriti¢al and increases
if it is subcritical[(b) and(c)]. As 6— 6}, the pointC,; moves to infinity and the branch becomes isolatedferd;, (d). For clarity reason,
only one branch is displayed.

lutions experience a turning poirflimit point) at |C|=1. and 0. For simplicity, we consider here the caSg>0 but
Close to their respective limit point, the upper and lowersimilar results have been found f@,<0. Four particular
branches of solutions are stable and unstable, respectivelgoints are identified. Poirf?; corresponds to the collision of
Torus bifurcations to quasiperiodic oscillations are found ontwo Hopf bifurcation points exhibiting two distinct frequen-
every branch of periodic solutions. cies. A secondary torus bifurcation is also created on each of
In Fig. 4, Hopf(full lines) and torus(dashed linesbifur-  the two bifurcating branches. At poift,, Cy=1 and the
cation curves are shown for a limited range of valueCof periodic branch is vertical, as seen in the previous section. At
point P53, the Hopf and first torus bifurcation points of the

1.8 bifurcating branch coexist at the same valueCobut for a
different amplitudeR. Finally, pointP; is equivalent to point
P4, i.e., it corresponds to another collision of two Hopf bi-
1.5 furcation points. By increasing furthérbeyondP; , there is
G, a pointP; for which Ci;=1, then a poinf} displaying the
Cor same properties aB3;. By increasing the delay, this se-
12 quence of three points repeats endlessly.
Depending on the value of, three different cases are
possible for the destabilization of the steady statee,JI
0.9 T S E— <6#<6p,, a branch of stable periodic solutions emerges
60 62 64 66 68 70 2 _ : . i _
0 from the Hopf bifurcation point a€=C,, [Fig. 3@)]. This

branch of solutions admits a secondary torus bifurcation at

FIG. 4. Hopf and first torus bifurcation curves obtained from theC:CQP which leads to quasiperiodic oscillations. #
' 2

reduced model Eq20). We represen€,; andCqp as functions of . . . .
0 by solid and broken lines, respectively. Ry gnd P1, two Hopf <60<06p,, the Hopf bifurcation aC=C,, is subcritical and
bifurcation points collide and a torus bifurcation appears on each ofeads to unstable periodic solutioffsig. 3(b)]. As seen be-

the two branches of periodic solutions. R, the Hopf bifurcation ~ fore, the branch folds back at the limit point locatedGat

is vertical and switches from supercriticality fér< ¢, to subcriti- ~ =1. The periodic solutions are stable right after the turning
cal for 9> 6p,. At P3, the Hopf and first torus bifurcation points of point. There is thus bistability between steady and periodic
the same bifurcating branch coexist for a different amplitile regimes leading to a hysteresis behavior. As in the previous
Fixed parameters: same as in Fig. 2. case, a secondary torus bifurcation is foundGat Cqp
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>Cyy. If p <0< Op:, thenCqp<<Cy [Fig. 3(¢)] and bista- 10 @ T - T - T T
bility between steady and periodic regimes on the one hand I y
and steady and quasiperiodic regimes on the other hand leac 08 B /]
to hysteresis between these three regimes. For instance, co & 0.6 0~ /
sider a laser in its steady state forxX Cy, and startincreasing <~ | ™~ .
C. OnceC surpasse€y,, the regime switches from steadi- “+ ,|_ \\% LT
ness to quasiperiodicity. Decreasing ti@&rthe regime stays _& | ™ / J
quasiperiodic untilC becomes smaller tha€@qp. For 1 < 02k \\\ ," -
<C=Cgp, the regime is periodic. A€ is decreased below L \ ;’ J
1, the laser state jumps back from the periodic branch to the 4 é:; -
steady one. As explained previously, FigdBshows that the ! I ! I ! L L
branch becomes isolated férlarger than its corresponding -15 -10 0.5 0.0 0.5
O - G
1.0 . I . I T
C. Collision of two Hopf bifurcations 08 __
PointsP; and P; of Fig. 4 are examples of double Hopf .
bifurcation points. Here two Hopf bifurcations collide and —£ 06 |/ | ™~ - -
two secondary torus bifurcations appear. This is possible be‘% TS 1
cause Eq(20) linearized aroundA[=0 admits two eigen- ~ § 04 o p n
pairs on the imaginary axis. We investigate this phenomenor= \2\ 1
by analyzing the solution of Eq20) in the neighborhood of —— 0.2 N -
point P;. A particular feature of our bifurcation problem is Y T
that the branches emerging from the two Hopf bifurcation 0.0 T ; ““'I“““I'Q_IV““
points have opposite direction of bifurcation as they collide. 04 0.0 0.4 0.8 1.2
All mathematical details are given in the appendix and the C

main results are summarized in Fig. 5. In this figure, the
amplitude of the solution is represented as a function of the F|G. 5. Analytical bifurcation diagram of the reduced model Eq.
deviationC,>C~—Cp_ defined by Eq(A2). (20) near the double Hopf poiti?; of Fig. 4. The laser steady state

If 6 is slightly smaller tharﬂpl, the steady state is desta- corresponds to thgA|=0 solution. BrancheP; andP, of periodic
bilized by a subcritical bifurcation. There is no torus bifur- 'égimes correspond to solutions for whighi #0 is constant. The
cation point and both primary Hopf brancHe®, andP, in pranch QP of qua3|per!o_d|c regimes (_:orrespond to periodic solu-
Fig. 5a)] are unstable. On the other hand,dfis slighty  tions of |A|. Both the minima and maxima ¢A| are represented.
greater thandp , the first Hopf bifurcation is supercritical We illustrate () the case¢<#@p, and (b) the casef>6dp,. The

and leads to a branch of stable periodic solutidiranchP, S.econdary torus bifurcations appear onlyat& p, Full (dotted
in Fig. 5b)]. IncreasingC further, the branct; undergoes a lines represent stablenstabl¢ regimes. Circles and squares mark
supercritical torus bifurcation from which a branch of str:xbleb'fu.mat'o.n pomtss asin Fig. 3. The d'am_ond marks. a tertiary bifur-
two-frequency quasiperiodic oscillations emerf@® in Fig. cation point toT* tori. Fixed parameters: same as in Table II.
5(b)]. This quasiperiodic branch is itself destabilized by a . ) . ) . .
tertiary bifurcation to a three-frequency quasiperiodic re-this section, we investigate these equations numerically in
gime. At the bifurcation point, we have verified that Order to check and extend the domain of validity of our
min, (|A(c)[) =0. IncreasingC further, the unstable part of the @nalytical results. We consider again an optoelectronic feed-
QP branch disappears at a torus bifurcation point located oRack acting on the pump of the laser.
the branchP,. Note that, at first order, the amplitude of the ~We integrated the full model Eq¢la) and (1b) and the
closed QP branch is proportional to the square root of théeduced model Eq(20) with a variable step size Runge-
distance between the two Hopf bifurcation points, as showriutta 43) method and Hermite interpolatid35]. We also.
by the scaling used in EqgAl), (A2), and(A5). used DDE-BIFTOOL, a Matlab continuation package which
In summary, we have demonstrated that torus bifurcation§as recently been developfb] and that allows the continu-
naturally result from interacting pairs of Hopf bifurcations. &tion of branches of stable and unstable steady and periodic
As explained before, branches emerging from the stead§olutions of DDEs. This is the first time that continuation
state|A|=0 become isolated as their Hopf bifurcation point Methods are used for solving a laser problem which includes
moves to infinity for increasingd. Because the isolated & delayed feedback. We used this package for the full and
branches possess no more Hopf bifurcation points, they exeduced models. o o
perience no new torus bifurcation creation. However, exist- Figure @a) displays the numerical bifurcation diagram of
ing bifurcations remain. Egs.(1a and(1b) with «=B=0. The nonlinear gain satu-
ration and the noise terms are neglected. As the feedback
strength increases, we note that a stable periodic solution
emerges from the steady state. This periodic regime then
In the previous sections, we used asymptotic methods tandergoes a secondary bifurcation to quasiperiodic oscilla-
construct small amplitude solutions of the laser equations. Itions. The quasiperiodic regime becomes unstable at a higher

IV. NUMERICAL RESULTS
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FIG. 6. Numerical bifurcation diagrams obtained frde the
full model Eqgs.(1a and(1b) and (b) the reduced model Eq20). FIG. 7. Numerical bifurcation diagrams of E@O0) in the vicin-
The maximal value of the intensityis shown versus the feedback ity of the double Hopf bifurcation poinP; of Fig. 4. These dia-
ratey. The branches of unstable periodic solutions were compute@rams were obtained by using the numerical continuation method.
with (a) the numerical continuation method afi) by using Eqs.  Figure(b) is a blow up figure of part of Figa). The meaning of the
(21a and (21b). The branches of stable quasiperiodic solutionsdifferent curves, labels and marks is the same as in Figs. 3 and 5.
were obtained by direct numerical integration of the equationsFixed parametersf=61.6 and®=1.948 corresponding tby=1,
Steady, periodic, and quasiperiodic regimes are labeled S, P, and= 1000, andr=1947.96.
QP, respectively. Ful{dotted lines represent stabl@nstable re-
gimes. Fixed parameterspy=1, T=1000, 7=2000 anda=p note from Fig. 6 that all the bifurcation features of the full
=0sar=©€5p=0. Point marks: same as in Figs. 3 and 5. laser equations are correctly captured by the reduced model.

Finally, we show in Fig. 7 the bifurcation diagram ob-

value of the feedback strength and the laser jumps towardgined directly from Eq(20) for 6 slightly larger thanfp. .
another quasiperiodic regime which emerges from an isol agreement with our asymptotic analy¢ésee Fig. 5, the
lated branch of periodic regimes. Increasing the feedbackrst bifurcation is a supercritical Hopf bifurcation leading to
strength further leads to the destabilization of this quasiperithe branchP, of periodic solutions. The periodic solutions
odic regime and to the appearance of chi@as shown in the then undergo a torus bifurcation giving rise to the branch QP
figure). However, if the feedback strength is reduced, theof quasiperiodic oscillations. The other side of the QP
system state follows the isolated branch, exhibits periodiemerges from the brandh, of unstable periodic solutions.
intensity oscillations for sufficiently low values of the feed- Note that branchH?, emerges subcritically, recovers its sta-
back strength and finally jumps back to the steady state. Thhkility after it folds back and remains stable between its limit
system exhibits thus bistability between bifurcating and isopoint and a second torus bifurcation point.

lated branches of solutions.

The bifurcation diagram of the reduced model E2f) for
the same values of the parameters is shown in Rig. Ghe
guantitative agreement between the two diagrams is good for In this work, we combined analytical and numerical tech-
the branch emerging from the Hopf bifurcation point. Theniques in order to investigate the bifurcation diagram of
discrepancies are more important for the isolated brancltlass-B lasers subject to a delayed feedback. The application
This is not surprising since Eq20) describes small ampli- of a numerical continuation method recently developed for
tude solutions. Moreover, we cho3e=1000 andl,=1 for = DDEs played a key role in determining unstable branches of
our simulations. These are typical values for SC lasers angeriodic and quasiperiodic solutions.
lead toe=0.18. Solid-state lasers exhibit larger valuesTof In the first part of this paper, we briefly reviewed a series
implying a smallere. A better agreement for the isolated of laser systems subject to a delayed feedback. Although
branch can then reasonably be expected. Nevertheless, wach laser system is modeled by different equations, we ob-

V. SUMMARY
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tained similar amplitude equations for the laser relaxation APPENDIX A: BIFURCATIONS NEAR
oscillations. This observation had already been made before DOUBLE HOPF POINTS

for lasers co_n.trolled by optoele.ctronlc feedbddks) b_ut is In this appendix, we study the solution of EO) in the
now also verified for lasers subject to coherent optical feed-

vicinity of a double Hopf bifurcation point ,#)

back. The advantages of studying slow time amplitude equa;(c* ,6,). PointsP, andP,, of Fig. 4 are examples of such

tions are threefold. First, we may determine useful analyticabegenerate points. Because the analysis is tedious but
expressions for the periodic solutions and their Stabi”tystraightforward We.useKzlATHEMATICA.At the double Hopf
boundaries in terms of the laser parameters. Second, we MA%int, Eq.(20) Ii,nearized aroundc, , 6, ) admits two peri-

. . 1 . * 1 V%
use a continuation method and follow branches of stable angyjc solutions exhibiting two distinct frequencies. In order to
unstable quasiperiodic regimes since these correspond Hxtermine the amplitude equations of these two periodic

branches of periodic solutions for the reduced equationsmodes, we introduce a small paramegiet1 defined by
Note that, in practice, unstable quasiperiodic solutions are

impossible to find by standard numerical methods alone. 0= 0, +5%0,, (A1)
Third, the stiffness of the original equations has been re
moved, leading to a more efficient numerical processing.
In the second and main part of the paper, we investigated C=C,+8Co+---. (A2)
the bifurcation diagram of a specific laser problem. The _
branches of periodic and quasiperiodic solutions were studWe then seek a solution of EQO) of the form
ied_analytical'ly and numerica]ly. We_showed that the bifur- A=8A(a,p)+ AT, p)+ -, (A3)
cations to tori result from the interaction of two nearby Hopf _ _ _ _
bifurcations with two distinct frequencies. The quasiperiodicWherep is a new slow time variable defined by

with 6,=*+1 and we expand the bifurcation parameter as

oscillations typically exhibit these frequencies. A tertiary bi- — S0 (Ad)
furcation point from theT? torus to aT? torus was also P '
demonstrated. Introducing expressionfAl)—(A3) into Eq. (20) and using
the chain ruled/do=d/do+ 629l dp lead to a sequence of
ACKNOWLEDGMENTS problems for the unknowns functiods, i=1,2,....This

cascade of problems is solved sequentially. In first approxi-

This research has been supported by the US Air Forcg, 4iion the solution is a linear combination of two periodic
Office of Scientific Research Grant No. AFOSR F49620-95% 1 ctions:

0065, the National Science Foundation Grant No. DMS-

9625843, Research Council K.U.Leuv@roject OT/98/16, A=5(f(p)eF7+g(p)eC?)+O(5?). (A5)
FNRS and FWQBelgium), and the program on Interuniver-

sity Poles of Attraction for Science, Technology and CultureThe frequencyF andG are the two distinct roots of E¢22)
(IUAP P4/02 and IUAP P4/07 with C,,=C, . The slow time evolution equation fdris

df _f(1+iF)C2—C*[(1+62F)(i —F+C,)0,+i(|f]?+2]g|))]

dp C, A+ (1+iF=iC,)0,) : (A6)
|
with @, =€26, . The same equation holds for by inter- Or=—(1+€°F)alo, , (A8b)
changingf — g andF«+ G. Because of the form of the equa-
tions for f and g, it is easier to study the equations fbr 0c=(1+€°G)a/0, , (A8¢)
=|f|? andg=|g|? given b
[f” andg=]g|" given by a[1+(1-C,F+F%0,] .
df = c.e,c,mH "
@=f[c2c:F+ 6,0 +a(f+2g)], (A73)
—a[1+(1-C,G+G?%»0, ]
dg G~ C.0.(C,—0G) (A8e)
—=0[C,Cs+ 0,0c—a(g+2f)], (A7b) o
dp : .
A numerical evaluation of all the parameters used here are
with given in Table Il for pointP, of Fig. 4.
Equations(A7a) and (A7b) admit four steady statd28]
20,Cc2-1 (see Fig. 5. The trivial solution
a=— PR (A8a)
1+20,+C502 f=g=0 (A9)
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TABLE Il. Numerical values of the parameters appearing in + §5)/(2Cr+ Cg) where it is destabilized by a Hopf bifur-
Eqgs.(A7a)—(A7h). They correspond to the double Hopf poit of cation.

Fig. 4 that is found at=1941.96. The third solution is given by
Parameter Symbol Value f=0, g=(C,Cq+ 0,05)/a. (Al
N € 0.177823 It corresponds to a periodic solution emerging from a sub-
Double Hopf critical® Ox 61.410038 critical Hopf bifurcation. Becausg=|g|?=0, this solution
Double Hopf criticalC Cs 1.541030 exists only forC,<—6,605/Cg. It is always unstable. If
1st Hopf frequency F 2.713536 6,=+1, a Hopf bifurcation is found a€,=C,c=—(26¢
2nd Hopf frequency G 0.368523 +6g)/(2Cg+Cp).
0, =€0, 0, 1.941956 Finally, the fourth solution is the mixed mode solution
a —0.329049 given by
O 0.183982
0 —0.171416 f=[Co(Cp+2Cq) + 02(0+2605)]/3a, (Al23
Ce 0.855295
Co 0.197198 g=—[C,(Cs+2Cg)+ 0,(05+26¢)]/3a. (Al2b)

It corresponds to a two-frequency quasiperiodic regime. Be-

corresponds to the laser steady state. It exists for ever§@usef=0 andg=0, this solution exists only fof,=+1
value of C, and 6,==1. It is stable only forC, and Cop<Cp<Css. It is stable for C<C;,=—(0¢

<min(= 6,0¢/Cr ,— 6,05/Cg). +6g)/(Ce+Cg). At C,=C,;, , the solution is destabilized
The second solution is by a Hopf bifurcation that introduces a third frequency in the
laser dynamics. The branch that emerges from this bifurca-
f=—(C,Ce+0,6F)/a, g=0. (A10) tion is thus characterized by three incommensurate frequen-

cies. It is vertical as demonstrated by the existence of the
It corresponds to a periodic solution Pmerging from a superinyariant quadrature fg{f+g+(Cgr—Cr6g)/[a(Cr
critical Hopf bifurcation. Becausé=|f|?=0, this solution +Cg)]}. A higher order analysis is necessary if we wish to
exists only forC,=—0,6/Cr. If 6,=—1, it is always determine the direction of bifurcation. Bifurcation diagrams
unstable. If6,=+1, it is stable up toC,=C,r=—(26¢ of the pure and mixed mode solutions are shown in Fig. 5.
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