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Interacting pairs of periodic solutions lead to tori in lasers subject to delayed feedback
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Models of class-B lasers subject to either an optoelectronic or an optical feedback are investigated analyti-
cally and numerically. We derive slow time amplitude equations from the laser delay differential equations and
find multiple bifurcating and isolated branches of periodic solutions. We then show that secondary bifurcations
to tori result from the interaction of pairs of Hopf bifurcations. The branches emerging from these bifurcations
are followed numerically using a continuation method developed for delay differential equations.
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I. INTRODUCTION

Most class-B lasers@1#, among which include CO2, solid
state and semiconductor~SC! lasers, are very sensitive t
optical or optoelectronic delayed feedback. For instance
tiny optical feedback such as the back-reflection of a
laser beam into the laser cavity can lead to chaotic regi
@2#. The poor stability of these lasers is due to the fact t
they are weakly damped nonlinear oscillators@3–6#. While
feedback may lead to unwanted instabilities, a small fe
back rate and a judicious choice of the delay may also p
duce desired high-frequency pulsating outputs@7–10#.

Because lasers subject to a delayed feedback are nonl
infinite-dimensional systems@11#, they display a wide range
of steady, oscillating, pulsating and chaotic regimes. Co
istence between those regimes is also very common. S
dynamical responses such as the low frequency fluctuat
~LFF! @12,13# have only been observed for particular lase
but other bifurcation features are shared by different clas
laser systems@14,15#.

Four types of feedback are commonly associated with
sers, namely, the coherent optical feedback, the incohe
optical feedback, the optoelectronic feedback acting on
pump and the optoelectronic feedback acting on the los
The coherent optical feedback consists in the partial ba
reflection of the light beam into the laser cavity. Becau
light propagates at a finite speed, it takes time for the be
to reenter the cavity. SC lasers are particularly sensitive
this type of feedback because they combine low facet refl
tiveness and high gain. Moreover, dynamical frequencie
SC lasers are typically a few GHz. Therefore, a delay o
few hundreds of picoseconds, or equivalently an extra-ca
round-trip of a few centimeters, is enough for the delay
play a major role in the system dynamics. The simpl
model describing a longitudinal single mode SC laser sub
to a weak optical feedback has been formulated in 1980
Lang and Kobayashi~LK ! @16#. It consists in two nonlinear
delay differential equations~DDEs! for the complex electri-

*On leave from the Institute of Mathematical Problems in Bi
ogy, Pushchino, Moscow region, Russia.
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cal field and the electronic carrier density. Numerical sim
lations of these equations successfully reproduce the do
nant effects observed experimentally, such as mode-hopp
coexisting dynamical regimes and different forms of chao
attractors such as LFF.

The simplest model of a laser controlled by an incoher
optical feedback was first proposed and studied by Ots
and Chern@8# with the goal of designing high-frequenc
self-pulsating lasers. This model is a simplification of t
feedback scheme proposed by Yasakaet al. @17# for stabiliz-
ing the laser frequency and reducing its linewidth. By co
trast to the coherent optical feedback experiment, the la
beam passes through a polarization-rotation element tha
tates the beam polarization byp/2 rad. As a result, the feed
back field does not interact coherently with the intracav
field since their respective polarizations are orthogonal. T
model of Otsuka and Chern@8# is formulated using two non-
linear DDEs, one for the laser intensity and the other for
population inversion~or the carrier density!. Yen and co-
workers@7# have successfully set up a SC laser system us
this feedback to produce optical impulsions in the G
range.

In the case of optoelectronic feedback, a photodete
converts the light intensity into an electrical signal that co
trols either the pump or the cavity losses@18,19#. The sim-
plest models of these laser systems are described by
nonlinear DDEs for the laser intensity and the populat
inversion. A third equation taking into account the dynam
of the electronic feedback loop is sometimes add
@18,20,21#.

Whatever the feedback scheme, most of our knowle
on the dynamics of lasers controlled by delayed feedb
comes from experiments or numerical simulations of
models. Indeed, except for the steady states, analytica
sults remain rare. This comes from the simultaneous p
ence of two mathematical difficulties: the laser intrinsic no
linearity and the time lag involved in the feedback. T
overcome these difficulties, different analytical metho
have been proposed. Lasers exhibiting strongly pulsating
tensities have been studied in@9,22,23# and approximations
of the solution for specifically chosen time intervals ha
been determined. A second method consists in looking
©2001 The American Physical Society11-1
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small amplitude periodic solutions. Using bifurcation tec
niques, it is then possible to derive amplitude equations
scribing the long time behavior of the laser@15,24#. We may
also take advantage of the weak damping of the laser re
ation oscillations and reformulate the original laser equati
as the equations for a weakly perturbed conservative osc
tor @10,14,25#. Simple analytical expressions for the sm
amplitude nearly harmonic regimes as well as the large
plitude pulsating regimes can then be obtained. Giacom
and coworkers proposed a fourth approach valid for la
delays by formulating a partial differential equation from t
DDEs @26#.

In this paper, we use bifurcation techniques and der
slow time equations for the amplitude of the laser relaxat
oscillations. Amplitude equations have been derived in
past for lasers subject to feedback but our analysis differs
the following points. First, we assume that the delay is s
ficiently large so that it still appears in the slow time amp
tude equation. We show that it is responsible for multip
bifurcating or isolated branches of periodic solutions. S
ond, we concentrate on the multiple branches of tim
periodic intensities and propose a bifurcation mechanism
the appearance of quasiperiodic regimes. Specifically,
show analytically that this mechanism results from the int
action of two Hopf bifurcation points. It involves two per
odic branches of opposite direction and is responsible fo
secondary bifurcation to aT2 torus followed by a tertiary
bifurcation to aT3 torus @27,28#. Moreover, the torus bifur-
cation persists even if one or both of the two Hopf bifurc
tion points have disappeared from the bifurcation diagram
a parameter is changed. The bifurcations to tori are impor
because they are quickly followed by more complex tim
dependent outputs as the control parameter is fur
changed. This motivates our combined analytical and
merical study of these bifurcations. Third, we investigate
validity of our asymptotic results by comparing diagram
obtained from the amplitude equation and from the origi
laser equations. To this end, we use a continuation me
which has recently been developed for DDEs@29#. It is the
first application of a continuation method for a laser probl
formulated in terms of delay differential equations.

The plan of the paper is as follows. In Sec. II, we brie
review a series of laser problems and derive a common s
time amplitude equation. In Sec. III, we investigate the
furcation diagram of a laser subject to a weak optoelectro
feedback acting on the pump. Steady, periodic and qu
periodic solutions are found and their stability properties
investigated. In Sec. IV, we compare the bifurcation d
grams obtained from the laser original equations and fr
the amplitude equations. Finally, we summarize in Sec
the main points of our combined analytical and numeri
study of lasers subject to delayed feedback.

II. THE REDUCED MODELS

In this section, we consider the four feedback schem
described in the introduction and derive a common slow ti
amplitude equation for the intensity of the laser field. W
carried out the analysis with the symbolic manipula
03621
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MATHEMATICA and we chose the coefficients in the perturb
tion expansions so that the final result is similar for ea
feedback scheme.

A. Optoelectronic and incoherent optical feedback

The behavior of the intensityI and excess carrier numbe
N of a longitudinally single mode SC laser subject to eith
an optoelectronic or an incoherent optical delayed feedb
is described by the following set of DDEs@8,9,20#:

dI

dt
5S N

11gsatI
212a Ī D I 1esp~N1Na!, ~1a!

T
dN

dt
5P2N2

N~ I 1b Ī !

11gsatI
1g Ī ~1b!

where the delayt appears inĪ [I (t2t). In these equations
time t is measured in units of the photon lifetimetp , T
5ts /tp with ts the carrier lifetime,P is the pumping rate
above threshold,esp is the spontaneous emission rate,Na is
the excess carrier number at transparency andgsat is the gain
saturation coefficient@30#. The coefficientsa, b and g are
proportional to the feedback rate@15#. For an optoelectronic
feedback acting on the laser losses,aÞ0 andb5g50. For
an optoelectronic feedback acting on the pump,gÞ0 and
a5b50. For an incoherent optical feedback,bÞ0 anda
5g50. Equations~1a! and ~1b! also hold for two-level
class-B lasers withN being the population inversion an
gsat[0.

In the absence of feedback, Eqs.~1a! and ~1b! admit a
single stable steady state (I ,N)5(I 0 ,N0). It is given in para-
metric form as

P5N0S 11
I 0

11gsatI 0
D , ~2a!

N05
~11gsatI 0!~ I 02espNa!

I 01esp~11gsatI 0!
, ~2b!

whereI 0.0 is the parameter. If the feedback is sufficien
small, the laser operates in the vicinity of (I 0 ,N0). In order
to study small amplitude oscillating solutions, it is mat
ematically convenient to rescale time with respect to the
ser relaxation oscillation frequencyv r5AI 0 /T and to intro-
duce the deviations ofI and N from I 5I 0 and N5N0.
Specifically, we introduce the times and the variablesy and
n defined by

s5v r t, ~3a!

I 5I 0~11A6 y!, N5N01A6 v rn. ~3b!

The coefficients ofy and n in Eq. ~3b! are chosen such
that the largeT parameter that ranges from 103 for SC lasers
up to 53105 for solid-state lasers can be removed from E
~1b!. The feedback ratesa, b andg as well as the sponta
neous emission rateesp and the gain saturation termgsat are
1-2
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INTERACTING PAIRS OF PERIODIC SOLUTIONS . . . PHYSICAL REVIEW E 63 036211
typically small. This suggest to simplify Eqs.~1a! and ~1b!
by properly scaling all parameters. We first introduce a sm
parametere!1 defined by

e5F ~11I 0!2

4I 0

1

TG1/4

~4!

and then expand the parametersa, b, g, esp andgsat as

a5
4

11I 0
e4Ca1•••, ~5a!

b52e2Cb1•••, ~5b!

g52e2Cg1•••, ~5c!

gsat5
4

11I 0
e4g1•••, ~5d!

esp5
4I 0

2

~11Na!~11I 0!
e4e1•••. ~5e!

In Eqs. ~4! and ~5!, coefficients depending onI 0 are in-
troduced in order to simplify our final amplitude equation.
what follows, we consider one of the feedback rates as
control parameter. Consequently,I 0 is always constant and
the limit e small means the limitT large. The new param
etersg, e, Ca , Cb, andCg are treated asO(1) quantities in
this limit. After introducing Eqs.~3!–~5! into Eqs.~1a! and
~1b!, we seek a two-time solution of the form

y5ey1~s,s!1e2y2~s,s!1•••, ~6a!

n5en1~s,s!1e2n2~s,s!1•••, ~6b!

wheres is a new slow time variable defined by

s5e2s. ~7!

We note thatȳ5y(s2u)[y(s2u,s2Q) with the rescaled
delaysu andQ defined by

u5v rt and Q5e2u. ~8!

Furthermore,s and s are treated as independent variab
and this implies the chain ruled/ds5]/]s1e2]/]s. Intro-
ducing Eqs.~6a! and~6b! into the equations fory andn and
equating to zero the coefficients of each power ofe lead to a
sequence of linear problems for the unknowns functio
(yi ,ni), i 51,2, . . . . Wesolve each problem sequentiall
The analysis requires to solve the first two problems and t
to apply a solvability condition to theO(e3) problem. The
procedure is tedious but straightforward and we omit all
tails. The leading solution is given by

y~s,s!5e„A~s!eis1c.c.…1O~e2!, ~9a!

n~s,s!5e„A~s!ieis1c.c.…1O~e2!, ~9b!
03621
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where c.c. means complex conjugate. The evolution of
slow time amplitudeA is determined by the following equa
tion:

dA

ds
52~11e1g1 iCb2 iCg!A2 i uAu2A

2~Ca2 iCb1 iCg!e2 iuĀ, ~10!

with Ā [A(s2Q). We discuss the solutions of this equ
tion in the next section.

B. Coherent optical feedback

The LK model for a longitudinally single mode SC las
controlled by a weak optical feedback is@16#

dE
dt

5
11 ia

2 S N

11gsatuEu2
21D E1h e2 iVtĒ, ~11a!

T
dN

dt
5P2N2

NuEu2

11gsatuEu2
, ~11b!

with E the complex electromagnetic field,Ē[E(t2t), a the
linewidth enhancement factor,h the normalized feedback
rate andV the dimensionless optical frequency of the las
without feedback. The other variables and parameters
defined in the previous section. Equations~11a! and ~11b!
also model two-level class-B lasers subject to optical fe
back if gsat anda are set to zero. As previously, we inve
tigate the response of the laser to a weak feedback.
analysis of Eqs.~11a! and~11b! is similar to that of Eqs.~1a!
and ~1b!. We write the field asE(t)5R(t)eif(t) and intro-
duce the deviations ofR andN relative to theh50 steady
state. Specifically, we introduce the new variablesr and n
defined by

R5R0S 11A3

2
r D , N5N01A6I 0

T
n ~12!

with R05AI 0, I 05(P21)/(11gsat) and N0511gsatI 0.
We also introduce the slow times defined by Eq.~3a! and we
expandh as

h5
4I 0

11I 0
e4Ch1•••, ~13!

with Ch5O(1) ande defined by Eq.~4!. We then seek a
solution of the form

r 5er 1~s,s!1e2r 2~s,s!1•••, ~14a!

n5en1~s,s!1e2n2~s,s!1•••, ~14b!

f5f0~s,s!1A3/2„ef1~s,s!1e2f2~s,s!1•••….
~14c!

Introducing Eqs.~14a!-~14c! into the equations forr, n
andf lead to a sequence of problems for the functionsr 1 ,
1-3
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r 2 , . . . which we solve sequentially. The first two problem
for f imply that f0 depends only on the slow times and
satisfies

df0

ds
52C̃ sin„tV1arctan~a!1f02f̄0…, ~15!

where C̃52A11a2Ch , f̄05f0(s2Q) and Q is defined
by Eq. ~8!. Note that this phase equation can be obtain
directly from the LK equations by neglecting the intens
variation @31#. Equation~15! admits a solution of the form
f05vs wherev is the optical frequency shift caused by th
feedback. Substitutingf05vs into Eq.~15! leads to a tran-
scendental equation forv:

v1C̃ sin„tV1arctan~a!1Qv…50. ~16!

The roots of Eq.~16! correspond to the so-called mod
and anti-modes of the external cavity. A linear stabil
analysis shows that solutions are stable ifC̃ Q cos(tV
1arctan(a)1Qv)11.0. Assuming thatf0 has reached a
stable steady state, the solution forr andn is time-periodic
and is given by

r ~s,s!5e„A~s!eis1c.c.…1O~e2!, ~17a!

n~s,s!5e„A~s!ieis1c.c.…1O~e2!, ~17b!

whereA, the complex envelope of the oscillations, satisfi

dA

ds
52~11g1Ĉ!A2 i uAu2A1Ĉ e2 iuĀ, ~18!

with Ĉ5A11a2cos(tV2arctan(a)1Qv)Ch . We have veri-
fied that Eq.~18! linearized aroundA50 admits a periodic
solution A5exp(ims) and that the conditions form and Ĉ
match the Hopf bifurcation conditions derived by Ritter a
Haug @32# ~see review in@33#! in the absence of gain satu
ration.

In summary, Eqs.~10! and~18! are particular cases of th
more general equation

dA

ds
52„11e1g1~j r1 i j i !C…A2 i uAu2A1C e2 i (u2c)Ā,

~19!

with Ā5A(s2Q) andQ5e2u. The parametersj r , j i , and
c are documented in Table I for the four feedback schem
It is instructive to review the significance of each term in t

TABLE I. Values of the parametersj r , j i , andc appearing in
Eq. ~19!.

Feedback scheme j r j i c

Optoelectronic~losses! 0 0 p
Optoelectronic~pump! 0 21 2p/2
Incoherent optical 0 11 p/2
Coherent optical 11 0 0
03621
d

s.

right hand side of Eq.~19!. The term 2(11e1g)A ac-
counts for the linear damping of the laser oscillation in t
absence of feedback. The nonlinear termi uAu2A is the first
order nonlinear correction to the laser frequency. The te
2(j r1 i j i)CA takes into account the change of the damp
rate and the shift of the laser optical frequency caused by
feedback. Finally, the termC e2 i (u2c)Ā is the delayed con-
tribution of the feedback.

If u5O(1), then Q5e2u is a small quantity and this
implies Ā.A. As a result, Eq.~19! simplifies to an ordinary
differential equation~ODE! at first order. Similar normal-
form ODEs have been proposed previously for lasers s
jected to moderate incoherent optical feedback@24# or to
moderate optoelectronic feedback@15#. However, if u is
O(e22) large, we need to investigate the DDE~19! @15,34#.

III. STEADY, PERIODIC, AND QUASIPERIODIC
REGIMES

In this section, we analyze the bifurcation diagram o
class-B laser controlled by a weak optoelectronic feedb
acting on the pump. We setCa5Cb50 andCg5C in Eq.
~10! and, by rescalingA, s, andC, we eliminate the param
eterse andg. Equation~10! then becomes

dA

ds
52~12 iC !A2 i uAu2A2 iCe2 iuĀ. ~20!

The results presented here extend those found in@34#.
Note that, as discussed in the previous section, similar res
are expected for the other feedback schemes.

A. Steady and periodic states

The trivial solutionA50 corresponds to the laser stea
state (I ,N)5(I 0 ,N0) and solutions of the form A
5R exp(ins) with R and n constant correspond to period
regimes of the laser. SubstitutingA5R exp(ins) into Eq.
~20!, using Eq.~8! and separating the real and imagina
parts lead to two following equations forR andn:

11C sin„~11e2n!…50, ~21a!

R21n1tanS ~11e2n!u

2 D50. ~21b!

As demonstrated by Eq.~21a!, periodic regimes exist only
for uCu>1. The multiple solutions of Eqs.~21a! and ~21b!
are best analyzed by changingn continuously from2` to
`. As shown in Fig. 1, there are several branches of perio
solutions. We first consider the branches that emerge f
the zero solution at Hopf bifurcation points. These are fou
by settingR50 in Eq.~21b!. We then obtain an equation fo
the Hopf bifurcation frequenciesn5nH given by

05nH1tanS ~11e2nH!u

2 D . ~22!

As illustrated in Fig. 2, Eq.~22! admits an infinite number o
solutionsnH for each fixed value of the delayu. Knowing
1-4
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nH , we determine the feedback rateC5CH from Eq. ~21a!.
Using trigonometric identities, it comes

CH5
11nH

2

2nH
. ~23!

The direction of bifurcation is determined by analyzing Eq
~21a! and~21b! in the neighborhood of the Hopf bifurcatio
point. We find that the Hopf bifurcation is supercritical
subcritical if cos„(11e2nH)u…,0 or cos„(11e2nH)u….0,
respectively. If cos„(11e2nH)u…50, or equivalently if

~11e2nH!u56
p

2
1m2p, ~24!

the Hopf bifurcation is vertical, in first approximation. Fro
Eqs. ~21a! and ~22!, we then findCH571 and nH571.
Finally, substitutingnH571 into Eq.~24! gives

u5um* 5

6
p

2
1m2p

17e2
. ~25!

By analyzing the direction of bifurcation in the neighbo
hood of um* , we conclude that themth Hopf bifurcation is
supercritical foru,um* and subcritical foru.um* .

FIG. 1. Periodic regimes obtained from the reduced model
~20!. We represent~a! the amplitudeR and ~b! the frequencyn as
functions ofC. The trivial solutionR50 corresponds to the lase
steady state and the constantRÞ0 solutions correspond to time
periodic regimes. Circles mark Hopf bifurcations. Fixed para
eters:u.63.25 andQ52. They are determined using Eqs.~4! and
~8! with I 051, T51000 andt52000.
03621
.

Figure 1 shows that there also exist isolated branche
periodic solutions. For clarity, we shall restrain our discu
sion to the branches located in theCH.0 half plane, but
similar arguments hold for the other branches. The existe
of isolated branches can be explained simply by conside
a Hopf bifurcation line in Fig. 2 and by following its behav
ior as the delayu is increased continuously from zero. W
note that themth Hopf bifurcation point exhibits a decreasin
CH and is supercritical foru,um* @Fig. 3~a!#. At u5um* ,
CH51 and the bifurcation is vertical. Foru.um* , the bifur-
cation is subcritical@Figs. 3~b! and 3~c!# and CH quickly
increases. The emerging branch folds back at a limit po
located atC51. Finally, CH→` asu→um

` whereum
` is the

limit of u asC→`. Using Eqs.~21a! and~22!, we find that
nH

`50 andum
`5m2p. If u.um

` , the Hopf bifurcation point
has disappeared but the periodic solution remains in the f
of two branches connected by the limit point of the pre
ously bifurcating branch@Fig. 3~d!#.

B. Stability analysis

In @34#, we investigated the stability of the steady a
periodic solutions of Eq.~20!. We found that the steady stat
A50 is stable for sufficiently low values ofuCu. Increasing
uCu progressively from zero, a Hopf bifurcation leads to
stable~unstable! periodic solution if the bifurcation is super
critical ~subcritical!. All branches emerging from the othe
primary Hopf bifurcations for larger value ofuCu are un-
stable. Both subcritical and isolated branches of periodic

.

-

FIG. 2. Hopf bifurcation curves obtained from the reduc
model Eq.~20!. We represent~a! CH and~b! nH as functions of the
delay u. They are obtained from Eqs.~22! and ~23! using Eq.~4!
with I 051 and T51000. The circles mark the Hopf bifurcatio
points shown in Fig. 1.
1-5
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FIG. 3. Qualitative bifurcation diagrams deduced from the reduced model Eq.~20!. CaseC.0. The maximum of the oscillations is
represented as a function ofC. CH andCH8 (CQP) denote Hopf~torus! bifurcation points. Labels S, P, and QP design branches of ste
periodic and quasiperiodic regimes, respectively. Full~dotted! lines represent stable~unstable! regimes. Circles mark Hopf bifurcation
points, squares denote torus bifurcation points and triangles correspond to limit points. The sequence of figures~a! to ~d! shows how a
periodic branch evolves asu is gradually increased. The arrows indicate thatCH decreases if the bifurcation is supercritical~a! and increases
if it is subcritical @~b! and~c!#. As u→um

` , the pointCH moves to infinity and the branch becomes isolated foru.um
` ~d!. For clarity reason,

only one branch is displayed.
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lutions experience a turning point~limit point! at uCu51.
Close to their respective limit point, the upper and low
branches of solutions are stable and unstable, respecti
Torus bifurcations to quasiperiodic oscillations are found
every branch of periodic solutions.

In Fig. 4, Hopf~full lines! and torus~dashed lines! bifur-
cation curves are shown for a limited range of values oC

FIG. 4. Hopf and first torus bifurcation curves obtained from t
reduced model Eq.~20!. We representCH andCQP as functions of
u by solid and broken lines, respectively. AtP1 andP18 , two Hopf
bifurcation points collide and a torus bifurcation appears on eac
the two branches of periodic solutions. AtP2, the Hopf bifurcation
is vertical and switches from supercriticality foru,uP2

to subcriti-
cal for u.uP2

. At P3, the Hopf and first torus bifurcation points o
the same bifurcating branch coexist for a different amplitudeR.
Fixed parameters: same as in Fig. 2.
03621
r
ly.
n

andu. For simplicity, we consider here the caseCH.0 but
similar results have been found forCH,0. Four particular
points are identified. PointP1 corresponds to the collision o
two Hopf bifurcation points exhibiting two distinct frequen
cies. A secondary torus bifurcation is also created on eac
the two bifurcating branches. At pointP2 , CH51 and the
periodic branch is vertical, as seen in the previous section
point P3, the Hopf and first torus bifurcation points of th
bifurcating branch coexist at the same value ofC but for a
different amplitudeR. Finally, pointP18 is equivalent to point
P1, i.e., it corresponds to another collision of two Hopf b
furcation points. By increasing furtheru beyondP18 , there is
a pointP28 for which CH51, then a pointP38 displaying the
same properties asP3. By increasing the delay, this se
quence of three points repeats endlessly.

Depending on the value ofu, three different cases ar
possible for the destabilization of the steady state. IfuP1

,u,uP2
, a branch of stable periodic solutions emerg

from the Hopf bifurcation point atC5CH @Fig. 3~a!#. This
branch of solutions admits a secondary torus bifurcation
C5CQP which leads to quasiperiodic oscillations. IfuP2

,u,uP3
, the Hopf bifurcation atC5CH is subcritical and

leads to unstable periodic solutions@Fig. 3~b!#. As seen be-
fore, the branch folds back at the limit point located atC
51. The periodic solutions are stable right after the turn
point. There is thus bistability between steady and perio
regimes leading to a hysteresis behavior. As in the previ
case, a secondary torus bifurcation is found atC5CQP

of
1-6
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.CH . If uP3
,u,uP

18
, thenCQP,CH @Fig. 3~c!# and bista-

bility between steady and periodic regimes on the one ha
and steady and quasiperiodic regimes on the other hand l
to hysteresis between these three regimes. For instance,
sider a laser in its steady state forC,CH and start increasing
C. OnceC surpassesCH , the regime switches from stead
ness to quasiperiodicity. Decreasing thenC, the regime stays
quasiperiodic untilC becomes smaller thanCQP . For 1
<C<CQP , the regime is periodic. AsC is decreased below
1, the laser state jumps back from the periodic branch to
steady one. As explained previously, Fig. 3~d! shows that the
branch becomes isolated foru larger than its correspondin
um

` .

C. Collision of two Hopf bifurcations

PointsP1 andP18 of Fig. 4 are examples of double Hop
bifurcation points. Here two Hopf bifurcations collide an
two secondary torus bifurcations appear. This is possible
cause Eq.~20! linearized arounduAu50 admits two eigen-
pairs on the imaginary axis. We investigate this phenome
by analyzing the solution of Eq.~20! in the neighborhood of
point P1. A particular feature of our bifurcation problem
that the branches emerging from the two Hopf bifurcat
points have opposite direction of bifurcation as they collid
All mathematical details are given in the appendix and
main results are summarized in Fig. 5. In this figure,
amplitude of the solution is represented as a function of
deviationC2}C2CP1

defined by Eq.~A2!.
If u is slightly smaller thanuP1

, the steady state is desta
bilized by a subcritical bifurcation. There is no torus bifu
cation point and both primary Hopf branches@P1 andP2 in
Fig. 5~a!# are unstable. On the other hand, ifu is slightly
greater thanuP1

, the first Hopf bifurcation is supercritica

and leads to a branch of stable periodic solutions@branchP1
in Fig. 5~b!#. IncreasingC further, the branchP1 undergoes a
supercritical torus bifurcation from which a branch of stab
two-frequency quasiperiodic oscillations emerges@QP in Fig.
5~b!#. This quasiperiodic branch is itself destabilized by
tertiary bifurcation to a three-frequency quasiperiodic
gime. At the bifurcation point, we have verified th
mins(uA(s)u)50. IncreasingC further, the unstable part of th
QP branch disappears at a torus bifurcation point located
the branchP2. Note that, at first order, the amplitude of th
closed QP branch is proportional to the square root of
distance between the two Hopf bifurcation points, as sho
by the scaling used in Eqs.~A1!, ~A2!, and~A5!.

In summary, we have demonstrated that torus bifurcati
naturally result from interacting pairs of Hopf bifurcation
As explained before, branches emerging from the ste
stateuAu50 become isolated as their Hopf bifurcation po
moves to infinity for increasingu. Because the isolate
branches possess no more Hopf bifurcation points, they
perience no new torus bifurcation creation. However, ex
ing bifurcations remain.

IV. NUMERICAL RESULTS

In the previous sections, we used asymptotic method
construct small amplitude solutions of the laser equations
03621
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this section, we investigate these equations numerically
order to check and extend the domain of validity of o
analytical results. We consider again an optoelectronic fe
back acting on the pump of the laser.

We integrated the full model Eqs.~1a! and ~1b! and the
reduced model Eq.~20! with a variable step size Runge
Kutta 4~3! method and Hermite interpolation@35#. We also
used DDE-BIFTOOL, a Matlab continuation package whi
has recently been developed@29# and that allows the continu
ation of branches of stable and unstable steady and peri
solutions of DDEs. This is the first time that continuatio
methods are used for solving a laser problem which inclu
a delayed feedback. We used this package for the full
reduced models.

Figure 6~a! displays the numerical bifurcation diagram
Eqs. ~1a! and ~1b! with a5b50. The nonlinear gain satu
ration and the noise terms are neglected. As the feedb
strength increases, we note that a stable periodic solu
emerges from the steady state. This periodic regime t
undergoes a secondary bifurcation to quasiperiodic osc
tions. The quasiperiodic regime becomes unstable at a hi

FIG. 5. Analytical bifurcation diagram of the reduced model E
~20! near the double Hopf pointP1 of Fig. 4. The laser steady stat
corresponds to theuAu50 solution. BranchesP1 andP2 of periodic
regimes correspond to solutions for whichuAuÞ0 is constant. The
branch QP of quasiperiodic regimes correspond to periodic s
tions of uAu. Both the minima and maxima ofuAu are represented
We illustrate ~a! the caseu,uP1

and ~b! the caseu.uP1
. The

secondary torus bifurcations appear only ifu.uP1
. Full ~dotted!

lines represent stable~unstable! regimes. Circles and squares ma
bifurcation points as in Fig. 3. The diamond marks a tertiary bif
cation point toT3 tori. Fixed parameters: same as in Table II.
1-7
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value of the feedback strength and the laser jumps tow
another quasiperiodic regime which emerges from an
lated branch of periodic regimes. Increasing the feedb
strength further leads to the destabilization of this quasip
odic regime and to the appearance of chaos~not shown in the
figure!. However, if the feedback strength is reduced,
system state follows the isolated branch, exhibits perio
intensity oscillations for sufficiently low values of the fee
back strength and finally jumps back to the steady state.
system exhibits thus bistability between bifurcating and i
lated branches of solutions.

The bifurcation diagram of the reduced model Eq.~20! for
the same values of the parameters is shown in Fig. 6~b!. The
quantitative agreement between the two diagrams is good
the branch emerging from the Hopf bifurcation point. T
discrepancies are more important for the isolated bran
This is not surprising since Eq.~20! describes small ampli
tude solutions. Moreover, we choseT51000 andI 051 for
our simulations. These are typical values for SC lasers
lead toe.0.18. Solid-state lasers exhibit larger values oT
implying a smallere. A better agreement for the isolate
branch can then reasonably be expected. Nevertheless

FIG. 6. Numerical bifurcation diagrams obtained from~a! the
full model Eqs.~1a! and ~1b! and ~b! the reduced model Eq.~20!.
The maximal value of the intensityI is shown versus the feedbac
rateg. The branches of unstable periodic solutions were compu
with ~a! the numerical continuation method and~b! by using Eqs.
~21a! and ~21b!. The branches of stable quasiperiodic solutio
were obtained by direct numerical integration of the equatio
Steady, periodic, and quasiperiodic regimes are labeled S, P,
QP, respectively. Full~dotted! lines represent stable~unstable! re-
gimes. Fixed parameters:I 051, T51000, t52000 anda5b
5gsat5esp50. Point marks: same as in Figs. 3 and 5.
03621
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we

note from Fig. 6 that all the bifurcation features of the fu
laser equations are correctly captured by the reduced mo

Finally, we show in Fig. 7 the bifurcation diagram ob
tained directly from Eq.~20! for u slightly larger thanuP1

.
In agreement with our asymptotic analysis~see Fig. 5!, the
first bifurcation is a supercritical Hopf bifurcation leading
the branchP1 of periodic solutions. The periodic solution
then undergo a torus bifurcation giving rise to the branch
of quasiperiodic oscillations. The other side of the Q
emerges from the branchP2 of unstable periodic solutions
Note that branchP2 emerges subcritically, recovers its st
bility after it folds back and remains stable between its lim
point and a second torus bifurcation point.

V. SUMMARY

In this work, we combined analytical and numerical tec
niques in order to investigate the bifurcation diagram
class-B lasers subject to a delayed feedback. The applica
of a numerical continuation method recently developed
DDEs played a key role in determining unstable branches
periodic and quasiperiodic solutions.

In the first part of this paper, we briefly reviewed a ser
of laser systems subject to a delayed feedback. Altho
each laser system is modeled by different equations, we

d

.
nd

FIG. 7. Numerical bifurcation diagrams of Eq.~20! in the vicin-
ity of the double Hopf bifurcation pointP1 of Fig. 4. These dia-
grams were obtained by using the numerical continuation meth
Figure~b! is a blow up figure of part of Fig.~a!. The meaning of the
different curves, labels and marks is the same as in Figs. 3 an
Fixed parameters:u561.6 andQ.1.948 corresponding toI 051,
T51000, andt.1947.96.
1-8
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tained similar amplitude equations for the laser relaxat
oscillations. This observation had already been made be
for lasers controlled by optoelectronic feedback@15# but is
now also verified for lasers subject to coherent optical fe
back. The advantages of studying slow time amplitude eq
tions are threefold. First, we may determine useful analyt
expressions for the periodic solutions and their stabi
boundaries in terms of the laser parameters. Second, we
use a continuation method and follow branches of stable
unstable quasiperiodic regimes since these correspon
branches of periodic solutions for the reduced equatio
Note that, in practice, unstable quasiperiodic solutions
impossible to find by standard numerical methods alo
Third, the stiffness of the original equations has been
moved, leading to a more efficient numerical processing

In the second and main part of the paper, we investiga
the bifurcation diagram of a specific laser problem. T
branches of periodic and quasiperiodic solutions were s
ied analytically and numerically. We showed that the bifu
cations to tori result from the interaction of two nearby Ho
bifurcations with two distinct frequencies. The quasiperio
oscillations typically exhibit these frequencies. A tertiary b
furcation point from theT2 torus to aT3 torus was also
demonstrated.
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APPENDIX A: BIFURCATIONS NEAR
DOUBLE HOPF POINTS

In this appendix, we study the solution of Eq.~20! in the
vicinity of a double Hopf bifurcation point (C,u)
5(C* ,u* ). PointsP1 andP18 of Fig. 4 are examples of suc
degenerate points. Because the analysis is tedious
straightforward, we usedMATHEMATICA . At the double Hopf
point, Eq.~20! linearized around (C* ,u* ) admits two peri-
odic solutions exhibiting two distinct frequencies. In order
determine the amplitude equations of these two perio
modes, we introduce a small parameterd!1 defined by

u5u* 1d2u2 , ~A1!

with u2561 and we expand the bifurcation parameter a

C5C* 1d2C21•••. ~A2!

We then seek a solution of Eq.~20! of the form

A5dA1~s,r!1d2A2~s,r!1•••, ~A3!

wherer is a new slow time variable defined by

r[d2s. ~A4!

Introducing expressions~A1!–~A3! into Eq. ~20! and using
the chain ruled/ds5]/]s1d2]/]r lead to a sequence o
problems for the unknowns functionsAi , i 51,2, . . . . This
cascade of problems is solved sequentially. In first appro
mation, the solution is a linear combination of two period
functions:

A5d„ f̂ ~r!eiFs1ĝ~r!eiGs
…1O~d2!. ~A5!

The frequencyF andG are the two distinct roots of Eq.~22!

with CH5C . The slow time evolution equation forf̂ is
*
d f̂

dr
5 f̂

~11 iF !C22C* @~11e2F !~ i 2F1C* !u21 i ~ u f̂ u212uĝu2!#

C* „11~11 iF 2 iC* !Q* …
, ~A6!
are
with Q* 5e2u* . The same equation holds forĝ by inter-
changingf↔g andF↔G. Because of the form of the equa
tions for f̂ and ĝ, it is easier to study the equations forf

5u f̂ u2 andg5uĝu2 given by

d f

dr
5 f @C2CF1u2uF1a~ f 12g!#, ~A7a!

dg

dr
5g@C2CG1u2uG2a~g12 f !#, ~A7b!

with

a52
2Q*

AC
*
2 21

112Q* 1C
*
2 Q

*
2

, ~A8a!
uF52~11e2F !a/Q* , ~A8b!

uG5~11e2G!a/Q* , ~A8c!

CF5
a@11~12C* F1F2!Q* #

C* Q* ~C* 2F !
, ~A8d!

CG5
2a@11~12C* G1G2!Q* #

C* Q* ~C* 2G!
. ~A8e!

A numerical evaluation of all the parameters used here
given in Table II for pointP1 of Fig. 4.

Equations~A7a! and ~A7b! admit four steady states@28#
~see Fig. 5!. The trivial solution

f 5g50 ~A9!
1-9
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corresponds to the laser steady state. It exists for ev
value of C2 and u2561. It is stable only for C2
,min(2u2uF /CF ,2u2uG /CG).

The second solution is

f 52~C2CF1u2uF!/a, g50. ~A10!

It corresponds to a periodic solution emerging from a sup
critical Hopf bifurcation. Becausef 5u f̂ u2>0, this solution
exists only forC2>2u2uF /CF . If u2521, it is always
unstable. Ifu2511, it is stable up toC25C2,F[2(2uF

TABLE II. Numerical values of the parameters appearing
Eqs.~A7a!–~A7b!. They correspond to the double Hopf pointP1 of
Fig. 4 that is found att.1941.96.

Parameter Symbol Value

e 0.177823
Double Hopf criticalu u* 61.410038
Double Hopf criticalC C* 1.541030
1st Hopf frequency F 2.713536
2nd Hopf frequency G 0.368523
Q* 5e2u* Q* 1.941956

a 20.329049
uF 0.183982
uG 20.171416
CF 0.855295
CG 0.197198
J

n

J.

m

-

.

m

03621
ry

r-

1uG)/(2CF1CG) where it is destabilized by a Hopf bifur
cation.

The third solution is given by

f 50, g5~C2CG1u2uG!/a. ~A11!

It corresponds to a periodic solution emerging from a s
critical Hopf bifurcation. Becauseg5uĝu2>0, this solution
exists only forC2<2u2uG /CG . It is always unstable. If
u2511, a Hopf bifurcation is found atC25C2,G[2(2uG
1uF)/(2CG1CF).

Finally, the fourth solution is the mixed mode solutio
given by

f 5@C2~CF12CG!1u2~uF12uG!#/3a, ~A12a!

g52@C2~CG12CF!1u2~uG12uF!#/3a. ~A12b!

It corresponds to a two-frequency quasiperiodic regime.
causef >0 andg>0, this solution exists only foru2511
and C2,F<C2<C2,G . It is stable for C2,C2,* [2(uF
1uG)/(CF1CG). At C25C2,* , the solution is destabilized
by a Hopf bifurcation that introduces a third frequency in t
laser dynamics. The branch that emerges from this bifur
tion is thus characterized by three incommensurate frequ
cies. It is vertical as demonstrated by the existence of
invariant quadrature f g$ f 1g1(CGuF2CFuG)/@a(CF
1CG)#%. A higher order analysis is necessary if we wish
determine the direction of bifurcation. Bifurcation diagram
of the pure and mixed mode solutions are shown in Fig.
n-

n.

s.

m

ds
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