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Random walks on fractals and stretched exponential relaxation
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Stretched exponential relaxatigexp—(t/7)%] is observed in a large variety of systems but has not been
explained so far. Studying random walks on percolation clusters in curved spaces whose dimensions range
from 2 to 7, we show that the relaxation is accurately a stretched exponential and is directly connected to the
fractal nature of these clusters. Thus we find that in each dimension the decay expgnisntelated to
well-known exponents of the percolation theory in the corresponding flat space. We suggest that the stretched
exponential behavior observed in many complex syst@olymers, colloids, glasses. . ) is due to thdractal
character of their configuration space.
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The stretched exponential decay function whose general closedspace with the topology of a hypersphere, it was
form is q(t)=exp—(t/7), was proposed empirically in conjectured some years ago that the end-to-end autocorrela-
1854 by Kohlrausclil] to parametrize the discharge of Ley- tion function should decay as a KWW stretched exponential,
den jars, and was rediscovered in 1970 by Williams andvith the Kohlrausch exponensx equal to the flat space
Watts [2]. Since then the phenomenological “KWw” percolation fractal random walk exponent, i.8x= Brw in
(Kohlrausch, Williams, and Wattsexpression has been any space dimensidi5,16. This can be understood simply
shown to give an excellent representation of experimentdn terms of a “fractal” timetg,, replacingt in both the local
and numerical relaxation data in a huge variety of complex'?(t)) and the exponentialcog 6(t)]) expressions above.
systems, including polymers, colloids, glasses, spin glasseg,his conjecture has been extensively tested numerically but

and many more. This behavior has attracted considerable c@NIY in the extreme case of the very-high-dimensional hyper-

riosity; it has been discussed principally in terms of modelscuP€[16,17,18 (the hypercube has the same closed space

where individual elements relax independently with an ap-tOpOIO‘:-—’y as a hyperspherein the present work we have

propriate wide distribution of relaxation timdsee, for in-  Studied numerically the general case of random walks on

_ . - percolation clusters on hyperspherical surfaces for the range
stance]3-6)). However, despite the ubiquity of the KWW of different embedding dimensiomsrunning from 3 to 8.

expression, in the view of many scientists its status remains The simplest case to visualize is the surface of a sphere in
that of a convenient but mysterious phenomenological aPGimensiond=3. The surface is decorated with small disks
proximation having no fundamental physical justification. . whose centers.are distributed at random. Several clusters,
Here we demonstrate that, on the contrary, KWW is ina4e of overlapping disks, can be determined. The largest
fact abona fideand respectable relaxation function; exactly o|ster contains more and more disks as the total number of
this form of relaxation appears naturally when we considegiss is increased. Just as there appears a percolation cluster
random walks on fractal structures in closed spaces of gengontaining a noninfinitesimal fraction of the total number of
eral dimensions. We suggest that the physical significance Qfiskg for the equivalent system in the two-dimensional flat
the relaxation behavior in numerous complex systems shoulghace above a critical value of disk concentration, so the
be reconsidered in the light of this result. . largest cluster “percolates” on the surface of the sphere
For random walks on fractal clusters in Euclidediat)  \hen the number of disks is sufficiently large. As an illus-
spaces, it is well known that if(t) is the distance of the tration, in Fig. 1, we have represented the two-dimensional
walker from the starting point after timé then (r*(t))  projection of the percolating cluster in the cadR=0.01
«t2/2t 0= tPrw [7,8]. Here Bry~d/D, whered andD are the  (whered is the disk diameter an& the sphere radidsHere
spectral and fractal dimensions of the cluster, respectivelyN,=179 200 disks have been disposed at random; only the
For a critical percolation fractal= (u— 8)/v, whereu, S, largest cluster, containing 38 130 disks, is represented. Note
and v are universal percolation critical exponert,8] that this cluster spans almost a hemisphere, a situation inter-
whose numerical values are known quite accurately in allnediate between a well localized cluste<Np) and a

dimensiond9-14]. cluster spanning uniformly the whole surface of the sphere
For random walks on the surface of a sphere, which is gN>N).
closed surface, the local behavigr(t))t can be shown to The position of a given disk center can be defined by the

lead exactly to an exponential decay of the autocorrelationl=3 coordinates;, where the origin is taken as the center
(cog 6(t)])<exp(—t/7), where 4(t) is the angle between of the sphere. Imagine now a walker jumping at random
the initialt=0 position vector of the walker and the position from one disk center to the center of any disk overlapping it.
vector at time t. With an appropriate definition of While the values of the coordinates averaged over many
(cog (t)]) this result holds for hyperspheres in any dimen-walks (x;(t)) stay finite forN<N, (the walker is localizen
sion. For random walks on a percolation fractal inscribed orthey decay exponentially to zero fd¢>N,, finally losing
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. . L . . FIG. 2. Plot of —In|q(t)| versust (averaged ovelN,=20 and
FIG. 1. Two-dimensional projection of a typical percolating N.=10500) forn=3 ?QJ) 02 and (for dif?erentr; valrueS' from
S ’ . ’ .

cluster of disks of diametef=0.01 on the surface of a sphere of bottom to top7=0.335, 0.34, 03452, 0.35, 0.3%fe statistical
g::t r?ﬁéuslér'_izg\l F():Ege 9r zggnizi?n;angge igodl(sﬁs?(ssedi:trreanri?m;error bars do not exceed the thickness of the )inksthe inset the
ser?/ted 9 ' m ' P local value of the exponerg is plotted as a function of Infor the

different » values in order to estimatg, and By .

memory of their initial values. Of course, in the limi
>Np, (xi(t)) goes to zero since the random walker starts tocontaining the greatest numbbly, of disks. Also one can
investigate the largest clustdwhich fills uniformly the characterize the overall filling of the space by a dimension-
curved spaceentirely. Our calculations show that right at less parameten, the ratio between the sum of the area of the
the percolation where the largest cluster is fractal, the decaydividual disks, and the total area 8f [19]. Note that this
is critical, and takes up precisely the stretched exponentidilling parameter is larger than the true volume fractign
form, with a 8 exponent equal t@ry, already known for because of multiple counting due to overlaps, and therefore
the random walk on a percolating cluster in a two- can eventually exceed unity. More precisely, it has been
dimensional flat space. Our calculation is the generalizatiogshown that=1—exp(— 7) [20,21. Percolation occurs fon
of this picture over a wide range of dimensions, in particulanarger than a threshold valug, above whichP=N,/N,
for dimensions larger than=6, where it is known thaBgy  which measures the probability for a given disk to belong to
reaches its mean-field value 1/3. the largest cluster, remains nonzero in the thermodynamic
Consider the surface of &dimensionalhypepsphere of  limit §—0. In practice the curv@(7) exhibits a sigmalal
unit radius which can be defined, using Euclidean coordishape which becomes sharper and sharpe, ats 6—0.
nates, byEid:Oxi2=1. This (hypepsurface is a closed and Once the largest cluster has been identified, we choose
curved n-dimensional i=d—1) space,S,, on which one one of its constitutive disk center¢0) at random as a start-
can define a geodesic distance between two p@intnd(2) ing point. We perform a random walk on the cluster by per-
by 6=cos g, whereq is the scalar product of the end posi- forming successive jumps, first fronf0) to the center(1)
tions, i.e.,.q=r;-r,=3% xMx{?)  Of course, this distance of any other disk connected to(ithosen at random over all
becomes asymptotically equivalent to the Euclidean distanciés overlapping disks then iterating fronr(1) tor(2), etc.
in the limit of distances infinitesimally small compared to the[20]. After t steps, the “correlation function’t(0)-r(t) is
radius of the(hypensphere(which is here set to unijy On  calculated. This is the scalar product of the two end posi-
this n-dimensional (hypepsurface, identicaln-dimensional tions, which is no more than the cosine of the geodesic end-
small (hypendisks(called disks in the followingof diameter  to-end distance& measured o185, . In practice we calculate
8<1 are disposed sequentially, the successive disk centetBe quantityq(t)={cos6) which has been averaged, for a
being chosen at random uniformly & . To determine the given number of steps overN, independent realizations of
cluster structure, as soon as a new disk is added, a search fiwe largest cluster as well as oudg independent choices of
connections with previous disks is performed by checking ifthe starting point on each cluster. Given dimensioand
their center-to-center geodesic distance is smaller thakt ~ size &, the behavior ofj(t) has been analyzed for different
each stage, wheN disks have been disposed 8, we can filling values .
define and label the different clusters made up of connected An example withn=3 and §=0.02 is shown in Fig. 2,
disks. In particular, one can determine the largest clustewhere —In|q(t)| has been plotted as a function toih a log-
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log plot, after taking an average over independent walks 0.8 . w .
starting fromN¢;=10500 different disks on each of ti
=20 independently generated largest clustarypical value M/@
of the number of disks in the percolating cluster Ng, 0.7

=700000). If the relaxation functiorg(t) is strictly a
stretched exponential, this type of plot produces a straight
line of slope B¢ . For the critical value ofn (here 7,

=0.3452), one observes a clear straight line behavior in the r

numerical data ovefat least six decades irt (the walk for

7p has been extended to illustrate this ppii the inset we

show how we estimatg, and B . The effective slope of the L

log-log plot has been determined by a least-squares fit withir
an interval of one-tenth of the total range intland plotted

as a function of In. The percolation threshold,, is esti-
mated as they value giving the widest plateau at large times,

and the B¢ exponent is taken as this plateau value. This
procedure has been repeated for different value$arid for

0.6

dimensions ranging from_ 2 to Afor n=1 it is well known 03, YCRY 015 02 025 03 035
that the percolation transition does not ocflit]). The low- 5

est attainables values are mainly determined by the limited o .

memory of our computers. In practice the valueNgfhave FIG. 3. Variation of the exponen as a function of thehy-

been chosen to be of the order of 29\yf , andN, has been pendisk diameters for dimensionn=2,3,4,5,6, and {from top to
chosen so as to obtain runs of the ordér of a (rjay on regul ttom. The solid lines represent least-squares linear fits of the
high speed personal computel, varies from a few thou- ata points. The best estimates of the flat space expghgptvith

. . . their associated error bdi8—14] are represented by the stars on the
sands to a few units when decreasihfrom about 0.3 to its

. . axis.
lowest attainableS value. This protocol leads to error bars of y

the order of 0.01 for the exponent estimates. Of course thgyysch exponengy equal to the rati@/D of the spectral and
true” values of the percolation thresholds and exponentSiractal dimensions of the cluster. Thus the stretched expo-
are obtained by an extrapolation to the “thermodynamic” nential relaxation on a fractal in a closed space appears as the

limit 6—0. _ _ precise analog of the sublinear diffusion on a fractal in a flat
The numerical results fop, in n=2 and 3 are in excel- gpace.

lent agreement with accurate estimates from flat space calcu- Why is this relevant to relaxation in complex systems? A
lations[18,19), and 7, drops quasiexponentially with for  complex system is made up of many individual elements
higher dimensions. The data f@ are summarized in Fig. (atoms, molecules, spins, etcall in interaction with each
3, wheregy has been plotted as a function 6f On theé  other. The total space of all possible configurations of the
=0 axis of Fig. 3, we have indicated the best estimates of thg/hole system is a huge closed space having a very high
flat spacefBrw With their associated error bars, calculateddimension of the order of the number of elements. These
from recentu, B, and v values available in the literature spaces are so astronomically large that an explicit evaluation
[9-14]. We note that for alh=6, Bry= 1/3 exactly, since of their properties, configuration by configuration, is almost
n==6 is the upper critical dimension for percolatiit]. Itis  impossible except for tiny systems. Each configuration has
quite remarkable that for each dimensiura simple straight an energy associated to it. At finite temperatdrenly a
line fit of our data goes through the correspondihgy value  restricted subset of configurations are of low enough energy
to within the numerical error or, at least, extrapolates to &o be thermodynamically accessible by the system. In equi-
value very close to it. librium at T above any ordering temperature, the system is
It should be noticed that the lajcos6)=exp—(/7)’< not  permanently exploring all this subset of accessible configu-
only contains the large time relaxation behavior but also theations by successive movements or reorientations of local
short-time behavior as, after expanding both sides for smallelements of the total system. By definition this equilibrium
and 6, it becomes( %)= (t/7)Px. Since for short times the relaxation can be mapped onto a random walk of the point
random walker stays on ardimensional surface tangent to representing the instantaneous configuration of the total sys-
the (hypepsphere, one recovers the Igw)«tPrwin dimen-  tem within the space of accessible configurations. Thus the
sionn. This could explain why the stretched exponential be-configuration space of a complex system can be viewed as a
havior extends over so large a region of tiisee Fig. 2 In “rough landscape.” In such a scenario, the portion of con-
practice, as in flat space, at very short times there are correfiguration space available to the system consists of only a
tions to scaling due to the discrete character of the walk. restricted set of tortuous configuration-space paths. In this
These data can be taken as a clear numerical demonstraituation, when real measurements are made, the observed
tion that random walks on a fractal cluster inscribed on aelaxation functions must reflect the complex morphology of
hypersphere in any dimension lead necessarily to a stretchebe available configuration space, and so will be slow and
exponential decay of the correlation function, with a Kohl- nonexponential—typically stretched exponential. Now, any
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relaxation function including the KWW function can be rep- tails of the interactions in a glass former are, it is generally
resented as the sum of an appropriate distribution of elemergbserved that as the glass temperature is approached from
tary exponential relaxations. However, it is important to noteabove, KWW relaxation sets in. The implication is that phase
that the independent exponentially relaxing elements in &Pace takes up a fractal morphology as a consequence of the
complex system are thmodesof the whole system, not the intrinsic comple?qty assqmated with glassmess. The image of
atoms, molecules, or spins which are in strong interactiorﬁhe glass transition which follows is that of a percolation
with each othef22]. It is the morphology of the configura- ransition in pha_se spages,22 with the temperature being
. . . N analog to the filling parameter. As would be expected from
tion space which determines the mode distribution and the,, argument given above, the Kohlrausch exponent is ob-
form of the relaxation. served to tend to a limiting value of 1/3 as the glass transi-
We have just seen that a closed space fractal structuiigon is approached in a number of systems, Ref3—26 for
necessarily leads to a relaxation process which is exactly dhstance.
stretched exponential type; we suggest that, inversely, when In summary, we have demonstrated that random walks on
a complex system at temperatufes actually observed to fractals in closed spaces give stretched exponential relax-
relax with a stretched exponential, it is the signature of aation, and we suggest that stretched exponential relaxation is
fractal morphology of the available configuration space atubiquitous in nature because configuration spaces are fractal
that temperature. In particular, whatever the microscopic dein many complex systems.
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