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Renormalization group and perfect operators for stochastic differential equations
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We develop renormalization grodRG) methods for solving partial and stochastic differential equations on
coarse meshes. RG transformations are used to calculate the precise effect of small-scale dynamics on the
dynamics at the mesh size. The fixed point of these transformations yields a perfect operator: an exact
representation of physical observables on the mesh scale with minimal lattice artifacts. We apply the formalism
to simple nonlinear models of critical dynamics, and show how the method leads to an improvement in the
computational performance of Monte Carlo methods.
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[. INTRODUCTION lattice artifacts. There have also been attempts to use similar
methods in the study of isotropic turbuler{@d and in simu-
The purpose of this paper is to introduce numerical methlating the long-time-scale dynamics of prote[§. The idea
ods that avoid unnecessary discretization—or, over®f “lépscallfr;g,’;_used by pﬁtroleuml enqtlrr:eersl to Obta'ﬂ ?Ver'
discretization—purely for the purpose of obtaining adequat&9€d Or Efiective propertes on length scales much jarger
accuracy. An important and classical example of this is Iargéh?n tgose on Wh'cg tne dita ar(ta) knoj@n1d, is g. clos?ly |
eddy simulation in the modeling of turbulent flows. Many {r?gahesingolgg?é,ezglf fafe ave been some studies of upscal-
!arge-scale ﬂO.WS of engineering, geophysical, or a‘mos_phe_”c Our work grew out,of éttempts to improve lattice gauge
interest contain many length scales down to the dissipatio eory, pioneered by the paper of Hasenfratz and Niederm-
scale, yet it is large-scale drag that one wants to compute. I9yer “For a review of this body of work, the reader is referred
such a situation, it is wasteful and undesirable to expengy the review article by Hasenfrafd3]. In addition to the
computer time on details that are of no intrinsic interest.  \york in Ref.[1], there have been two attemts4,15 to
The approach outlined in this paper builds upon our presplve differential equations using perfect operators. As we
vious work[1] to use renormalization groufRG) methods il see below, it is not enough to perfectly coarse-grain the
to integrate out the dynamics one wishes to ignore, so thahdividual operators appearing in a partial differential equa-
numerical methods can instead focus on the appropriate scatien: once there is a noninfinitesimal time step, coarse grain-
of interest. This is not trivial because of scale interferenceing introduces memory effects, so that the entire differential
the nonlinear amplification of the effect of small-scale dy-equation must be represented as coarse grained in space-
namics, which contaminates and eventually pollutes thdime. In addition, it should always be remembered that there
large-scale dynamics. There are several distinct facets to this no unique perfect operator for a given differential operator.
problem. A specification must be made of the microscopic probability
First is the representation of the small-scale dynamics as distribution for the small-scale degrees of freedom. These
stochastic field that acts on the coarse-grained degrees papers implicitly impose a Gaussian free field theory distri-
freedom. As discussed in our earlier paper, this inevitablyoution on the small-scale degrees of freedom. The methods
leads to nonlocality. We will see here that it is possible notgiven in the present article are more general, and make no
only to coarse-grain individual operators, as in Haf. but  such assumption, explicit or implicit.
also to coarse-grain at the level of the governing differential Let us now introduce the problem of removing lattice ar-
equation. This leads to a theory that is nonlocal in space anifacts. Suppose the dynamics of a spatially extended system
time. This applies to systems with a finite number of degreesés described by a partial differential equati®DE), which
of freedom, as well as spatially extended systems, which argields the solutioru(x,t). A standard procedure is to sample
the main focus of our work here. u(x,t) at pointsx;,t;, which are equidistant with spacings
Second, the representation of the theory on the lattice caAx and At, and find a discretized form of the PDE that is
be improved by systematically integrating out the smalldevised to approximate the values;=u(x;,t;). The re-
scales, leading to an effective theory that has(oiofew) quirement is that in the continuum limit the sequengg
residual discretization artifacts. This is referred to as a “perconverges tau(x,t). The conventional way of discretizing
fect theory” in the literature. We demonstrate how this ariseshe PDE is to approximate differentiations with finite differ-
and exhibit this feature by calculating the dispersion relatiorences.
of the effective theory in the perfect representation. The disadvantage of thimiform samplingUS) approach
Our work is related to that of Chorin and co-workers is that one is forced to reproduce as faithfully as possible all
[2—6] who use optimal prediction methods to treat the lackthe detail and fine structure of the solution, even on a scale
of resolution of small scales. The main differences are thathat may be of no interest or, worse, beyond the regime of
they assume that the small scales are initially in thermahpplicability of the differential equation itself. This has two
equilibrium, and also that they do not attempt to removeconsequencesi) a small grid sizeAx must be used, which
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implies that many grid points must be calculated and storedthe simple local averaging. In Sec. Il the simplest discretiza-
(i) for dynamic problems, a small time stéyp is implied by  tion procedure—magnification by a factor of 2—is dis-
the smallAx, for reasons of either accuracy or stability of the cussed. Together with an appropriate rescaling, this defines
numerical method. one step of a RG transformation. As usual, it is the fixed
As a result, there is a huge computational cost associategbint of this transformation that is of the most interest. A
with this conventional numerical scheme, which makes thegyerfect operator is defined as the form taken by a differential
study of problems such as critical dynamics and pattern forgperator at the fixed point of the RG transformation. A con-
mation very difficult to carry out. There is a need for im- sequence is that perfect operators are free of lattice artifacts
proved, physically motivated methods for numerical experi-and therefore this holds out the hope of performing numeri-
ments. cal simulations that are free of discretization errors. In the
The purpose of a numerical simulation is to study thedevelopment of the theory of perfect operators a parameter,
macroscopic properties of a physical system. Different midenoted here by, (see Sec. Ill B, naturally arises, that
croscopic dynamics may be related, aarse graining  characterizes the nature of the coarse-graining procedure.
(CG), to the same macroscopic dynamics that defines a unirhe form (1) is appropriate only ifcg is infinite; if ko<,
versality class. Often CG means the local averaging of @dditional noise terms are generated which reflect the reduc-

continuous variable, tion in the number of degrees of freedom in the system. As
A2 already stressed in our earlier papg}, it is inconsistent to
U(X):f dxu(X+x), (1)  Wwork with a perfect operator witko<> and to use thec,
—Al2 = form (1) as some authorgl4,15 have done. We also

) _ ) o see no reason why coarse-grained equations should be de-
whereu(x) is the continuum variablelJ(X) is its coarse-  rjyed by varying a coarse-grained action in the absence of a
grained counterpart, and is the coarse-graining length small parameter, that is the starting point of these authors.
scale. Instead of focusing on the small-scale degrees_ of fregnstead we begin with a dynamics that is intrinsically sto-
dom, we should determine and use the coarse-grained dgnastic and study the effect of CG on this system. The well-
scription of the system appropriate at the macroscopic scalgnown path-integral formulation of such equations may then
One of these physics-motivated numerical methods is thge ysed to carry out the CG: there is no need to invoke a
cell dynamical schemgl6], in which a discrete description yariational principle.
of the system dynamics is obtained directly from consider- \ye need to consider the appropriate coarse-graining
ations of the underlying symmetry and conservation laws. Icale, Two situations are possible here. In the first, we sup-
has been successfully used to tackle problems such agse that the solution we wish to obtain has a natural stale
asymptotic scaling behavior in spinodal decomposifibf]  helow which there is no significant structure. In that case,
and the approach to equilibrium in systems with continuoug,yr goal is to avoid having to overdiscretize the problem
symmetries, such aXY magnets[18] and liquid crystals merely in order to attain the accuracy of the continuum limit.
[19]. There have also been attempts at using the RG in dyrhys, we would like to be able to use as large a value for the
namic Monte Carlo simulation20,21]. rid spacingAx as possible without sacrificing accuracy. In
To investigate what is required to obtain a coarse-graine¢he second situation, there is no such obvious scale, or at
dynamic description, suppose that we denote the coarsgsast, it is not knowna priori, but the computational de-
graining operator at scale by the symboC , which trans-  mangs are so large that it is simply not feasible to work with
forms u(x,t) to U(X,t). Then conceptually we need to find 3 grid spacing\x smaller than some siz&. In this case, we
the operatot , that connectsJ(X,0) andU(X,t) giventhe  \ould like to minimize in some sense the artifacts that must
microscopic time evolution operatdr connectingu(x,0)  inevitably arise.
with u(x,t), as shown schematically in the commutativity — The first situation is more straightforward because the
diagram below: only issue is speed of convergence to the continuum limit:
u(x,0) L, u(x,t) there is no explicit discarding of important dynamical infor-
mation. In the second situation, one is making an uncon-
trolled and potentially severe truncation of the correct dy-
namics. One has to ask: can one model the neglected
unresolved scales as effective renormalizations of the coeffi-
UA(X,0) A Ua(X,1) cients in the original PDE? Are the neglected degrees of
freedom usefully thought of as noise for the retained large-
scale degrees of freedom? And how can any available statis-
Notice that there is not a unique choice®f . The usual tical information on the small-scale degrees of freedom be
choice is local averaging. In principle, other operators can beised to improve the numerical solution for the large-scale
used, such as the majority rule scheme used in the coarskegrees of freedom?
graining of Ising spins in thermal equilibrium. Once a  While in this paper we explore several aspects of the use
coarse-graining operat@, has been defined, there should of RG methods to reduce errors due to discretization, we do
be a unique prescription to obtaln, [22]. In this paper, not attempt to develop a systematic approximation scheme
coarse graining is understood to mean local averaging. Latefor nonlinear partial differential equations. We see the main
stochastic coarse graining will be introduced as a variant opurpose of the paper as the construction, application, and
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assessment of such methods to relatively simple equationshere the integration is over all configurations beginning at
the formulation of a completely systematic approach is leftp, and ending atp,. We can use this path-integral formula
for the future. It may be that the present approach cannot b® determine the dynamics followed by the coarse-grained or
made completely systematic. An analogy might be with realniformly sampled variable.
space RG methods in critical phenomena. Alternatively, it By adiscretization schemeave will mean a process made
may be that some new insight will show how the machineryup of a series ofmagnifying operationsvhich lead from a
we develop here can be incorporated into a broader schenmicroscopic description of a system to a macroscopic de-
within which systematic approximations are possible. scription on a lattice. These magnification operations are, by
The plan of the paper is as follows. In Sec. Il we set updefault, magnification of a length scale by a factor of 2.
the coarse-graining algebra, which forms the basis of ouCoarse graining and uniform sampling are both special cases
approach, using the path-integral formulation of stochastiof a discretization scheme.
dynamics as our starting point. This formalism is then used Suppose a system is specified by the values of a function
in Sec. Ill to obtain the perfect operator for dynamics gov-f, such as a field configuration, on a fine lattice witk grid
erned by linear operators. Section IV describes the results gioints x=(X1,X,, . .. Xo\) Separated by grid siz&x. One
numerical simulations using the perfect operator with Langestep(level) of coarse graining is defined as local averaging of
vin dynamics and Sec. V using the Monte Carlo approach. Ahe function’s values at every two neighboring sites,
range of issues is discussed, from applications of the method
to the diffusion equation and nonlinear modetlynamics to
the question of the truncation of perfect operators required
when carrying out simulations. Our conclusions are pre- .
sented in Sec. VI and the structure of the coarse-grainingectorf is the coarse-grained versionfofvhile f stores the
algebra is discussed in an Appendix. detailed information that is lost after coarse graining. After

one level of CG, the system is described by a new function

on a coarser lattice witN grid points separated by twice the
ll. COARSE GRAINING IN THE PATH-INTEGRAL original grid size ofAxM=2Ax, where the superscrip¥l
FORMULATION OF LANGEVIN DYNAMICS indicates “magnified value.” We defineNeX N projection

In this section, we derive the path-integral formulation ofmatricesﬁ R such that
the Langevin dynamics and present the general framework

1 ~ 1
fnzz(f2nfl+f2n)v fn:z(er\_onfl)- (4)

under which the perfect linear operator is derived. The analy- f=Rf+ ﬁf,

sis is applicable to both PDEs and stochastic differential 5)
equations. For simplicity, we study a system whose dynam- — = 4. = 2

ics is described by a stochastic differential equatiBDE) f=R"°f, f=R"f.

with the form These matrices act as projection and inverse projection op-

erators between the original functional space and the coarse-

Ip(x,1) grained functional space. They facilitate an easier math-
=—f(x,t;{o})+ n(x,1), (2 ematical formulation. Many of the properties of the matrices
can be found in the Appendix. If we are interested in an

operatorO on the original grid, then it is possible to define
where ¢ is a field, f is the forcing term(it can depend oy~ four corresponding operators on the coarse-grained grid,

at

and/or its spatial derivativésand 7 is a white noise. which we denote by, ,0g,0¢, andOp . For instance,
It is convenient to regularize the problem on(fae) N _
XN’ lattice with grid sizeAx andAt in the space and time Op=R'OR.

directions, respectively. In the lattice picture, all variables in
the original PDE are vectors of functions of discrete spaceThe analogous definitions @,, Og, andO are given in
x=iAx and timet=jAt wherei e[ON—1], je[ON’—1]. the Appendix.

We defineg(iAx,jAt)=g(i,j) and denote the space-time A similar algebraic scheme can be defined for the uniform
volume elementAxAt by AV. The noise satisfieén(i,j)) sampling transformation, where the projection operator
=0 and(n(i,j)n(i',j"))=(Q/AV)és, ;. 6;;, where() is  samples every other point and discards the rest:

the noise strength ang, ; is the Kronecker symbol. Given _ _

that the system is in the statk, at timet,, the probability fa=fan-1, fa=fan, (6)
that the system will be in staig; at timet, is given by[23]

Rm,n: 5m,2n—1 ) Rm,n: 5m,2n )
N,N’

AV
P(¢l,tl|¢0,to):fD(ﬁD?’]eX[{_m = mE[l,ZN], nE[l,N]- (7)

7°(i})

Using the notations listed above, we can write down the
QO magnification procedure in space for thet{1)-dimensional
_ﬂa"’f} S(n—odip—T()), (3)  version of Eq.(2), coarse graining in space only. The inte-
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grations over thep and 7 variables are decomposed into variance. For the diffusion equatiob,is the finite difference
integrations ovewp, ¢, 7, and 5 variables and they inte-  Laplacian operator with a minus sign. The conventional

gration carried out using thé function. The remaining®  choice is the central difference ODEFat‘ﬁfm,n:(Zfsm,n

function is replaced using the identityy(x)=ad(ax) —Smns1— Omn_1 )/ AXZ.
=afdqe?®/27. This leads to a path integral, neglecting  To obtain the dynamics of the coarse-grained variable, we
any constant factors, of the form have to integrate out the small-length-scale degrees of free-

dom in Eqg.(3). In the linear case, the Jacobian term is con-
- = .= stant and so does not enter into the analysis. Applying the
o —iq(n—ad$) projection matrices to Eq.9), inserting the result into the

path integral in Eq(8), and integrating out theb and q

o AVM N,N’
P=JD¢D77quxp T >

M NN TS degrees of freedom yields
~ B 1 o~ m =
xf D exp) — -5 > = (0 d+T)?+iqf -
P=f D@Dy

o (95F+a3F) ] (8) M
———w(dgf+a5D) | [ AV Al —

AxM xexp{— 50 > [P+ (= "Q (= 4"M)]y,

where the constant is 1 or 2 for CG or US, respectively, (10)

due to their different projection matrix properties, and where
M — — . . g o . . . . _
AVV=2AxAt=2AV is the magnified volume element. The where M=+ (Cae LML) and 0

important point is that, in general, bothandf are functions —L M LNy 1L Here the operatoNl is given byid,

of ¢ and ¢. - o . — = 2 a1
What we would like to do is integrate over tidedegrees tle. Defmmg a neyv n0|se_ soureg .77 [1+Q1 "7
of freedom, carry out the| integration, and end up with a @nd carrying out the integration ovey' yields
form similar to the one we started with, but with new, AYM
renormalized, parameteis. More specifically, we would P:f DD M exp{— E MA+G) " 1yM
like the integration over¢p to give a result of the form 20
exp{—(AVM20)[igF — (Q/AxM)g4F]}. Then we could
readily integrate oveg and compare the result with the path-

integral form to read off the evolution equation for the new . . . :
coarse-grained variable a?sgg: _E ($)+;- However, we Comparing this with the forni3), it follows that the dynamic

would not expect to be able to do this in general, and a§quation satisfied by is

usual in all applications of the RG an approximation scheme o

has to be developed alongside this formalism in order to dp=—LCp+ ",

make any progress. There is, however, one case in which the

integrations can be carried out, and that is the linear case. Wghere [ CC= |“_A_ |”_C|\7| —1|“_D . The new noise source™ is
therefore study this first, before returning to the nonlineamo longer a white noise: it has a spatial correlation as well as
case later. a time correlation,

X (M —dyp—(La—LcM p) ¢). (11)

Ill. PERFECT OPERATOR FOR DYNAMICS (77M>=0

In this section, we will determine perfect operators of
dynamics governed by linear operators. We will find the@"
fixed point flow of operators for the diffusion equation under
CG and US transformations. In addition, the perfect operator M Moot ey PN , ,
in discrete space and time is obtained for the diffusion equa- (7(r, )7 (r' t )>_AVM (H+Q)(r—r’,t=t").

d

tion and its properties discussed. (12)
A. lterative relations and fixed points in the linear case Given that the noise source is no longer Markovian after
We begin by performing the magnifying transformation the first step of coarse _graining, we need to start with a more
on the SDE(2) wheref is a linear function ofg, that is, general noise source in order to iterate the coarse-graining
procedure. Define a general Gaussian noise source with the
op=—Lo+n, (9)  Properties

where 7 is a white noise. Heré is a general linear operator _ A _& R
and contains spatial, but not temporal, derivatives. It is as- (m=0 and{x(r,)n(r',t"))=yp "(r=rt=t").
sumed to possess inversion symmetry and translational in- (13
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Repeating the above analysis, we find that the coarse-grained Since we are magnifying only in space, the time differen-
dynamic equation remains the same; however, the coarséiation is diagonal in this phase space. We have the trivial
grained correlation matrix is modified and is given by relations @) o= (d)g=7; and @) c=(d;)p=0. We define
the full space-timesvolution operator

(e By T o VT ¢ Rt RN LTI AT B ~1pT, A A X
(p™) cM pg (M%) 'L+ (pa—pcps Po) e L. —grf such thatl,d— 17

L i i and theaction operator
wherel’=1+LcM ™ *pg pp. The presence of time deriva-

tives in p makes the noise non-Markovian. In general, we H:ﬁlp[w such that
should be careful about the boundary term in this ¢2dé

In particular, we need to specify corresponding initial condi- AV .
tions for each time derivative generated through the iterative f Dnexp - 55 > mpn|d(n—L,¢)
relation.
The first term inL¢C=[,— LM 'Ly is not what we B AV
would naively choose as the Laplacian operator with a BT 2 ¢Ho|, (18)

coarse-grained grid sizaxM. Instead, the second term,

which comes from accounting for the influence of the small-and express the iterative relation in terms_qf andH. This
length-scale degrees of freedom that are integrated out, givésads to a simple form for the full iterative relatigsee the
an important contribution to the coarse-grained operator angdppendiy),

cannot be treated as a perturbation.

It is more convenient to examine the coarse graining in (Lo HM=(L YA,
Fourier spacésee the Appendixwhere all matrices are now (19)
scalars dependent on wave numbers denotel dwyx, and (H HM=c(H )4,

frequencies denoted by. We may formally rewrite the it-

erative relation foil. in Fourier space as where the constant factaris 1 for CG and 2 for US. The

second iterative relation physically means that the coarse-

A Kk K grained version of the two-point function of the true dynam-
LCC(k)= LA(E ' + 77) ics is preserved, if the coarse-grained variable is governed by
the operatoﬂ:w with a non-Markovian noise sourge The
~ [k K 2 ) ~ [k K above iterative relations are readily generalized when mag-
tlel5.5* 77) / lotle|5.5* 77” nifications are carried out along the time direction.

We now wish to determine the fixed point solutions of the

(19 operatord. , andH under their iterative relations. It can be
, . ) shown that the operators approach their fixed points expo-

Each successive coarse-graining procedure gIves US a N&fntially fast as a function of the number of iterative steps,
operator, which weighs information from two different jr-espective of their detailed form at the microscopic scale.

points of Fourier space, corresponding to wave modes Ofhe fixed point solutions are given below while the exponen-
different length scales, and puts them into a new point. Evegg, approach is illustrated in Fig. 1.

though the original linear operator contains only differentia- /e begin the simpler case of US. Starting from a zeroth

tion in space, the new linear operator after one step of CGyqer operator of the forrh,, o=iw+ (4/€)sirf(k/2), appro-
has a time differentiation component as well. ko0, we a6 for a description at the microscopic scaleafter re-

can prove analyticallyand verify numerically that the op-  eated US transformations we arrive at the operator suitable
erator reaches a fixed point, for the length scalé\x,,=2"e. If the general form of the US
operator aften iterations is written as

4k 2 K
L(k):(AX)zssz/(1—§smz§). (16) N )71:1

an

— , 20
2" i wBn+ (4IAX3)sir?(k/2) (20

This is the perfect operator for aﬁ in one dimension. One
might hope that this operator can be recombined wjtand it is closed under iteration, given starting valueg= S,
used in the dynamic equation to give a perfect dynamics. It=1. The iteration relations are
turns out that this is in generaicorrect The reason is that

the iterative relation from the path-integral calculation is a . lwAX;

dynamic iterative relation with time derivative in it. When @n+1™An Pn 2

one setsw=0, physically it translates into the assumption

that small-scale degrees of freedom are enslaved by thand

large-scale dynamics. The small-scale degrees of freedom . 5

instantaneously adjust to the large-scale ones that are kept BBl 1+ T wAXy 21)
after each magnifying transformation. This is not physical. n+1—Fn "4 )
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4sin®(k/2)
k2

US level n=1,2,...

FIG. 1. RG flow of the dynamics operator. In this case the
starting point is a microscopic Laplacian operator of the fargy,
=iw+ (1/e?)k? The functional form of thenth iterate ofL,, is
(L)'= (U2 ap i 0Bn+ (LAXG) Fo(K) .

These have a fixed point solution

1
ap=1+ 6(i@n)+ (I.n)2

120

1 PR
=2 @ity 1On)

= J%sinr(x
l n

S TORCIN

Bo=1+ 360

1
1_2(|®n)

2
=2 (100

i®n)_

where® ,=wAx2.

PHYSICAL REVIEW E63 036125

The fixed point solutions are, settiriy=0,/2,
2
=1+ 3—60+
2i
=2 m["r'”]—

1 _ 1

ﬁ[smr(zan)_ 5|n(26n)]— Een,
n

2 403

3T T

E 2|

(4|+3)'

en=
[4(-1)'"Y]

%[sinf{ 6)cod 6,,) — costi 6,)sin(6,)],

n

2
n

bn=1—ﬁ)+
K -
1 . .
:ES"’“’( an)SWKHn)'
0,
d,=— ?4_ e
) 2i+1
-3 m[z( 1"

(24)

%[cosh 0,)cog6,)—1].

We can now move on to the CG case. Here we param-
etrize the operators as

For the iterative process starting from, for instance, the - AX2 an
- . . — 2 2 - 2 — _+ ,
g:(ceroscoplc action operatét o= w?+[ (4/€?)sirf(k/2)]?, we wn= g o+ (A1) SIP(KI2)
. a,+e, sirA(k/2) 22 Ll (A_xﬁ): a,+e, sirt(k/2)
" b2w?+[dyew+ (4AXD)sirP(k/2)]?] N4 b2w?2+[dye + (4/AX2)sin2(k/2) ]2

whered, andb,, are the real and imaginary parts gfin
L, .- The iteration relations foa, ande, are

0,

4 ’

(23

an,1=an+2a,d,— +(2a,+e,)(b3+d?)

4

2a,|.

1 n
en-%—lZZ en+4endn7_

(29

It is easy to see that CG shares the sg@né, andd param-

eters as US. The iteration relations for the other parameters

are different. However, one can obtain a relation between
G and aVS, namely,

CG_ _US
n — @y

n= —agd). (26)
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Using this relation we find alternately CG in space and in time, or one can directly use
the perfect operator we developed previously and only CG
from continuous time. Now, there is another dimensionless
parameter, namely, the ratio of the time scale over the char-
acteristic time appropriate for a chosen length scale. For the
Therefore, the fixed point solution far®® and y©C can be  diffusion equation, it isAt/Ax2. We already see the mani-

written in terms of that foVS, while the rest of the param- festation of this parameter in the perfect operator derived

e |@ (1-ag®). (27)

eters have fixed points earlier, where only the combination of the form x? enters
the expressions. Therefore, there are two restrictions on how
ﬁ we apply the two schemes. In the first case, we should CG
an=1-+ twice in the time direction for each CG operation in the

spatial direction, maintaining the value of the ratié/ Ax?

| throughout the process. This means that, for any reasonable

1
=2 (4,T5)[22'+4(R| Dl- 56n values ofAt/Ax? at the macroscopic side, we need to start
with a smallAx and a very small\t. In the second case, we
=[cosh 6,) — cog 6,)1°Z,, will not be able to maintain the ratio aft/Ax?. Therefore,
the fixed point operator should be identified by iterating
5®ﬁ backwards. This means that we repeat the iterative process
en=—1t gyt many times starting from various values ®f,=At/2" and
iteraten steps. The fixed point is identified as the operator
2 0, g pdi+7 that is (within tolerance not changed whether we start from
(4i+5)! @ir5)ie ] Aty or At,, ;. This method was used in the previous section

to calculate the fixed point operator form féf when the
time frequency w was nonzero. This reversed iteration
:?( n+1~Zn) scheme is more powerful, since it can be generalized to other
n cases where there are other dimensionless parameters, such
as the case of massive fields.

:E_ 16®ﬁ o The fixed point solution of @-dimensional operator un-
" 15 9! der the CG iterative relation can be found using the tech-
i niques that have been described in this paper. An alternative
2 " [16—1)'] method, the so-called “blocking from continuum” can also
(4i +5)' be used. In any case one fin®5—27
4 4sirt(ki/2) 1
-—(Z,-1), ] ——+—
0;1( n—1) Opp(K)~ E O[ (k+2ml)/AX]~ H SPET )2+ .
(28)

where Z,=(1/26,)[ cosh@,)sin(6,)+ sinh(@,)cos@,)], and

F(Igi?;]/%t]ﬁ*tge averages of the real and complex parts thereO(p) is the continuum spectrum of the operator and

is a vector whose elements are of all possible integer values.

In the above equation, an extra constant term with a pa-
rameterxg is introduced. This term is important for obtain-
ing a localized perfect operator fit for numerical simulations

So far, we have only coarse-grained the spatial degree ¢27]. To get this term, we modify the CG procedure to be a
freedom and obtained the corresponding perfect operators. Biochastic CGoperation, also called soft CG instead of hard
order to move on to numerical calculations on a lattice, weCG, where an artificial noise term is introduced into the CG
also need to coarse-grain the time degree of freedom. variable,

We focus on the perfect action operakb=L] pL, which
is used later in the space-time Monte Carlo calculations. 5=+ v (29)
Here we derive the fixed point solution &f. We give a
nearly closed form solution foH (k,) and show that this
operator gives a perfect dispersion relation as measured froMiith (¥)=0 and (v(i)v(i"))=(2/keAV)&; ;. Taking g
the time-displaced two-point function. A stochastic coarse-—, the hard CG case is recovered.
graining scheme is introduced, which modifidgo give us Now consider the diffusion equation for a massive field,
an operator with reduced range of interaction.

The iterative relation we developed previously does not
hinge on whether CG was carried out on the space or time
axis. Therefore, we can use it to CG in the time direction as
well. Either one can start from a continuous description andrhe continuum spectrum df is

B. Perfect action operator in space-time
and stochastic CG scheme

drp=3;p—me+ 7. (30)
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TABLE I. Sample coefficients of the perfect action operator for the diffusion equatier2, =0, and

AX?[At=1.

(t,x) H (t,x) H (t,x) H (t,x) H

(0,0  3.90458 (0,1 —1.02978 (0,2 —0.0421266 (0,3  0.098042
(0,4  0.0291451 (0,5 —0.00317113 (0,6 —0.00407848 (0,7 —7.35334<10°4
(1,0 —0.464966 (1,) —0.278677 (1,2 —0.0339122 (1,3  0.0328692

(1,4  0.0148371 (1,5 -2.8286x10°4

(2,00 —5.99324x10°%4 (2,1 —8.25418<10*
(2,4  8.0492% 104 (2,5  2.04135¢10*

(1, 6 —0.00204057 (1,7 —5.22915¢10°*
(2,2 —3.6837x10°* (2,3 6.91673%10°*
(2,60 —1.2739%10°* (2,7 —9.25806<10°°

w\? k \?2 2 Fourier transform of Eq(33) back to real time gives the
H=\37) T|lax) tm where w,ke (=, 7). static equal time structure factor
(31)
4sirt(k/2) 1 Lo
Defining the notatiorx,=x+ 2|, we have Skt=0)=2> 2 (w| —l+e )+ —
| k| (w| ) 3r K
34
I 1 4 sirt(k/2) 4 sirf(w/2) (34
Ax KR ) +rlel, K w?, and the time-displaced two-point function
. 32) 4 sir(k/2) 4 sinf(0}2)] 1 .
3 Skt=1)=3 | — 3 2
K [ ki (o) 20f
where we defined parameters=mAx® andr = Ax*/At. To 4SIr12(k/2) 1-2e o +e 2
conform with notation used in quantum field theories, we => 3 e or (-1,
have definedc= koAt?/3. ! 2(wr)
The double summation is cumbersome to evaluate nu- (35)

merically due to its power decaying behavior. By rewriting

2, 2 2 1
the factor{kf[ (k?+ u)?+r?w[,) ]} * as a difference of two | dynamic modes are present, each with the correct decay-
terms we can reexpress the above formula as a sum of jag behavior and with a prefactéenclosed in curly brack-
closed formed expression and an exponentially decaymg eXty due to coarse graining in space as well as in the time

pression. To do so, it is convenient to introduog = (k?
+u)/r and the function

4 sirf(k/2)
k(K7 + )

1 - (sinh/u)(1— cosk)
Jul[(coshyum)— cosk] |

G(k,mEEl

yu

direction. In principle, the decay rate should be measured in
the long-time limit where all modes outside the first Brillouin
zone are negligible. However, for all practical purposes, the
I #0 modes are negligibléor, more precisely, the next sig-
nificant mode not degenerate witk 0) even for short times.
For example, foik=m/2, =0, the amplitude of the next
most significant model & —1) is only 1.5<10™* of that of
thel =0 mode. Therefore, we can use tirel values of the
time-displaced two-point function to evaluate the perfect dis-
persion relation for all the wave modes with wave numbers

Then, after some simple algebraic manipulation, one finds ithin the first Brillouin zone.

1
—H'=—9,G-rsir
Ax?

2

4sit(ki2) e “l — cosw Lt
kZ(k?+ u)® coshwf — cosw  3rlk
(33

) aiG+ 2r sir?

From H ™ !(k,w), we obtain the perfect operator coeffi-
cientsH(r,t) in real space and time. Notice that “the fixed
point of an operator” actually means the fixed point of the
dimensionless operator. Consequently, operator coefficients
for the perfect action operator are actually thoseHafx*.

For practical reasons, we need to adjust the parameter
optimal locality. In one dimensiork=2 and 6 are the best
values fors? andds , respectively. Therefore, we need to find
a compromise. The best scheme is to chaese such that

Now what remains of the summation is much easier to evaluthe most significant couplings lie within a rectangular area

ate due to its exponentially decaying behavior.

elongated along the direction. In this way, the total number

From the above equation, we can obtain the dispersionf significant couplings is minimized.
relation implied by such an operator. The two-point function The leading order coefficients ¢l for k=2 and zero
for a free field isS(k,w)=H 1(k,w). Taking the discrete mass are tabulated in Table | and shown in Fig. 2.
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The non-Markovian nature of the noise means that there
is dynamics in the noise variable. This is not surprising. In
the path-integral calculation, each CG step results in for-
mally discarding small-scale degrees of freedom. But in fact
the small-scale degrees of freedom are not entirely discarded.
Since the small-scale dynamics is affected by the noise
source as well as the system dynamics at the coarse-grained
level, when the small-scale degrees of freedom are integrated
out at each CG step, part of the small-scale dynamics is
preserved by modifying the dynamics at the larger length
scale and by injecting dynamics into the noise. This is essen-
tially a feedback effect.

Due to the non-Markovian nature of the noise, we need to
write down the dynamics followed by the noise,

pY2n= 1, (37

) ) where 7, is a white noise satisfyind 7q(i,j) 70(i’,j’))
FIG. 2. Surface plot of amplitude of perfect action operator:(Q/AV) 8118 The matriXp1’2 is the square root b

coefficients for the diffusion equation. The coefficients exponen-, 2 . o .
tially decay away from the origin. The decay speed is slow alongIn the sense that the productp)’f/ and its Hermitian conju

the x direction. k=2 m=0. andAt=Ax2. gate givesp. For instance, in Fourier spacgw’+k*=iw
' ' +k?. There are in principle infinite orders of time derivatives

IV. NUMERICAL SIMULATION in p?, just as inL,,.
USING THE PERFECT OPERATOR Naively, L, can be obtained as a series expansiow;in
) ) ) o which is then truncated to certain order. This turns out not to
In this section, we discuss the application of the perfechye the correct approach. Rather, we need to decompose the

linear operator in numerical simulations of Langevin dynam-0 eratorl._in the form of a numerator{) over a denomi-
ics. We show that the perfect operator should be decompose(P @

into anup operatorand adown operatoiin order to obtain a nator @),
correct equation with a finite number of high order time de- PN
rivatives. Without this decomposition, the truncation of the L,=D"U, (38)

perfect operator is highly nontrivial, if not impossible. For ) . .
Langevin dynamics, the dynamics of the non-MarkovianWhere we write the denominator as an inverse operator. The

noise is difficult to obtain because it requires taking thedistinction between the numerator and denominator is easily
square root of the noise correlation function. Various nu-S€en in the fixed point operator. We can eliminate the inverse

merical simulations were carried out using the truncated peroperator by applyind on both sides of Eq:36). Redefining
fect operator and other approximations, to illustrate the adthe noise ag=D 7 and denoting its correlation function by
vantage of using coarse-grained variables as opposed @ ! we have,

uniformly sampled variables in numerical simulations.

These, together with the limitations of this approach, are also 01 0T '=[-1p 1T ", (39)
discussed.

The operatorzﬂ and o are therefore equivalent to the older

A. Perfect operators in Langevin dynamics pair of L and p in the evolution of the discretized system.

Here we derive the perfect operatdysand ¢ [see Egs. Equation(36) may be rewritten as

(40) and (41) below for the definition of these operatbrs - . 1U2e
appropriate for Langevin dynamics. In the previous section, Uop=¢ with 07%=no. (40
we obtained the iterative relation for both, andH. From Using Eq.(25), and in the notation of Sec. Ill, the perfect

thg Ia.tter, th.e correlaﬂqn f“F‘C“O” for the non-Markovian operators for the diffusion equation under the CG scheme are
noise is obtained. The discretized system follows the dynam-

ics described by the PDE
U,=i i 'n2—k
w=lwf+ AX2SI >

Lub=1, (36
where 7 satisfies { 7(i,j) n(i’,j"))=(Q/AV)p~L(i—i',] 1 Lk 0 Lk ) 2
—j’). This formally simple equation is different from the € — “"'73”125"'737 a+esmz§+fb 7
usual Langevin dynamics in two respects: the non- o112
Markovian nature of the noise and the presenceéiroprin- f d9+ sinz—k (41)
ciple) infinite orders of time derivatives in both, andp 1. 4 2 '
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For analytical tractability, we used the closed form solutionstime derivative. Direct truncation is not appropriate when
of the operators available for discrete space but continuousetting higher order terms to zero, since we should adjust the
time. remaining coefficients. Instead, we use the operator at the
Unlike |:, the new evolution Operatdj’ can be expressed first level of CG, Starting from a central difference Opel’atOI’.
in a clear and Simp'e series expansion_ The Spatia' part |§he CoefficientS f0r t|me deriVatiVeS h|gher than the Second
simply the central difference operator and the time part is @rder are identically zero. We have
sum of all orders of time derivatives with constant and fast A2 1
decaying coefficientgsee Eq(22)]. AX" 5 L _ _ _
The operatoro? has a very complicated form. It has 16 ¢i+at¢i+Ax2(2¢i $ir1mdi-)=0. (43
many high order space and time derivatives, which in gen-

eral are coupled. Series expansion and truncation are nec&Sgppose the system is periodic with lendth The initial

sary. To the first order i x?, we have for CG condition has modes down to length scateL/M with M
being an integer, namely,
1
ol~1- 5sinz(k/Z) +CiwAX?=1+\202—1d;, (42 M2
¢>(m,t=0)= Z eiZwkme/L(ﬁk, (44)
k=—M/2

where c=1/6—1/\/720=0.129, A\=Ax//24, andr=cAx?.

Therefore, the noise source is largely a white noise. It has f¥here ¢, is the amplitude of théth wave mode. We know

correlation length of the order and a relaxation time of the  gpaiytically the exact solution: by coarse-graining the exact
order 7. When the form of the operator is obtained and trun-g|ytion to a length scalax=L/N=pe, we have

cated to a specified order, one can evolve the system accord-

ing to Eq.(40). N/2 p/2
~ Often periodic boundaries are used in the spatial dimen- s(nt)= >, gi2manaxiL > barin
sions. Therefore high order spatial derivatives do not pose a q=-N/2 i=—pl2

problem on a lattice. Higher order time derivatives, however,

require a corresponding number of initial conditions. This _sm(q-rqA.x/L) —(2maAx/L)%

might pose a problem, especially for non-Markovian noise. psinw(q+iN)e/L]

If one is interested in equilibrium properties of the system, N/2

the initial transient stage is not important. An initial condi- — 2 i2manAxiL iy 4

; : 2 o = e $q,0(t), (45
tion with all derivatives zero is fine. When one wants to q=—-N/2

study the initial transient stage corresponding to a certain

microscopic initial condition, one can evolve the system Uswhereaq ot) is the exact wave mode for the CG variable.
ing a fine mesh fon steps under a conventional numerical This equ’ation gives us botE(n t=0) and (?Z(n t=0)
scheme, whera is the highest order time derivative. For Now let us ask: what result woul,d E¢3) yieldt on é\ Iatticé
each step, one can coarse-grain the microscopic configur‘\a}v—ith grid sizeA;< given the CG initial conditions? We have
tion to the desired CG level and insert the CG versiompof — ol2 ' ’

into Eq.(40), and the noise in the transient stage is obtained?a(t) === p2Cq,i(t) ¢q+in , Where

In this way, initial time derivatives for both coarse-graingd

and ¢ can be computed. sin(mgqAX/L) ot

The calculation of the space-time discretizet? can be Cai(0)= psiNm(g+iN)e/L]
quite involved[28]. Since our main interest is in calculating
equilibrium properties of dynamic systems, we can take an 1-e bt 2m(q+iN)
alternative route, namely, Monte Carlo simulation, as dis- X1+ Aw - L2 , (46
cussed later. In this case, the perfect action opetdtisrall
we need. w_=(16/Ax?)sir’(mg/2N), and Aw=(16/Ax%)cosag/N).
For comparison, the corresponding result from conventional
B. An example of using the perfect operator numerical analysi$NA), which is the same as just keeping
in Langevin dynamics the first order time derivative itJ, is
In this section, we present an application of the operator
U to the deterministic dynamics of the coarse-grained vari- CNA(t) = exp{ 3 4 sirf(mq/N) t] @
able governed by the diffusion equation. Titrincated per- q.i AX2 ’

fect operatol) gives superior results for the evolution of the

configuration. The relative advantage of using the CG variwhere the time evolution does not dependiofihe solution

able vs the US variable is also touched upon and will b&or modes within the first Brillouin zone, i.6.=0, is greatly

studied more closely in Sec. V. improved as shown in Fig. 3, where we have plotted the time
For simplicity, we truncate the series expansionofo  evolution of the coefficienCq;_o(t) (without the prefactor

the first order to obtain an operatbr with a second order due to CQ for selectedq values. For smalf}, the Aw de-
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Coefficient

Exact. g=n/3
NA. q=r/3
PO. g=n/3
Exact. q=2n/3
NA. g=2n/3
PO. g=2r/3

T
2

FIG. 3. Decay of wave modes in the first Brillouin zone usin

perfect operatofPO) and NA equations vs the exact result. The
decay rates for the PO scheme are closer to the exact ones than the

NA results. The coefficient i€, ;- o(t) without the CG prefactor.
Sample wave numbers age= 7/3 and 2r/3.

pendent part in Eq46) is not important. A Taylor expansion

PHYSICAL REVIEW E 63 036125

figure). For finite time, modes outside the first Brillouin zone
decay quickly in the true dynami¢Eig. 4). In the PO result,

the decay rate is dependent gntherefore these modes do
not decay as fast as they should do. But since the PO result
also contains information o for modes in the second Bril-
louin zone, the resulting dynamics are still closer to the true
one than the NA result. This is because we used the PO

operatorU of one-level CG. For higher wave numbers, due
to thei dependent term, there is an anomaldosgative
amplification of wave modes at the initial transient stage
which disappears later. Therefore, the power spectrum of the
configuration should die off quickly for modes with length
scale much less thadx. In other words, we should not
over-coarse-grain. It follows that as we keep more and more

terms in the perturbative series f0r, , the PO result will be
close to the exact one for higher and higher wave modes.
The prefactor
9
sin(rgqAX/L)

sif w(gq+iN)e/L]

modifies the contribution of each wave mode to the solution.
This comes from using the CG variable in the PDE and is
very important in reducing errors that arise from using the

clearly shows thai _ is closer to the true decay rate than thediscretized PDE. For instance, although modes wjth0

NA result.

For very short times, the dynamics of all modes are co
rectly prescribed, even for£ 0. This manifests itself as a dip
in the short-time region of Fig. éubject to resolution on the
time axis, the dip for thé=1 mode is not discernible in the

"""" Exact. q=n/2. i==1
PO.q=r/2,i=—1
Exact. g=n/2. i=1
PO.q=r/2,i=1
NA.q=r/2

.....

107

7
time
FIG. 4. Decay of wave modes in the secome 1) and third
(i=1) Brillouin zones using PO and NA equations vs the exact
result. For the PO and NA schemes, wave modes do not decay
fast as for the exact result. The PO is better for modes in the seco

e

decay very slowly in the PO result, their prefactor is close to
rzero fori#0, while they very quickly decay to zero in the
true dynamics.
Notice that US and CG share the satde In the US
scheme, there is no prefactor. Modes wit¥ 0 andi #0 do

not decay. If we use the same equation as above, the prefac-
tor for t>Ax? is

i)\ 2
ano,i(t)*1—<?> . (48)
For largei, it overstates the contribution of the mode to the
solution and is worse than NA. This imposes a stricter con-
straint than for the CG scheme on the power spectrum of
the configuration, and is the reason why CG is a better

scheme. This has been tested numerically on several model
dynamics[1].

V. SPACE-TIME MONTE CARLO SIMULATION

The path-integral formulation easily leads to a space-time
Monte Carlo simulation. We discuss issues related to trun-
cating the perfect operator such that it has a finite range of
interaction. Numerical simulations are carried out on the lin-
ear diffusion equation to test the computational efficiency of

ing the perfect operator, and on modeflynamics to test
merit of direct application of the perfect linear operator to

Brillouin zone than NA and is also advantageous for late times fof'Onlinear dynamics.

modes in other Brillouin zones. PO results are very close to the

In quantum field theories, many problems are formulated

exact one at short times as indicated by the dip in the plotted curve terms of path integrals. Numerical simulations usually em-
The coefficient isCq;—o(t) without the CG prefactor, which re- Ploy the Monte Carlo method, where due to space-time sym-
duces the importance of modes outside the first Brillouin zonemetry time is simply treated as one of the dimensions in a
Sample wave number = 7/2. Notice that the NA result does not (d+1)-dimensional lattice. In statistical physics, when dy-

depend ori. namics is involved, evolving a Langevin equation is the
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norm. A typical form of the equation contains a first orderior of the operator in the continuum limit. These constraints
time derivative, a diffusion term, and some nonlinear inter-are in the form of sum rulef27]. For the diffusion action
action. Time and space are not symmetric. However, numeriabove, the constraints in the continuous limit are

cal simulation of a Langevin equation is not the only choice

for studying dynamics. We can also perform Monte Carlo 2 E T

simulation on a space-time lattid@9], similar to the ap- g mo

proach adopted in quantum field theories. The basis for such

a calculation is the path-integral formulation. Starting from 1

Eq. (3), and performing a trivial integration over the noise to =2 X Hijj2=-r?

eliminate thed function, we have 277 52

AV Q
P=f D¢exp{—mi2j [[at¢+f<¢>]2—ﬁa¢f j ;; S, Hyji%= 2

(49
The cross term linear i@, results in a boundary term and i S S H,i4=1
does not directly influence the calculationffignoring the 414 5 '

Jacobian contribution, we are left with a positive definite

functional. We call the term in the exponent the “action” for \yhere, as defined previously,= mAx2 andr = Ax?/At. Na-
obvious reasons. For linear operators, we know how tGyely, one might expect that one way of proceeding would be
coarse-grain the above expression. Integrating out the noigg truncate the perfect operator to a finite and manageable

in the above equation, we have range, and then to enforce these constraints to improve the
AV directly truncated operator. In reality, these sum rules are not
p= J Dgexp{ ——— > #H (4’ (50)  satisfied even for the perfect operator for finke and finite
20Q) k. The error is of higher order inx and inversely propor-

. i . . tional to k. On the one hand, the continuous limit constraint
whereH is the fixed point operator of the action operator. ., jitions can be recovered. On the other hand, for finite
Working with this path-lntegral formulation, we do not ha\{e AXx, the constraints no longer hold unless an operator with a
to worry about taking the square root of the noise correlatlor]ong interaction range is used. The average constraint error is

maltn)t(hasfvxllle WOUld W|th.|}r|1e Lkantgevm ea'uatlon. le of th about 0.1% if one keeps up to20 and~ 3 neighbors in the
n the following, we will look at a specific example of the , -4+ directions, respectively.

linear theory, namely, the dynamics of a system described by An alternative approacf81,37 is to compute the perfect

the diffusion equation operator on a smaller lattice and then use this “naturally”
truncated perfect operator. In this way, the constraint is taken
hp=3d2p—me+ 7, 51 . ) o ’
1p=dkp—mét 7y (52) care of in the continuum limit. If we use the operator on a

wherem s a constant, which we will call the mass, ands lattice of the same size, the operator gives a perfect disper-

white noise with strengtkl. We have chosen a unit diffusion sion relation. However, when it is used on a larger lattice, it

constant. In the space-time Monte Carlo probability we usdS N0 longer perfect, as can be seen from the inexact disper-

the (1+1)-dimensional perfect operator for 32+ (—a2 SO0 relation for high wave number modes, which are those
X

+m)? developed in the previous sections. Then we look afmost affected by truncation. The reason lies in the high de-

the application of the perfect linear operator to the nonlinea ay rat.e associated W'tmé. dispersion rel_atlon. Fok=,
model A dynamics. he ratio between successi®k,t) values is about X 10,

Thus, to maintain exponentially decaying scaling over three
nodes, we need a relative accuracy of 40Taking into
consideration the importance of keeping enough neighbors
The perfect operator needs to be truncated to finite rangand the computational efficiency, an operator with up to
to be used in numerical simulations. Although the introduc-tenth and second neighbors in thandt directions is chosen
tion of stochastic CG reduced the interaction range of thexs the operator for most of the subsequent computer simula-
perfect action operator, the operator coefficients do not tertions. An operator with ninth and second neighbors inxhe
minate in a finite range. Furthermore, they decay slowlyandt directions is also used for some of the simulations.
along thex direction, where the coefficient of the tenth There is no discernible difference between this operator and
neighbor{30] still has an amplitude of aroundX110™°. This  the 11X 3 one.
makes truncation of the perfect operator more problematic The operator coefficients are displayed in Table Il for
than in quantum field theories, where keeping next nearest0.25 andAt=Ax2. For the above operator witha=0.25, a
neighbors is already very god&7]. three-node scaling regime is maintained for 60% of khe
One criterion for truncation is that the magnitudes of themode and a two-node scaling regime for about 94% okthe
discarded coefficients have to be small. But there are othanode. For a larger operator of size>2@, we would have a
considerations as we[B1,32. One would like the operator three-node scaling regime for about 90% of kh@ode. The
to satisfy certain constraints that stipulate the correct behavdecay rates for different operators are compared in Fig. 5.

A. Truncated perfect operator
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TABLE IlI. Coefficients of naturally truncated ®3 perfect action operator for diffusion equatior=2, u=mAx?>=0.25, Ax?/At
=1.

(t, X) H (t, X) H (t, X) H (t, X) H

(0, 0 4.00869 0,1 —1.00198 ©, 2 —0.0819891 ©, 3 0.0724608

(0, 4 0.0270167 0,5 3.546940< 10 * (0, 6 —0.002564 0,7 —7.59395410 4
0, 9 4.298800x 10 0,9 8.70390% 10 ° (0, 10 1.817881x 10 ° 1,0 —0.430984

1,1 —0.265854 1,2 —0.046095 1,3 0.021651 1, 4 0.012848

1,5 0.001211 1,6 —0.001157 ,7 —4.72462% 104 (1,9 —6.54240% 106
1,9 4.85114% 10 (1, 10 1.40647510°° 2,0 3.220461x 104 2,1 —2.491026< 104
2,2 —5.12012% 104 2,3 1.844663% 104 2,9 5.223556<10 % (2,5 2.38609% 10 4
2, 6 —2.442266<10°° 2,7 —5.894465 10" ° 2,9 —1.67669%10°° (2,9 3.755505< 10 ©
(2, 10 4.50715% 10

The rapid decay rate of high wave number modes is what Three simulation runs are presented. One simulation uses
distinguishes the perfect operator for the diffusion equatiora perfect operator with range of interaction up to tenth and
from the (1+1)-dimensional Laplacian operator used insecond neighbors in the andt directions, respectively. A
high energy physics. In the latter case, the ratio betweettice of N, x N,=32x32 was used, corresponding x
successiveS(k,t) values is at the more benign level of about =0.5. The other two simulations were carried out on 32
0.04. The exponentially decaying range spans more values 632 and 64 128 lattices using the conventional central dif-
time displacement. It is easier, therefore, to read off the disterence operator. In each case, the time direction grid size is

persion relation all the way to the edge of the Brillouin zone.x1— Ax2 In each simulationN,,, number of independent

It is also more stable with respect to small changes in coefy, s \ere conducted to obtain statistics of measurements,
ficients of the operator.

each run withN=5x 10> MC steps(one sweep of the sys-
tem) and one measurement per eight stéfyg,= 6 and 7 for
the 3232 and 64 128 lattices, respectively. Th&{ 0,0

We carried out space-time Monte Ca(MC) simulations  ~0) modes have the largest standard error, which is cru-
to test the efficacy of the perfect operator developed in theijally dependent on the lattice size. The typical percentage
previous section. Suppose we are interested in the diffusiogtandard error o5(k,w) for a 32x 32 lattice is about 1%

dynamics of the system described by Ef) and would like  ang 250 for PO and NA operators, while that of a 64
to calculate its space-time correlation function. Let the sys~ 12g |attice is 6%.

tem be of lengthL =16, with the spatial scale of interelst
=1. In the path-integral formulation, the time span of the
system isT = 8. Both space and time directions have periodic
boundary conditions. The Metropolis algorithm is employed
[33].

B. Numerical simulation of the diffusion equation

In Fourier space, cross sections of the space-time-
displaced two-point functiors(k,w) are plotted in Fig. 6.
We do not expect the perfect operator result to be exact
becauses(k,w) is now a two-point function of the CG vari-
able, not the continuous variable. But it turns out to be quite
1 - - - . - ' close to the exact result. The NA result for thex322 lattice
deviates further from the true value at the saikeo] value.

For this plot, a constant offset of/TL)(Ax*/3k) is sub-
tracted fromS(k,w) of the perfect operator runs to eliminate
the contribution from the added noise in the stochastic CG
transformation.

Fourier transformingS(k,w) to real time, we obtain the
dispersion relation fromS(k,t)~e “®! To avoid static
contributions in the=0 mode, we choose the most signifi-
cant t#0 points to calculate w(k)=[InYkAt)

— In §(k,2At) J/At. The results are shown in Fig. 7. The per-
fect operator gives a near “perfect” dispersion relation for
the length scale we are interested @orresponding to wave
numberk~ 1), giving the correct zer&k mode mass and
correctk? dependence. We can get a comparable result using
a larger lattice with the NA operator, but with more compu-
tational effort. For largdc modes, the amplitude &(k,2At)

FIG. 5. Decay rate of wave modes for diffusion equatian. is of order 102 relative to that at=0 and becomes unreli-
=2, n=0.25, andAx?/At=1. Perfect operator decay rates are able given the simulation accuracy. The real value is used in
obtained using the first twb# 0 nodeg Eq. (35)]. the plot whenS(k,2At) is negative.

Decay rate
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L B B e e e e B e B Y 45 T T T T T T
A PO Ax=0.5
O NAAx=05 “or Exact. m + K I
10-3_ + NA Ax=0.25]] + + NA. Ax=05
— Exact result as| O NA.Ax=0.25 J
------ PO.Ax=0.5
- 30| -—-- PO (a). Ax=0.5 4
S 107
71 _
10—5_
—6| L 1 L 1 L 1 L 1 L 1 L 1 L b
109 1 2 3 4 5 6
k -
. , . , :
A PO Ax=0.5
O NA Ax=0.5
+ NA Ax=0.25 FIG. 7. Decay rate of wave modes for the diffusion equation.
. — Exact result m=1, L=16, T=8. Lattices yieldAt=Ax?. Length scale of inter-
1077 est corresponds tk~ 7. Exact result isn+ k2. PO results use the
) first two t# 0 nodes ofS(k,t). NA results and PQa) are obtained
g using thet=0 andt=At nodes.
. computational effort is not that huge. This operator requires
10T 21x5=105 points be used to calculate the action density at
each grid point, whereas seven points are used in conven-
tional NA calculations. However, since most of the compu-
o . g . 1'0 : tation effort goes to generating random numbeve used

FIG. 6. Cross sections @&(k,w) for the diffusion equationm
=1, L=16, T=8. Cross sections are ai=0 (left) and k=0

(right). The exact result i§(m+k?)?+ w?] 2.

NUMERICAL RECIPE'S RANZ) subroutine[34] as well as the
sPrRNGmModified lagged Fibonacci generator frommsa [35]),

it turns out that the overhead from extra neighbors is not
significant considering the improvement of results. If one
uses a naturally truncatedx® PO, total CPU time for the
sample calculation will be reduced by 58%. The decay rate

One might ask: why call the operator perfect when it does;y 55 the result from NA with a lattice twice as large. In this

not reproduce the correct dispersion relation for wave num

case, however, we will not recover a perfect decay rate with

bers beyonk= 7? The answer is that it is not the operator jyatter statistics due to the severe truncation.
that is not perfect but the simulation itself. The perfect op-

erator gives the best result possible for physical quantities of 4
interest given the error of the simulation. With more statis-
tics, the dispersion relation from the perfect operator ap- ss
proaches the correct result for all modes with length scale
larger than the grid size. The same is not true for the NA s
operator. For a discretization twice as fine, with increasing
number of statistical samples, the dispersion relation for the 2s
NA operator approaches a limit that is different from the true
solution, and is about 19% off at the edge of the Brillouin $20
zone.

The simulation error can be overcome when we choose
smallerAt relative toAx?. As shown in Fig. 8, the PO decay
rate usingAt=32Ax? (corresponding to a 3264 lattice 10
closely follows the exact result and is more accurate than the
measurement from NA. 5

One might as well choose operators according to the mag

, % x O +

* x O +

NA.32x 64
NA.32x 128
NA. 64 x 64
NA. 64 x 128
PO. 32x 64
Exact. I + m

0

nitude of the statistical error of a simulation. Given the usual %

error of 1% for S(k,w), a smaller-sized perfect operator
could be used to improve efficiency of the simulation with-

Even with an 1X 3 PO as used in our simulation, the extra At# Ax? are used.
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TABLE lll. CPU time of simulations of diffusion equation us- " " " ' . .

ing PO vs NA. 3X 32 lattice. 10000 Monte Carlo steps. For the + ---  NA.64x64
same number of statistical averages, the standard err8¢kot) 10' R\ o o | NA.84x 128
for the PO is about one-half that for NA. A NA. 64 x 256
" + + NA.128x128
- AN . 0 O NA 128x256
Action Random number - o
calculation generation Total time g
NA 6.6 15.0's 30.1s :
PO 105.4 s 136 s 1285 s §10"

Our code is written irc++. On asuN Ultra2200, the run
times are shown in Table Il for a test run on a 3232
lattice with 10 000 MC steps. For the same number of steps
and lattice size, the PO calculation takes about four times a: |
much time as the NA calculation. Their standard errors for o 1 2 s n s s
decay rates are roughly the same if the same nodes are used.
However, the PO uses the second and third nodes to calcu- FIG. 9. The standard error of the decay rate of wave modes for
late decay rates. Therefore the resulting decay rates hawke diffusion equation for NA using different lattice sizes=1,
standard errors about twice the size of that for NA. L=16, T=8. Standard errors are normalized kb=10°> Monte

The relevant quantity regarding the computational effi-Carlo steps.
ciency is thetotal computational effor€ needed to reach a
certain level of root mean squak®&MS) error . This is  wherea andp are constant parameters. The minimization of

defined as the total computational effort yields
E=CcNNN,, (53 , [2+2a+2B) a
X: T o 11 | s
where the speed factar is 4 and 1 for the PO and NA, 2a+1 o1
respectively. The RMS erraf is given by
5 (2+2a+ 28\ b
Ni=|————| =
8= 53+ 63, (54) t 2B+1 )&,

_ _ _ (57)
whered, is the bias and, is the standard error. In compar- N 1+a+B\[ Ny |24 N, |22
ing the efficiencies of the PO and NA, we focus on the wave No ( 1+ T) (N—> (N—)

0 x,0 t,0

mode withk= 1r.

For the naturally truncated P@; ~0.01% and is negli- 82(Ng,Ny 0,N; ) |2
gible. For a 3X 64 lattice, 64 000 MC steps are needed to X(f) ;
reduces, to 1% fork= . Hence£=5.2x 1¢°.

For NA and a large lattice size, we have where the optimal §;=46/1+2/(1+«a+B) and where

62(Ng,Ny 0,N¢ o) is the &, value for a lattice sizeN, o,N; o)
~ a n 3 and withN, Monte Carlo steps. For instance, with the above
NZ N2’ a andb values andv=8=0, to reach a RMS error of 1%,
one needdN,=257 andN;=330. Given thats,~1.2% for
where No=40000, N, =128, andN, ,=256, we expect the opti-
mal N=86 000. Therefore=7.3x10°. If we have a=1
KAL2 (m+k2)2T2 and 8=0 instead, the optimal values ahg,=190 andN;
= (55 =423 andN=254000. Therefor&€=2.0x 10°. There is a
factor of 40 improvementsee Table IV. The advantage of
the PO will be more pronounced in higher dimensions.

o

a=—————- an - e—
12(m+k?) 24

For instance, withL=16, T=8, m=1, k=, one hasa

=191.2 andb=315.1. The standard erra¥, is inversely TABLE IV. Total computational effort for the PO vs NA. One
proportional to\N and is a function of the lattice size. In- requires that the root mean square erromwgk) be §=1% for k
creasing the lattice size increas®s However, increasind, = 7. Parameters are=1 and =0 [see Eq(56)].
also has the effect of improving the result, since smaller
relaxes the constraint on the statistical accuracy of the first c Ny N, N (x10°) £(X10%)
few nodes ofS(k,t). Let us assume that NA 1 190 423 554 200

PO 4 32 64 64 5.2

8= SINENEI N, (56)
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The values ofe and 8 are difficult to obtain. The values  * - - - - ' -

a=1 and =0 are good approximations for the relevant x
. . . -—=- NA. 32x 32 "
lattice sizes, namelyiN, anq N; Qf o_rder of or b_|gger than s | _ . NA. 32x 64 .
200. Notice that a large lattice size is most detrimental tothe | |...... NA. 64 x 128 N
standard error of the smdtl-modes(see Fig. 9. o5 NA. 64 x 256 o °1
In summary, we find that the perfect linear operator gives © © PO.32x82 Y e
us the perfect dynamics of the various wave modes, giver | |* * PO.%x& /0 |

the errors of a numerical simulation. For the same lattice size§
and number of Monte Carlo steps, the PO schéwith the §
11X 3 operatoy is about four times slower relative to the NA
scheme, where generating random numbers takes about 50¢
of the total computation time in the latter case. However, the *
computational effort in order to reach the same root mean
square error for the PO is on the order of 1/40 of that for NA. s
This will be more pronounced in higher dimensions. More-
over, a more severe truncation of the perfect operator is pos = | s s s s s
sible, given the inherent accuracy of the simulation, further ° ! 2 * ‘ s ¢
enhancing the efficiency of the PO scheme.

151

FIG. 10. Decay rates of wave modes for the Ginzburg-Landau

i i ; . equationm=1, L=16, T=8.
C. Numerical simulations on modelA dynamics

In this section we study the application of the perfect 1. The m>0 regime
linear operator to the time dependent Ginzburg-Landau equa- \ye simulated the dynamics of a system of physical
tion for modelA dynamics, lengthsL=16, T=8 and parameterm=g=0Q=1 on lat-

tices of different sizes. Mass dependent perfect linear opera-
tors are used. The Fourier transformed space-time correlation
functions S(k,w) are measured and averaged over several
runs. Most simulations consist &,,,=9 runs, each with
AV N=3x10°> Monte Carlo steps. Measurements are done ev-
p:J’ D¢ exq' —— > [Sy+ S, (59)  ery eight Monte Carlo steps. For the NA result with 64
20 73 X 256 lattice, eight runs are used. Fourier transforming
S(k,w) to real time, we obtair§(k,t), whereS(k,t=0) is
where Sy=¢[—di+(—d;+m)?]¢ and S;=29¢*(—d;  the static structure factor, and the mode decay rates can be
+m) ¢+ (g¢®)*—(39Q/Ax) ¢* are contributions from the read off from the time dependence 8(k,t). The length
linear and nonlinear terms, respectively. scales of interest are those larger than=1. As in the case
For systems with nonlinear interactions, an exact analytiof the diffusion equation, the standard error of the PO result
cal expression for the perfect operator is not available. Thes one-half that for NA with the same number of statistical
difficulty lies in the fact that the form of the continuous averages.
action is not closed under the CG transformation. New inter- Mode decay rates obtained from the PO schemekfor
action terms are generated in reaching the fixed point of thaway from the origin are greatly improved over their NA
discrete description of the dynamics. In general there is agounterparts, as shown in Fig. 10. Fox=0.5, At=0.25, if
infinite number of interaction terms of diminishing impor- we had used the second and third nodeS(&tt), the decay
tance. In order to proceed, we need to make some approXfates for the second half of the Brillouin zone would not be
mations. In conventional numerical analysis, the form of thereliable, reflecting the inherent numerical erfaughly 1%)
continuous action is used, where the Laplacian operator igf the simulation. This is as in the free field case discussed at
replaced by the central difference operator and local selfthe end of the previous section. For the plots, we used the
interactions are left unchanged. In analogy, we use the pef=0 andt=At nodes instead. It is no longer perfect, but it is
fect linear operator developed previously &, while leav-  within the numerical error of the simulation and gives im-
ing the nonlinear self-interactions unchanged. We bundle thgroved results as compared with NA. When we choase
m¢ term in with theg¢p® term in them< 0 regime to reduce  =0.125, the error of the simulation is no longer a limiting
the standard error of the numerical simulation. Intuitively factor and the decay rates over the whole Brillouin zone are
this is a reasonable thing to do sinesl develops a nonzero recovered using the PO. With a smallét/Ax? ratio, the
amplitude and the contributions to the dynamicsgofrom  time direction becomes more continuous and the decay rate
these two terms largely cancel each other. We used the coRalues are improved for all schemes, as expected.
ventional central difference operator for the operatal?f For m>0, the ground state of the order parameter has an
+min S;. expectation value of zero. The nonlinear self-interaction term
There are two regimesn>0 where the nonlinear term in Eq. (58) has the main effect of renormalizing the mass to
amounts to a renormalization of the mass, end0 where a  a new effective massi.=m-+g(#?2). In mean-field theory,
nontrivial ground state develops with a magnitute/'m/g. the expectation value of? is expressed as a function of

dhp=3dip—mp—gp>+ 7. (58)

The corresponding path-integral formula is

036125-16
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FIG. 11. The influence oAt/Ax? on the decay rate of smakl-
wave modes for the Ginzburg-Landau equation. Smallegives
improved result for NA. The effective mass for the PO, however,

approaches a limit less than the mean-field resuk1, L=16, . . .
Tp:pg nonlinear part of actiots,. We expect that the perfect linear

operator operating on a functiof{x), which does not de-
pend ont, should yield &(9§+ m)?f(x). However, a sum-
mation of the PO along the direction does not yield the
one-dimensional NA form{aer m)2, but rather has coef-
g0 ) ficients roughly twice those of the NA form. Therefore, it is

FIG. 12. The static structure fact8(k,t=0) for the Ginzburg-
Landau equatioom=1, L=16, T=8.

Mett, Which is then self-consistently determined by the rela-
tion

(60)  inconsistent to simply use the central difference form for the
operator (-J2+m). A test simulation usingy2(—d2
+m)ya gives the value 1.36 for the effective mass, closer to

The renormalized mass is easily seen to be larger than thsur expectation. However, it is not clear how to interpret this

bare one. and it points to the need to derive the perfect form for the
From the decay rate of wave modes witk-0, we can  whole action, including the nonlinear part.

read off the value of the renormalized effective mass. The For the static structure fact&(k,t=0), shown in Fig. 12,
mean-field value of the effective massnigy=1.2258 for the  the PO result is not very close to the benchmark result of NA
chosen parameters. For the NA scheme, the renormalizeglith a 64x 256 lattice. For large values &f there is a con-
mass is less than the bare mass when the grid size along theoution from the stochastic CG transformation. For srkall-
time direction is chosen to bat=Ax?. Reducing the grid  values, its deviation is a result of the inaccuracy in the effec-
size while retaining the ratidt/Ax? leads to reduced effec- tive mass, which is related to the correlation lengtfand
tive mass values, away from the correct result. For the 64ence the shape &(k)] by the relationé~mg;2.

X128 lattice, we havene;~0.26. Unlike in quantum field |t is interesting to notice that the structure factor curves

theories, time and space are not symmetric in the dynamicgptained using different schemes and lattice sizes all cross at
we are considering. This translates into a freedom of choicghe same point arounki~1.3.

of grid sizesAt and Ax. Physical considerations lead us to
the natural choice oAt=cAx* wherez is the dynamic ex-
ponent andt is a constant factor. Outside the critical regime,
the diffusion term dominates the dynamics anelquals the In this case, there is a nontrivial fixed point in the action
mean-field value of 2. We expect the constant factto be  that corresponds to a ground state with order parameter val-
dependent on the nature of the nonlinear interaction and toes ¢= * \m/g. Domains of opposite order parameter val-
be different from 1. When we over-coarse-grain in the timeues compete and the dynamics is quite different from that
direction relative to the space direction, tinelatively) finite ~ with m above 0. In our simulation, we used the same param-
size of At introduces error into the simulation results. We eters as in the previous section except —1. We treated
found that aAx?/At ratio value of 2 to 4 is needed to reduce m¢+g¢° as one term and used the massless perfect linear
this error(see Fig. 1L operator. This leads to a reduced standard error. The data are
For the PO scheme, the effective mass is above the bapotted in Figures 13 and 14.
mass forAt=Ax2. However, asit is reduced, the effective The general shape and values of the dispersion relation
mass decreases. For a>3228 lattice, the effective mass is are similar to those of then>0 regime. However, there is a
found to be around 1.07. The reason lies in the fact that wenarked difference between these two regimes for wave
used the simple central difference Laplacian operator in thenodes close t&k=0. Here, instead of approaching a finite

Meg/M=1+

Megt/M | 4m3/2

2. The m<0 regime
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3 - - - - ' — why the shape of the dispersion relation for smallalues
* changes aax is reduced, and it places an inherent physical
wf |77 NAS2x32 x constraint on the level of discretization one can reach. Only
------ NA. 32 x 64 : ot ;
NA. 64128 x Wher_1 this extra complication is taken into account can we
s |o o PO.a2xa o oA obtain a perfect operator for this problem. Nevertheless, as
x  x  PO.32x64 ° shown in Fig. 13, the perfect linear operator gives superior

results to the NA operator for the same lattice size and com-
putational effort(as discussed in the previous secjion

In summary, a direct application of the perfect linear op-
erator gives us an improved dispersion relation for madel
dynamics, especially for those modes with a length scale
] comparable to the lattice grid size. However, a more exten-
sive study is needed to fully assess the efficacy of the perfect
. operator. This requires improving the perfect operator such
that it yields the correct effective mass in tire>0 regime
and accounts for the formation of domain interfaces in the
m<0 regime.

FIG. 13. Decay rates of wave modes for the Ginzburg-Landau
equationm=-1, L=16, T=8. D. Modified perfect operator

) ) As previously shown, although the perfect operator coef-
effective mass, the decay rate approaches zero, reflecting thgients fall off exponentially as one moves away from the

existence of a ground state with a nonzero amplitude. Alsoorigin, the decay rate is slow along thedirection. There-

due to the “vanishing” effective mass, the shape of the, e 4 operator with a shorter range of interaction is de-
structure factor is more peaked at the origin than inrhe sired.

>0 regime. For modes with smak (first few_nodej In the nonlinears model [27], by simply including the

S(k,w) values have a large standard deviation. F(())r examplé,ext nearest neighbo@INNs), the dispersion relation can
it is about 25% for thé&=47/L mode and about 9% for the pe greatly improved. In that case, the NNN coefficients are

k=8m/L for NA on a 32<64 lattice. _ _ _ obtained using a natural truncation of the perfect operator.
When grid sizes are reduced, the dispersion relatiorsince the operator coefficients fall off quickly along both
changes shape for sm&llmodes. The difference is signifi- 44t axes, such a severe truncation can still lead to signifi-
cant with respect to the standard error. This has also beetynt improvement. This is no longer true for the diffusion
checked with increased statistics. This may be due to thgq,ation. However, we might ask, can we improve the NA

existence of the nontrivial ground state. For<0, there is  gperator by allowing for nonzero operator coefficients for
another length scale in the problem, namely, the interface,ore neighbors? The answer is yes.

width between domains with opposite signs of the ground e pegin from the continuum limit constraints of Eqg.
state order parameter value. If the grid size is not small (52 Setting =0 and keepingp(i,j) nonzero for {,j)
_enough, the_ position, and hence the dynamics, of the domaig{(0,0),(0,1),(170),(2,0}) (called the basic points the
interface will not be resolved. This seems to be the reasoggnyentional operator is obtained as the only solution to

these equations. When more neighbors are included, the con-

straints are enforced by solving fprof the basic points as a
o'y --- Namx32 | 3 fynction of the other coefficient values.
N ::: ziif‘;'s Using these non-basic-point coefficients as fitting param-
3 6 o PO 32x82 eters, we can obtain an operator with a near perfect disper-
1 x  x PO.32x64 sion relation. If two parametersH(1,1) andH(2,1)] are
107}

used to obtain a 82 operator, the average error for the
dispersion relation is about 6%. By fitting four parameters
[by also includingH(3,0) andH(3,1)], we can obtain a 4

X 2 operator—called the modified perfect operdtdPO)—
that yields a dispersion relation with an average error of
1.7% with respect to the exact result as shown in Fig. 15.
The operator coefficients fan=0 are given in Table V.

For the MPO, the scaling regime starts from the first time
node of the two-point functioni.e. S(k,t=0)] due to the
nearest neighbor interaction along the time direction. So long

0 1 2 3 4 5 6 as the first two time nodes have reliable values, one can
estimate the decay rate. This greatly loosens the precision

FIG. 14. The static structure fact8(k,t=0) for the Ginzburg- ~ constraint placed by the perfect operator used before. When
Landau equatiorm=—1, L=16, T=8. the field has mass, direct fitting under modified constraints

S(K, t=0)
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Decay rate

FIG. 15. Decay rates of wave modes for the diffusion equation FIG. 16. Decay rate of wave modes for the Ginzburg-Landau

using the modified perfect operatgr=0.25, At=Ax. equationm=1, L=16, T=8. The modified perfect operator gives
results comparable to those of the perfect linear operator.

that take into account the mass causes little change in the
coefficients. not only integrate out the small-scale degrees of freeom

We tested the MPO in simulations of modekdynamics.  SPace and timebut also develop nonlocal representations of
The results are comparable to those of the perfect operatép€ underlying equations that are free of lattice artifacts. We
(see Fig. 1B It actually gives more accurate decay rates fordemonstrated this by computing the dispersion relation for
wave modes at the edge of the first Brillouin zone, since i€lémentary excitations, and comparing the results at large
allows the use of thé=0 andt=At nodes to compute the Wave numbers with theoretical expressions valid in the con-
decay rate, while doing this for the PO is an approximationfinuum limit. We exhibited computations for diffusion equa-
The computational effort for the MPO is drastically reducedtions, and a nonlinear equation derived from modedly-
due to the relatively short interaction range. namics, and explored different ways to truncate the nonlocal

The perfect linear operator operates on the coarse-grainégpace-time operators generated by the RG.
variable. For the modified perfect operator, the physical N one dimension, the computational complexity was re-
meaning of the variable it operates on is not apparent. A§luced by a factor of about 40 from conventional simulations,
discussed in Sec. |, there is a correspondence between £ the simple diffusion problem. For the nonlinear model
operator and a specific coarse-graining scheme. For the locgfluation, the results were less impressive, in terms of com-
averaging CG scheme, or hard CG, the resulting perfect ofRuter time, because a systematic approximation scheme for
erator has a long interaction range. However, the range df€ perfect action has yet to be developed. Nevertheless, pro-
interaction is reduced after we modify the CG scheme to b&eeding heuristically, we were still able to obtain improved
a soft CG scheme dependent on the parametdiherefore, ~ results for the static structure factor and the decay rate of
it is reasonable to think that there is a variant of the standarf0des. Lastly, we proposed a heuristic discretization algo-
local averaging coarse-graining scheme that gives the fagithm thatincorporates the ideas of perfect operators, but also
decaying operator we have computed above. Further investflives operators that are more local than perfect operators.
gation of this point is of general interest as regards the de- Finding the perfect operator when nonlinear interactions

velopment of an efficient numerical algorithm. are present is a nontrivial task. The form of the continuous
action is not closed under the CG transformation and new
VI. CONCLUSIONS complicated interaction terms are generated. This is a general

property of the RG36]. Usually progress is possible only if
The work presented in this paper is a first step towardhe problem under consideration involves a small parameter
reaping the full benefit of using renormalization group in thethat can be used to keep track of the new interactions gener-
study of dynamics of spatially extended systems. We havated. More generally, the small parameter allows a system-
constructed perfect representations of stochastic PDEs thatic approximation scheme to be developed, in which there is

TABLE V. Coefficients of the modified perfect action operatar=0 andAx?/At=1.

(x, t) H (x, 1) H (x, 1) H (%, 1) H

(0,0 6.317206 (0, ) -—3.050944 (0,2 892278610 % (0,3 6.200040<10°°
(1,00 —4.39658%10°% (1,1 -2.637365%10°% (1,2 —3.04559%10°2 (1,3 1.40217& 102
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a clear prescription as to which terms have to be included atlere the superscrigt indicates transposition. The projection
a given order. If such a parameter is not available, it is usuaiatrices satisfy the relations

to fall back on some type of variational scheme, typically o o L

including some kind of self-consistent calculation that corre- R 1IR=R1R=0 andRR 1+RR !=1. (A2
sponds to summing sets of diagrams. Neither of these ap-

proaches has been attempted in this paper. However, we fe@}q gefine the subscripted versions@fby

that the results which we have obtained are sufficiently en-

couraging that some type of systematic calculation of the = .= . % =z . = X . % .= .

perfect operator in nonlinear theories would turn the ideas RTTOR=0,R "OR=0gR" "OR=0cR "OR=0p,
presented in this paper into a powerful computational tool. (A3)

whereO and its subscripted versions are linear operators on

the original grid and on the coarse-grained grid, respectively.
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APPENDIX 9=(R1OR)f+ (R 1OR)T=0,f + Ogf,
In this appendix, we prove various relations that are im- A A T TTA E LETA T
portant in deriving the iterative relations for perfect opera- frOf=2(f Oaf+2f'Ocf +1 Ogf)
tors.
(1) Here we list some properties of the projection matri- especially f2=2(f2+7?), (A5)
ces.

We introduced A XN matricesﬁ, ~I32 and theirleft in-

versesR 1=1RT, R"1=1R",

where we assumed that the matfixis symmetric(physi-
cally, this means thad possesses inversion symmetrand
thereforeOp= 0L . Furthermore, ifO is translationally in-
variant with O, ,=Op1insi, Oa and Og are symmetric
while O¢ and Op, are antisymmetric. This can be seen by
me[1,2N], ne[1,N]. (A1) looking at their elements,

Rm,n: 5m,2n+ 5m,2n—1 ) Rm,n: 5m,2n_ 5m,2n—1’

“ n 1 . n
(OA)mn= Ozm,2n+§(02m,2n+1+ Oom.2n-1),

N o 1 . o
(OB)m,n:OZm,Zn_E(OZm,2n+l+OZm,anl)- m,n=1,... N, (A6)

~ 1. ~
(OC)m,nZE(OZm,2n+l_ Ozm,zn—l)-

In Fouri_er space, ¢(m) == p(k)expikm), me[1,2N], and E(n)zEE(K)eprKn), ne[1N]. We have Efl

=L(RN)*, R"1=1x(R")*, where* denotes the complex conjugate, and

~ . K K
Ric.c= /2€ KM( cosy Ok ki1 Sinz 5k,k/2+7r> ,
k,ke(—m,m). (A7)

= . K K
R k= \/Ee""“( —i'sing 8 w2+ C0Sg Oy w2 7

The sign ink/2+ 7 should be chosen so that its value lies within the intervalr( ). Physically, Eq.(A7) represents a
two-step process: a folding of the Brillouin zone by half, such that two wave modesl k= 7 are mixed, followed by a
stretching back to{ #,7). This is the corresponding process in Fourier space of the real space coarse-graining transforma-
tion.

Given the operato©= >0O(Kk)|k)(k|, i.e., plane wave functions form its eigenspace, the coarse-grained plane|wpaes

also eigenvectors dD,, Og, andf)c,
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(OA)K,K’ = 6K,K'

~ K
(OB)K,K’ = 5K,K’

) K
smzzo

A K
(O¢) n' = 5K,Kr( —i cosZsin—

K
coszz )
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(A8)

K

4

(2) In order to determine the iterative relations of |inearwheref“=f+OC(OB)*lﬁglf)D, and where we us® to de-

operators(see point 3 beloyy we first have to prove some

properties of the subindexed matrices.
(i) The first set of properties are

(0™ Ha0c=—(0"10g,
Op(0 ™ YHa=—0g (07 Y)p, (A9)
(07 Y)p0c=1-(0"1)0s.

To prove the first relation, we use E@\2):

(A10)

We can prove the other two relations in a similar way.
(ii) Another very useful result is

(07Ha=[0a=0c(0p) *Op] ™" (AL
We prove this using EqA9):

(O™ HA(Op—Oc(0p) t0p)

(A12)

(3) The iterative relation for the action operaf@ig. (19)]
follows from that ofp [EqQ. (14)], which reads

(pP) 1=LcM pg M HTLE+T (pa—peps *pp) T,
(A13)

note the full dynamic evolution operatby, . Sincep is sym-
metric, theA andB subindexed matrices are symmetric while
the C subindexed matrix is the transpose of iheubindexed
matrix. Using Eqs(A9) and (A11), the second term in the
above equation yields

L(p Al T=(p Ha=0c(05) *(p Mo
~(p 1c(Og) 'O+ 0c(0p)
X[(p™He—(pe) 11(0OF) *OL.
(A14)
Therefore(for the US scheme, ignore the factor of 2
(P") " =(p"Ha+O0c(O g(pg ) (Og) *O¢
~0c(0g) H(p Mo~ (pH)c(Og) *OL.
(A15)

Thus, using the iterative relatio®{) 1=(0~1), and Egs.
(A9), we have

(OM)~1(pM) "1 oM
=(O YA HAOT Ha+ (07 H20c(05) Hp s
X(OF) TOLOT H A= (07Ha0c(Op) H(p Y
X (0T Ha= (O™ Halp™Hc(Og) *OL(OT Y4
=(0™ AP HAOT Ha+ (O Help He(0T Ne

+(O Ye(p Hp(OT HA+ (O Halp ™ He(OT Yc.

(A16)
On the other hand, we have
(O 10T 1), =R 1O YRR 1+ RR Y
Xp HRR 1+ RR 1O IR,
(A17)

Expanding the above equation and comparing with Eq.
(A16) proves Eq(19).
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