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Renormalization group and perfect operators for stochastic differential equations
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We develop renormalization group~RG! methods for solving partial and stochastic differential equations on
coarse meshes. RG transformations are used to calculate the precise effect of small-scale dynamics on the
dynamics at the mesh size. The fixed point of these transformations yields a perfect operator: an exact
representation of physical observables on the mesh scale with minimal lattice artifacts. We apply the formalism
to simple nonlinear models of critical dynamics, and show how the method leads to an improvement in the
computational performance of Monte Carlo methods.
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I. INTRODUCTION

The purpose of this paper is to introduce numerical me
ods that avoid unnecessary discretization—or, ov
discretization—purely for the purpose of obtaining adequ
accuracy. An important and classical example of this is la
eddy simulation in the modeling of turbulent flows. Man
large-scale flows of engineering, geophysical, or atmosph
interest contain many length scales down to the dissipa
scale, yet it is large-scale drag that one wants to compute
such a situation, it is wasteful and undesirable to exp
computer time on details that are of no intrinsic interest.

The approach outlined in this paper builds upon our p
vious work @1# to use renormalization group~RG! methods
to integrate out the dynamics one wishes to ignore, so
numerical methods can instead focus on the appropriate s
of interest. This is not trivial because of scale interferen
the nonlinear amplification of the effect of small-scale d
namics, which contaminates and eventually pollutes
large-scale dynamics. There are several distinct facets to
problem.

First is the representation of the small-scale dynamics
stochastic field that acts on the coarse-grained degree
freedom. As discussed in our earlier paper, this inevita
leads to nonlocality. We will see here that it is possible n
only to coarse-grain individual operators, as in Ref.@1# but
also to coarse-grain at the level of the governing differen
equation. This leads to a theory that is nonlocal in space
time. This applies to systems with a finite number of degr
of freedom, as well as spatially extended systems, which
the main focus of our work here.

Second, the representation of the theory on the lattice
be improved by systematically integrating out the sm
scales, leading to an effective theory that has no~or few!
residual discretization artifacts. This is referred to as a ‘‘p
fect theory’’ in the literature. We demonstrate how this aris
and exhibit this feature by calculating the dispersion relat
of the effective theory in the perfect representation.

Our work is related to that of Chorin and co-worke
@2–6# who use optimal prediction methods to treat the la
of resolution of small scales. The main differences are t
they assume that the small scales are initially in therm
equilibrium, and also that they do not attempt to remo
1063-651X/2001/63~3!/036125~22!/$15.00 63 0361
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lattice artifacts. There have also been attempts to use sim
methods in the study of isotropic turbulence@7# and in simu-
lating the long-time-scale dynamics of proteins@8#. The idea
of ‘‘upscaling,’’ used by petroleum engineers to obtain av
aged or effective properties on length scales much lar
than those on which the data are known@9,10#, is a closely
related concept, and there have been some studies of up
ing using RG ideas@11,12#.

Our work grew out of attempts to improve lattice gau
theory, pioneered by the paper of Hasenfratz and Niede
eyer. For a review of this body of work, the reader is referr
to the review article by Hasenfratz@13#. In addition to the
work in Ref. @1#, there have been two attempts@14,15# to
solve differential equations using perfect operators. As
will see below, it is not enough to perfectly coarse-grain t
individual operators appearing in a partial differential equ
tion: once there is a noninfinitesimal time step, coarse gra
ing introduces memory effects, so that the entire differen
equation must be represented as coarse grained in sp
time. In addition, it should always be remembered that th
is no unique perfect operator for a given differential operat
A specification must be made of the microscopic probabi
distribution for the small-scale degrees of freedom. Th
papers implicitly impose a Gaussian free field theory dis
bution on the small-scale degrees of freedom. The meth
given in the present article are more general, and make
such assumption, explicit or implicit.

Let us now introduce the problem of removing lattice a
tifacts. Suppose the dynamics of a spatially extended sys
is described by a partial differential equation~PDE!, which
yields the solutionu(x,t). A standard procedure is to samp
u(x,t) at pointsxi ,t j , which are equidistant with spacing
Dx and Dt, and find a discretized form of the PDE that
devised to approximate the valuesui , j[u(xi ,t j ). The re-
quirement is that in the continuum limit the sequenceui , j
converges tou(x,t). The conventional way of discretizing
the PDE is to approximate differentiations with finite diffe
ences.

The disadvantage of thisuniform sampling~US! approach
is that one is forced to reproduce as faithfully as possible
the detail and fine structure of the solution, even on a sc
that may be of no interest or, worse, beyond the regime
applicability of the differential equation itself. This has tw
consequences:~i! a small grid sizeDx must be used, which
©2001 The American Physical Society25-1
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implies that many grid points must be calculated and sto
~ii ! for dynamic problems, a small time stepDt is implied by
the smallDx, for reasons of either accuracy or stability of th
numerical method.

As a result, there is a huge computational cost associ
with this conventional numerical scheme, which makes
study of problems such as critical dynamics and pattern
mation very difficult to carry out. There is a need for im
proved, physically motivated methods for numerical expe
ments.

The purpose of a numerical simulation is to study t
macroscopic properties of a physical system. Different
croscopic dynamics may be related, viacoarse graining
~CG!, to the same macroscopic dynamics that defines a
versality class. Often CG means the local averaging o
continuous variable,

U~X!5E
2L/2

L/2

dxu~X1x!, ~1!

whereu(x) is the continuum variable,U(X) is its coarse-
grained counterpart, andL is the coarse-graining lengt
scale. Instead of focusing on the small-scale degrees of f
dom, we should determine and use the coarse-grained
scription of the system appropriate at the macroscopic sc

One of these physics-motivated numerical methods is
cell dynamical scheme@16#, in which a discrete description
of the system dynamics is obtained directly from consid
ations of the underlying symmetry and conservation laws
has been successfully used to tackle problems such
asymptotic scaling behavior in spinodal decomposition@17#
and the approach to equilibrium in systems with continuo
symmetries, such asXY magnets@18# and liquid crystals
@19#. There have also been attempts at using the RG in
namic Monte Carlo simulations@20,21#.

To investigate what is required to obtain a coarse-grai
dynamic description, suppose that we denote the coa
graining operator at scaleL by the symbolCL , which trans-
forms u(x,t) to U(X,t). Then conceptually we need to fin
the operatorLL that connectsU(X,0) andU(X,t) given the
microscopic time evolution operatorL connectingu(x,0)
with u(x,t), as shown schematically in the commutativi
diagram below:

Notice that there is not a unique choice ofCL . The usual
choice is local averaging. In principle, other operators can
used, such as the majority rule scheme used in the co
graining of Ising spins in thermal equilibrium. Once
coarse-graining operatorCL has been defined, there shou
be a unique prescription to obtainLL @22#. In this paper,
coarse graining is understood to mean local averaging. La
stochastic coarse graining will be introduced as a varian
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the simple local averaging. In Sec. II the simplest discreti
tion procedure—magnification by a factor of 2—is di
cussed. Together with an appropriate rescaling, this defi
one step of a RG transformation. As usual, it is the fix
point of this transformation that is of the most interest.
perfect operator is defined as the form taken by a differen
operator at the fixed point of the RG transformation. A co
sequence is that perfect operators are free of lattice artif
and therefore this holds out the hope of performing num
cal simulations that are free of discretization errors. In
development of the theory of perfect operators a parame
denoted here byk0 ~see Sec. III B!, naturally arises, tha
characterizes the nature of the coarse-graining proced
The form ~1! is appropriate only ifk0 is infinite; if k0,`,
additional noise terms are generated which reflect the red
tion in the number of degrees of freedom in the system.
already stressed in our earlier paper@1#, it is inconsistent to
work with a perfect operator withk0,` and to use thek0
5` form ~1! as some authors@14,15# have done. We also
see no reason why coarse-grained equations should be
rived by varying a coarse-grained action in the absence
small parameter, that is the starting point of these auth
Instead we begin with a dynamics that is intrinsically s
chastic and study the effect of CG on this system. The w
known path-integral formulation of such equations may th
be used to carry out the CG: there is no need to invok
variational principle.

We need to consider the appropriate coarse-grain
scale. Two situations are possible here. In the first, we s
pose that the solution we wish to obtain has a natural scaL
below which there is no significant structure. In that ca
our goal is to avoid having to overdiscretize the proble
merely in order to attain the accuracy of the continuum lim
Thus, we would like to be able to use as large a value for
grid spacingDx as possible without sacrificing accuracy.
the second situation, there is no such obvious scale, o
least, it is not knowna priori, but the computational de
mands are so large that it is simply not feasible to work w
a grid spacingDx smaller than some sizeL. In this case, we
would like to minimize in some sense the artifacts that m
inevitably arise.

The first situation is more straightforward because
only issue is speed of convergence to the continuum lim
there is no explicit discarding of important dynamical info
mation. In the second situation, one is making an unc
trolled and potentially severe truncation of the correct d
namics. One has to ask: can one model the negle
unresolved scales as effective renormalizations of the co
cients in the original PDE? Are the neglected degrees
freedom usefully thought of as noise for the retained lar
scale degrees of freedom? And how can any available st
tical information on the small-scale degrees of freedom
used to improve the numerical solution for the large-sc
degrees of freedom?

While in this paper we explore several aspects of the
of RG methods to reduce errors due to discretization, we
not attempt to develop a systematic approximation sche
for nonlinear partial differential equations. We see the m
purpose of the paper as the construction, application,
5-2
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assessment of such methods to relatively simple equati
the formulation of a completely systematic approach is
for the future. It may be that the present approach canno
made completely systematic. An analogy might be with r
space RG methods in critical phenomena. Alternatively
may be that some new insight will show how the machin
we develop here can be incorporated into a broader sch
within which systematic approximations are possible.

The plan of the paper is as follows. In Sec. II we set
the coarse-graining algebra, which forms the basis of
approach, using the path-integral formulation of stocha
dynamics as our starting point. This formalism is then us
in Sec. III to obtain the perfect operator for dynamics go
erned by linear operators. Section IV describes the result
numerical simulations using the perfect operator with Lan
vin dynamics and Sec. V using the Monte Carlo approach
range of issues is discussed, from applications of the me
to the diffusion equation and nonlinear modelA dynamics to
the question of the truncation of perfect operators requ
when carrying out simulations. Our conclusions are p
sented in Sec. VI and the structure of the coarse-grain
algebra is discussed in an Appendix.

II. COARSE GRAINING IN THE PATH-INTEGRAL
FORMULATION OF LANGEVIN DYNAMICS

In this section, we derive the path-integral formulation
the Langevin dynamics and present the general framew
under which the perfect linear operator is derived. The an
sis is applicable to both PDEs and stochastic differen
equations. For simplicity, we study a system whose dyna
ics is described by a stochastic differential equation~SDE!
with the form

]f~x,t !

]t
52 f ~x,t;$f%!1h~x,t !, ~2!

wheref is a field,f is the forcing term~it can depend onf
and/or its spatial derivatives!, andh is a white noise.

It is convenient to regularize the problem on a~fine! N
3N8 lattice with grid sizeDx andDt in the space and time
directions, respectively. In the lattice picture, all variables
the original PDE are vectors of functions of discrete sp
x5 iDx and timet5 j Dt wherei P@0,N21#, j P@0,N821#.
We defineg( iDx, j Dt)[g( i , j ) and denote the space-tim
volume elementDxDt by DV. The noise satisfieŝh( i , j )&
50 and ^h( i , j )h( i 8, j 8)&5(V/DV)d i ,i 8d j , j 8 , where V is
the noise strength andd i , j is the Kronecker symbol. Given
that the system is in the statef0 at time t0, the probability
that the system will be in statef1 at timet1 is given by@23#

P~f1 ,t1uf0 ,t0!5E DfDh expH 2
DV

2V (
i , j

N,N’ Fh2~ i , j !

2
V

]f f G J d„h2] tf2 f ~f!…, ~3!

Dx
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where the integration is over all configurations beginning
f0 and ending atf1. We can use this path-integral formu
to determine the dynamics followed by the coarse-grained
uniformly sampled variable.

By a discretization scheme, we will mean a process mad
up of a series ofmagnifying operationswhich lead from a
microscopic description of a system to a macroscopic
scription on a lattice. These magnification operations are
default, magnification of a length scale by a factor of
Coarse graining and uniform sampling are both special ca
of a discretization scheme.

Suppose a system is specified by the values of a func
f, such as a field configuration, on a fine lattice with 2N grid
pointsx5(x1 ,x2 , . . . ,x2N) separated by grid sizeDx. One
step~level! of coarse graining is defined as local averaging
the function’s values at every two neighboring sites,

f̄ n5
1

2
~ f 2n211 f 2n!, f̃ n5

1

2
~ f 2n2 f 2n21!. ~4!

Vector f̄ is the coarse-grained version off, while f̃ stores the
detailed information that is lost after coarse graining. Af
one level of CG, the system is described by a new functiof̄
on a coarser lattice withN grid points separated by twice th
original grid size ofDxM52Dx, where the superscriptM
indicates ‘‘magnified value.’’ We define 2N3N projection

matricesR̄̂, R̃̂ such that

f 5 R̄̂f̄ 1R̂
˜

f̃ ,
~5!

f̄ 5 R̄̂21f , f̃ 5R̂
˜ 21f .

These matrices act as projection and inverse projection
erators between the original functional space and the coa
grained functional space. They facilitate an easier ma
ematical formulation. Many of the properties of the matric
can be found in the Appendix. If we are interested in
operatorÔ on the original grid, then it is possible to defin
four corresponding operators on the coarse-grained g
which we denote byÔA ,ÔB ,ÔC , andÔD . For instance,

ÔD[ R̄̂21ÔR̄̂.

The analogous definitions ofÔA , ÔB , andÔC are given in
the Appendix.

A similar algebraic scheme can be defined for the unifo
sampling transformation, where the projection opera
samples every other point and discards the rest:

f̄ n5 f 2n21 , f̃ n5 f 2n , ~6!

R̄̂m,n5dm,2n21 , R̂
˜

m,n5dm,2n ,

mP@1,2N#, nP@1,N#. ~7!

Using the notations listed above, we can write down
magnification procedure in space for the (111)-dimensional
version of Eq.~2!, coarse graining in space only. The int
5-3
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QING HOU, NIGEL GOLDENFELD, AND ALAN McKANE PHYSICAL REVIEW E63 036125
grations over thef and h variables are decomposed in
integrations overf̄, f̃, h̄, and h̃ variables and theh̃ inte-
gration carried out using thed function. The remainingd
function is replaced using the identityd(x)5ad(ax)
5a*dqeiaqx/2p. This leads to a path integral, neglectin
any constant factors, of the form

P5E Df̄Dh̄Dq expH 2
DVM

2V (
N,N8 F1

c
h̄22 iq~ h̄2] tf̄ !G J

3E Df̃ expH 2
DVM

2V (
N,N8 F1

c
~] tf̃1 f̃ !21 iq f̄

2
V

DxM
~]f̄ f̄ 1]f̃ f̃ !G J , ~8!

where the constantc is 1 or 2 for CG or US, respectively
due to their different projection matrix properties, and whe
DVM52DxDt52DV is the magnified volume element. Th
important point is that, in general, bothf̄ and f̃ are functions
of f̄ and f̃.

What we would like to do is integrate over thef̃ degrees
of freedom, carry out theq integration, and end up with a
form similar to the one we started with, but with new
renormalized, parameters. More specifically, we wo
like the integration overf̃ to give a result of the form
exp$2(DVM/2V)@ iqF2(V/DxM)]f̄F#%. Then we could
readily integrate overq and compare the result with the pat
integral form to read off the evolution equation for the ne
coarse-grained variable as] tf̄52F(f̄)1h̄. However, we
would not expect to be able to do this in general, and
usual in all applications of the RG an approximation sche
has to be developed alongside this formalism in order
make any progress. There is, however, one case in which
integrations can be carried out, and that is the linear case
therefore study this first, before returning to the nonline
case later.

III. PERFECT OPERATOR FOR DYNAMICS

In this section, we will determine perfect operators
dynamics governed by linear operators. We will find t
fixed point flow of operators for the diffusion equation und
CG and US transformations. In addition, the perfect opera
in discrete space and time is obtained for the diffusion eq
tion and its properties discussed.

A. Iterative relations and fixed points in the linear case

We begin by performing the magnifying transformatio
on the SDE~2! wheref is a linear function off, that is,

] tf52L̂f1h, ~9!

whereh is a white noise. HereL̂ is a general linear operato
and contains spatial, but not temporal, derivatives. It is
sumed to possess inversion symmetry and translationa
03612
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variance. For the diffusion equation,L̂ is the finite difference
Laplacian operator with a minus sign. The convention
choice is the central difference operatorL̂m,n5(2dm,n
2dm,n112dm,n21)/Dx2.

To obtain the dynamics of the coarse-grained variable,
have to integrate out the small-length-scale degrees of f
dom in Eq.~3!. In the linear case, the Jacobian term is co
stant and so does not enter into the analysis. Applying
projection matrices to Eq.~9!, inserting the result into the
path integral in Eq.~8!, and integrating out thef̃ and q
degrees of freedom yields

P5E Df̄Dh̄

3expH 2
DVM

2V ( @h̄21~ h̄2hM !Q̂21~ h̄2hM !#J ,

~10!

where hM[] tf̄1(L̂A2L̂CM̂ 21L̂D)f̄ and Q

[L̂CM̂ 21(M̂T)21L̂C
T . Here the operatorM̂ is given by Î ] t

1L̂B . Defining a new noise sourceh̄85h̄2@ Î 1Q̂#21hM

and carrying out the integration overh̄8 yields

P5E Df̄DhM expH 2
DVM

2V ( hM~ Î 1Q̂!21hMJ
3d„hM2] tf̄2~ L̂A2L̂CM̂ 21L̂D!f̄…. ~11!

Comparing this with the form~3!, it follows that the dynamic
equation satisfied byf̄ is

] tf̄52L̂CGf̄1hM,

where L̂CG[L̂A2L̂CM̂ 21L̂D . The new noise sourcehM is
no longer a white noise: it has a spatial correlation as wel
a time correlation,

^hM&50

and

^hM~r ,t !hM~r 8,t8!&5
V

DVM
~ Î 1Q̂!~r 2r 8,t2t8!.

~12!

Given that the noise source is no longer Markovian af
the first step of coarse graining, we need to start with a m
general noise source in order to iterate the coarse-grai
procedure. Define a general Gaussian noise source with
properties

^h&50 and^h~r ,t !h~r 8,t8!&5
V

DV
r21~r 2r 8,t2t8!.

~13!
5-4
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Repeating the above analysis, we find that the coarse-gra
dynamic equation remains the same; however, the coa
grained correlation matrix is modified and is given by

~r ĈG!215L̂CM̂ 21r̂B
21~M̂ 21!TL̂C

T1Ĝ~ r̂A2 r̂Cr̂B
21r̂D!21ĜT,

~14!

where Ĝ5 Î 1L̂CM̂ 21r̂B
21r̂D . The presence of time deriva

tives in r makes the noise non-Markovian. In general,
should be careful about the boundary term in this case@24#.
In particular, we need to specify corresponding initial con
tions for each time derivative generated through the itera
relation.

The first term inLCG5L̂A2L̂CM̂ 21L̂D is not what we
would naively choose as the Laplacian operator with
coarse-grained grid sizeDxM. Instead, the second term
which comes from accounting for the influence of the sm
length-scale degrees of freedom that are integrated out, g
an important contribution to the coarse-grained operator
cannot be treated as a perturbation.

It is more convenient to examine the coarse graining
Fourier space~see the Appendix!, where all matrices are now
scalars dependent on wave numbers denoted byk or k, and
frequencies denoted byv. We may formally rewrite the it-
erative relation forL̂ in Fourier space as

L̂CG~k!5L̂AS k

2
,
k

2
6p D

1L̂CS k

2
,
k

2
6p D 2Y F iv1L̂BS k

2
,
k

2
6p D G .

~15!

Each successive coarse-graining procedure gives us a
operator, which weighs information from two differen
points of Fourier space, corresponding to wave modes
different length scales, and puts them into a new point. E
though the original linear operator contains only different
tion in space, the new linear operator after one step of
has a time differentiation component as well. Forv50, we
can prove analytically~and verify numerically! that the op-
erator reaches a fixed point,

L~k!5
4

~Dx!2
sin2

k

2Y S 12
2

3
sin2

k

2 D . ~16!

This is the perfect operator for2]x
2 in one dimension. One

might hope that this operator can be recombined with] t and
used in the dynamic equation to give a perfect dynamics
turns out that this is in generalincorrect. The reason is tha
the iterative relation from the path-integral calculation is
dynamic iterative relation with time derivative in it. Whe
one setsv50, physically it translates into the assumptio
that small-scale degrees of freedom are enslaved by
large-scale dynamics. The small-scale degrees of free
instantaneously adjust to the large-scale ones that are
after each magnifying transformation. This is not physica
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Since we are magnifying only in space, the time differe
tiation is diagonal in this phase space. We have the triv
relations (] t)A5(] t)B5] t and (] t)C5(] t)D50. We define
the full space-timeevolution operator

L̂v5] t1L̂ such that L̂vf5h ~17!

and theaction operator

H5L̂v
TrL̂v such that

E Dh expH 2
DV

2V ( hrhJ d~h2L̂vf!

5 expH 2
DV

2V ( fHfJ , ~18!

and express the iterative relation in terms ofL̂v andH. This
leads to a simple form for the full iterative relation~see the
Appendix!,

~ L̂v
21!M5~ L̂v

21!A ,
~19!

~H21!M5c~H21!A ,

where the constant factorc is 1 for CG and 2 for US. The
second iterative relation physically means that the coa
grained version of the two-point function of the true dyna
ics is preserved, if the coarse-grained variable is governe
the operatorL̂v with a non-Markovian noise sourcer. The
above iterative relations are readily generalized when m
nifications are carried out along the time direction.

We now wish to determine the fixed point solutions of t
operatorsLv andH under their iterative relations. It can b
shown that the operators approach their fixed points ex
nentially fast as a function of the number of iterative ste
irrespective of their detailed form at the microscopic sca
The fixed point solutions are given below while the expone
tial approach is illustrated in Fig. 1.

We begin the simpler case of US. Starting from a zer
order operator of the formLv,05 iv1(4/e)sin2(k/2), appro-
priate for a description at the microscopic scalee, after re-
peated US transformations we arrive at the operator suit
for the length scaleDxn52ne. If the general form of the US
operator aftern iterations is written as

~Lv,n!215
1

2n

an

ivbn1~4/Dxn
2!sin2~k/2!

, ~20!

it is closed under iteration, given starting valuesa05b0
51. The iteration relations are

an115anS 11bn

ivDxn
2

2 D
and

bn115bnS 11an

ivDxn
2

4 D . ~21!
5-5
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These have a fixed point solution

an511
1

6
~ iQn!1

1

120
~ iQn!21•••

5(
1

~2i 11!!
~ iQn! i

5
1

AiQn

sinh~AiQn!,

bn511
1

12
~ iQn!1

1

360
~ iQn!21•••

5(
2

~2i 12!!
~ iQn! i

5
2

iQn
@cosh~AiQn!21#.

whereQn[vDxn
2 .

For the iterative process starting from, for instance,
microscopic action operatorH05v21@(4/e2)sin2(k/2)#2, we
take

Hn
215

an1en sin2~k/2!

bn
2v21@dnv1~4/Dxn

2!sin2~k/2!#2
, ~22!

where dn and bn are the real and imaginary parts ofb in
Ln,v . The iteration relations foran anden are

an115an12andn

Qn

4
1~2an1en!~bn

21dn
2!S Qn

4 D 2

,

en115
1

4 S en14endn

Qn

4
22anD . ~23!

FIG. 1. RG flow of the dynamics operator. In this case t
starting point is a microscopic Laplacian operator of the formL0,v

5 iv1(1/e2)k2. The functional form of thenth iterate ofLv is
(Lv,n)215(1/2n)an /@ ivbn1(1/Dxn

2) f n(k)#.
03612
e

The fixed point solutions are, settingun5AQn/2,

an511
Qn

2

360
1•••

5(
Qn

2i

~4i 13!!
@4i 11#2

1

2
en

5
1

4un
3 @sinh~2un!2 sin~2un!#2

1

2
en ,

en52
2

3
1

4Qn
2

7!
1•••

5(
Qn

2i

~4i 13!!
@4~21! i 11#

5
1

un
3 @sinh~un!cos~un!2 cosh~un!sin~un!#,

bn512
Qn

2

360
1•••

5(
Qn

2i

~4i 12!!
@2~21! i #

5
1

u2
sinh~un!sin~un!,

dn52
Qn

6
1•••

5(
Qn

2i 11

~4i 14!!
@2~21! i 11#

5
1

u2
@cosh~un!cos~un!21#. ~24!

We can now move on to the CG case. Here we para
etrize the operators as

Lv,n
21 5gn

Dxn
2

4
1

an

ivbn1~4/Dxn
2!sin2~k/2!

,

Hn
215 f nS Dxn

2

4 D 2

1
an1en sin2~k/2!

bn
2v21@dnv1~4/Dxn

2!sin2~k/2!#2
.

~25!

It is easy to see that CG shares the sameb, b, andd param-
eters as US. The iteration relations for the other parame
are different. However, one can obtain a relation betwe
aCG andaUS, namely,

an
CG5an

USbn5
1

iQn
~an11

US 2an
US!. ~26!
5-6
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Using this relation we find

gn
CG5

4

iQn
~12an

US!. ~27!

Therefore, the fixed point solution foraCG andgCG can be
written in terms of that foraUS, while the rest of the param
eters have fixed points

an512
Qn

2

144
1•••

5(
Qn

i

~4i 15!!
@22i 14~RI21!#2

1

2
en

5@cosh~un!2 cos~un!#2Zn ,

en5211
85Qn

2

3•7!
1•••

5(
~2Qn! i

~4i 15!!
@8224i 17#

5
2

un
4 ~Zn112Zn!

f n5
2

15
2

16Qn
2

9!
1•••

5(
Qn

i

~4i 15!!
@16~21! i #

52
4

un
4 ~Zn21!,

where Zn[(1/2un)@cosh(un)sin(un)1 sinh(un)cos(un)#, and
RI denotes the averages of the real and complex part
@(31 i )/2#4n15.

B. Perfect action operator in space-time
and stochastic CG scheme

So far, we have only coarse-grained the spatial degre
freedom and obtained the corresponding perfect operator
order to move on to numerical calculations on a lattice,
also need to coarse-grain the time degree of freedom.

We focus on the perfect action operatorH5L̂v
TrL̂v which

is used later in the space-time Monte Carlo calculatio
Here we derive the fixed point solution ofH. We give a
nearly closed form solution forH(k,v) and show that this
operator gives a perfect dispersion relation as measured
the time-displaced two-point function. A stochastic coar
graining scheme is introduced, which modifiesH to give us
an operator with reduced range of interaction.

The iterative relation we developed previously does
hinge on whether CG was carried out on the space or t
axis. Therefore, we can use it to CG in the time direction
well. Either one can start from a continuous description a
03612
of
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alternately CG in space and in time, or one can directly
the perfect operator we developed previously and only
from continuous time. Now, there is another dimensionl
parameter, namely, the ratio of the time scale over the c
acteristic time appropriate for a chosen length scale. For
diffusion equation, it isDt/Dx2. We already see the man
festation of this parameter in the perfect operator deriv
earlier, where only the combination of the formvDx2 enters
the expressions. Therefore, there are two restrictions on
we apply the two schemes. In the first case, we should
twice in the time direction for each CG operation in th
spatial direction, maintaining the value of the ratioDt/Dx2

throughout the process. This means that, for any reason
values ofDt/Dx2 at the macroscopic side, we need to st
with a smallDx and a very smallDt. In the second case, w
will not be able to maintain the ratio ofDt/Dx2. Therefore,
the fixed point operator should be identified by iterati
backwards. This means that we repeat the iterative pro
many times starting from various values ofDtn[Dt/2n and
iteraten steps. The fixed point is identified as the opera
that is~within tolerance! not changed whether we start from
Dtn or Dtn11. This method was used in the previous secti
to calculate the fixed point operator form forH when the
time frequency v was nonzero. This reversed iteratio
scheme is more powerful, since it can be generalized to o
cases where there are other dimensionless parameters,
as the case of massive fields.

The fixed point solution of ad-dimensional operator un
der the CG iterative relation can be found using the te
niques that have been described in this paper. An alterna
method, the so-called ‘‘blocking from continuum’’ can als
be used. In any case one finds@25–27#

OFP~k!215(
l

O@~k12p l!/Dx#21)
i 51

d
4 sin2~ki /2!

~ki12p l i !
2

1
1

k0
,

~28!

whereO(p) is the continuum spectrum of the operator anl
is a vector whose elements are of all possible integer val

In the above equation, an extra constant term with a
rameterk0 is introduced. This term is important for obtain
ing a localized perfect operator fit for numerical simulatio
@27#. To get this term, we modify the CG procedure to be
stochastic CGoperation, also called soft CG instead of ha
CG, where an artificial noise term is introduced into the C
variable,

fS5f̄1n ~29!

with ^n&50 and ^n( i)n( i8)&5(V/k0DV)d i,i8 . Taking k0
→`, the hard CG case is recovered.

Now consider the diffusion equation for a massive fiel

] tf5]x
2f2mf1h. ~30!

The continuum spectrum ofH is
5-7
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TABLE I. Sample coefficients of the perfect action operator for the diffusion equation.k52, m50, and
Dx2/Dt51.

(t,x) H (t,x) H (t,x) H (t,x) H

~0, 0! 3.90458 ~0, 1! 21.02978 ~0, 2! 20.0421266 ~0, 3! 0.098042
~0, 4! 0.0291451 ~0, 5! 20.00317113 ~0, 6! 20.00407848 ~0, 7! 27.3533431024

~1, 0! 20.464966 ~1, 1! 20.278677 ~1, 2! 20.0339122 ~1, 3! 0.0328692
~1, 4! 0.0148371 ~1, 5! 22.828631024 ~1, 6! 20.00204057 ~1, 7! 25.2291531024

~2, 0! 25.9932431024 ~2, 1! 28.2541831024 ~2, 2! 23.6837131024 ~2, 3! 6.9167331024

~2, 4! 8.0492731024 ~2, 5! 2.0413531024 ~2, 6! 21.2739331024 ~2, 7! 29.2580631025
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H5S v

Dt D
2

1F S k

DxD 2

1mG2

where v,kP~2p,p!.

~31!

Defining the notationxl5x12p l , we have

1

Dx4
H215(

l ,l 8

1

~kl
21m!21r 2v l 8

2

4 sin2~k/2!

kl
2

4 sin2~v/2!

v l 8
2

1
1

3r 2k
, ~32!

where we defined parametersm[mDx2 andr[Dx2/Dt. To
conform with notation used in quantum field theories,
have definedk5k0Dt2/3.

The double summation is cumbersome to evaluate
merically due to its power decaying behavior. By rewritin
the factor$kl

2@(kl
21m)21r 2v l 8

2 )#%21 as a difference of two
terms we can reexpress the above formula as a sum
closed formed expression and an exponentially decaying
pression. To do so, it is convenient to introducev l* [(kl

2

1m)/r and the function

G~k,m![(
l

4 sin2~k/2!

kl
2~kl

21m!

5
1

m H 12
~sinhAm!~12 cosk!

Am@~coshAm!2 cosk#
J .

Then, after some simple algebraic manipulation, one find

1

Dx4
H2152]mG2r sin2S v

2 D ]m
2 G12r sin2S v

2 D
3(

l

4 sin2~k/2!

kl
2~kl

21m!3

e2v l* 2 cosv

coshv l* 2 cosv
1

1

3r 2k
.

~33!

Now what remains of the summation is much easier to ev
ate due to its exponentially decaying behavior.

From the above equation, we can obtain the dispers
relation implied by such an operator. The two-point functi
for a free field isS(k,v)5H21(k,v). Taking the discrete
03612
u-

a
x-

-

n

Fourier transform of Eq.~33! back to real time gives the
static equal time structure factor

S~k,t50!5(
l

4 sin2~k/2!

kl
2

1

~v l* !3
~v l* 211e2v l* !1

1

3r 2k
~34!

and the time-displaced two-point function

S~k,t>1!5(
l

H 4 sin2~k/2!

kl
2

4 sinh2~v l* /2!

~v l* !2 J 1

2v l*
e2v l* t

5(
l

4 sin2~k/2!

kl
2

122e2v l* 1e22v l*

2~v l* !3
e2v l* (t21).

~35!

All dynamic modes are present, each with the correct dec
ing behavior and with a prefactor~enclosed in curly brack-
ets! due to coarse graining in space as well as in the ti
direction. In principle, the decay rate should be measure
the long-time limit where all modes outside the first Brillou
zone are negligible. However, for all practical purposes,
lÞ0 modes are negligible~or, more precisely, the next sig
nificant mode not degenerate withl 50) even for short times.
For example, fork5p/2, m50, the amplitude of the nex
most significant mode (l 521) is only 1.531024 of that of
the l 50 mode. Therefore, we can use thet>1 values of the
time-displaced two-point function to evaluate the perfect d
persion relation for all the wave modes with wave numb
within the first Brillouin zone.

From H21(k,v), we obtain the perfect operator coeffi
cientsH(r ,t) in real space and time. Notice that ‘‘the fixe
point of an operator’’ actually means the fixed point of t
dimensionless operator. Consequently, operator coeffici
for the perfect action operator are actually those ofHDx4.
For practical reasons, we need to adjust the parameterk for
optimal locality. In one dimension,k'2 and 6 are the bes
values for]x

2 and]x
4 , respectively. Therefore, we need to fin

a compromise. The best scheme is to choosek52 such that
the most significant couplings lie within a rectangular ar
elongated along thex direction. In this way, the total numbe
of significant couplings is minimized.

The leading order coefficients ofH for k52 and zero
mass are tabulated in Table I and shown in Fig. 2.
5-8
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IV. NUMERICAL SIMULATION
USING THE PERFECT OPERATOR

In this section, we discuss the application of the perf
linear operator in numerical simulations of Langevin dyna
ics. We show that the perfect operator should be decompo
into anup operatorand adown operatorin order to obtain a
correct equation with a finite number of high order time d
rivatives. Without this decomposition, the truncation of t
perfect operator is highly nontrivial, if not impossible. F
Langevin dynamics, the dynamics of the non-Markovi
noise is difficult to obtain because it requires taking t
square root of the noise correlation function. Various n
merical simulations were carried out using the truncated p
fect operator and other approximations, to illustrate the
vantage of using coarse-grained variables as oppose
uniformly sampled variables in numerical simulation
These, together with the limitations of this approach, are a
discussed.

A. Perfect operators in Langevin dynamics

Here we derive the perfect operatorsÛ and % @see Eqs.
~40! and ~41! below for the definition of these operator#
appropriate for Langevin dynamics. In the previous secti
we obtained the iterative relation for bothL̂v and H. From
the latter, the correlation function for the non-Markovia
noise is obtained. The discretized system follows the dyn
ics described by the PDE

L̂vf5h, ~36!

where h satisfies ^h( i , j )h( i 8, j 8)&5(V/DV)r21( i 2 i 8, j
2 j 8). This formally simple equation is different from th
usual Langevin dynamics in two respects: the no
Markovian nature of the noise and the presence of~in prin-
ciple! infinite orders of time derivatives in bothL̂v andr21.

FIG. 2. Surface plot of amplitude of perfect action opera
coefficients for the diffusion equation. The coefficients expon
tially decay away from the origin. The decay speed is slow alo
the x direction.k52, m50, andDt5Dx2.
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The non-Markovian nature of the noise means that th
is dynamics in the noise variable. This is not surprising.
the path-integral calculation, each CG step results in f
mally discarding small-scale degrees of freedom. But in f
the small-scale degrees of freedom are not entirely discar
Since the small-scale dynamics is affected by the no
source as well as the system dynamics at the coarse-gra
level, when the small-scale degrees of freedom are integr
out at each CG step, part of the small-scale dynamics
preserved by modifying the dynamics at the larger len
scale and by injecting dynamics into the noise. This is ess
tially a feedback effect.

Due to the non-Markovian nature of the noise, we need
write down the dynamics followed by the noise,

r1/2h5h0 , ~37!

where h0 is a white noise satisfyinĝ h0( i , j )h0( i 8, j 8)&
5(V/DV)d i ,i 8d j , j 8 . The matrixr1/2 is the square root ofr
in the sense that the product ofr1/2 and its Hermitian conju-
gate givesr. For instance, in Fourier space,Av21k45 iv
1k2. There are in principle infinite orders of time derivative
in r1/2, just as inL̂v.

Naively, L̂v can be obtained as a series expansion in] t
which is then truncated to certain order. This turns out no
be the correct approach. Rather, we need to decompose
operatorL̂v in the form of a numerator (Û) over a denomi-
nator (D̂),

L̂v[D̂21Û, ~38!

where we write the denominator as an inverse operator.
distinction between the numerator and denominator is ea
seen in the fixed point operator. We can eliminate the inve
operator by applyingD̂ on both sides of Eq.~36!. Redefining
the noise asj5D̂h and denoting its correlation function b
%21, we have,

Û21%21ÛT21
5L̂21r21L̂T21

. ~39!

The operatorsÛ and% are therefore equivalent to the olde
pair of L̂ and r in the evolution of the discretized system
Equation~36! may be rewritten as

Ûvf5j with %1/2j5h0 . ~40!

Using Eq.~25!, and in the notation of Sec. III, the perfec
operators for the diffusion equation under the CG scheme

Ûv5 ivb1
4

Dx2
sin2

k

2
,

%1/25H a1g sin2
k

2
1gb

iQ

4 J Y H a1e sin2
k

2
1 f b2S Q

4 D 2

1 f S d
Q

4
1 sin2

k

2 D 2J 1/2

. ~41!

r
-
g
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For analytical tractability, we used the closed form solutio
of the operators available for discrete space but continu
time.

Unlike L̂, the new evolution operatorÛ can be expresse
in a clear and simple series expansion. The spatial pa
simply the central difference operator and the time part
sum of all orders of time derivatives with constant and f
decaying coefficients@see Eq.~22!#.

The operator%1/2 has a very complicated form. It ha
many high order space and time derivatives, which in g
eral are coupled. Series expansion and truncation are ne
sary. To the first order inDx2, we have for CG

%1/2'12
1

6
sin2~k/2!1civDx2511l2]x

22t] t , ~42!

where c51/621/A72050.129, l[Dx/A24, andt[cDx2.
Therefore, the noise source is largely a white noise. It ha
correlation length of the orderl and a relaxation time of the
ordert. When the form of the operator is obtained and tru
cated to a specified order, one can evolve the system acc
ing to Eq.~40!.

Often periodic boundaries are used in the spatial dim
sions. Therefore high order spatial derivatives do not pos
problem on a lattice. Higher order time derivatives, howev
require a corresponding number of initial conditions. Th
might pose a problem, especially for non-Markovian noi
If one is interested in equilibrium properties of the syste
the initial transient stage is not important. An initial cond
tion with all derivatives zero is fine. When one wants
study the initial transient stage corresponding to a cer
microscopic initial condition, one can evolve the system
ing a fine mesh forn steps under a conventional numeric
scheme, wheren is the highest order time derivative. Fo
each step, one can coarse-grain the microscopic config
tion to the desired CG level and insert the CG version of
into Eq.~40!, and the noise in the transient stage is obtain
In this way, initial time derivatives for both coarse-grainedf
andj can be computed.

The calculation of the space-time discretized%1/2 can be
quite involved@28#. Since our main interest is in calculatin
equilibrium properties of dynamic systems, we can take
alternative route, namely, Monte Carlo simulation, as d
cussed later. In this case, the perfect action operatorH is all
we need.

B. An example of using the perfect operator
in Langevin dynamics

In this section, we present an application of the opera
Û to the deterministic dynamics of the coarse-grained v
able governed by the diffusion equation. The~truncated! per-
fect operatorÛ gives superior results for the evolution of th
configuration. The relative advantage of using the CG v
able vs the US variable is also touched upon and will
studied more closely in Sec. V.

For simplicity, we truncate the series expansion ofb to
the first order to obtain an operatorÛ with a second order
03612
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time derivative. Direct truncation is not appropriate wh
setting higher order terms to zero, since we should adjust
remaining coefficients. Instead, we use the operator at
first level of CG, starting from a central difference operat
The coefficients for time derivatives higher than the seco
order are identically zero. We have

Dx2

16
] t

2f i1] tf i1
1

Dx2
~2f i2f i 112f i 21!50. ~43!

Suppose the system is periodic with lengthL. The initial
condition has modes down to length scalee5L/M with M
being an integer, namely,

f~m,t50!5 (
k52M /2

M /2

ei2pkme/Lfk , ~44!

wherefk is the amplitude of thekth wave mode. We know
analytically the exact solution: by coarse-graining the ex
solution to a length scaleDx5L/N5pe, we have

f̄~n,t !5 (
q52N/2

N/2

ei2pqnDx/L (
i 52p/2

p/2

fq1 iN

3
sin~pqDx/L !

p sin@p~q1 iN !e/L#
e2(2pqDx/L)2t

[ (
q52N/2

N/2

ei2pqnDx/Lf̄q,0~ t !, ~45!

wheref̄q,0(t) is the exact wave mode for the CG variabl
This equation gives us bothf̄(n,t50) and ] tf̄(n,t50).
Now let us ask: what result would Eq.~43! yield on a lattice
with grid sizeDx, given the CG initial conditions? We hav
f̄q(t)5( i 52p/2

p/2 Cq,i(t)fq1 iN , where

Cq,i~ t !5
sin~pqDx/L !

p sin@p~q1 iN !e/L#
e2v2t

3H 11
12e2Dvt

Dv Fv22
2p~q1 iN !

L2 G J , ~46!

v25(16/Dx2)sin2(pq/2N), and Dv5(16/Dx2)cos(pq/N).
For comparison, the corresponding result from conventio
numerical analysis~NA!, which is the same as just keepin
the first order time derivative inÛ, is

Cq,i
NA~ t !5 expH 2

4 sin2~pq/N!

Dx2
tJ , ~47!

where the time evolution does not depend oni. The solution
for modes within the first Brillouin zone, i.e.,i 50, is greatly
improved as shown in Fig. 3, where we have plotted the ti
evolution of the coefficientCq,i 50(t) ~without the prefactor
due to CG! for selectedq values. For smallq, the Dv de-
5-10
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pendent part in Eq.~46! is not important. A Taylor expansion
clearly shows thatv2 is closer to the true decay rate than t
NA result.

For very short times, the dynamics of all modes are c
rectly prescribed, even foriÞ0. This manifests itself as a di
in the short-time region of Fig. 4~subject to resolution on the
time axis, the dip for thei 51 mode is not discernible in th

FIG. 3. Decay of wave modes in the first Brillouin zone usi
perfect operator~PO! and NA equations vs the exact result. Th
decay rates for the PO scheme are closer to the exact ones tha
NA results. The coefficient isCq,i 50(t) without the CG prefactor.
Sample wave numbers areq5p/3 and 2p/3.

FIG. 4. Decay of wave modes in the second (i 521) and third
( i 51) Brillouin zones using PO and NA equations vs the ex
result. For the PO and NA schemes, wave modes do not deca
fast as for the exact result. The PO is better for modes in the se
Brillouin zone than NA and is also advantageous for late times
modes in other Brillouin zones. PO results are very close to
exact one at short times as indicated by the dip in the plotted cu
The coefficient isCq,i 50(t) without the CG prefactor, which re
duces the importance of modes outside the first Brillouin zo
Sample wave number isq5p/2. Notice that the NA result does no
depend oni.
03612
r-

figure!. For finite time, modes outside the first Brillouin zon
decay quickly in the true dynamics~Fig. 4!. In the PO result,
the decay rate is dependent onq; therefore these modes d
not decay as fast as they should do. But since the PO re
also contains information oni, for modes in the second Bril
louin zone, the resulting dynamics are still closer to the t
one than the NA result. This is because we used the
operatorÛ of one-level CG. For higher wave numbers, d
to the i dependent term, there is an anomalous~negative!
amplification of wave modes at the initial transient sta
which disappears later. Therefore, the power spectrum of
configuration should die off quickly for modes with leng
scale much less thanDx. In other words, we should no
over-coarse-grain. It follows that as we keep more and m
terms in the perturbative series forÛv , the PO result will be
close to the exact one for higher and higher wave mode

The prefactor

sin~pqDx/L !

sin@p~q1 iN !e/L#

modifies the contribution of each wave mode to the soluti
This comes from using the CG variable in the PDE and
very important in reducing errors that arise from using t
discretized PDE. For instance, although modes withq'0
decay very slowly in the PO result, their prefactor is close
zero for iÞ0, while they very quickly decay to zero in th
true dynamics.

Notice that US and CG share the sameÛ. In the US
scheme, there is no prefactor. Modes withq'0 andiÞ0 do
not decay. If we use the same equation as above, the pre
tor for t.Dx2 is

Cq'0,i~ t !'12S ip

2 D 2

. ~48!

For largei, it overstates the contribution of the mode to t
solution and is worse than NA. This imposes a stricter c
straint than for the CG scheme on the power spectrum
the configuration, and is the reason why CG is a be
scheme. This has been tested numerically on several m
dynamics@1#.

V. SPACE-TIME MONTE CARLO SIMULATION

The path-integral formulation easily leads to a space-ti
Monte Carlo simulation. We discuss issues related to tr
cating the perfect operator such that it has a finite range
interaction. Numerical simulations are carried out on the l
ear diffusion equation to test the computational efficiency
using the perfect operator, and on modelA dynamics to test
the merit of direct application of the perfect linear operator
nonlinear dynamics.

In quantum field theories, many problems are formula
in terms of path integrals. Numerical simulations usually e
ploy the Monte Carlo method, where due to space-time sy
metry time is simply treated as one of the dimensions i
(d11)-dimensional lattice. In statistical physics, when d
namics is involved, evolving a Langevin equation is t
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norm. A typical form of the equation contains a first ord
time derivative, a diffusion term, and some nonlinear int
action. Time and space are not symmetric. However, num
cal simulation of a Langevin equation is not the only cho
for studying dynamics. We can also perform Monte Ca
simulation on a space-time lattice@29#, similar to the ap-
proach adopted in quantum field theories. The basis for s
a calculation is the path-integral formulation. Starting fro
Eq. ~3!, and performing a trivial integration over the noise
eliminate thed function, we have

P5E Df expH 2
DV

2V (
i , j

F @] tf1 f ~f!#22
V

Dx
]f f G J .

~49!

The cross term linear in] t results in a boundary term an
does not directly influence the calculation ofP. Ignoring the
Jacobian contribution, we are left with a positive defin
functional. We call the term in the exponent the ‘‘action’’ fo
obvious reasons. For linear operators, we know how
coarse-grain the above expression. Integrating out the n
in the above equation, we have

P5E Df̄ expH 2
DV

2V ( fHfJ , ~50!

whereH is the fixed point operator of the action operato
Working with this path-integral formulation, we do not hav
to worry about taking the square root of the noise correlat
matrix as we would with the Langevin equation.

In the following, we will look at a specific example of th
linear theory, namely, the dynamics of a system described
the diffusion equation

] tf5]x
2f2mf1h, ~51!

wherem is a constant, which we will call the mass, andh is
white noise with strengthV. We have chosen a unit diffusio
constant. In the space-time Monte Carlo probability we u
the (111)-dimensional perfect operator for2] t

21(2]x
2

1m)2 developed in the previous sections. Then we look
the application of the perfect linear operator to the nonlin
modelA dynamics.

A. Truncated perfect operator

The perfect operator needs to be truncated to finite ra
to be used in numerical simulations. Although the introdu
tion of stochastic CG reduced the interaction range of
perfect action operator, the operator coefficients do not
minate in a finite range. Furthermore, they decay slow
along the x direction, where the coefficient of the ten
neighbor@30# still has an amplitude of around 131025. This
makes truncation of the perfect operator more problem
than in quantum field theories, where keeping next nea
neighbors is already very good@27#.

One criterion for truncation is that the magnitudes of t
discarded coefficients have to be small. But there are o
considerations as well@31,32#. One would like the operato
to satisfy certain constraints that stipulate the correct beh
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ior of the operator in the continuum limit. These constrain
are in the form of sum rules@27#. For the diffusion action
above, the constraints in the continuous limit are

(
i

(
j

Hi , j5m2,

1

2 (
i

(
j

Hi , j j
252r 2,

~52!
1

2 (
i

(
j

Hi , j i
2522m,

1

4! (
i

(
j

Hi , j i
451,

where, as defined previously,m5mDx2 andr 5Dx2/Dt. Na-
ively, one might expect that one way of proceeding would
to truncate the perfect operator to a finite and manage
range, and then to enforce these constraints to improve
directly truncated operator. In reality, these sum rules are
satisfied even for the perfect operator for finiteDx and finite
k. The error is of higher order inDx and inversely propor-
tional to k. On the one hand, the continuous limit constra
conditions can be recovered. On the other hand, for fin
Dx, the constraints no longer hold unless an operator wit
long interaction range is used. The average constraint err
about 0.1% if one keeps up to;20 and;3 neighbors in the
x and t directions, respectively.

An alternative approach@31,32# is to compute the perfec
operator on a smaller lattice and then use this ‘‘naturall
truncated perfect operator. In this way, the constraint is ta
care of in the continuum limit. If we use the operator on
lattice of the same size, the operator gives a perfect dis
sion relation. However, when it is used on a larger lattice
is no longer perfect, as can be seen from the inexact dis
sion relation for high wave number modes, which are tho
most affected by truncation. The reason lies in the high
cay rate associated with ak2 dispersion relation. Fork5p,
the ratio between successiveS(k,t) values is about 23104.
Thus, to maintain exponentially decaying scaling over th
nodes, we need a relative accuracy of 1028. Taking into
consideration the importance of keeping enough neighb
and the computational efficiency, an operator with up
tenth and second neighbors in thex andt directions is chosen
as the operator for most of the subsequent computer sim
tions. An operator with ninth and second neighbors in thx
and t directions is also used for some of the simulation
There is no discernible difference between this operator
the 1133 one.

The operator coefficients are displayed in Table II form
50.25 andDt5Dx2. For the above operator withm50.25, a
three-node scaling regime is maintained for 60% of thek
mode and a two-node scaling regime for about 94% of thk
mode. For a larger operator of size 2037, we would have a
three-node scaling regime for about 90% of thek mode. The
decay rates for different operators are compared in Fig.
5-12
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TABLE II. Coefficients of naturally truncated 1133 perfect action operator for diffusion equation.k52, m[mDx250.25, Dx2/Dt
51.

~t, x! H ~t, x! H ~t, x! H ~t, x! H

~0, 0! 4.00869 ~0, 1! 21.00198 ~0, 2! 20.0819891 ~0, 3! 0.0724608
~0, 4! 0.0270167 ~0, 5! 3.54694031024 ~0, 6! 20.002564 ~0, 7! 27.59395431024

~0, 8! 4.29880031025 ~0, 9! 8.70390731025 ~0, 10! 1.81788131025 ~1, 0! 20.430984
~1, 1! 20.265854 ~1, 2! 20.046095 ~1, 3! 0.021651 ~1, 4! 0.012848
~1, 5! 0.001211 ~1, 6! 20.001157 ~1, 7! 24.72462831024 ~1, 8! 26.54240231026

~1, 9! 4.85114931025 ~1, 10! 1.40647531025 ~2, 0! 3.22046131024 ~2, 1! 22.49102631024

~2, 2! 25.12012731024 ~2, 3! 1.84466331024 ~2, 4! 5.22355631024 ~2, 5! 2.38609931024

~2, 6! 22.44226631025 ~2, 7! 25.89446531025 ~2, 8! 21.67669731025 ~2, 9! 3.75550531026

~2, 10! 4.50715231026
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The rapid decay rate of high wave number modes is w
distinguishes the perfect operator for the diffusion equat
from the (111)-dimensional Laplacian operator used
high energy physics. In the latter case, the ratio betw
successiveS(k,t) values is at the more benign level of abo
0.04. The exponentially decaying range spans more value
time displacement. It is easier, therefore, to read off the
persion relation all the way to the edge of the Brillouin zon
It is also more stable with respect to small changes in co
ficients of the operator.

B. Numerical simulation of the diffusion equation

We carried out space-time Monte Carlo~MC! simulations
to test the efficacy of the perfect operator developed in
previous section. Suppose we are interested in the diffu
dynamics of the system described by Eq.~51! and would like
to calculate its space-time correlation function. Let the s
tem be of lengthL516, with the spatial scale of interestl
51. In the path-integral formulation, the time span of t
system isT58. Both space and time directions have perio
boundary conditions. The Metropolis algorithm is employ
@33#.

FIG. 5. Decay rate of wave modes for diffusion equation.k
52, m50.25, andDx2/Dt51. Perfect operator decay rates a
obtained using the first twotÞ0 nodes@Eq. ~35!#.
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Three simulation runs are presented. One simulation u
a perfect operator with range of interaction up to tenth a
second neighbors in thex and t directions, respectively. A
lattice of Nx3Nt532332 was used, corresponding toDx
50.5. The other two simulations were carried out on
332 and 643128 lattices using the conventional central d
ference operator. In each case, the time direction grid siz
Dt5Dx2. In each simulation,Nrun number of independen
runs were conducted to obtain statistics of measureme
each run withN553105 MC steps~one sweep of the sys
tem! and one measurement per eight steps.Nrun56 and 7 for
the 32332 and 643128 lattices, respectively. The (k;0,v
;0) modes have the largest standard error, which is c
cially dependent on the lattice size. The typical percent
standard error ofS(k,v) for a 32332 lattice is about 1%
and 2.5% for PO and NA operators, while that of a
3128 lattice is 6%.

In Fourier space, cross sections of the space-tim
displaced two-point functionS(k,v) are plotted in Fig. 6.
We do not expect the perfect operator result to be ex
becauseS(k,v) is now a two-point function of the CG vari
able, not the continuous variable. But it turns out to be qu
close to the exact result. The NA result for the 32332 lattice
deviates further from the true value at the same (k,v) value.
For this plot, a constant offset of (V/TL)(Dx4/3k) is sub-
tracted fromS(k,v) of the perfect operator runs to elimina
the contribution from the added noise in the stochastic
transformation.

Fourier transformingS(k,v) to real time, we obtain the
dispersion relation fromS(k,t);e2v(k)t. To avoid static
contributions in thet50 mode, we choose the most signifi
cant tÞ0 points to calculate v(k)5@ ln S(k,Dt)
2 ln S(k,2Dt)#/Dt. The results are shown in Fig. 7. The pe
fect operator gives a near ‘‘perfect’’ dispersion relation f
the length scale we are interested in~corresponding to wave
number k;p), giving the correct zerok mode mass and
correctk2 dependence. We can get a comparable result u
a larger lattice with the NA operator, but with more comp
tational effort. For large-k modes, the amplitude ofS(k,2Dt)
is of order 1022 relative to that att50 and becomes unreli
able given the simulation accuracy. The real value is use
the plot whenS(k,2Dt) is negative.
5-13
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QING HOU, NIGEL GOLDENFELD, AND ALAN McKANE PHYSICAL REVIEW E63 036125
One might ask: why call the operator perfect when it do
not reproduce the correct dispersion relation for wave nu
bers beyondk5p? The answer is that it is not the operat
that is not perfect but the simulation itself. The perfect o
erator gives the best result possible for physical quantitie
interest given the error of the simulation. With more stat
tics, the dispersion relation from the perfect operator
proaches the correct result for all modes with length sc
larger than the grid size. The same is not true for the
operator. For a discretization twice as fine, with increas
number of statistical samples, the dispersion relation for
NA operator approaches a limit that is different from the tr
solution, and is about 19% off at the edge of the Brillou
zone.

The simulation error can be overcome when we cho
smallerDt relative toDx2. As shown in Fig. 8, the PO deca
rate usingDt5 1

2 Dx2 ~corresponding to a 32364 lattice!
closely follows the exact result and is more accurate than
measurement from NA.

One might as well choose operators according to the m
nitude of the statistical error of a simulation. Given the us
error of 1% for S(k,v), a smaller-sized perfect operato
could be used to improve efficiency of the simulation wit
out compromising accuracy of the physical measureme
Even with an 1133 PO as used in our simulation, the ext

FIG. 6. Cross sections ofS(k,v) for the diffusion equation.m
51, L516, T58. Cross sections are atv50 ~left! and k50
~right!. The exact result is@(m1k2)21v2#21.
03612
s
-

-
of
-
-

le

g
e

e

e

g-
l

ts.

computational effort is not that huge. This operator requi
21355105 points be used to calculate the action density
each grid point, whereas seven points are used in con
tional NA calculations. However, since most of the comp
tation effort goes to generating random numbers~we used
NUMERICAL RECIPE’S RAN2~! subroutine@34# as well as the
SPRNGmodified lagged Fibonacci generator fromNCSA @35#!,
it turns out that the overhead from extra neighbors is
significant considering the improvement of results. If o
uses a naturally truncated 532 PO, total CPU time for the
sample calculation will be reduced by 58%. The decay r
rivals the result from NA with a lattice twice as large. In th
case, however, we will not recover a perfect decay rate w
better statistics due to the severe truncation.

FIG. 7. Decay rate of wave modes for the diffusion equatio
m51, L516, T58. Lattices yieldDt5Dx2. Length scale of inter-
est corresponds tok;p. Exact result ism1k2. PO results use the
first two tÞ0 nodes ofS(k,t). NA results and PO~a! are obtained
using thet50 andt5Dt nodes.

FIG. 8. Decay rate of wave modes for the diffusion equatio
m51, L516, T58. Same as in Fig. 7 except that lattices wi
DtÞDx2 are used.
5-14
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RENORMALIZATION GROUP AND PERFECT OPERATORS . . . PHYSICAL REVIEW E 63 036125
Our code is written inC11. On aSUN Ultra2200, the run
times are shown in Table III for a test run on a 323 32
lattice with 10 000 MC steps. For the same number of st
and lattice size, the PO calculation takes about four time
much time as the NA calculation. Their standard errors
decay rates are roughly the same if the same nodes are
However, the PO uses the second and third nodes to ca
late decay rates. Therefore the resulting decay rates h
standard errors about twice the size of that for NA.

The relevant quantity regarding the computational e
ciency is thetotal computational effortE needed to reach a
certain level of root mean square~RMS! error d. This is
defined as

E5cNNtNx , ~53!

where the speed factorc is 4 and 1 for the PO and NA
respectively. The RMS errord is given by

d25d1
21d2

2 , ~54!

whered1 is the bias andd2 is the standard error. In compa
ing the efficiencies of the PO and NA, we focus on the wa
mode withk5p.

For the naturally truncated PO,d1;0.01% and is negli-
gible. For a 32364 lattice, 64 000 MC steps are needed
reduced2 to 1% for k5p. HenceE55.23108.

For NA and a large lattice size, we have

d1'
a

Nx
2

1
b

Nt
2

,

where

a5
k4L2

12~m1k2!
and b5

~m1k2!2T2

24
. ~55!

For instance, withL516, T58, m51, k5p, one hasa
5191.2 andb5315.1. The standard errord2 is inversely
proportional toAN and is a function of the lattice size. In
creasing the lattice size increasesd2. However, increasingNt
also has the effect of improving the result, since smallerDt
relaxes the constraint on the statistical accuracy of the
few nodes ofS(k,t). Let us assume that

d25d2
(0)Nx

aNt
b/AN, ~56!

TABLE III. CPU time of simulations of diffusion equation us
ing PO vs NA. 32332 lattice. 10 000 Monte Carlo steps. For th
same number of statistical averages, the standard error ofS(k,v)
for the PO is about one-half that for NA.

Action Random number
calculation generation Total time

NA 6.6 s 15.0 s 30.1 s
PO 105.4 s 13.6 s 128.5 s
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wherea andb are constant parameters. The minimization
the total computational effort yields

Nx
25S 212a12b

2a11 D a

d1
,

Nt
25S 212a12b

2b11 D b

d1
,

~57!
N

N0
5S 11

11a1b

2 D S Nx

Nx,0
D 2aS Nt

Nt,0
D 2b

3S d2~N0 ,Nx,0 ,Nt,0!

d D 2

,

where the optimald15d/A112/(11a1b) and where
d2(N0 ,Nx,0 ,Nt,0) is thed2 value for a lattice size (Nx,0 ,Nt,0)
and withN0 Monte Carlo steps. For instance, with the abo
a andb values anda5b50, to reach a RMS error of 1%
one needsNx5257 andNt5330. Given thatd2'1.2% for
N0540 000, Nx,05128, andNt,05256, we expect the opti-
mal N586 000. ThereforeE57.33109. If we have a51
and b50 instead, the optimal values areNx5190 andNt
5423 andN5254 000. ThereforeE52.031010. There is a
factor of 40 improvement~see Table IV!. The advantage of
the PO will be more pronounced in higher dimensions.

TABLE IV. Total computational effort for the PO vs NA. On
requires that the root mean square error ofv(k) be d51% for k
5p. Parameters area51 andb50 @see Eq.~56!#.

c Nx Nt N (3103) E (3108)

NA 1 190 423 254 200
PO 4 32 64 64 5.2

FIG. 9. The standard error of the decay rate of wave modes
the diffusion equation for NA using different lattice sizes.m51,
L516, T58. Standard errors are normalized toN5105 Monte
Carlo steps.
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QING HOU, NIGEL GOLDENFELD, AND ALAN McKANE PHYSICAL REVIEW E63 036125
The values ofa andb are difficult to obtain. The values
a51 and b50 are good approximations for the releva
lattice sizes, namely,Nx and Nt of order of or bigger than
200. Notice that a large lattice size is most detrimental to
standard error of the small-k modes~see Fig. 9!.

In summary, we find that the perfect linear operator giv
us the perfect dynamics of the various wave modes, gi
the errors of a numerical simulation. For the same lattice s
and number of Monte Carlo steps, the PO scheme~with the
1133 operator! is about four times slower relative to the N
scheme, where generating random numbers takes about
of the total computation time in the latter case. However,
computational effort in order to reach the same root m
square error for the PO is on the order of 1/40 of that for N
This will be more pronounced in higher dimensions. Mo
over, a more severe truncation of the perfect operator is p
sible, given the inherent accuracy of the simulation, furt
enhancing the efficiency of the PO scheme.

C. Numerical simulations on modelA dynamics

In this section we study the application of the perfe
linear operator to the time dependent Ginzburg-Landau eq
tion for modelA dynamics,

] tf5]x
2f2mf2gf31h. ~58!

The corresponding path-integral formula is

P5E Df expH 2
DV

2V (
i , j

@S01S1#J , ~59!

where S05f@2] t
21(2]x

21m)2#f and S152gf3(2]x
2

1m)f1(gf3)22(3gV/Dx)f2 are contributions from the
linear and nonlinear terms, respectively.

For systems with nonlinear interactions, an exact anal
cal expression for the perfect operator is not available. T
difficulty lies in the fact that the form of the continuou
action is not closed under the CG transformation. New in
action terms are generated in reaching the fixed point of
discrete description of the dynamics. In general there is
infinite number of interaction terms of diminishing impo
tance. In order to proceed, we need to make some app
mations. In conventional numerical analysis, the form of
continuous action is used, where the Laplacian operato
replaced by the central difference operator and local s
interactions are left unchanged. In analogy, we use the
fect linear operator developed previously forS0, while leav-
ing the nonlinear self-interactions unchanged. We bundle
mf term in with thegf3 term in them,0 regime to reduce
the standard error of the numerical simulation. Intuitive
this is a reasonable thing to do sinceufu develops a nonzero
amplitude and the contributions to the dynamics off from
these two terms largely cancel each other. We used the
ventional central difference operator for the operator2]x

2

1m in S1.
There are two regimes:m.0 where the nonlinear term

amounts to a renormalization of the mass, andm,0 where a
nontrivial ground state develops with a magnitude6Am/g.
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1. The mÌ0 regime

We simulated the dynamics of a system of physi
lengthsL516, T58 and parametersm5g5V51 on lat-
tices of different sizes. Mass dependent perfect linear op
tors are used. The Fourier transformed space-time correla
functions S(k,v) are measured and averaged over seve
runs. Most simulations consist ofNrun59 runs, each with
N533105 Monte Carlo steps. Measurements are done
ery eight Monte Carlo steps. For the NA result with 6
3256 lattice, eight runs are used. Fourier transform
S(k,v) to real time, we obtainS(k,t), whereS(k,t50) is
the static structure factor, and the mode decay rates ca
read off from the time dependence ofS(k,t). The length
scales of interest are those larger thanDx51. As in the case
of the diffusion equation, the standard error of the PO res
is one-half that for NA with the same number of statistic
averages.

Mode decay rates obtained from the PO scheme fok
away from the origin are greatly improved over their N
counterparts, as shown in Fig. 10. ForDx50.5, Dt50.25, if
we had used the second and third nodes ofS(k,t), the decay
rates for the second half of the Brillouin zone would not
reliable, reflecting the inherent numerical error~roughly 1%)
of the simulation. This is as in the free field case discusse
the end of the previous section. For the plots, we used
t50 andt5Dt nodes instead. It is no longer perfect, but it
within the numerical error of the simulation and gives im
proved results as compared with NA. When we chooseDt
50.125, the error of the simulation is no longer a limitin
factor and the decay rates over the whole Brillouin zone
recovered using the PO. With a smallerDt/Dx2 ratio, the
time direction becomes more continuous and the decay
values are improved for all schemes, as expected.

For m.0, the ground state of the order parameter has
expectation value of zero. The nonlinear self-interaction te
in Eq. ~58! has the main effect of renormalizing the mass
a new effective massmeff5m1g^f2&. In mean-field theory,
the expectation value off2 is expressed as a function o

FIG. 10. Decay rates of wave modes for the Ginzburg-Land
equation.m51, L516, T58.
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meff , which is then self-consistently determined by the re
tion

meff /m511
1

meff /m
S gV

4m3/2D . ~60!

The renormalized mass is easily seen to be larger than
bare one.

From the decay rate of wave modes withk'0, we can
read off the value of the renormalized effective mass. T
mean-field value of the effective mass ismeff51.2258 for the
chosen parameters. For the NA scheme, the renorma
mass is less than the bare mass when the grid size alon
time direction is chosen to beDt5Dx2. Reducing the grid
size while retaining the ratioDt/Dx2 leads to reduced effec
tive mass values, away from the correct result. For the
3128 lattice, we havemeff'0.26. Unlike in quantum field
theories, time and space are not symmetric in the dynam
we are considering. This translates into a freedom of cho
of grid sizesDt and Dx. Physical considerations lead us
the natural choice ofDt5cDxz wherez is the dynamic ex-
ponent andc is a constant factor. Outside the critical regim
the diffusion term dominates the dynamics andz equals the
mean-field value of 2. We expect the constant factorc to be
dependent on the nature of the nonlinear interaction an
be different from 1. When we over-coarse-grain in the tim
direction relative to the space direction, the~relatively! finite
size of Dt introduces error into the simulation results. W
found that aDx2/Dt ratio value of 2 to 4 is needed to reduc
this error~see Fig. 11!.

For the PO scheme, the effective mass is above the
mass forDt5Dx2. However, asDt is reduced, the effective
mass decreases. For a 323128 lattice, the effective mass i
found to be around 1.07. The reason lies in the fact that
used the simple central difference Laplacian operator in

FIG. 11. The influence ofDt/Dx2 on the decay rate of small-k
wave modes for the Ginzburg-Landau equation. SmallerDt gives
improved result for NA. The effective mass for the PO, howev
approaches a limit less than the mean-field result.m51, L516,
T58.
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nonlinear part of actionS1. We expect that the perfect linea
operator operating on a functionf (x), which does not de-
pend ont, should yield (2]x

21m)2f (x). However, a sum-
mation of the PO along thet direction does not yield the
one-dimensional NA form (2]x

21m)2, but rather has coef-
ficients roughly twice those of the NA form. Therefore, it
inconsistent to simply use the central difference form for
operator (2]x

21m). A test simulation usingA2(2]x
2

1m)NA gives the value 1.36 for the effective mass, closer
our expectation. However, it is not clear how to interpret t
and it points to the need to derive the perfect form for t
whole action, including the nonlinear part.

For the static structure factorS(k,t50), shown in Fig. 12,
the PO result is not very close to the benchmark result of
with a 643256 lattice. For large values ofk, there is a con-
tribution from the stochastic CG transformation. For smalk
values, its deviation is a result of the inaccuracy in the eff
tive mass, which is related to the correlation lengthj @and
hence the shape ofS(k)] by the relationj;meff

21/2.
It is interesting to notice that the structure factor curv

obtained using different schemes and lattice sizes all cros
the same point aroundk'1.3.

2. The mË0 regime

In this case, there is a nontrivial fixed point in the acti
that corresponds to a ground state with order parameter
uesf56Am/g. Domains of opposite order parameter va
ues compete and the dynamics is quite different from t
with m above 0. In our simulation, we used the same para
eters as in the previous section exceptm521. We treated
mf1gf3 as one term and used the massless perfect lin
operator. This leads to a reduced standard error. The dat
plotted in Figures 13 and 14.

The general shape and values of the dispersion rela
are similar to those of them.0 regime. However, there is
marked difference between these two regimes for w
modes close tok50. Here, instead of approaching a fini

,

FIG. 12. The static structure factorS(k,t50) for the Ginzburg-
Landau equation.m51, L516, T58.
5-17
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effective mass, the decay rate approaches zero, reflectin
existence of a ground state with a nonzero amplitude. A
due to the ‘‘vanishing’’ effective mass, the shape of t
structure factor is more peaked at the origin than in them
.0 regime. For modes with smallk ~first few nodes!,
S(k,v) values have a large standard deviation. For exam
it is about 25% for thek54p/L mode and about 9% for th
k58p/L for NA on a 32364 lattice.

When grid sizes are reduced, the dispersion rela
changes shape for small-k modes. The difference is signifi
cant with respect to the standard error. This has also b
checked with increased statistics. This may be due to
existence of the nontrivial ground state. Form,0, there is
another length scale in the problem, namely, the interf
width between domains with opposite signs of the grou
state order parameter value. If the grid sizeDx is not small
enough, the position, and hence the dynamics, of the dom
interface will not be resolved. This seems to be the rea

FIG. 13. Decay rates of wave modes for the Ginzburg-Lan
equation.m521, L516, T58.

FIG. 14. The static structure factorS(k,t50) for the Ginzburg-
Landau equation.m521, L516, T58.
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why the shape of the dispersion relation for smallk values
changes asDx is reduced, and it places an inherent physi
constraint on the level of discretization one can reach. O
when this extra complication is taken into account can
obtain a perfect operator for this problem. Nevertheless
shown in Fig. 13, the perfect linear operator gives supe
results to the NA operator for the same lattice size and co
putational effort~as discussed in the previous section!.

In summary, a direct application of the perfect linear o
erator gives us an improved dispersion relation for modeA
dynamics, especially for those modes with a length sc
comparable to the lattice grid size. However, a more ext
sive study is needed to fully assess the efficacy of the per
operator. This requires improving the perfect operator s
that it yields the correct effective mass in them.0 regime
and accounts for the formation of domain interfaces in
m,0 regime.

D. Modified perfect operator

As previously shown, although the perfect operator co
ficients fall off exponentially as one moves away from t
origin, the decay rate is slow along thex direction. There-
fore, an operator with a shorter range of interaction is
sired.

In the nonlinears model @27#, by simply including the
next nearest neighbors~NNNs!, the dispersion relation can
be greatly improved. In that case, the NNN coefficients
obtained using a natural truncation of the perfect opera
Since the operator coefficients fall off quickly along bothx
and t axes, such a severe truncation can still lead to sign
cant improvement. This is no longer true for the diffusio
equation. However, we might ask, can we improve the N
operator by allowing for nonzero operator coefficients
more neighbors? The answer is yes.

We begin from the continuum limit constraints of E
~52!. Setting m50 and keepingr( i , j ) nonzero for (i , j )
P$(0,0),(0,1),(1,0),(2,0)% ~called the basic points!, the
conventional operator is obtained as the only solution
these equations. When more neighbors are included, the
straints are enforced by solving forr of the basic points as a
function of the other coefficient values.

Using these non-basic-point coefficients as fitting para
eters, we can obtain an operator with a near perfect dis
sion relation. If two parameters@H(1,1) andH(2,1)] are
used to obtain a 332 operator, the average error for th
dispersion relation is about 6%. By fitting four paramete
@by also includingH(3,0) andH(3,1)], we can obtain a 4
32 operator—called the modified perfect operator~MPO!—
that yields a dispersion relation with an average error
1.7% with respect to the exact result as shown in Fig.
The operator coefficients form50 are given in Table V.

For the MPO, the scaling regime starts from the first tim
node of the two-point function@i.e. S(k,t50)] due to the
nearest neighbor interaction along the time direction. So lo
as the first two time nodes have reliable values, one
estimate the decay rate. This greatly loosens the preci
constraint placed by the perfect operator used before. W
the field has mass, direct fitting under modified constrai

u
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that take into account the mass causes little change in
coefficients.

We tested the MPO in simulations of modelA dynamics.
The results are comparable to those of the perfect oper
~see Fig. 16!. It actually gives more accurate decay rates
wave modes at the edge of the first Brillouin zone, sinc
allows the use of thet50 andt5Dt nodes to compute the
decay rate, while doing this for the PO is an approximati
The computational effort for the MPO is drastically reduc
due to the relatively short interaction range.

The perfect linear operator operates on the coarse-gra
variable. For the modified perfect operator, the physi
meaning of the variable it operates on is not apparent.
discussed in Sec. I, there is a correspondence betwee
operator and a specific coarse-graining scheme. For the
averaging CG scheme, or hard CG, the resulting perfect
erator has a long interaction range. However, the range
interaction is reduced after we modify the CG scheme to
a soft CG scheme dependent on the parameterk. Therefore,
it is reasonable to think that there is a variant of the stand
local averaging coarse-graining scheme that gives the
decaying operator we have computed above. Further inv
gation of this point is of general interest as regards the
velopment of an efficient numerical algorithm.

VI. CONCLUSIONS

The work presented in this paper is a first step tow
reaping the full benefit of using renormalization group in t
study of dynamics of spatially extended systems. We h
constructed perfect representations of stochastic PDEs

FIG. 15. Decay rates of wave modes for the diffusion equat
using the modified perfect operator.m50.25, Dt5Dx2.
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not only integrate out the small-scale degrees of freedom~in
space and time!, but also develop nonlocal representations
the underlying equations that are free of lattice artifacts.
demonstrated this by computing the dispersion relation
elementary excitations, and comparing the results at la
wave numbers with theoretical expressions valid in the c
tinuum limit. We exhibited computations for diffusion equ
tions, and a nonlinear equation derived from modelA dy-
namics, and explored different ways to truncate the nonlo
space-time operators generated by the RG.

In one dimension, the computational complexity was
duced by a factor of about 40 from conventional simulatio
for the simple diffusion problem. For the nonlinear modelA
equation, the results were less impressive, in terms of c
puter time, because a systematic approximation scheme
the perfect action has yet to be developed. Nevertheless,
ceeding heuristically, we were still able to obtain improv
results for the static structure factor and the decay rate
modes. Lastly, we proposed a heuristic discretization al
rithm that incorporates the ideas of perfect operators, but
gives operators that are more local than perfect operator

Finding the perfect operator when nonlinear interactio
are present is a nontrivial task. The form of the continuo
action is not closed under the CG transformation and n
complicated interaction terms are generated. This is a gen
property of the RG@36#. Usually progress is possible only
the problem under consideration involves a small param
that can be used to keep track of the new interactions ge
ated. More generally, the small parameter allows a syst
atic approximation scheme to be developed, in which ther

n FIG. 16. Decay rate of wave modes for the Ginzburg-Land
equation.m51, L516, T58. The modified perfect operator give
results comparable to those of the perfect linear operator.
TABLE V. Coefficients of the modified perfect action operator.m50 andDx2/Dt51.

~x, t! H ~x, t! H ~x, t! H ~x, t! H

~0, 0! 6.317206 ~0, 1! 23.050944 ~0, 2! 8.92278631021 ~0, 3! 6.20004031025

~1, 0! 24.39658531021 ~1, 1! 22.63736531021 ~1, 2! 23.04559931022 ~1, 3! 1.40217831022
5-19
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a clear prescription as to which terms have to be include
a given order. If such a parameter is not available, it is us
to fall back on some type of variational scheme, typica
including some kind of self-consistent calculation that cor
sponds to summing sets of diagrams. Neither of these
proaches has been attempted in this paper. However, we
that the results which we have obtained are sufficiently
couraging that some type of systematic calculation of
perfect operator in nonlinear theories would turn the id
presented in this paper into a powerful computational too
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APPENDIX

In this appendix, we prove various relations that are i
portant in deriving the iterative relations for perfect ope
tors.

~1! Here we list some properties of the projection ma
ces.

We introduced 2N3N matricesR̄̂, R̃̂ and their left in-

versesR̄̂215 1
2 R̄̂T, R̃̂215 1

2 R̃̂T,

R̄̂m,n5dm,2n1dm,2n21 , R̃̂m,n5dm,2n2dm,2n21,

mP@1,2N#, nP@1,N#. ~A1!
03612
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Here the superscriptT indicates transposition. The projectio
matrices satisfy the relations

R̄̂21R̃̂5 R̃̂21R̄̂50 and R̄̂R̄̂211 R̃̂R̃̂2151. ~A2!

We define the subscripted versions ofÔ by

R̄̂21ÔR̄̂[ÔAR̃̂21ÔR̃̂[ÔBR̄̂21ÔR̂
˜

[ÔCR̃̂21ÔR̄̂[ÔD ,
~A3!

whereÔ and its subscripted versions are linear operators
the original grid and on the coarse-grained grid, respectiv

One can prove the following formulas:

g5Ôf⇒H ḡ5~ R̄̂21ÔR̄̂! f̄ 1~ R̄̂21ÔR̃̂! f̃ [ÔAf̄ 1ÔCf̃

g̃5~ R̃̂21ÔR̄̂! f̄ 1~ R̃̂21ÔR̃̂! f̃ [ÔD f̄ 1ÔBf̃ ,

~A4!

f TÔf 52~ f̄ TÔAf̄ 12 f̄ TÔCf̃ 1 f̃ TÔBf̃ !

especially f 252~ f̄ 21 f̃ 2!, ~A5!

where we assumed that the matrixÔ is symmetric~physi-
cally, this means thatÔ possesses inversion symmetry!, and
thereforeÔD5ÔC

T . Furthermore, ifÔ is translationally in-

variant with Ôm,n5Ôm1 i ,n1 i , ÔA and ÔB are symmetric
while ÔC and ÔD are antisymmetric. This can be seen
looking at their elements,
sforma-
~ÔA!m,n5Ô2m,2n1
1

2
~Ô2m,2n111Ô2m,2n21!,

~ÔB!m,n5Ô2m,2n2
1

2
~Ô2m,2n111Ô2m,2n21!, m,n51, . . . ,N, ~A6!

~ÔC!m,n5
1

2
~Ô2m,2n112Ô2m,2n21!.

In Fourier space, f(m)5(f(k)exp(ikm), mP@1,2N#, and f̄(n)5(f̄(k)exp(ikn), nP@1,N#. We have R̄̂21

5 1
2 ( R̄̂T)* , R̄̂215 1

2 3(R̂
˜ T)* , where* denotes the complex conjugate, and

R̄̂k,k5A2eik/4S cos
k

4
dk,k/22 i sin

k

4
dk,k/26pD ,

R̃̂k,k5A2eik/4S 2 i sin
k

4
dk,k/21cos

k

4
dk,k/26pD ,

k,kP~2p,p!. ~A7!

The sign ink/26p should be chosen so that its value lies within the interval (2p,p). Physically, Eq.~A7! represents a
two-step process: a folding of the Brillouin zone by half, such that two wave modesk andk6p are mixed, followed by a
stretching back to (2p,p). This is the corresponding process in Fourier space of the real space coarse-graining tran
tion.

Given the operatorÔ5(O(k)uk&^ku, i.e., plane wave functions form its eigenspace, the coarse-grained plane wavesuk& are
also eigenvectors ofÔA , ÔB , andÔC ,
5-20



RENORMALIZATION GROUP AND PERFECT OPERATORS . . . PHYSICAL REVIEW E 63 036125
~ÔA!k,k85dk,k8Fcos2
k

4
OS k

2D1 sin2
k

4
OS k

2
6p D G ,

~ÔB!k,k85dk,k8Fsin2
k

4
OS k

2D1 cos2
k

4
OS k

2
6p D G , k,k8P~2p,p!, ~A8!

~ÔC!k,k85dk,k8S 2 i cos
k

4
sin

k

4D FOS k

2D2OS k

2
6p D G .
ar
e

ile

q.
~2! In order to determine the iterative relations of line
operators~see point 3 below!, we first have to prove som
properties of the subindexed matrices.

~i! The first set of properties are

~Ô21!AÔC52~Ô21!CÔB ,

ÔD~Ô21!A52ÔB•~Ô21!D , ~A9!

~Ô21!DÔC512~Ô21!BÔB .

To prove the first relation, we use Eq.~A2!:

~Ô21!AÔC5 R̄̂21Ô21R̄̂R̄̂21ÔR̃̂

5 R̄̂21Ô21~12 R̃̂R̃̂21!ÔR̃̂

5 R̄̂21Ô21ÔR̃̂2 R̄̂21Ô21R̃̂R̃̂21ÔR̃̂

5 R̄̂21R̃̂2~Ô21!CÔB

52~Ô21!CÔB . ~A10!

We can prove the other two relations in a similar way.
~ii ! Another very useful result is

~Ô21!A5@ÔA2ÔC~ÔB!21ÔD#21. ~A11!

We prove this using Eq.~A9!:

~Ô21!A~ÔA2ÔC~ÔB!21ÔD!

5~Ô21!AÔA1~Ô21!CÔD

5 R̄̂21Ô21R̄̂R̄̂21ÔR̄̂1 R̄̂21Ô21R̃̂R̃̂21ÔR̄̂

5 R̄̂21Ô21ÔR̄̂

5 R̄̂21R̄̂51. ~A12!

~3! The iterative relation for the action operator@Eq. ~19!#
follows from that ofr @Eq. ~14!#, which reads

~r ĈG!215L̂CM̂ 21r̂B
21~M̂ 21!TL̂C

T1Ĝ~ r̂A2 r̂Cr̂B
21r̂D!21ĜT,

~A13!
03612
whereĜ5 Î 1ÔC(ÔB)21r̂B
21r̂D , and where we useÔ to de-

note the full dynamic evolution operatorL̂v . Sincer is sym-
metric, theA andB subindexed matrices are symmetric wh
theC subindexed matrix is the transpose of theD subindexed
matrix. Using Eqs.~A9! and ~A11!, the second term in the
above equation yields

Ĝ~ r̂21!AĜT5~ r̂21!A2ÔC~ÔB!21~ r̂21!D

2~ r̂21!C~ÔB
T!21ÔC

T1ÔC~ÔB!21

3@~ r̂21!B2~ r̂B!21#~ÔB
T!21ÔC

T .

~A14!

Therefore~for the US scheme, ignore the factor of 2!,

~ r̂M !215~ r̂21!A1ÔC~Ô21!B~ r̂B
21!~ÔB

T!21ÔC
T

2ÔC~ÔB!21~ r̂21!D2~ r̂21!C~ÔB
T!21ÔC

T .

~A15!

Thus, using the iterative relation (ÔM)215(Ô21)A and Eqs.
~A9!, we have

~ÔM !21~ r̂M !21~ÔM !T21

5~Ô21!A~ r̂21!A~ÔT21
!A1~Ô21!AÔC~ÔB!21~ r̂21!B

3~ÔB
T!21ÔC

T~ÔT21)A2~Ô21!AÔC~ÔB!21~ r̂21!D

3~ÔT21!A2~Ô21!A~ r̂21!C~ÔB
T!21ÔC

T~ÔT21)A

5~Ô21!A~ r̂21!A~ÔT21)A1~Ô21!C~ r̂21!B~ÔT21)C

1~Ô21!C~ r̂21!D~ÔT21)A1~Ô21!A~ r̂21!C~ÔT21)C .

~A16!

On the other hand, we have

~Ô21r̂21ÔT21!A5 R̄̂21Ô21~ R̄̂R̄̂211 R̃̂R̃̂21!

3 r̂21~ R̄̂R̄̂211 R̃̂R̃̂21!ÔT21R̄̂.

~A17!

Expanding the above equation and comparing with E
~A16! proves Eq.~19!.
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