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Random field Ising systems on a general hierarchical lattice: Rigorous inequalities
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Random Ising systems on a general hierarchical lattice with both random fields and random bonds are
considered. Rigorous inequalities between eigenvalues of the Jacobian renormalization matrix at the pure fixed
point are obtained. These inequalities lead to upper bounds on the crossover expggents
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Despite the many years of reseqrch and the large ngmber leZfJ{‘]izﬁihiz} (2a)
of researchers working on the subject, the study of critical
behavior of random systems has led to only few exact reand
sults. On the other hand, some of these requlig] played _
an important role, especially in the context of the random Z
field problem. In a recent stud] we considered a random hi=h;+ 21 fn{des.he} =12, (2b)

=

bond Ising system on a general hierarchical lattice, where the
renormalization grougRG) transformation is exad#], and ) o~ L .
obtained inequalities concerning the eigenvalfie$ of the respectively, wh.|lezi is the coordination number of the site
Jacobian renormalization matrix, at the pure fixed point. Thé?" the renormalized lattice. Both, andfy,, depend only on
purpose of the present study is to show that similar inequali€@UPlings and fields within the rescaling volume associated
ties can be obtained if random fields are included. In contrad¥ith the pair of sites (1,2]the shaded area in Fig(a].
to the case of random bonds and zero fields, correlations afequation(2a implies thatJ;; andJ,, are not correlated if the
now generated by the renormalization flow. Nevertheless, ipairs (,j) and (,m) are not identical. This does not hold for
appears that these correlations are, first, confined to the fieldge renormalized fields. Due to the sum in E2j) over NN
so that the distribution of bonds is left uncorrelated, andsites on the renormalized lattice, it is clear that even if there
second, restricted to nearest-neightdN) correlations. Itis are no correlations to begin with, correlations are generated
important to emphasize that these short-ranged field correldy the RG transformation, between fields on NN sites and
tions are generated by the RG transformation even if ondelds and couplings on a site and a bond attached f&
assumes no correlations to begin with, and that the range @¢xample, in Fig. (b), the following pairs are correlated:
correlations does not increase under the transformation. Our
results are relevant to real lattices, since some approximate
RG schemes on real lattices are in fact exact RG schemes on
hierarchical lattice§Migdal-Kadanoff[5,6] and otherd7])
and since it is believed that the critical behavior of an Ising
system on a real lattice can be mimicked by that behavior on
a properly chosen hierarchical lattigg@—11].

We consider a general hierarchical lattice described sche-
matically in Fig. 1. The shaded area showr(aihconsists of
a set of lattice points where some of the pairs are joined. In
(b), a typical shaded area is represented. The solid lines are
bonds to be iterated in constructing the lattice while the
dashed ones are not to be iterated. The bold lines represent
the possibility for some bonds to be strengthened, namely,
multiplied by some constant. The random Ising system is
represented by the dimensionless Hamiltonian

where (,]j) refers to connected pairs only. All three types of

. . FIG. 1. A general hierarchical lattice is described schematically.
bonds of Fig. 1a) then carry a coupling .3 (for the bonds g y

In (a), the shaded area consists of a set of lattice poing, . . .,

joining sitesa and ), while each site carries a fiel}”. where some of the pairs are joined. (In), a typical shaded area is
(Note that one of the members of the pajg may be either  represented. The solid lines are bonds to be iterated in constructing
lor2) the lattice, while the dashed ones are not to be iterated. The bold

The renormalized couplings and renormalized fields ardines represent the possibility for some bonds to be strengthened,
given by multiplied by some constant.
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(h1.hy), (312,h1), and (15.h,).] It is easier to deal with
such correlations by considering a bond-field Hamiltonian of
the form

_H:(iEj) [‘]ijo-io-j+hij(0-i+o-j)]! (3)

in which the random variables are the couplidgsand the
bond fieldsh;; . The set of RG transformation equations is
now given by

5 12 12

J12= T5{Jag Mgl (43 FIG. 2. A general schematic description of a “block-triangular”
matrix is shown.B4, ... B, represent the blocks along the main

and diagonal. The gray area marked withindicates the presence of
_ nonzero matrix elements while in the area marked with 0, all ele-
hio= fh{ij; ,hizﬁ}. (4b)  ments are zero.

Equationg(4), therefore imply that none of the two couplings ~ ~ D afy, S 53 h

Jj orhy;, is correlated with any of the two couplingg, or 27 &y \oh,s s “h 5Jag(9haﬁ B ap

him. if the pairs {,j) and (,m) are not identical.

Im p ( J) q ) + - (8b)

In terms of the bond fields, the site fields are given by

1 where (---)* denotes evaluation at the pure fixed point.
h; =5 2 hij (5) Note that although we are interested only in the expansion of

i T';; to first order inl',,, we still need, in principle, orders
higher than linear in Eqs(8) above. Note also the terms
missing in the expansions due to the different parities of
andh. The renormalized moments are given by

A\ afy \*
N

ap
Where clearly, in the last sum on the right-hand side of the
above,l+m>i+j. Also the parity ofm in the sum must
aéqual the parity of. The All's with | +m>i+| always in-
volve derivatives higher than the first of at least one of the
f's. We arrange next thE;;’s using a single index

wherej (i) indicates that the sum is over all sifesonnected
to i. A similar bond-field Hamiltoniar(3) was already used
in the past [12-14, only with the additional term
2, J)h j(gi—oj). Note that it is necessary to include the _
dagger fields only if one assumes that the site fields are ini- I';j=
tially uncorrelated. Since, however, the initial state of non- (@.f)
correlated site fields is not preserved by RG transformation
andnn correlations between site fields are developed, ther
is no reason to start with uncorrelated fields on the sites.
We assume the existence of a ferromagnetic fixed point
{Japr=J* and{h,z}=0. We denote the departure dfz
from J* by 6J,5 and define the moments as

FIJ+ z E A FIm-

(@p) 1
©)

Lij=((83ap)'(hap)’). (6) Ge=T}, (10)
Clearly at the fixed poinfi*j =0. We will be interested in the ith
recursion relations of the moments near the pure fixed point,
k (i+j)(i+j+l)+'+1 11
Ty =Gy {Tml. @ 2 j+1 (Y
The recursion relations above are obtained from the recurlhis brings Eq(9) into the standard matrix notation
sion relations for the local couplings _
Gm=AmnGn - (12
~ a 1 #f5\" . - ) .
8Ji= D —) 8apt= 2 ( > ) (83%5) It is not difficult to show that ifk, corresponds toi(j) and
(@p) \ Map 2ah a2, K, to (I,m) thenl +m>i+j impliesk,>k,. This means that
1 25\ * the matrixA is block-triangular(Fig. 2). Consider next one
it SR S-S (8a) of the blocks along the diagonal éf From the expansions
2 (@p) ahiﬁ h (8) and (9) it follows directly that the only contribution to
(83)'(h)] in (83)'(h)™ such that + m=i+j, is the one with
and I=i andm=j. The final conclusion thus is that the matAx
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is triangular, so that its eigenvalues are just its diagonal
terms. The eigenvalues of the Jacobian transformation matrix

are thus

i

N afs \*1[[ ofn \* 13

1 Eh |\ 034p g i

This leads now to a number of interesting inequalities.
(a) All eigenvalues are positive,

\ij=0. (143
(b) All eigenvalues are ordered,
Nitg,j<Njj and X 1<A\j. (14b
(c) All eigenvalues obey a convexity condition,
NijAi= i) and  NjAS N ke (140
(d) All eigenvalues obey
(N 2SNk eNiok-1 (140

where, in(d), k=—i, ..., andl=—j, ... J.

Proof: In a recent papdB] we have considered random

bond Ising systems for which the sub$gt,} is considered.
There, we have already proven properties—(c) and our
proof here will follow the same line.

Propertiega) and(c) are proven by showing that

(15a

and

(15b
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ohy

1
2(3*,0)=Ztr12(<71+0'2)<0'a+05>12, (18b

hap

where(- - - )4, is the average with respect # with o, and

o, held fixed. In calculating the above derivatives at the pure
fixed point, we use the following symmetry properties of the
system:

(T =(Trp) (199
(0a0) - =(Ta0p)* ., (19D
(oa)ii=—(o)t, (199
(o)t-=— (o)t (199
to obtain
dd 1, 1
T 050wt~ (oopt ] (209
and
ohyo 1
ahaﬁ(J* 0 =5[oatopi ] (200

Here the sign indices specifically indicate the state of the
spinso; and o, and the * indicates that the average is with
respect to the pure fixed point Hamiltonian

—H*ZJ*E gioj.
(1,])

(21)

Now, according to the GKS inequaliti¢&5,16], if all the
many-spin couplingsla=h,,J,z, ... in a general Ising
system are positive, all the many-spin correlatidms,)
=(04),{(040p), ... must obeyo,)=0. Using Egs.(20),

We have to consider then the specific transformations genethe averages are taken with respect to the pure ferromagnetic

ated by
—H=Intr'e ", (16)

where tf represents trace only over the subset of sping

internal to the rescaling volume, not including the external
spins o, and a,. The renormalized couplings and fields

given by Eqgs.(4), can now be written in the forms

Lty oo H], (173

Jpp=—

hyp=—ftrf (o1 + o) H], (17b

where ti, indicates trace over the two external spinsand

0. The derivatives ofl;, with respect tal,; andhy, with
respect tah,; are thus given by

8J1p
g

1
(J*’O):Z tri(0102)(0.0 )12 (18a

and

Hamiltonian(21), where the two external spins of each of the
rescaling volumes, which are held fixed, serve effectively as
local fields. When these effective fields are held both posi-
tive, the GKS inequalities hold, so that

(0,)5+=0 and (o,0p% =0, (22
which is enough already to prove inequalifyob). Inequality
(159 can be easily shown to hold using, in addition to the
GKS inequalities, other rigorous inequalities, just recently
proven[17], also concerning the many-spin correlations in
general Ising systems. It states that if all the many-spin cou-
plings J, are positive again, the absolute value of all the
many-spin correlationgo,) does not increase when the
value of any of the couplings is reduced, taking any value in
the interval[ —Ja,Ja]. According to this, it is clear that
under reversal of the-1 state of any of the two external
spins, the many-spin correlations cannot increase. So, we
arrive at the conclusion that
(23)

<0-010-,8>i +><O-a0-5>i —
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and (159 is also proven. This completes the proof of prop-
erties(a) and(c).

We turn now to propertyb). Here we need to show that
M o<1 24
73,00 (243
and
M 3x o<1 24D
o, (I O<1. (24b)

at any finite temperature. But, referring to E¢®0) again, it
is clear that

3[{oa0p) s (04005 130,085 |+ {000t ]

(253

<1
and that

%[<Ua>j++<o'ﬁ>i+]$%[|<0'a>i+|+ |<0',8>:+|]$1=
(25

while the equality sign can hold only at zero temperature
This proves propertyb).

We are left now with propertyd). Here we use the more
general definition of a scalar producty,¢)=3;w;uv;
whereVi, w;=0 and the corresponding Schwartz inequality,
which reads Eiw;ufv;)?<=w;|ui|Zw;|v|? (here is the
only place where the * represents complex conjugaiée
replace, next, the sum over the single ind&th the double
index (@¢B) and identify

B &fj * |r afh * |S 26
o= 1 93,5 FT (269
with r=0,..., ands=0,... ],
Vop= _aJaﬁ g (26b)
with p=0,...,ji—r andgq=0,...,j—1, and
B (9fJ *]i—r—p afh *1j—s—q o6
Wop= W, hup , (260
to obtain
()\ij)2$)\i+r7p,j+sfq)\i7r+p,j—s+qa (27)
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where we have used the fact that all partial derivatives are
real and positive. All that is left now is to denote- p=k
with k=-—i, ..., and, similarly, s—q=1 with |=
—j,....], which completes the proof of propertg).

In addition to that, denoting byn;<1 andm,<1, the
maximal values 0fJ;; /33,5 and dh;; /oh, 5, respectively,
we obtain

Nij<Ngm) “mf", with k=0,...j and 1=0,...,

(28)

so that we have also proven that the number of relevant
interactions at the pure fixed point is finite. The only case of
which the equality sign holds is the diamond hierarchical
lattice (DHL) [4,18], where all bonds are equivalent. From

(28) follows an inequality for the crossover exponents:

(i—=DInmy+jInmy

L<1+
Pi INN1g

1, i+j=23,...,

(29

where ¢;;=VYij /Y10, Yij=In\;j/Inb, and b is the rescaling
factor. The condition for criticality of the pure fixed point is
maxM,g,N11,Mg2) <1, while else, we expect a random criti-
cal point with a different set of critical exponents. It is inter-
esting to note that it was just recently shojir®] that even
for the random bond Ising system, the Harris criterion for
pure criticality[20], a,<0 (e, being the specific heat ex-
ponenj is equivalent to the obvious requiremeit;;<1,
only in the special case of the DHL. In the more general
case, it was shown that,=< ¢, so that the Harris criterion is
only a necessary condition for pure criticality to hold and
counter examples wher@,<0 and ¢,,>0 have been pre-
sented. The analogous result for the random system, is
< o2 (7, being the susceptibility exponent of the pure sys-
tem) but sincey, turns out always to be positive, the random
field is always relevant at the pure critical point.

We wish to conclude by emphasizing that the inequalities
proven here hold not only for exact RG transformations on
HL's but also for all other renormalization schen{esch as
MK scheme[5,6]) in which the renormalized couplings or
fields are not correlated or even in cases where it is clear that
the correlations are not importaf21].
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