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Translational invariance in nucleation theories: Theoretical formulation
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The consequences of spontaneously broken translational invariance on the nucleation-rate statistical prefac-
tor in theories of first-order phase transitions are analyzed. A hybrid, semiphenomenological approach based on
field-theoretic analyses of condensation and modern density-functional theories of nucleation is adopted to
provide a unified prescription for the incorporation of translational-invariance corrections to nucleation-rate
predictions. A connection between these theories is obtained starting from a quantum-mechanical Hamiltonian
and using methods developed in the context of studies on Bose-Einstein condensation. An extremum principle
is used to derive an integro-differential equation for the spatially nonuniform mean-field order-parameter
profile; the appropriate order parameter becomes the square root of the fluid density. The importance of the
attractive intermolecular potential is emphasized, whereas the repulsive two-body potential is approximated by
considering hard-sphere collisions. The functional form of the degenerate translational eigenmodes in three
dimensions is related to the mean-field order parameter, and their contribution to the nucleation-rate prefactor
is evaluated. The solution of the Euler-Lagrange variational equation is discussed in terms of either a proposed
variational trial function or the complete numerical solution of the associated boundary-value integro-
differential problem. Alternatively, if the attractive potential is not explicitly known, an approach that allows
its formal determination from its moments is presented.
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I. INTRODUCTION 10*—10%. Reiss, Katz, and Cohd6] suggested a different
calculation of the translational correctigim addition argu-
Nucleation theory has been a controversial topic for oveiing that there is no rotational contributipthat was several
70 years now. It has attracted interest not only as a caserders of magnitude smaller. Subsequent counterarguments
study for the understanding of phase transitions within thé7] left this an open problem, thereby questioning the valid-
framework of statistical mechanics, but also for such impor-ty of classical nucleation theory and, more generally, the
tant applications as condensation of vapor droplets antbrmulation of a consistent theory of nucleation.
cavitation/bubble formation in liquids. The original work of ~ More recently, Oxtoby and co-workef8—10|, as well as
Becker and Ddng [1] (based on the earlier work of Volmer Barrett[11], used density-functional theory to alleviate these
and Farkas and subsequently refined by Zeldovi¢B], discrepancies. In fact, Talanquer and Oxt¢8Yyargued that
forms what is now referred to as classical nucleation theorycorrections due to translational invariance are almost negli-
For the simplicity of such a theory, its predictions are ingible. Moreover, detailed attempts of semiempirical [fit8]
remarkably good agreement with experiments, especially reseem to overestimate the temperature dependence of the
garding the supersaturation dependence of the classical rateicleation ratdexcept at very low temperatujeg-ord[12]
of nucleation[3]. However, it is now accepted that classical argued that nucleating clusters, as described by the classical
nucleation theory does not predict correctly the temperaturéheory, do not satisfy the two nucleation theorems that relate
dependence of the nucleation rate: for the range of expertheir properties to the supersaturation and temperature de-
mentally studied temperatures, the classical theory underpr@endence of the rate. He suggested that the discrepancy
dicts the observed rates by several orders of magnitusie  emerges from the classical nucleation theory assumption that
ally three to six ordeps[4]. the free energy of the nucleating droplet refers to a fixed
A proposal by Lothe and Pourjd] to resolve the discrep- cluster rather than to one that may nucleate anywhere in the
ancy between classical and experimental predictions trigsystem volume.
gered a long-standing controversy in the field. They sug- In this work, rather than proposing an entirely new ap-
gested that inclusion of the droplet's translational andproach(since, for example, the correct prediction of the su-
rotational degrees of freedom in the calculation of the nuclepersaturation dependence suggests that there are some sound
ation rate would modify classical predictions by a factor ofarguments in the classical the@ryve will attempt a hybrid
approach to establish a connection between classical density-
functional theories of nucleation and earlier work on field-
*Electronic address: ioannis.drossinos@jrc.it theoretic descriptions of condensation. In doing so, we will
TPresent address: Program in Applied and Computational Mathebtain a consistent formalism that will incorporate in a uni-
ematics, Princeton University, Washington Road, NJ 08544; Elecfied way all the dependences of the nucleation rate including
tronic address: kevrekid@physics.rutgers.edu the translational correction.
*Electronic address: panosg@fidelio.rutgers.edu Our starting point will be Langer’s field-theoretic ap-
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proach [13—15, and in particular the phenomenological nale of our approach is based on recent experimental obser-
field-theoretic description of condensation and the theory ofrations[16] that a gas of interacting bosons in an external
decay of metastable states. We will formulate the theorypotential(harmonic trapcondenses to a macroscopic ground
through a prism that can be characterized as quantunstate, i.e., a quantum-mechanical ground state that is macro-
mechanical: it has been inspired by quantum-mechanicadcopically occupied. This quantum-mechanical phase transi-
phase transitions, specifically the condensation of a Bose gd®n, predicted by Einstein in the early days of quantum-
to a macroscopically occupied ground stéBose-Einstein statistical mechanicgl7], is the well-known Bose-Einstein
condensation In this framework, not only density- condensation. The behavior of the condensate below the con-
functional theory becomes manifest through the appropriatdensation temperature has been fo(cfd Ref.[18] and ref-
limit, but a unified theoretical framework can be establishederences therejnto be in very good agreement with predic-
Whereas we will follow the approach of previous field- tions of classical mean-field theoretical analyses. The order
theoretic calculations and some results of a general theory gfarameter of the transition is the expectation value of the
the decay of metastable states, we will concentrate on th&ave-function operator. Therein lies the proposed analog be-
contribution of the translational eigenmodes to the nucleatiotween condensed bosons forming(guantum mechanichal
rate. According to Refl15], the nucleation rate may be ex- ground state “droplet” and a cluster of condensed molecules
pressed as a function of three factors: the dynamical prefaderming a liquid droplet. This analog becomes more plau-
tor, the statistical prefactor, and the excess droplet free ersible by considering the classical droplet in terms of
ergy. For the theory presented here, the determination of thieanger’'s[13] field-theoretic description of condensation.
statistical prefactor involves the calculation of the product of To make these statements more precise, we consider the
the eigenvalues of an integro-differential operator evaluatetbcal particle density(r) and the total particle number of
at the (metastable uniform and(saddle nonuniform mean- interacting bosons to be
field configurations, a calculation considerably more com-
plex than that for the square-gradient, local function of Refs. p(N)=w¥T(r)w(r), (13
[13,15. The calculation of the dynamical prefactor requires
the determination of the dynamical equations of motion. The
complete calculation of these two factors is left for future
investigations: herein, we shall concentrate on the contribu-
tion of the translational eigenmodes. In deriving their contri-wherew and ¥’ are boson annihilation and creation field
bution to the nucleation rate, we shall determine their funcoperators, and the integral is taken over the system volume
tional form in three dimensions, a plausible result, but to ourv. The description of the system in terms of a local density is
knowledge not proven before. Thus, we extend previous cakeminiscent of classical density-functional theories of fluids
culations of the translational eigenmodes to three dimensionghere the system free energy is expressed as a functional of
without assuming the familiar one-dimensional hyperbolic-the inhomogeneous fluid densipyr).
tangent density profile. The dynamics of the system are determined by the many-

This work is structured as follows. In Sec. Il, we presentbody Hamiltonian that in second quantization is written as
our formalism, and we establish a connection to density{18]

functional theory by deriving the Euler-Lagrange equation

for the order-parameter profilde it uniform or nonuniform . . h? ol N SR A
starting from a quantum-mechanical Hamiltonian in second®= | dr¥'(n| -5V ‘P(r)+5f drdr"Wi(r)wi(r’)
guantized notation. In Sec. Ill, we use symmetry arguments

in three dimensions to relate the functional form of the trans- Xvint(r—r’)\ii(r’)\if(r)’ 2)
lational eigenmodes to the mean-field droplet profile. In Sec.

IV, we formally calculate the contribution of the translational whereV;,, is the two-particle interaction potential.
eigenmodes to the nucleation rate. In Sec. V, as an alterna- Following ideas introduced by Bogoliub¢9], and later
tive to the numerical solution of the boundary-value integro-elaborated by Grog20] and Pitaevski[21], the wave func-
differential problem associated to the Euler-Lagrange equaion may be separated as

tion, we propose a variational solution, and we suggest a

N=Ldrp(r), (1b)

perturbative calculation involving moments of the proper W (r,t)=d(r,t)+¥'(r,t), 3)
(exac}) attractive interaction potential. The final section dis-
cusses and summarizes our findings. where the functiond is the expectation value of the field
operator and it becomes the Bose macroscopic wave func-
Il. FORMALISM tion. It is no longer an operator, but a regular wave function,
and it plays the role of the order parameter for the phase
A. Order parameter transition, the local condensate density being its magnitude

Motivated by recent studies of Bose gases and their corsquared. Even though more complicated theories ésisth
densation transition and in an attempt to relate density@s the Hartree-Fock-Bogoliubov approximati@g]) where
functional theories and field theoretic descriptions, we shalforrections to the expectation value are taken into account,
consider the physics of a classical first-order phase transitiomany theoretical studig48] have shown that the mean-field
starting from a quantum-mechanical Hamiltonian. The ratio-approximation of neglecting(quantum fluctuations ¥’
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gives good agreement with experimental findings. For Bose
gases, the validity of the mean-field approximation improves E[(b]:f dr
with decreasing temperature.

The interaction potential is decomposed into two parts: gyhere the attractive terri(r) has been defined to be
nonlocal part and a local part. In this work, the nonlocal part
will be considered to be solely attractive, whereas the local
part will be repulsive. Thus, the interaction potential is de- f(r)=f dr'Vag([r=r') *(r')<0. (6)
composed as follows:

NP
m(vdﬁ +3f(nNe t597 5

The functional corresponding to the grand-canonical parti-
Vind r=r")=Vad|r—r'|)+gé(r—r"). (4) tion function, the appropriate ensemble for analyzing first-
order phase transitions, is obtained by performing a Leg-
Inclusion of an explicit attractive term in the two-particle endre transformation toS=E-—uN, where u is the
interaction term signifies a departure from usual analyses ¢hermodynamic chemical potential ahti= [\ dr ¢*(r). Ac-
Bose-Einstein condensation. However, it is important in thiscordingly,
work because the attractive interaction is essential in descrip-
tions of gas-to-liquid transitions. We will also show that it S[¢]=J dr ﬁ_z(v¢)z_[ — Lf(r)]2+ 9¢4 @)
has the significant consequence of breaking the symmetry 2m K2 2 '
between the two uniform stable states. A similar decomposi-
tion is performed in classical density-functional theoriesThe grand-canonical partition function is obtained by evalu-
where the interaction potential is divided into a repulsive,ating a functional integral over all possible field configura-
hard-core part and an attractive part, which for simplicity istions, weighted by the Boltzmann probability distribution
usually taken to be a Yukawa or Lennard-Jot@d2) po-  [with B=(kgT) ', whereT is the absolute temperature and
tential. It should be noted, however, that the nucleation rat&s the Boltzmann constaht
will be sensitive to thelchoice of the pair potential. This
very sensitive dependence, that arises from the dependence EEJ’ D[ ple A4, @)
of the surface tension on the inverse range of the attractive
potential and is explicit in classical nucleation theory, indi- ) ) oo
cates that it would be very useful, if possible, to determine &nd the appropriate thermodynamic potential is
method to provide information on the pair potential based on BO=—In(2) 9
experimentally measured quantities. We will return to this =
point later in the text.

. . . The functional integral may be evaluated by the saddle-point
The local part is characterized by a single paramgtén

) ; . =" method. The stationary extremum equation is obtained by
the - quantum-mechanical I|teratur¢, th's apprOXImatlonextremizing the exponem8S[ ¢] with respect to variations
"”OW.” as the Hart_ree-Fock apprommaﬂon,. corresponds Bt the field ¢(r). The appropriate functional derivatives are
considering only binary, hard-sphere collisions, characteraiscussed in Appendix A. Consequently, for a spherically

'|28d by tthe Pt?fame_t@- T_hel represen'iatu_)n of sho_rt-r?nge ymmetric attractive potential, the Euler-Lagrange equation
.((.)CS.D.II’] eractions via a single parameter is approximate angg. 1ha mean-field order parameter becomes
it implies the existence of a length scale. In the case of Bose-

Einstein condensatiory is proportional to thesswave scat- 52

tering length, which is a measure of the strength and range of %Vzd)-i-[,u,— f(r)]¢—geps=0. (10
the pair potential: in particular, for a hard-sphere fluid the

scattering length is the hard-sphere diameter. In the case of a |, Appendix A, we also derive Eq10) by considering a

classical theory, the presence of thefunction ensures a ime_dependent variational principle: the presentation fol-
hard-sphere excluded volume. Its origin becomes apparef;s ciosely the derivation of the static Gross-Pitaevskii
by starting from a latticediscretg formulation where theS o ation in theories of Bose-Einstein condensation. The final
function avoids double occupancy of a given lattice site. g jer. agrange equation is obtained by rescaling the chemi-
The nonlocal part of the interaction will be left unspeci- 5| potential and the attractive and local interactions by

fied for the moment: we shall only require that it be spheri-5 /22 15 optain

cally symmetric and of finite range. We will see in Sec. V

how a physically motivated, approximate ansatz for the drop- V2p+[pu—f(r)]¢p—geps=0. (1)
let profile can be used to determine self-consistently the mo-

ments of the attractive interaction weighted by the assumed

droplet profile squared. Considering the plausibiliand the B. Comparison with previous theories

connection to the experimental observatijookthis ansatz, Equation (11), derived from a quantum-mechanical
we expect that this methodology will reflect quite accuratelyHamiltonian and valid ind dimensions, is the integro-
the properties of the nonlocal term. differential equation whose study is the main aim of our

For a time-independent, real order parameiér), the  work. We will be interested in spatially nonuniform solu-
free-energy functional that arises from the many-bodytions, and in particular in the heteroclinic solitary wave so-
Hamiltonian becomes lution that corresponds to the saddle-point configuration of
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12F : FIG. 1. A schematic diagram of the density
profile for a spherically symmetric droplet as a
1L J function of the distance from the droplet center.
< Three different fluid-density regions are clearly
Qos_ Re | indicated: liquid phase, interface, and vapor
' phase. The droplet radius &, while the inter-
facial region, the region between the two vertical
06 7 lines, is approximately £ where¢ is interfacial
correlation length.
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the functional integral. The applicability of this equation, andstable, its chemical potential is greater than the chemical
of the associated formalism, is quite general since it has beguotential of either phase at coexistence, and hence it is su-
derived from first-principles quantum mechanics. Of coursepersaturated with respect to its vapor pressure at coexistence.
the validity of the theory depends on our assumptions aboutonsequently, the density of the liquid inside the dropletlike
the nature of interparticle interactioiisvo-body), the pair-  solution is not expected to be the liquid density at coexist-
potential decomposition, and the continuum approximatiorence, as shown numerically in RéB]; its value is to be
(an approximation valid for an order parameter that variegletermined from the solution of the integro-differential equa-
slowly over distances of the order of the interaction rangetion.
which, in a lattice formulation, should be much larger than We will use the boundary conditions to specify the local-
the lattice spacing The theory can be used equally well in interaction parameter. For a uniform fluid the derivatives
studies of liquids(such as heliumwhere quantum effects vanish, and the attractive terri(r) becomes position-
may be significant, and of classical gases. In the latter casedependent: its value is determined by the spherically sym-
the square gradient term can be safely neglet@iteslformal  metric interaction at an arbitrary positianin the system
limiting procedure iszi—0) to obtain a classical field- volume with a background of the uniform fluid of density
theoretic description of inhomogeneous systems. Such a d&hus, it becomed$(r)=f=—ap, wherea is the (positive
scription has many features, and significant differences, witlntegrated strength of the attractive potential,
density-functional theory, as discussed in R&#] and Ap-
endix B. The approximation of neglecting the kinetic en- . 2
grgy of the condgnpsate is known in t?we Bosge gas literature as - _47Tf drr*Var(r)- (12)
the Thomas-Fermi approximati¢@3]. Thus, in the classical
limit the Thomas-Fermi approximation becomes, for all mea-As in density-functional theories where a reference state,
surement purposes, exact. usually taken to be a uniform hard-sphere fluid of dengity
Equation(11) [and the initial functional Eq(7)] provides is defined, Eq(12) may be used to determine an appropriate
the desired connection between density-functional theorieSreference” state with a density-dependent chemical poten-
of nucleation and field-theoretic descriptions of condensatial as follows:
tion. Similarities to density-functional theories of nucleation
become apparent by noting that the attractive téfn) is the Mref(p)=p+ ap. (13
term referred to ag.«(r) in density-functional theories; see,
for example, Ref[8]. A more detailed comparison of our Since the density of a uniform fluid satisfies EGl), the
work (and in particular the limitz—0) with classical local-interaction parameter = u./p. Note that this pro-
density-functional theory is presented in Appendix B. cedure ensures that the uniform fluid density is an extremum
For concreteness, we consider the gas-to-liquid transitioniminimum) of the mean-field thermodynamic potential.
even though the arguments used to study supercooling and We now consider the case of the droplet being at the
condensation apply equally well to superheating and cavitaerigin of the (spherical coordinate system. Looking at the
tion. We are looking for solutions of E@l1) that describe a density from the origin outwards, we observe a profile simi-
liquid dropletlike configuration in contact with a metastablelar to the one sketched in Fig. 1, or, equivalently, to the
vapor at a fixed chemical potential. Since the vapor is metaprofile shown in density-functional-theory works, cf., for ex-
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ample, Refs[8—10]. Given the generic form of the nonuni- is associated to the occurrence of an unusually large fluctua-
form density profile, the local-interaction parameter can bdion of the metastable state order parameter that is large
specified by considering the—c limit, namely atr>R., enough to overcome the saddle-point free-energy barrier. As
whereR; is the droplet radius. The approach to the uniforma result, the system ends up at the stable uniform state, which
steady statéthe metastable vapor with densjy) will yield is the free-energy global minimum. It is this configuration

outside the dropletlike solutiogp— \/P—u As before, the de- that spatially mediates the transition from the metastable to
rivatives vanish in that limit, the attractive term becomesthe globally stable state through the saddle point that has the

position-independent, and its value is [im.f(r)= primary weight and significance in assessing the rate at
—ap, . Since far away from the center of mass of the drop-which nucleation occurs.
letlike solution the uniform statg, is an asymptotically ex- The incorporation of a small external field may be physi-
act solution, cally motivated (for example, the stabilizing gravitational
field in studies of gas/liquid interfacgshowever it cannot
mtap, el py) significantly contribute to breaking the symmetry of the

o = o . (14 steady states. Langer’s methodolof3] and ansatz are
Y v valid only in the limit of a small external field. In particular,
These similarities with density-functional theory should the density(the square of the order parametef the two
not obscure some important differences. The nonuniform sgdniform states cannot be altered significantly by the small
lution of the Euler-Lagrange equation is a mean-field solu2Symmetric term. In this spirit, the order-of-magnitude dif-
tion, thus fluctuations about it are only accounted for perturf€rence between a classical liquid and gas density cannot be
batively in the evaluation of the functional integral. In @ccounted for by such a Sznall perturbation. Our theory, be-
density-functional theories, the nonuniform density profile isind an integro-differentiaky”-type theory, breaks the sym-
taken by construction to be the profile that minimizes theMetry of the steady states by the long-range nature of the
free energy; the corresponding free energy evaluated at traitractive potentialas happens in densny_—fu_nctu_)nal theory,
extremum becomes the intrinsic equilibrium free energy Refs. [8-11). The attractive termf(r) distinguishesbe-
Therefore, the resulting profile contains fluctuation correctween the uniform density statégas and liquigl and it gives
tions to infinite order, as discussed in REf1] and the Ap-  fise to a nonuniform _pfoflle that asymptotes to the liquid
pendix of Ref.[24]. Of course, applications of density- density close to the origin and to the gas density-ate. In
functional theories to real fluids necessitate approximatdhis sense, even though the rest of the terms are similar to the
expressions for the referen@eard-spherestate. The pertur- ONes appearing in a typicap® theory, the symmetry-
bative nature of our work and the associated approximation8réaking long-range interaction term has replaced the quali-
with respect to density-functional theory become more preIatlver_ admissible, k_)ut quantitatively insufficient, small ex-
cise in Appendix B, where we also argue that in the classicalernal field perturbation. o
limit the natural choice for the order parameter is the fluid Even without solving Eq(11), a qualitative argument
density(and not its square ropt shpws hovy the attractive term breaks the symmetry in non-
The drop'et-prof”e equation and the Corresponding func.unrrorm f|UIdS.. Far aWay- from the center Of mass Of a Sp-he-”'
tional Eq.(7) are very similar to the Euler-Lagrange equation cally symmetric dropletlike solution, the background fluid is
field-theoretic treatment of condensatidi8]. Langer's argu-  t€rm becomes-ap, . As the center of mass of the droplet is
ments were based on the expectation of universality of théPProached, the value of the attractive term becomes depen-
phenomenology of condensation, hence the justification fofl€nt on position, thereby differentiating between the two
the simplest possiblé* model that could describe the nucle- phases. The requirement thap the liquid density be a solution
the condensation of a supersaturated vapor close to the criffplies
cal point by deriving the appropriate free energy by a coarse-
graining procedure. Qur attempt to relate (_Jlensi_ty-functional lim f(r)= i[M(PU—m)—aPUm]- (15)
theory to macroscopic theories of Bose-Einstein condensa- r]—0 Pu
tion is similar in spirit. A significant difference with
Langer’s analysis is the treatment of the symmetry-breakingnterestingly, at the critical pointp,=p,, the theory be-
term, i.e., the external field that breaks the symmetry beeomes symmetric. Furthermore, the-0 limit of the attrac-
tween the two uniform stable states. tive term implies that the density profile has a nonzgras-
In the usual¢* Landau-Ginzburg free-energy functional sibly very small gradient within the range of the attractive
(without a cubic nonlinearity the Euler-Lagrange equation potential.
has three uniform solutions. Two of them are stable with the In closing this subsection, we would like to summarize
same free energy while the third is unstable with higher freghe aim of this work in presenting such an approach for the
energy: it corresponds to a saddle point of the functionatheory of nucleation. Our purpose is to unify under a first-
integral. The ad hoc introduction of an external field breaksprinciples setting (based on firm quantum-mechanical
the symmetry of the two stable states. Thus, the presence gfounds two different theories that have been used to study
the external field becomes essential in analyses of first-ordemcleation problems: the simplest phenomenological theory
transitions(and consequently of nucleatipsince nucleation that captures the essential characteristics but has many ap-
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proximations and is not necessarily physically realisticattractive potential, is spherically symmetric. Consequently,
(Langer’s field theoretic description of condensatjoand by choosing appropriately the coordinate system, BE@b)
the more physically realistic but not motivated by first prin- takes the form
ciples, nor clearly related to translational invariance, density- )
functional theory. We believe that the theory discussed in N R P
this work puts under firm ground the connection between the fo(r)= _f dr'r’ go(r )fr_ dzzVe(2).  (18)
two showing how the features of the phenomenological
theory are manifested, incorporating in a unified wayln the case of the Yukawa potential, E@1), integration
translational-invariance effects, and finally having the approover the variable gives the first equation in the Appendix of
priate limit for a classical gas. Ref. [8].

The ordere equation is

I1l. BROKEN SYMMETRY AND TRANSLATIONAL w f(p
INVARIANCE V2D, (1) +[p—fo(r)]Py(r) —3——- rep = 3(r)D4(r)

The importance of translational invariance in calculations —2¢o(r)f1(r)=0, (193
of the nucleation rate stems from the observation that the
contribution of the translational eigenmodes renders it exterwhere
sive. Formally this arises from the integration over the zero-
elgen\{alue modes pf the Imeanza’uon around the spa}t|ally fl(r)=f dr'Vad[r=r1' [ do(r @4 (r'). (19b)
nonuniform mean-field solution. These Goldstone eigen- %
modes, corresponding to a spontaneously broken continuous
symmetry(translational invariandeare infinitesimal transla- We express in spherical coordinates and separate variables
tions of the droplet interface that leave the functional inte-as follows:
grand invariant. Their degeneracy equals the number of spa-
tial dimensions. For a finite but large system, the eigenvalues Po(1.0,4)= $1(r)Yim(6. ), (20

are not exactly zero, but tend to zero as the system size 9OGhereY, (6, 4) are the (,m) spherical harmonics. Equation

to infinity. . , , (19a reexpressed in spherical coordinates and using proper-
As in the case of thep” functional, the translational ieg of the spherical harmonics becomes

eigenmodes of the functional E¢/) may be related to the

spatial derivatives of the mean-field order-parameter profile, [ 42 2 ¢ (1 + 1) Mref(P )
even in the presence of the nonlocal attractive term. The —2+—d— ———+u—"fo(r)— - ¢0( )
derivation follows Ref[13], without the additional approxi- re. rar r?

mation to neglect the first-order derivative term in the equa- « _ _

tion that determines the mean-field profile: this approxima- $1(1)Yim( 0, ¢) = 2¢o(1)T1(r, 6, 4)=0. @
tion is valid c_Iose to the coexisten_c_e curve, as may be_ easily The functional form of¢,(r) is obtained by considering
seen by scaling lengths by the critical radius and taking thehe explicit differentiation of Eq(17a with respect to one

large R limit. _ _ . Cartesian coordinate, say Differentiation yields
To leading order in fluctuations, these eigenvectors are

obtained by linearizing Eq.11). We exploit spherical sym- d2 2d 2 Wref(py) | dbo(T)
metry to decompose the order-parameter field into St S u—fo(r) - 3h(r) ———| ——
dr2 rdr g2 » X
D(r)=epo(r) +€Py(r,0,0). (16) &fo(r)
— o(r) =0. (229

The zeroth-order equation becomes
The derivative of the attractive term may also be expressed

re v)
V2ol + L o)1)~ == L o

(17& af;)((r)_ bcos d)dfo(r) (220
with

=2 [ dr'Vadlr=r D golr")
fo(r)=f dr'Vad(|r=r'D)¢g(r"). (17b v
d%( ,)sma 'cose'. (220
Equation (173 is just the Euler-Lagrange equation that dr’

determines the droplet profile; in addition, the cubic coupling
constant has been specified as discussed in Sec. Il. THeéhe first equality is a consequencefgfbeing a function of
order-parameter decomposition ensures fgafor a central magnituder due to spherical symmetry; the same change of
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variables, of course, applies tapy(r)/dx. The second was alternative formal expression that relates the nucleation rate

obtained by changing the differentiation variable franto  to the imaginary part of thérue) system free energy is pre-

X', integrating by parts, and finally dropping the boundarysented in Ref[28].

terms since the interaction potential has a finite range. As mentioned in the Introduction, herein we shall concen-
Equations21) and(22) may be compared by considering trate on the factor that arises from the translational eigen-

real combinations of thd=1 spherical harmonics: the modes. The phase-space voluMemay be reexpressed as

I-dependent angular part of E¢21) remains unchanged (see, for example, Ref§26,27)

since the eigenvalue is independenhoénd any linear com-

bination of eigenfunctions of a degenerate energy level re- V=V Jyan: (26)

mains an eigenfunction with the same eigenvalue. Since Eq.

(21) is linear inY,;, andY;+Y],~sinfcos¢, the appro- whereV is the system volume and},,, is the Jacobian for a

priate combination is obtained by adding it to its complexchange of variables to the collective coordinates associated

conjugate. Comparison of the resulting equation with Eqto the translational eigenmodes. The Jacohlggy may be

(223 shows thatp(r) may be identified wittd¢o(r)/dr. evaluated by integrating over the translational eigenmodes.
A similar procedure for the other Cartesian coordinatesThe volume that these modes span is calculated by noting

leads to the conclusion that the three complex translationdhat the free-energy functional is invariant under translations

eigenmodes of the three-dimensional Euler-Lagrange equa&f the droplet center of mass, i.e., it is invariant under trans-

tion, in the presence of the nonlocal attractive term, are  formations of the form

<I>1,m(r,0,¢)=—ddzjosr)Ylm(H,gb) with m=0,+1. S¢i(r)=®y;(r)dx for i=x,y,z. (27

(23)  The vectorsb, (r) are orthogonal, real combinations of the
complex translational eigenvector. Since their length is re-
IV. TRANSLATIONAL EIGENMODES AND NUCLEATION lated to a volume integral ab(r), their contribution to the
RATE nucleation-rate prefactor becomes

The determination of the nucleation rate from the func- 32
tional integral Eq«(8) has been discussed extensively in the VJtran=j |5¢x5¢y5¢z|=J dr| 3 j dr’|®1(r’)|2}
past, starting from Langer’s initial calculati¢h3] (see, also, v v
Ref.[27]) and summarized in Ref28]. Under some general (283
assumptions, for example the existence of a coarse-grained

. . . - 2132
free energy, small supersaturation, and a Gaussian approxi- 47TJ drr2 déo 28h
mation of the functional integral, the nucleation rate may be 3 ), ar ' (28b)
expressed as

=V

K V. DROPLET PROFILE
| = Z—QO exp(— BAS), (249

77 Our calculations up to this point have been fairly general:
under the previously mentioned assumptions, and specifi-
cally the interaction-potential decomposition and the require-
ment that the attractive potential be central, the functional
form of the attractive pair potential was left unspecified. If an

BAS= BSsaddic BSmetastable (25) attractive potential is specified explicitly, then Ed7a can
be solved numerically as an integro-differential boundary

The dynamical prefactor, which depends on dynamical propvalue problem to identify the density profile of the droplet.
erties of the system, is the initial growth rate of a droplet that However, in the literature on the subj¢8t-11], a number
is slightly larger than the critical size. The statistical prefac-of potentials—with different decay properties—have been
tor ()4, a generalization of the Zeldovich factor, is a measuraused to model the attractive interactimuch as the Yukawa
of the phase-space volume of the saddle point. It containpotential, or the Lennard-Joné§-12) potential usually de-
contributions of Gaussian fluctuations about {li@iform) composed according to the Weeks-Chandler-Andef&&h
metastable and thespatially nonuniform saddle-point con- perturbative schenjethe reason for such choicdm the
figurations. It consists of two part¥, the phase-space vol- density-functional theory approachdss been mostly sim-
ume spanned by the translational eigenmagdegeneral, by  plicity in the ensuing numerical computations rather than
all the eigenmodes that correspond to spontaneously brokefetailed modeling of the intermolecular interaction. For this
symmetrieg and another term that incorporates the effect ofreason, we follow a different approach: since detailed infor-
all other fluctuations about the metastable and saddle comation on the interaction potential may not be available for
figurations. The latter part may be viewed as a leading-ordean arbitrary system, we will use physical intuition to develop
correction to the droplet excess free energy, arising from than approximate but self-consistent strategy. In particular, we
configurational entropy of the droplet. The complete expresknow that close to the center of the droplet, the density is
sion for Q) is shown in, for example, Ref15], whereas an almost constant and equal to a liquid densify On the

wherex is referred to as the dynamical prefactfry as the
statistical prefactor, and S is the excess droplet free energy
(activation energy of the nucleating droplet
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other hand, away from the droplet surface the densityand the polylogarithm function, also called Jongis func-
quickly becomes the metastable vapor dengity Hence, tion, is

the main density variation occurs over a short interfacial

length scale and is quite rapid there, while away from the *

interfacial region the asymptotic properti@sf the liquid in- F(n,z)= E

Zk ( )
—. 310
k=1 kn

side and the vapor outsidare rapidly reached. Furthermore,
as pointed out by Langer, a simplelymmetri¢ theory with ) )
the expected phenomenological behavior is a Landau- Having analyzed the properties @nd some of the results
Ginzburg¢* free energy in which the density follows a hy- t_hat can be obtained usinthe postulated dropl_et wave func_—
perbolic tangent profile. Hence, based on this argument anden. let us analyze now our methodology. Since this profile
the universality suggested by Land@#], in addition to the 1S physically plausible, it is natural to expect that the prop-

physical intuition mentioned above, we postulate a droplegrties of the attractive interaction that are consistent with
profile of the form such an ansatifor the solution of Eq.(178] should be a

very good approximation to the unknowaxac} attractive
R. potential. Hence, we will use the droplet profile to determine
¢>0(r)=cltanl‘( £ )+Cz1 (29 the intermolecular interaction potential perturbatively. In es-
sence, this becomes an inverse problem, i.e., how to recon-
where the constants andc, are chosen such that the profile struct the attractive potential from the requirement that the
satisfies the boundary conditions at the origin and at infinityproposed function satisfy the integro-differential equation
perturbatively (to every order, even though for numerical
Cci= %(\/g— \/E), Co= %(\/ng \/E). (30 computations the series has to be truncated at a finite)order
The reason we consider such an approach is the previously
The variableR; is the radius of the critical droplet arflis  mentioned sensitive dependence of the nucleation rate on the
the interfacial correlation length. Equatid29) defines a interaction range.
family of curves parametrized by the critical radius, a quan- This is done by dividing the system volume into three
tity that remains unspecified by the differential equatiand  regions and matching the solution order-by-order in pertur-
the boundary conditions it may, however, be calculated bation. The system volume is divided into a region close to
from the classical theory of nu_cleation. The density at thehe center of the droplet wheek,= \/p, (regionA), a region
center of mass of the droplet will be specified from the nor-a; away from the origin whereb,= \/p, (regionB), and the
malization condition on the average number of particles inansition region where the interface ligsgion C). This
the system volumeneglecting fluctuation correctionsA giyision is valid as long as the system is not close to the
plot of the proposed droplet-profile trial function is shown in itical region nor to the mean-field spinodak<Ry,),

Fig. 1. - o namely the interface is well-defined. The consistency re-
The proposed profile is a reasonable approximation On%uirement thatg,(r) be a solution in regioné and B is

for R:>¢, 1.e., close to the coexistence curve and far awayasily obtained by noting that gradients vanish and the order

from the spinodal or the critical point. It should be remarkedparameter attains its limiting value. In the transition region,

that in modeling the density profile, it is desirable to have g solution is expanded aboutR,. Schematically, the

smooth functional dependence. Lack of smoothri@sse.g., profile and the attractive term should satisfy the following.
would be the case for a piecewise constant profile near the RegionA

origin) would result in highly unphysical discontinuities and
blowups in the derivatives of the profile. Furthermore, pre-
vious modeling attemptsee, for example, Langer’s work in

Ref. [13]) have used a similar tanh-like approximation that .
we believe is the most intuitively appropriate since the pro-Wlth
file approaches the steady-state vauponentially fasaway 1
from the surface of the droplet. Nevertheless, for cases where _ N .

R.~ &, other profiles have been propog@é], but additional folr) v [ulpu=pi) = apopil; (329
parameters are introduced that have to be determined varia-

r<R. (r—0), ¢o=1p

tionally. region B,
For the postulated form of the droplet profile, the Jacobian
may be evaluated, up to exponentially small corrections to >R, (r—,), ¢o= \/E
extensivity, in terms of the polylogarithm functidf(n,z),
, (477 o | 22z (At 2F 22 with
ran=| 37C1 3(1+2) ' P .
=— ; 32b

(31a O(r) ap, ( )

where transition region,

z=exp2R./§), (31b r=R.+y (Y<R.),

036123-8



TRANSLATIONAL INVARIANCE IN NUCLEATION . .. PHYSICAL REVIEW E 63 036123

y y3 28 A remark about the implementation and potential useful-
do(R.+Y)=Cyo+ Cl(__ =t —5) +O[(y/&)]. ness of this method, we believe, is in order here. We argued
§ 38 15¢ earlier that the tanh-like profile may be a physically moti-

(320 vated choice for the form of the density profile. It is true that

. - . . this is only an ansatz and hence the technique presented
The consistency conditions are obtained by requiring that thgbove i gnly approximate. However, the pu?posg of this

_perturbat_lve expansion In the transition region satisfy .theexposition was more general. It was to highlight a theoretical
integro-differential equation order-by-order. The ensuing

first four self-consistency equations dikis easy to extend methodology to extract information on fundamental relations
. ) Y €q y and interactionghere, about the attractive potentidiom
the series to higher orders

density profiles: these profiles may be estimated from experi-
wrefpy)  2C4 mental measurements or theoretically suggested. In this
Col u— fgo)] - Cgu +—=0, 0O(0), (33a spirit, we suggest that the ansatz be considered only as a case
¢Re example of the method via the following procedufs: to
form the density profilglestimated either from the experi-
mental data or theoretical arguments) to fit it to a smooth
function, (iii) to Taylor-expand it near the droplet surface,
and (iv) subsequently to follow the same steps as for the
O(1), (33b) case-study ansatz used above. It should be noted that cur-
rently such measurements of density profiles are not avail-
2 able, but partly our scope is to potentially trigger the interest
— 21’(2)4_ ﬁ i_ i 24 HrefPy) — ﬂf(l)zo of experimentalists in attempting to obtain such information.
£ py 0 We believe that such measurements, in conjunction with the-
oretical methods such as the one presented above, could pos-
0(2), (330  sibly provide important insights into the nature of fundamen-
tal interactions of the systems under study.
1 1) o ¢, So far we have described two approaches. First, if the
E iy bl 83)— 2—51‘82) attractive interaction potential is known explicitly, the result-
ing boundary-value integro-differential problefBVIDP)
can be solved numerically. Second, if the potential is not
i G Poref Pu) (c2—c?)— i[ﬂ_ f01=0, O(3) known, properties of the droplet profile and of the potential
£ py 2 IS 0 ’ ' may be determinedapproximately self-consistently, as de-
scribed above. However, an alternative and simpler approach
(330 to the solution of the BVIDP may be chosen if the full po-
The parameteré&”) are the coefficients of the Taylor- tential is known analytically. Spec”?@"y’ thg solution an-
satz, Eq.(29), may be used as a variational trial function in

series expansion of the attractive term about the critical raz - o .
P Eq. (7). The extremum of the functional will yield a nonlin-

v

2
C1C5 Uref Py)

2cq
— Tl - ——=

Py 20 ¢R?

0

8c; 2¢4

3¢ ¢R?

RZ &

dius, . . .
ear equation connecting and¢. The second required equa-
n tion will be the normalization condition: thus the solution of
d"fo(r) . . L ; )
fi(Ry)= , (34)  this constrained extremization problem will then give the
dr” f—R physical quantities of interest. In the case of a known poten-

C

tial, the third approach is less cumbersome than the first
and they provide information on the interaction potential:Since it involves a solution of only two nonline@algebraig
they may be considered “moments,” each one involving anequations rather the solution of the BVIDP ¢all of) the
nth-order derivative of the potential weighted by the mean-ositive semiaxigin addition to the algebraic normalization
field droplet profile squared. If we assume trfé?) is a condition; however, it is consequently more approximate.

known property of the potential, in the spirit of knowing the

integrated str_ength_ of the_ attractive potential a set of _ VI. CONCLUSIONS
closed equations is obtained. The lowest-order equation
(339 specifies the correlation lenggiia a complicated non- In this work, a connection between density-functional

linear equatioh and as before the liquid density is deter- theories of nucleation and macroscopic theories of Bose-
mined from the normalization condition, ariRl. from the  Einstein condensation was established; it was achieved by
classical theory. Higher-order consistency equations are usetlopting a field-theoretic approach along the lines of
to specify higher-order terms. Having determined the TayloiLanger’s [13] semiphenomenological theory of condensa-
expansion coefficients of the attractive term, the attractivaion. The motivation for our work was the statistical mechan-
potential may be obtained by inverting the equations. Aics of Bose-Einstein condensation where the wave function
method to perform this inversion and obtain the interactionof the macroscopically occupied ground state of a Bose gas
potential is detailed in Appendix C. It is clear that evenbecomes the superfluid order parameter. The explicit, sug-
though this procedure is formally well-defined, its numericalgested analogappropriate order parametes between con-
implementation is nontrivial. densed bosons in théuantum-mechanicelground state
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and, given Langer’s field-theoretic description of condensawe were primarily concerned with the formulation of a gen-
tion, a cluster of molecules in the condensed phase tharal theory to tackle such problems. The formulation is quite
forms a liquid droplet. general, subject, of course, to the assumptions discussed in
By expressing the grand-canonical partition function as dhe text(for example, the continuum approximation and the
functional integral, and performing a steepest-descent eval@ssumptions about the interaction potentatd can be ap-
ation, an integro-differential Euler-Lagrange equation for thePlied to various systems of experimental interest. It has the
spatially nonuniform, mean-field droplet profile was derived.Major advantage that it puts in contact and in perspective the
The resulting equation is reminiscent of the extremum equaSonnection between the simplest phenomenological theory
tion in density-functional theories of nucleation in that it tat captures the essential physics of a first-order phase tran-

contains a nonlocal attractive term, but it differs in the evaly-Sition and more rigorous and modern methodologies of

ation of reference-state properties. A suggested redefinitioensity-functional theory, thereby providing a unified view-
of the chemical potential in terms of a reference chemicaPCnt to such methodologies. The second part of this study,

potential was similar to the approach taken in density_purrently in progress, will instead focus on special case stud-

functional theories, where the reference potential is usually€S ©f Systems for which other theoretical approaches as well
identified with that of a hard-sphere fluid. For a classicai@S €xperimental results have appeared in the literature.

fluid, where the Thomas-Fermi approximation of neglecting
the kinetic energy term is applicable, a classical field- ACKNOWLEDGMENTS
theoretic description of inhomogeneous fluids is obtained, a

description that was compared and contrasted t0 ClassiCglis \york and for his comments. Y.D. acknowledges partial
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Apart from the derivation of the profile equation, the em- (Contract No. EVK2-CT-1999-00032P.G.K. and P.G.G.

phasis of our work was on the evaluation of the Cont”bunonacknowledge support from the “Alexander S. Onasis” Pub-

of the droplet translational eigenmodes to the nucleation ratg;. ganefit Foundation. the NJDEP funded Ozone Research
As shown in the pasf13], the contribution of the transla- ~onter US. DOE ,Cooperative Agreement DE-FCO1-
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tegration variables to collective coordinates. We extracte ' o ' '

the part corresponding to the translational modes, leaving the

complete evaluation of the statistical and dynamical prefac-

tors to future investigations. The functional form of these

eigenvectors for the three-dimensional Euler-Lagrange equa- We rederive the droplet-profile equation by following the

tion was determined under the assumption that the meamrguments used to obtain the Gross-Pitaevskii equation in

field density profile be spherically symmetric, i.e., without theories of Bose-Einstein condensation. In doing so, we will

assuming its explicit functional form, and its relation to thealso show how the functional derivatives of E() are

gradient of the mean-field order parameter was demonevaluated to obtain Eq10). As argued in Ref[18], the

strated. Euler-Lagrange equation for the steady-state, nonuniform
The solution of the Euler-Lagrange equation that deterdroplet configuration may be derived from the variational

mines the (mean-field droplet profile was viewed as a principle

boundary value integro-differential problefBVIDP): the

solution is necessary for the evaluation of the translational 9

contribution to the nucleation-rate statistical prefactor. We |ﬁa—td>(r,t)=

discussed three ways to obtain the solutiGhif the attrac-

tive potential is knpyvn, a compl_ete_ numericaj solution of thewhere the energy function is

BVIDP on the positive real semiaxis would give an accurate,

numerical profile of the fluid densityji) a simpler approach 52

to obtain the profile numerically, if the attractive potential is E[®,®*]= dr’{%|v¢(r’,t)|2+%F(r',t)l(b(r’,t)|2

known, is to use a variational trial function and extremize the

functional integral as a function of a single paramdtee g

second parameter is enslaved to it by the normalization con- + §|<I>(r’,t)|4

dition); and (iii) for the most relevant case in which the in-

termolecular interaction is not known explicitly, a physically The contribution of the attractive potential has been incorpo-

motivated ansatz profile was proposed. This ansatz in congted in the function

junction with the Euler-Lagrange equation provides suffi-

We would like to thank Mihalis Lazaridis for initiating

APPENDIX A: TIME-DEPENDENT VARIATIONAL
PRINCIPLE

SE[®, D]

SP*(r,t) (A1)

. (A2)

cient information to obtain formally the parameters of the , , L Y a2

ansatz as well as th@pproximate evaluation pproperties F(r ’t):f dr"Vag(|r" =r"D|@(r", )% (A3)

of the attractive potential in an inverse-problem sense, as

highlighted in Sec. V and in Appendix C. The Euler-Lagrange equation for the order parameter

It should be remarked that in this first part of our work on ®(r,t) is obtained by extremizing the energy functional
the role of translational invariance in theories of nucleationE[®,®*]. The functional derivatives of the kinetic energy
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and the local repulsive interaction term are easily obtainedyolume, and as beforé is real and normalized to the total

keeping in mind that the field® and ®* are independent. number of particles,N=[,dr ¢3(r). Then the Euler-

The extremum of the nonlocal attractive interaction term  Lagrange equatiofa modified static Gross-Pitaevskii equa-
tion) becomes

Uattr[CID,CD*]E%Jdr’F(r',t)(I)(r’,t)CD*(r’,t) (Ad)

ﬁZ
S Veotu—1(N]¢—ge*=0,  (AL2)
becomes
N , where the functiorf(r) has been defined in the main text,
MZ%FU’I@(HH%{ drrm(p(rr,t) Eq. (6): Equation(A12) is identical to Eqg.(10) in the main
SP*(r,t) oD (r,t) text.
XPH(r',1). (AS5) APPENDIX B: CLASSICAL LIMIT
The functional derivative in the integrand evaluates to As argued in the main text, the Thomas-Fermi approxi-
, mation is applicable to classical fluids. This approximation,
SF(r’,1) =V ([r' =r)®(r,t) (A6) which consists of dropping the kinetic-energy term, is ob-
oP*(r,t) o o tained by taking thé.— 0 limit of Eq. (7) to yield
Note that in the above two equations, we have used the N . 9 4
lemma Sl= | drj —[u—2f(N]e"+ 547 (B1)
oP*(r,t) —S(r—r") (A7) The leading-order term in the saddle-point evaluation of the
SP*(r' 1) ' functional integral Eq.(8) gives the following mean-field

expression for the grand-canonical thermodynamic potential
Upon substitution to the initial equatiqi5), the functional [via Eg. (9)]:
derivative becomes

Vad @ P7] _, 1 arso= dr[_[M_%fo(r)]¢c2>(f)+g¢g(r)],
W_EF(rvt)®(rlt)+§®(r,t) (Bz)

, , 2 where ¢o(r) is the solution of the Euler-Lagrange equation
Xf dr'Vee([r" —=r)[®(r",0)]% (A8) [Eq. (173] and f, was defined in Eq(17b). Equation(B2)
may be reexpressed in terms of the local denpity) as
As argued in the main text, and in agreement with densityfollows:
functional studies of nucleatidi®—11], the main assumption

about the attractive potential is that it be centf#ius, g )
Va(r' —r)=Va(r—r")]. Therefore, Q[P(r)]zzf drp (r)_ﬂf dr p(r)
Uy D, 0
M:F(r,t)d)(r.t). (A9) +%fdrdr’Van(|r—r’|)p(r)p(r’). (B3)
8D (r,t)

Consequently, the time-dependent variational equation be- This equation is to be compared to the density-functional
comes expression for the grand-canonical potenfir example,

. Eqg. (2.8 in Ref. [8]], namely

J h
ih—®(r,t)=—==V2D(r,t) + F(r,t)d(r,t)

ot 2m Qortp(1)]= [ drfulp(r)1—p [ dr pir)
+g|O(r,1)[2D(r,t). (A10)

The Euler-Lagrange equation for the time-independent +%f dr dr'wy([r=r"[)p(r)p(r'),
(nonuniform spatial profile of the droplet wave function
¢(r) that will mediate the transition between the liquid and (B4)

vapor phase is obtained by considering a time-dependent so- . . . .
IutiF:)n gf the form y g P where we have followed their notation for the pair attractive

potentialw,(r), andf[ p] is the Helmholtz free energy per
O(r,t)=¢(r)exp(—iut/h), (A11)  unit volume of a uniform hard-sphere fluid of densjtyIn
the spirit of density-functional theory, the density of the fluid
where u is, as defined in the main text, the thermodynamic(be it uniform or nonuniformis obtained by setting the func-
chemical potential associated to tReparticles in the system tional derivative of() with respect top(r) equal to zero.
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Comparison of Eqs(B3) and (B4) shows the similarities Furthermore, to simplify the formal calculations, we shall
and differences between the two approaches. Equ@B8n  require that the potentiaV,(r) be an even function. Thus
is a mean-field expression: higher-order terms may be addeatie expansion gives
perturbatively by considering fluctuation corrections. The

density-functional expression contains fluctuations of all or- ~ N S(2n+1)

ders, but it necessitates the introduction of a reference state ZVa Z)Evaﬂ(z):go (ZnT)!Vatt (0). (€3
[in the case of Eq(B4) taken to be the uniform hard-sphere

fluid]. The general expansion of E@.8) about the critical radius is

For a concrete comparison of the two approaches, we con-
sider the limit of a uniform fluid. As argued in the main text, 2w (= ” -1
g is related to properties of the reference state, and it is fO(Rc‘Ly):R_fO drir’ ¢o(r )21 R
specified by the requirement that the solution of the Euler- ¢ ¢

Lagrange equation have the appropriate asymptgiysi- ~ Ven+1)g) 2041) [ 9o(n+1)
cal) limits [see the discussion above Ed4)]. Hence, its N ——
. . : o [2+1)]1 & k
value ensures that the uniform-stdie is evaluated at its
minimum. The uniform fluid density, however, is not deter- X[(Ro+r1")2M+1)-k
mined self-consistently, but it is specified as a boundary con- ¢
dition. On the other hand, in classical density-functional —|R—r |2+ D=k Itk (C4)

theory, the uniform fluid density is determined from the ex- _ o
tremum(minimum) equation, at the expense of introducing a 1 iS €xpansion is to be compared and equated order-by-
physically reasonable and numerically accurate referenc@’der in perturbation with the Taylor-series expansion of the
state. Finally, Eq(B3) suggests that in the classical limit the attractive term. Such a comparison gives
natural choice for the order parameter is the local fluid den- v o~
. 2 V(2n+l)(o)
sity p(r). fMRY) == > ¢ (R;,m), (C5)
0 ¢ R. o [2(n+21)] ™™ ¢ 7

APPENDIX C: DETERMINATION OF THE ATTRACTIVE

POTENTIAL AS AN INVERSE PROBLEM wherem=1|+k—1 and the coefficients are

We argued in the main text that the consistency condi- o 5 Itk—1=m 1\'-2
tions specifyf{”(R.), the Taylor expansion coefficients of ~ Cn(Rc.m)= fo dr’r’¢0(r’)|

. . . . =1,0sk=s ( R
the attractive ternf(r) about the critical radius. The inver- Losk=20tn) ¢

sion to determine the potential may be done perturbatively, 2(n+1)

based on the spherically symmetric form Ef8). For sim- X K [(Re+r/)2(n* 1=k

plicity we require that, as the second integrand in this inte-

gral suggestszV,(z) be differentiable at the origin: this is —|R—r |2+ DK, (C6)

the case for the most frequently used potentials, such as, the

Yukawa potential, Hence, an explicit expression for ti¢h-order derivative

f{V(R,) was obtained in terms of properties of the attractive

Veucand 1) = — a)\sexp(—)\r) (c1  interaction potential, E4CS) and(C6). If the expansion of

Aahr the attractive potential, EqC3), is truncated to the firsth
terms, and ther(— 1)th-order derivatives are obtained from

where « is the i_ntlegrated s(tjrelngth ar?dlthe hrarlgee of the  the self-consistency conditions, E483), a linear system of
attractive potential, or a model potential with Bn® attrac- "0 aions for - unknowns, the VE<D(0) with k

tive tail [29], =0,...,n—1, is obtained. Thus thexn system of equa-
Ve(r)=—ea®(r2+g?) 3, (c2) tions may be inverted to obtain the unknown attractive-
interaction parameters. It is apparent that whereas the
with o a measure of the molecular diameter and (posi- scheme is formally well-defined, it is difficult to implement

tive) constant that characterizes the strength of the potentiait numerically.
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