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Irreversible phase transitions driven by an oscillatory parameter in a far-from-equilibrium system

G. P. Saracco* and E. V. Albano†

Instituto de Investigaciones Fisicoquı´micas Teo´ricas y Aplicadas (INIFTA), UNLP, CONICET, CIC (Buenes Aires), Casilla de Corre
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The dynamic response of a forest-fire model to the harmonic variation of an external parameter is studied by
means of numerical simulations. Second-order irreversible phase transitions driven by the harmonic input are
reported. The location of such transitions depends on both the amplitude and period of the input signal. By
means of epidemic studies the relevant critical exponents can be determined, which allow us to place the
reported transitions in the universality class of directed percolation. This conclusion is also supported by a field
theoretical calculation.

DOI: 10.1103/PhysRevE.63.036119 PACS number~s!: 05.40.2a, 82.40.Bj, 64.60.Cn
m
t

e
ss
t

m
ng
a
a
n

g
y-
f
ite
rd

th
os

m

t
se
-
go
lle
ha

o
ic

la

se

d

tate
d

nd-
ote
e
can

m-

ntly

an
cil-
ave

e
ret-
is
The

ical
Ap-

on

, or
ich
I. INTRODUCTION

The study of the dynamic response of systems in ther
dynamic equilibrium, close to reversible phase transitions
an external perturbation, is a subject of current inter
@1–7#. Recent studies on the dynamic response of a cla
Ising ferromagnet to an oscillatory magnetic field has led
the discovery of interesting phenomena such as dyna
hysteresis@1# and a fluctuation-induced symmetry breaki
transition. Also, very recently, the dynamic response of
Ising system to a pulsed magnetic field was studied by me
of Monte Carlo simulations and numerically solving a mea
field equation@7#. In a related context, the kinetic Isin
model in an oscillating field exhibits a nonequilibrium d
namic phase transition@8#. Numerical Monte Carlo data o
this system can be rationalized in terms of standard fin
size scaling arguments taken from the theory of second-o
equilibrium phase transitions@8#.

In contrast to their reversible counterpart, the study of
dynamic response of intrinsically irreversible systems cl
to irreversible phase transitions~IPT’s! is still in its infancy.
IPT’s in an interacting particle system undergoing far fro
equilibrium conditions take place between an active~or re-
active! regime and an inactive~or absorbing! state. Such
transitions are irreversible because a system trapped in
absorbing state can never change its state. As in the ca
equilibrium statistical physics, far from equilibrium pro
cesses are particularly interesting when the system under
irreversible phase transitions where particles behave co
tively over long distances. Due to this interest the subject
been reviewed extensively; see, e.g., Refs.@9–11#. Among
many systems exhibiting IPT’s, directed percolation is one
the most studied models in nonequilibrium statistical phys
~for pioneering reviews, see the works of Kinzel@12,13# and
for a recent review see the e-print of Hinrichsen@14#!. A
summary of open problems in the field of directed perco
tion was recently published by Grassberger@15#. Other sys-
tems and models exhibiting IPT’s are contact proces
@9,11,17–20#, branching annihilating walkers@21–25#,
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forest-fire models@26–33#, models of the dynamic evolution
of living individuals @34#, and several models of catalyze
reactions such as the Ziff-Gulari-Barshad~ZGB! model@35#
and variations @36#, the dimer-dimer model@37#, the
monomer-monomer model@35,38,39#, etc.; for reviews on
reaction systems, see, e.g., Refs.@40,41#.

IPT’s between an active regime and the absorbing s
can be smooth~abrupt!, and consequently they are classifie
as second~first! order. Very recently, we studied@42# the
dynamic response of the ZGB model, close to its seco
order IPT, to a pulsed perturbation. It is interesting to n
that after driving a stationary configuration slightly into th
absorbing state, the subsequent relaxation of the system
be well described by a stretched exponential behavior@42#.
On the other hand, an oscillatory change in the input para
eter ~close to the first-order IPT in the ZGB model! consid-
erably enhances the output of the product, and conseque
the catalytic activity is improved@43#. Within this context,
the aim of this work is to study the dynamic response of
irreversible system close to its second-order IPT, to an os
latory change of the parameter. For this purpose, we h
selected a forest-fire model with immune trees@26#, which
shows a very well characterized second-order IPT@27,28#.

The manuscript is organized as follows: in Sec. II w
describe the model and the simulation method. The theo
ical background is briefly presented in Sec. III. Section IV
devoted to the presentation and discussion of our results.
conclusions are stated in Sec. V, and finally, field theoret
arguments supporting our findings are discussed in the
pendix.

II. MODEL AND DESCRIPTION OF THE SIMULATION
TECHNIQUE

A. Forest fire model with immune trees

There is a great variety of forest-fire models~FFM’s!,
@26–32#; for an extensive review see, e.g., Ref.@33#. Most
FFM’s are stochastic cellular automata which are defined
a d-dimensional hypercube lattice withLd sites. Each site
can be occupied by a tree, be occupied by a burning tree
be empty. FFM’s can be defined, giving a set of rules wh
©2001 The American Physical Society19-1
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are used during each Monte Carlo time step, to update
whole system in parallel. These rules can be summarize
follows:

~1! burning tree→empty site;
~2! tree→burning tree, with probability (12g) if at least

one nearest neighbor~NN! is burning;
~3! empty site→tree with probabilityp;
~4! tree→burning tree, with probabilityf if no NN is burn-

ing.

Probabilityp is the growing probability,g is the immunity
of each tree to catching fire, andf is the lightning probability
which can be thought as the probability of spontaneous ig
tion of a tree. Of course the fire cannot propagate forg51.

Qualitatively one expects that, if the immunity is nonze
the fire fronts present forg50 will become more and more
fuzzy when increasingg; consequently the forest becom
denser. Takingg50 and f 50 one has the model of Ba
et al. @29#, which is noncritical~in d52) and exhibits a
steady state, which is a succession of fire fronts with a fra
dimensiond51 @44#. Also, takingg50 in the limit f !1,
f /p→0, one has the model proposed in Refs.@31–33#,
which shows self-organized critical~SOC! behavior. The
paradigm of SOC behavior refers to the tendency of cer
large dissipative systems to drive themselves into a crit
state independent of the initial condition and without fi
tuning of any parameter@45–47#. The occurrence of SOC
behavior is the main reason for the popularity of sandp
and forest-fire models. Within this context, a very recent t
oretical development deserves to be noticed. In fact, Broe
and Grassberger@48# reconsidered the FFM proposed by B
et al. @45# not to be critical in two dimensions, but the mod
shows anomalous scaling in three and four dimensions. A
the connection between SOC behavior and phase transi
in models with absorbing states was studied by Dickm
et al. @49#. It was argued that SOC behavior can be und
stood as an aspect of multiple absorbing state systems u
a slow drive@49#. A unified dynamic mean-field theory fo
stochastic SOC models was recently developed by Ves
nani and Zapperi@50#. It was argued that, in a FFM with
lightning, criticality arises in the limit of vanishing driving
rates. From this perspective, SOC models appear to be
equilibrium systems with steady states, and criticality may
reached by a fine tuning of the control parameters. Howe
in SOC systems such tuning can only be achieved by li
procedures@50#. Also, Sinha-Ray and Jensen@51# demon-
strated that the stochastic FFM of Drosselet al. @31# can be
turned into a deterministic threshold model with the sa
macroscopic statistical properties.

It is worth mentioning that FFM’s exhibiting SOC beha
ior are not suitable for the present study on the influence
an oscillatory driven parameter, precisely because of the
of tunable parameters. For this reason, in the present w
we shall focus our attention on another kind of FFM, the
called forest-fire model with immune trees~FFMIT!, which
is defined by the above stated rules 1-3, andf 50 in rule 4.
The FFMIT is simulated in a square lattice of linear sizeL,
assuming periodic boundary conditions. Since the FFMIT
03611
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a cellular automaton, all sites are updated simultaneou
during each Monte Carlo time step. Qualitatively speaking
the growing probability is large (p→1, but p,1) and the
immunity is low (g→0, but g.0) one expects the coexis
ence of fire, trees, and empty sites. However, keepingp con-
stant and increasingg the fire will eventually cease and th
system will become trapped in an absorbing state with
lattice completely filled by trees. So, the FFMIT exhibi
second-order IPT’s between an active state with fire pro
gation and an absorbing state where the fire becomes
versibly extinguished@27,28#. Figure 1 shows the phase dia
gram of the FFMIT, i.e., a plot of the critical immunity (gc)
versus the critical grown probability (pc), as obtained in pre-
vious works@27,28#.

B. A FFMIT with oscillatory variation of the parameters

An interesting approach to study the dynamic respons
the FFMIT is to analyze its behavior upon temporal var
tions of the parameters. In principle, one can vary eitherp, g,
or both of them simultaneously. However, for sake of si
plicity, but without losing generality, we have worked takin
p5const whileg is varied. For this purpose the procedure
as follows: first a stationary active state of the stand
FFMIT is obtained for fixed values of the parameters. In t
work we takep050.5 andg050.46, as shown in Fig. 1
Subsequentlyp is kept fixed (p5p0), and g is varied har-
monically according to

g5S g01
Ag

2 D1
Ag

2
sinS 2p

T
t D , ~1!

where Ag and T are the amplitude and the period of th
oscillation, respectively. In order to drive the system into t
absorbing state one has to takeAg.gc2g0, as shown in Fig.
1. Note that the critical point of the standard FFMIT is give
by p05pc50.5 andgc50.561460.0005@27,28#.

FIG. 1. Plot of the critical curve of the FFMIT,gc vs pc , valid
in the thermodynamic limitL5`. The circle (d) shows the start-
ing point of our simulations (p050.5,g050.46). The dotted line
shows an example of variation of the parameter g according to
~1!.
9-2
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IRREVERSIBLE PHASE TRANSITIONS DRIVEN BY AN . . . PHYSICAL REVIEW E63 036119
C. Theoretical background

Due to the variation of the parameter@Eq. ~1!#, it is ex-
pected that for long enough periods and/or large amplitud
the fire will eventually become extinguished, i.e., the syst
may be trapped in the absorbing state. So the periodic va
tion of g may cause IPT’s between an active state with
cillations of fire and tree densities and the absorbing s
with the sample filled with trees only. These transitions m
occur at critical values of the amplitudeAgc

and the period

Tc . In order to characterize and study such IPT’s, epide
simulations~ES’s! have been performed.

The idea behind ES’s is to start the runs from a confi
ration very close to the absorbing state, and subsequentl
follow the temporal evolution of the system under consid
ation. To do this, simulations are initiated with a samp
filled with trees except for a small patch of 232 sites having
burning trees and placed at the center of the lattice. Depe
ing on the values of the parameters, such a small perturba
~fire! would either propagate or become extinguished. D
ing the propagation, the following quantities are measur
~i! the average number of burning treesN(t); ~ii ! the survival
probability P(t), i.e., the probability that the fire is still ig
nited at timet; and ~iii ! the average mean-square distan
R2(t) over which the fire has spread. Note thatN(t) is av-
eraged over all samples, including those in which the fire
already been extinguished, whileR2(t) is averaged over
samples having burning trees only. Averages are taken
5000 different samples, and runs are performed up to
input periods. Simulations are performed in two dimensio
and the lattice size is selected large enough, usuallyL
5350 or 500 lattice units~LU’s!, in order to avoid fire reach
ing boundaries. Using this procedure data are free of fin
size effects. The usual ansatz for epidemic simulation cl
to second order IPT’s is to assume thatN(t), P(t), and
R2(t) obey a power-law dependency with exponentsh, d,
and z, respectively. In the present ES the input parame
varies harmonically@see Eq.~1!#, so we expect to obtain a
oscillatory output modulated by a power law, that is

N~ t !5No1thFN11N2 cosS 2p

T
t1BD G , ~2!

whereB is a constant phase shift,No is the initial number of
burning trees, andN1 andN2 are constants. Similar laws ar
expected to hold forP(t) andR(t), respectively.

III. RESULTS AND DISCUSSION

As already stated, standard simulations were perform
achieving a stationary reactive state for the standard FFM
taking p050.5 andg050.46, as shown in Fig. 1. Subse
quently, the harmonic variation of the immunity is switch
on, according to Eq.~1!. Figure 2 displays two typical ex
amples of the observed behavior. Starting from the sa
initial configuration, the system is driven by two differe
oscillatory signals, both with the same periodT555 MCS’s
@in all figures, the time is measured in Monte Carlo ste
~MCS’s!#, but with different amplitudes. TakingAg
50.1650@Fig. 2~a!#, one sees that the system is effective
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driven into the absorbing state (g01Ag50.625.gc
50.5614). However, sinceAg is not too large the system
reaches a time-dependent oscillatory regime with the co
istence of fire, trees, and empty sites. In contrast, increa
the amplitude up toAg50.1695@Fig. 2~b!#, after a few os-
cillations the system finally becomes trapped in the abso
ing state with fire extinction. Note that at least three cycles
Fig. 2~b! exhibit a very small amount of burning trees whe
the system is driven within the absorbing state. In these ca
the fire recovers during the remaining half cycle. Of cour
due to the vanishing small amount of fire, a fluctuati
would eventually cause fire extinction, as shown in Fig. 2~b!.

In order to obtain the precise location of the critical poin
namely, the critical amplitudeAgc

and the critical periodTc ,
ES’s have been performed. In fact, determinations of criti
points using standard measurements of the dependenc
N(t) versusg(t), e.g., as shown in Fig. 2, are heavily a
fected by fluctuations of the stochastic system and undes
finite-size effects. Figure 3~a! shows a log-log plot ofN(t)
versust obtained performing ES’s where the oscillatory ou
put can clearly be observed. In order to perform a prelim
nary fit, we have first determined the values ofN(t) on

FIG. 2. Plots of the density of burning trees versus the in
signal g(t) taken for p050.5,T555 Monte Carlo steps~MCS’s!,
and using lattices ofL5400 lattice units~LU’s!. In ~a! the ampli-
tude isAg50.1650, and the system oscillates indefinitely. In~b! one
has Ag50.1695, and the system evolves toward the irrevers
extinction of the fire.
9-3
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G. P. SARACCO AND E. V. ALBANO PHYSICAL REVIEW E63 036119
FIG. 3. ~a! Log-log plot of the number of burning treesN(t) vs
t, exhibiting the features exposed in the theoretical backgrou
Results obtained at criticality, viz.Agc

50.1695, whereTc555
MCS’s. The envelope shows a linear positive slope, character
of second-order IPT. The inset shows the results of a Fourier an
sis through an amplitude spectrum of the time series ofN(t) at
criticality. The location of the first harmonics are shown by arrow
More details in the text.~b! Log-log plot of maximum, minimum,
and approximately medium points ofN(t) are taken from Fig. 3~a!
vs t. The linear dependence allows us to determine the expon
reported in the text.~c! Plot of the number of burning trees vst
fitted by the ansatz proposed in Eq.~2!. The inset shows the plot o
N(t) andg(t) vs t, which allows us to determine the constant pha
shift B.
03611
peaks, valleys and centers, given byN1, N2, and N0, re-
spectively. Figure 3~b! shows that log-log plots ofN1, N2,
andN0 versust can be very well fitted by straight lines wit
slopes h150.2260.02, h250.2260.02, and h050.22
60.02, respectively. Plots drawn taking a smaller~larger!
amplitude show an upward~downward! curvature suggesting
that they are off critically. Precisely, the straight lines exh
ited in the log-log of Fig. 3~b! are the signature of a power
law behavior which characterizes a second-order phase
sition exhibiting scale invariance. The inset in Fig. 3~c!
shows that it also is possible to determine the assumed
stant phase shift in equation~2!, by comparing plots ofN(t)
and g(t) versust. For example in Fig. 3~c! B51.3760.34
has been obtained. It should be noticed thatB remains con-
stant, within error bars, for the whole time series ofN(t)
versust, in agreement with the lack of evidences of anh
monic terms found using the Fourier analysis@Fig. 3~a!#.
Therefore it is now possible to fit the whole curve ofN(t)
versust using the already determined values ofh and B,
keepingNo51.0 fixed~because in principle, only one tree
needed to start the epidemic!, but takingN1 and N2 as ad-
justable parameters, as shown in Fig. 3~c!, with N151.3
60.1 andN251.0960.06.

Figure 4 shows that a log-log plot ofP(t) versust also
exhibits oscillatory behavior. Here, the survival probability
due to the increment in the immunity which makes the fi
propagation harder and may cause the eventual extinctio
some epidemics. Defining the maximum, minimum, and m
dium values ofP(t) in each cycle asP1, P2, and P0, re-
spectively, one can obtain the exponentd, as shown in the
inset of Fig. 4. Our results, at criticality, ared150.46
60.02, d250.4060.04 andd050.4360.03, respectively.
This finding suggests thatd15d05d2 considering both er-
ror bars and finite time corrections.

Figure 5 shows a log-log plot ofR2 versust obtained for
Tc555 MCS’s andAgc

50.1695. It is found thatR2 is less

sensitive to the oscillatory input thanN(t) and P(t). This
behavior is due to the fact thatR2(t) only accounts for sur-

d.

tic
ly-

.

ts

e

FIG. 4. Log-log plot of the survival probabilityP(t) versust at
the critical pointAgc50.1695, whereTc555 MCS’s. The oscilla-
tory shape is clearly observed. The inset shows the linear fi
peaks, valleys, and medium points. For more details, see the t
9-4
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IRREVERSIBLE PHASE TRANSITIONS DRIVEN BY AN . . . PHYSICAL REVIEW E63 036119
viving epidemics at timet. The plot can roughly be fitted by
a straight line which yields a slopez>1.1860.06.

It should be noticed that the evaluated exponents are
versal properties of the model that define its universa
class. These relevant figures have to be clearly distinguis
from non-universal properties such as, e.g., the oscilla
behavior ofN(t) and P(t) and the constant phase shiftB.
Having these concepts in mind, we conclude that all the
namic exponents that characterize the IPT’s driven by
oscillatory parameter are in agreement with those of the
versality class of directed percolation~DP! in 211 dimen-
sions, namely,h50.22 295(10), d50.4505(10), andz
51.1325(10)@16#. Also, the hyperscaling relationd z54 d
12 h , whered52 is the lattice dimension, is well satisfie
by these exponents. So we conclude that the type of tra
tion discussed so far can be placed in the universality clas
DP ~a formal treatment performed by Mun˜oz @52# can be
found in the Appendix!. This result extends the validity o
Janssen’s conjecture@53#, that a continuous transition into a
absorbing state characterized by a scalar order param
must belong to the universality class of DP, to irreversi
transitions driven by oscillatory parameters. Recently suc
conjecture was extended to systems with an infinite num
of absorbing states@54,55# and to second-order transitions
continuous media@56#.

Performing ES with different values ofAg and T, the
phase diagram of the FFMIT under oscillatory driving h
been evaluated, as shown in Fig. 6. The critical curveAgc

versusTc shows the location of second-order IPT’s betwe
the active regimes~trees1 burning trees1 empty sites! and
the absorbing state~only trees!. All these transitions are o
second order, and belong to the universality class of DP.
inset of Fig. 6 shows a log-log plot ofTc versusDA5Agc

2(gc2g0). Note thatDA is the ‘‘excess critical amplitude,’’
namely, a renormalized amplitude which accounts for
value of the oscillatory parameter which exceeds the stat
ary critical threshold, allowing the system to make an exc
sion to an absorbing state. The data are then consistent
a hyperboliclike behavior of the formTc }DAa, with expo-
nenta>4.55. The deviation from this behavior, observed

FIG. 5. Log-log plotR2(t) ~measured in lattice units, Lu2) ver-
sus t. Here the oscillations have been heavily damped, and
points are roughly fitted by a straight line with slopez51.18
60.06.
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short periods, is likely due to the fact that the input sign
can no longer be considered as harmonic.

The dynamic response of the FFMIT to a rectangular p
turbation, instead of the sinusoidal input given by Eq.~1!,
has also been studied. Figure 7 shows a log-log plot ofN(t)
versust obtained at criticality. In contrast to Fig. 3~a! where
N(t) exhibits smooth oscillations, the response to the rect
gular input is characterized by sharp edges. The inset sh

e

FIG. 6. Phase diagram of the FFMIT under periodic oscillatio
The plane$Ag ,T% is divided by the critical curve, which shows th
precise location of second-order IPT’s as determined by ES’s. E
point on the curve belongs to the directed percolation universa
class. The absorbing state~AS! and the active regime~AR! are
shown. The hyperboliclike shape of the curve is displayed as
log-log plot in the inset, giving an exponenta>4.55. More details
are given in the text.

FIG. 7. Log-log plot of N(t) vs t as obtained by using for
rectangular input at the critical pointAgc

50.1534, whereTc556
MCS’s. Oscillations are observed as in the case of sinusoidal sig
but in the present case they have a saw tooth shape. The envelo
linear, showing the expected power-law behavior. The Fou
analysis of the output has also been performed, and the resu
shown in the inset. Note, in contrast to the sinusoidal case,
appearance of additional harmonic terms, needed to build the ab
edges.
9-5
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G. P. SARACCO AND E. V. ALBANO PHYSICAL REVIEW E63 036119
the corresponding Fourier analysis, which reveals that
this case, it is necessary for more harmonic terms to build
the output due to the abrupt edges of the input square sig
Fitting the maximum, medium, and minimum values ofN(t)
versus t, we have obtainedh150.2260.04, h250.22
60.04, andh050.2260.04, respectively. This and results
other ES’s~not shown here for the sake of space! allow us to
conclude that second-order IPT’s driven by rectangular p
turbation also belong to the universality class of DP. As
pected, the location of the critical curve becomes shifted
compared with the sinusoidal input, shown in Fig. 6. In fa
keeping the period constant one sees that critical amplitu
of the rectangular input are slightly smaller than those c
responding to the sinusoidal input.

Another approach to the study of dynamic response i
perform simulations within the reactive regime~see Fig. 6!
and close to the critical edge. In this case, the fact that fl
tuations of the stochastic system may irreversibly drive
into the absorbing state can be used. ThusPe(L) is defined
as the probability of fire extinction in a lattice of sideL.
Figure 8 shows plots ofPe(L) versus the amplitude of th
input signal, corresponding to samples of different sides
this case the period of the oscillation is kept fixed atT555
MCS’s. Figure 8 also shows the location of the critical a
plitude in the thermodynamic limitAgc

(L5`)50.1695, as
determined by means of ES’s. In contrast to the stepwise
abrupt change ofPe(`) from 0 to 1 which takes place righ
at Agc

(`), using finite samples one observes smooth va

tions of Pe(L) which steadily approach to the stepped sha
whenL is increased. TheL-dependentcritical amplitude of a
finite sample@Agc

(L)# is defined forPe(L)50.5 ~also see
Fig. 8!. According to the finite-size scaling theory@57#,

Agc
~L !5Agc

~`!1ML21/n' ~3!

whereM is a constant andn' is the correlation length expo
nent in the spatial direction.

FIG. 8. Plot ofPe(L) vs Ag obtained for samples of differen
sizesL. The smooth ‘‘s’’ shapes steadily approach to the abr
jump Pe(L5`) at Ag(L5`)50.1695~vertical line!. The horizon-
tal line indicates the location ofPe(L)50.5, which is defined as the
L-dependent critical probability. For more details see the text.
03611
in
p
al.

r-
-
s
,
es
r-

to

c-
it

n

-

nd

-

e

Figure 9 shows a log-log plot ofDA5Agc
(`)2Agc

(L)
versusL. In order to obtain a critical exponent compatib
with the DP universality class, namely,n'50.729 @16# one
has to assumeAgc50.1794, which represents a very sma
shift of 0.009 to the previous estimation ofAgc50.1695,
obtained by means of ES. So, conclude that our finite-s
study is consistent with the ES and the transition belong
the universality class of directed percolation@16#.

IV. CONCLUSIONS

The dynamic response of a forest fire model with immu
trees to an oscillatory variation of the input parameter h
been studied. Second-order irreversible phase transit
driven by an oscillatory parameter are found. The critic
edge between an active state with fire fronts and an abs
ing state where the fire becomes extinguished depends o
amplitude and the period of the harmonic input. The tran
tion points were located accurately by means of epide
studies. All irreversible transitions were found to belong
the universality class of directed percolation. Our studi
performed in a forest-fire model, can be straightforward
extended to other processes exhibiting irreversible ph
transitions, such as, e.g., catalyzed reaction systems, co
processes, models of living societies, branching annihila
walkers, etc. We also expect that our numerical results
further stimulate the study of the dynamic response of s
tems close to irreversible transitions, an interesting to
which remains almost unexplored.
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APPENDIX: FIELD THEORETICAL ARGUMENTS
ON THE OSCILLATING IMMUNITY FOREST

FIRE MODEL

In the presence of a constant immunity rate the criti
aspects of the forest-fire model and/or other epidemic mo

t

FIG. 9. Log-log plot of DA vs L obtained assumingAg

50.1794. This value renders the correct correlation length expo
n'50.729 given by the slope of the straight line. For more deta
see the text.
9-6
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with partial immunization can be described by reggeon fi
theory@58,59#. Therefore, all these models share their critic
universal properties with directed percolation@11#. The mini-
mal Langevin equation capturing the physics at criticality
@11,58#.

]f~x,t !

]t
5l“2f~x,t !1rf~x,t !2bf2~x,t !1Afh~x,t !

~A1!

wherel, r , andb are constants,f(x,t) is a density field, and
h is a Gaussian white noise whose only nonvanishing cu
lants arê h(x,t)h(x8,t8)&5Dd(x2x8)d(t2t8).

The most relevant modification induced by switching on
periodic immunity rate at this level is thatr has to be re-
placed by a time dependent function:r→r 01A cos(wt). Fol-
lowing the renormalization group spirit we can integrate o
short times and space scales. In this way, integrating
~A1! in time over a signal periodT52p/w, dividing by T,
and defining a new order parameter

Q~x,t!5
1

TE0

T

dt f~x,t! ~A2!

~with t5t/T), one obtains

]f~x,t !

]t
5l“2Q~x,t!1r 0Q~x,t!2bE

0

T

f2~x,t !dt

1E
0

T
Afh~x,t !. ~A3!
ys

E

s

s
e,

.

03611
d
l

u-

t
q.

As on these short time scales, there are no anomal
critical, fluctuations, we can safely substitute variables w
their mean values, averaged over a time period~at least as
long as one deals with large scale, asymptotic properti!.
Therefore, Eq.~A3! can be rewritten as

]Q~x,t !

]t
5l“2Q~x,t!1r0Q~x,t!2bQ~x,t!E

0

T
f~x,t!dt

1AQE
0

T

h~x,t!dt

5l“2Q~x,t!1r0Q~x,t!2b̄Q2~x,t!1AQj~x,t!,

~A4!

where we have defined a Gaussian noisej(x,t) as the aver-
aged value ofh(x,t) over a period, andb̄5bT. We have a
reggeon field theory equation, identical to Eq.~A1!, where
f(x,t) is replaced byQ(x,t). Consequently,all the critical
exponents associated with Q(x,t) are expected to take di
rected percolation values.

Observe that for any value oft for which cos(wt) is posi-
tive, the system is locally in time in the active phase; the
fore, a growth on the averaged value off is expected at tha
time. The system returns~locally in time! to the absorbing
phase whenever cos(wt)<0; i.e., at these values, magnitud
like, e.g.,N(t) start to decrease. Zeros of the signal cor
spond to extrema of the output. This fact provides a sim
explanation for the presence of dephasing between input
output signals, as shown in Fig. 3~c!.
ael

-
tems

i,
@1# M. Rao, H.R. Krishnamurty, and R. Pandit, Phys. Rev. B42,
856 ~1990!.

@2# W.S. Lo and R.A. Pelcovits, Phys. Rev. A42, 7471~1990!.
@3# M.F. Zimmer, Phys. Rev. E47, 3950~1993!.
@4# M. Acharyya and B.K. Chakrabarti, Phys. Rev. B52, 6550

~1995!.
@5# A. Fierro, A. de Candia, and A. Coniglio, Phys. Rev. E56,

4990 ~1997!.
@6# M. Acharyya, J.K. Bhattacharje, and B.K. Chakrabarti, Ph

Rev. E55, 2392~1997!.
@7# M. Acharyya, Phys. Rev. E56, 2407~1997!.
@8# S.W. Sides, P.A. Rihvold, and M.A. Novotny, Phys. Rev.

59, 2710~1999!.
@9# T.M. Ligget, Intereacting Particle Systems~Springer, Berlin,

1988!.
@10# N. Konno, Phase Transitions of Interacting Particle System

~World Scientific, Singapore, 1994!.
@11# J. Marro and R. Dickman,Nonequilibrium Phase Transition

in Lattice Models~Cambridge University Press, Cambridg
1998!; G. Grinstein and M.A. Mun˜oz, inFourth Granada Lec-
tures on Computational Physics, edited by P.L. Garrido and J
Marro, Lecture Notes in Physics Vol 493~Springer, Berlin,
1997!, p. 223.

@12# W. Kinzel, in Percolation Structures and Processes, edited by
.

G. Deutscher, R. Zallen, and J. Adler, Annals of the Isr
Physical Society Vol. 5~Hilger, Bristol, 1983!.

@13# W. Kinzel, Z. Phys. B: Condens. Matter58, 229 ~1985!.
@14# H. Hinrichsen, E-print, cond-mat/0001070.
@15# P. Grassberger, inNonlinearities in Complex Systems, Pro

ceedings of the 1995 Shimla Conference on Complex Sys
~Narosa, New Dehli, 1997!.
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