PHYSICAL REVIEW E, VOLUME 63, 036119
Irreversible phase transitions driven by an oscillatory parameter in a far-from-equilibrium system
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The dynamic response of a forest-fire model to the harmonic variation of an external parameter is studied by
means of numerical simulations. Second-order irreversible phase transitions driven by the harmonic input are
reported. The location of such transitions depends on both the amplitude and period of the input signal. By
means of epidemic studies the relevant critical exponents can be determined, which allow us to place the
reported transitions in the universality class of directed percolation. This conclusion is also supported by a field
theoretical calculation.
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[. INTRODUCTION forest-fire model$26—33, models of the dynamic evolution
of living individuals [34], and several models of catalyzed
The study of the dynamic response of systems in thermoreactions such as the Ziff-Gulari-BarshetiGB) model[35]
dynamic equilibrium, close to reversible phase transitions t@and variations[36], the dimer-dimer model[37], the
an external perturbation, is a subject of current interesmonomer-monomer mod¢B5,38,39, etc.; for reviews on
[1-7]. Recent studies on the dynamic response of a classi@action systems, see, e.g., R¢#0,41].
Ising ferromagnet to an oscillatory magnetic field has led to IPT’s between an active regime and the absorbing state
the discovery of interesting phenomena such as dynamigan be smootftabrup}, and consequently they are classified
hysteresid1] and a fluctuation-induced symmetry breaking as secondfirst) order. Very recently, we studief2] the
transition. Also, very recently, the dynamic response of argynamic response of the ZGB model, close to its second-
Ising system to a pulsed magnetic field was studied by meansiger |PT, to a pulsed perturbation. It is interesting to note
of Monte Carlo simulations and numerically solving a mean-hat after driving a stationary configuration slightly into the
field equation[7]. In a related context, the kinetic ISing ,psorhing state, the subsequent relaxation of the system can
model in an oscillating field exhibits a nonequilibrium dy- o el described by a stretched exponential behaviat.
namic phase transitiof8]. Numerical Monte Carlo data of On the other hand, an oscillatory change in the input param-

this system can be rationalized in terms of standard f'n'te'eter(close to the first-order IPT in the ZGB modigonsid-

size scaling arguments taken from the theory of second-order
equilibrium phase transitior(&]. erably enhances the output of the product, and consequently

In contrast to their reversible counterpart, the study of theIhe catalytic activity is improved43]. Within this context,

dynamic response of intrinsically irreversible systems closén€ &M of this work is to study the dynamic response of an

to irreversible phase transitio#T’s) is still in its infancy. irreversible system close to its second-o_rder IPT, to an oscil-

IPT’s in an interacting particle system undergoing far from!&tory change of the parameter. For this purpose, we have

equilibrium conditions take place between an actioe re- selected a forest-fire modeI_W|th immune tr¢@6], which

active regime and an inactivéor absorbiny state. Such shows a very well characterized second-order 7,28

transitions are irreversible because a system trapped in the The manuscript is organized as follows: in Sec. Il we

absorbing state can never change its state. As in the case @escribe the model and the simulation method. The theoret-

equilibrium statistical physics, far from equilibrium pro- ical background is briefly presented in Sec. Ill. Section IV is

cesses are particularly interesting when the system undergoggvoted to the presentation and discussion of our results. The

irreversible phase transitions where particles behave collegonclusions are stated in Sec. V, and finally, field theoretical

tively over long distances. Due to this interest the subject hagrguments supporting our findings are discussed in the Ap-

been reviewed extensively; see, e.g., RE8-11. Among  pendix.

many systems exhibiting IPT’s, directed percolation is one of

the most studied models in nonequilibrium statistical physics

(for pioneering reviews, see the works of Kinz&R,13 and Il. MODEL AND DESCRIPTION OF THE SIMULATION

for a recent review see the e-print of Hinrichsglaf]). A TECHNIQUE

summary of open problems in the field of directed percola-

tion was recently published by Grassberffs]. Other sys-

tems and models exhibiting IPT's are contact processes There is a great variety of forest-fire moddSFM’s),

[9,11,17-20, branching annihilating walkers[21-25, [26-32; for an extensive review see, e.g., RE33]. Most

FFM'’s are stochastic cellular automata which are defined on
a d-dimensional hypercube lattice witt' sites. Each site

*Email address: gsaracco@inifta.unlp.edu.ar can be occupied by a tree, be occupied by a burning tree, or
"Email address: ealbano@inifta.unlp.edu.ar be empty. FFM’s can be defined, giving a set of rules which

A. Forest fire model with immune trees
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are used during each Monte Carlo time step, to update the 0.64 |
whole system in parallel. These rules can be summarized as g Absorbing State |
follows: 0.60 -

(1) burning tree~empty site; //—*
0.56 | 1

(2) tree—burning tree, with probability (% g) if at least
one nearest neighbdNN) is burning;

(3) empty site—tree with probabilityp; 052 f Stationary State -
(4) tree—burning tree, with probability if no NN is burn-
ing. 0.48 |
Probabilityp is the growing probabilityg is the immunity : , } , :
of each tree to catching fire, afids the lightning probability 00 02 04 06 08 1.0
which can be thought as the probability of spontaneous igni- P

tion of a tree. Of course the fire cannot propagategferl. " ,
Qualitatively one expects that, if the immunity is nonzero, F!G: 1. Plot of the critical curve of the FFMIT vs p, valid
the fire fronts present fag=0 will become more and more n the Fhermodyna_mlc '”T“L:‘”- The circle @) shows the start-
fuzzy when increasing); consequently the forest becomes mhg point of our ls'mlfjlat'qnts. r(o=f0t-r?go=0-46)t- The dottzq '":e E
denser. Takinggzo andf=0 one has the model of Bak (Sl)OWS an exampie or variation o € parameter g according to eq.
et al. [29], which is noncritical(in d=2) and exhibits a '
steady state, which is a succession of fire fronts with a fractal
dimensiond=1 [44]. Also, takingg=0 in the limit f<1, a cellular automaton, all sites are updated simultaneously
f/p—0, one has the model proposed in Ref81-33, during each Monte Carlo time step. Qualitatively speaking, if
which shows self-organized criticdlSOC behavior. The the growing probability is largep—1, butp<1) and the
paradigm of SOC behavior refers to the tendency of certaiimmunity is low (@— 0, butg>0) one expects the coexist-
large dissipative systems to drive themselves into a criticaénce of fire, trees, and empty sites. However, keepiogn-
state independent of the initial condition and without finestant and increasing the fire will eventually cease and the
tuning of any parametefd5-47. The occurrence of SOC system will become trapped in an absorbing state with the
behavior is the main reason for the popularity of sandpilgattice completely filled by trees. So, the FFMIT exhibits
and forest-fire models. Within this context, a very recent the'second_order IPT’s between an active state with fire propa-
oretical development deserves to be noticed. In fact, Broekejation and an absorbing state where the fire becomes irre-
and Grassberg¢a8] reconsidered the FFM proposed by Bak versibly extinguishedi27,28. Figure 1 shows the phase dia-
et al.[45] not to be critical in two dimensions, but the model gram of the FFMIT, i.e., a plot of the critical immunitg)

shows anomalous scaling in three and four dimensions. Alsgsersys the critical grown probabilityf), as obtained in pre-
the connection between SOC behavior and phase transitioRfous works[27,28.

in models with absorbing states was studied by Dickman
et al. [49]. It was argued that SOC behavior can be under-
stood as an aspect of multiple absorbing state systems under
a slow drive[49]. A unified dynamic mean-field theory for ~ An interesting approach to study the dynamic response of
stochastic SOC models was recently developed by Vespighe FFMIT is to analyze its behavior upon temporal varia-
nani and Zapperf50]. It was argued that, in a FFM with tions of the parameters. In principle, one can vary eifhey,
lightning, criticality arises in the limit of vanishing driving ©r both of them simultaneously. However, for sake of sim-
rates. From this perspective, SOC models appear to be noglicity, but without losing generality, we have worked taking
equilibrium systems with steady states, and criticality may beé® = const whileg is varied. For this purpose the procedure is
reached by a fine tuning of the control parameters. Howeve@s follows: first a stationary active state of the standard
in SOC systems such tuning can 0n|y be achieved by limiEFMIT is obtained for fixed values of the parameters. In this
procedureg50]. Also, Sinha-Ray and Jens¢fl] demon- Wwork we takep,=0.5 andg,=0.46, as shown in Fig. 1.
strated that the stochastic FFM of Drossehl. [31] can be ~ Subsequently is kept fixed f=p,), andg is varied har-
turned into a deterministic threshold model with the samemonically according to

macroscopic statistical properties.

It is worth mentioning that FFM's exhibiting SOC behav-
ior are not suitable for the present study on the influence of
an oscillatory driven parameter, precisely because of the lack
of tunable parameters. For this reason, in the present work
we shall focus our attention on another kind of FFM, the sowhere A; and T are the amplitude and the period of the
called forest-fire model with immune treéSFMIT), which  oscillation, respectively. In order to drive the system into the
is defined by the above stated rules 1-3, &rdD in rule 4.  absorbing state one has to takg>g.—go, as shown in Fig.
The FFEMIT is simulated in a square lattice of linear size 1. Note that the critical point of the standard FFMIT is given
assuming periodic boundary conditions. Since the FFMIT iy po=p.=0.5 andg.= 0.5614+ 0.0005[27,2§.

B. A FFMIT with oscillatory variation of the parameters

A 2

Ag 9 i
9=|got+ 5 |+ 5 sin = t/, (1
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C. Theoretical background 0.07 1 | | | .
Due to the variation of the parametidq. (1)], it is ex- 0.06 - @ ]
pected that for long enough periods and/or large amplitudes, §
the fire will eventually become extinguished, i.e., the system = 0.05 4 ]
may be trapped in the absorbing state. So the periodic varia- %" 0.04 | |
tion of g may cause IPT’s between an active state with os- g '
cillations of fire and tree densities and the absorbing state 2 003
with the sample filled with trees only. These transitions may i
occur at critical values of the amplitudi,_and the period ‘é 0021
T.. In order to characterize and study such IPT’s, epidemic A 001 { KX ,
simulations(ES’s) have been performed. ol 135?123%:0)
The idea behind ES’s is to start the runs from a configu- 0.00 = ' ' ' '
ration very close to the absorbing state, and subsequently, to 046 050 054 058 062
follow the temporal evolution of the system under consider- g®
ation. To do this, simulations are initiated with a sample 0.07 = w ,
filled with trees except for a small patch ok2 sites having 0.06 ® Surting. 7 |
burning trees and placed at the center of the lattice. Depend- " Foint (1=0)
ing on the values of the parameters, such a small perturbation g 0.05 7
(fire) would either propagate or become extinguished. Dur- fb 0.04 - _
ing the propagation, the following quantities are measured: g
(i) the average number of burning tré¢g); (i) the survival g 0034 7
probability P(t), i.e., the probability that the fire is still ig- o 0.02 - ,
nited at timet; and (iii) the average mean-square distance ;
R2(t) over which the fire has spread. Note tiN(t) is av- E 0.01 1 ’
eraged over all samples, including those in which the fire has K 0.00 Extinction .
already been extinguished, whilg?(t) is averaged over . ‘ Point . .
samples having burning trees only. Averages are taken over 046 050 054 058 062

5000 different samples, and runs are performed up to 100 @

input periods. Simulations are performed in two dimensions, &

and the lattice size is selected large enough, usually  FIG. 2. Plots of the density of burning trees versus the input

=350 or 500 lattice units_U’s), in order to avoid fire reach- signal g(t) taken forp,=0.5T=55 Monte Carlo step$MCS's),

ing boundaries. Using this procedure data are free of finiteand using lattices of =400 lattice units(LU’s). In (&) the ampli-

size effects. The usual ansatz for epidemic simulation closeude isAy=0.1650, and the system oscillates indefinitely(ihone

to second order IPT's is to assume théft), P(t), and hasA;=0.1695, and the system evolves toward the irreversible

R2(t) obey a power-law dependency with exponentss, extinction of the fire.

and z, respectively. In the present ES the input parameter

vari_es harmonicallysee Eq.(1)], so we expect to obtain an driven into the absorbing state g¢-+ Ay=0.625>g,

oscillatory output modulated by a power law, that is =0.5614). However, sincd; is not too large the system
reaches a time-dependent oscillatory regime with the coex-

) 2) istence of fire, trees, and empty sites. In contrast, increasing

the amplitude up tA\;=0.1695[Fig. 2(b)], after a few os-

cillations the system finally becomes trapped in the absorb-

ing state with fire extinction. Note that at least three cycles in

Fig. 2(b) exhibit a very small amount of burning trees when

the system is driven within the absorbing state. In these cases

the fire recovers during the remaining half cycle. Of course,

due to the vanishing small amount of fire, a fluctuation

As already stated, standard simulations were performe#ould eventually cause fire extinction, as shown in Fig) 2
achieving a stationary reactive state for the standard FFMIT In order to obtain the precise location of the critical point;
taking p,=0.5 andgoy=0.46, as shown in Fig. 1. Subse- namely, the critical amplltudAgc and the critical period .,
guently, the harmonic variation of the immunity is switched ES’s have been performed. In fact, determinations of critical
on, according to Eq(l). Figure 2 displays two typical ex- points using standard measurements of the dependences of
amples of the observed behavior. Starting from the sam®l(t) versusg(t), e.g., as shown in Fig. 2, are heavily af-
initial configuration, the system is driven by two different fected by fluctuations of the stochastic system and undesired
oscillatory signals, both with the same peride-55 MCS’s  finite-size effects. Figure(8) shows a log-log plot ofN(t)

[in all figures, the time is measured in Monte Carlo stepsversust obtained performing ES’s where the oscillatory out-
(MCS’s)], but with different amplitudes. TakingA;  put can clearly be observed. In order to perform a prelimi-
=0.1650[Fig. 2(@)], one sees that the system is effectivelynary fit, we have first determined the values Nft) on

N(t)=Ngy+17

2

whereB is a constant phase shiftl,, is the initial number of
burning trees, anll; andN, are constants. Similar laws are
expected to hold foP(t) andR(t), respectively.

Ill. RESULTS AND DISCUSSION
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T T T T T T T LI | 100
g -1t @ | P() |
10° % o0 - ] P(t) 10" { ]
s [§
= [:4
Z, 001 | t 107
100 1 0 ey ™
r 10!
10° 4 . .
T T T
10! 102 10% 10° 10! 102 103
t (MCS) todes)
T T T T T
) ®) FIG. 4. Log-log plot of the survival probabiliti(t) versust at
1011 N'(t) . ] the critical pointAy.=0.1695, whereT.=55 MCS’s. The oscilla-
N(t) [ . ] tory shape is clearly observed. The inset shows the linear fit of

peaks, valleys, and medium points. For more details, see the text.

I NOEO//(/" peaks, valleys and centers, given Ky, N~, and N°, re-
i 1 spectively. Figure &) shows that log-log plots dfl*, N~

andN° versust can be very well fitted by straight lines with

| ” | slopes »"=0.22+0.02, » =0.22+0.02, and 7°=0.22
N(t) z +0.02, respectively. Plots drawn taking a smallrgen
10° | _ amplitude show an upwar@ownward curvature suggesting

I — L that they are off critically. Precisely, the straight lines exhib-
102 10° ited in the log-log of Fig. &) are the signature of a power-
law behavior which characterizes a second-order phase tran-
sition exhibiting scale invariance. The inset in Figc)3
© ] shows that it also is possible to determine the assumed con-
] stant phase shift in equatidf), by comparing plots oN(t)
and g(t) versust. For example in Fig. @) B=1.37£0.34
has been obtained. It should be noticed tBatmains con-
stant, within error bars, for the whole time seriesNft)
versust, in agreement with the lack of evidences of anhar-
monic terms found using the Fourier analyfiHg. 3@)].
Therefore it is now possible to fit the whole curve Mt)
versust using the already determined values pfand B,
keepingN,= 1.0 fixed(because in principle, only one tree is
e needed to start the epidemidbut takingN; andN, as ad-
600 800 justable parameters, as shown in Fidc)3 with N;=1.3
tMCs) +0.1 andN,=1.09+0.06.
Figure 4 shows that a log-log plot ¢f(t) versust also
exhibits oscillatory behavior. Here, the survival probability is
FIG. 3. (a) Log-log plot of the number of burning treé¥(t) vs  due to the increment in the immunity which makes the fire
t, exhibiting the features exposed in the theoretical backgrouncipropagation harder and may cause the eventual extinction of
Results obtained at criticality, vizAgc=0.1695, whereT.=55 some epidemics. Defining the maximum, minimum, and me-
MCS'’s. The envelope shows a linear positive slope, characteristigjym values ofP(t) in each cycle a®t, P, and pO, re-
of second-order IPT. The inset shows the results of a Fourier a”a%pectively, one can obtain the expondhtas shown in the
sis through an amplitude spectrum of the time seriedN@f) at inset of Fig. 4. Our results, at criticality, arét =0.46
criticality. The location of the first harmonics are shown by arrows.io_oz, 5 =0.40+0.04 and&®=0.43+ 0.03, respectively.

More detaﬂ; in the text(_b) Log_—log plot of maximum, minimum, This finding suggests that* = =5 considering both er-
and approximately medium points bi(t) are taken from Fig. @) S99 .
. . or bars and finite time corrections.
vst. The linear dependence allows us to determine the exponen{s - 5 .
Figure 5 shows a log-log plot d®° versust obtained for

reported in the text(c) Plot of the number of burning trees ¥s - , s . o>
fitted by the ansatz proposed in Eg). The inset shows the plot of Tc=55 MCS’s andAgC—0.1695. Itis found thaR” is less

N(t) andg(t) vst, which allows us to determine the constant phasesensitive to the oscillatory input thaX(t) and P(t). This
shift B. behavior is due to the fact th&?(t) only accounts for sur-

tocs)

1 N, g0
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3 400 . T . T
34x10f e
| : AS 1]
- 300 AS o . 1 A
2 %10 3 o=4.55 4
=2 s F 3
£ 3 = [ AR % ]
10° 1 2 200 10" ® -
r o E 1 1 1 1 3
= L 0.05 0.06 007 0.08
AA
100 -
102 55x10 i AR ]
t(MCS)
2 . . . 0 | : 1 . L . )
FIG. 5. Log-log plotR?(t) (measured in lattice units, By ver- 0,15 0,16 0,17 0,18 0,19
sust. Here the oscillations have been heavily damped, and the A
points are roughly fitted by a straight line with sloge=1.18 &
+0.06. FIG. 6. Phase diagram of the FFMIT under periodic oscillations.

o _ ) ) ) The plane{Ay,T} is divided by the critical curve, which shows the
viving epidemics at time. The plot can roughly be fitted by precise location of second-order IPT's as determined by ES's. Each
a straight line which yields a slope=1.18+0.06. point on the curve belongs to the directed percolation universality

It should be noticed that the evaluated exponents are untlass. The absorbing statdS) and the active regim¢AR) are
versal properties of the model that define its universalityshown. The hyperboliclike shape of the curve is displayed as the
class. These relevant figures have to be clearly distinguishddg-log plot in the inset, giving an exponeat=4.55. More details
from non-universal properties such as, e.g., the oscillatorgre given in the text.
behavior ofN(t) and P(t) and the constant phase shit
Having these concepts in mind, we conclude that all the dyshort periods, is likely due to the fact that the input signal
namic exponents that characterize the IPT’s driven by th@an no longer be considered as harmonic.
oscillatory parameter are in agreement with those of the uni- The dynamic response of the FFMIT to a rectangular per-
versality class of directed percolatiéBP) in 2+1 dimen-  turbation, instead of the sinusoidal input given by Eg),
sions, namely, »=0.22295(10), 6=0.4505(10), andz  has also been studied. Figure 7 shows a log-log pld{(@j
=1.1325(10)[16]. Also, the hyperscaling relatiod z=4 §  versust obtained at criticality. In contrast to Fig(8 where
+2 7, whered=2 is the lattice dimension, is well satisfied N(t) exhibits smooth oscillations, the response to the rectan-
by these exponents. So we conclude that the type of transgular input is characterized by sharp edges. The inset shows
tion discussed so far can be placed in the universality class of
DP (a formal treatment performed by Mom[52] can be
found in the Appendix This result extends the validity of N(t) 1
Janssen’s conjectuf&3], that a continuous transition into an 102 1
absorbing state characterized by a scalar order parameter E
must belong to the universality class of DP, to irreversible
transitions driven by oscillatory parameters. Recently such a
conjecture was extended to systems with an infinite number
of absorbing state)b4,55 and to second-order transitions in
continuous medi@56].

Performing ES with different values oAy and T, the
phase diagram of the FFMIT under oscillatory driving has
been evaluated, as shown in Fig. 6. The critical Cubye

versusT . shows the location of second-order IPT’s between ; ;
the active regime@trees+ burning treest empty sitey and 10! 102 103
the absorbing statéonly trees. All these transitions are of t(MCS)

second order, and belong to the universality class of DP. The
inset of Fig. 6 shows a log-log plot df, versusAA=A

‘H 1/t

2t
o £ 3

Fourier Amplitudes |

10 1

100 4

FIG. 7. Log-log plot of N(t) vs t as obtained by using for

_ “ i e rectangular input at the critical poirty =0.1534, whereT ;=56
—(9c—0o) - Note thatA A is the “excess critical amplitude,”  \;cs's. Oscillations are observed as in the case of sinusoidal signal,
namely, a renormalized amplitude which accounts for they;t in the present case they have a saw tooth shape. The envelope is
value of the oscillatory parameter which exceeds the stationinear, showing the expected power-law behavior. The Fourier
ary critical threshold, allowing the system to make an excUranalysis of the output has also been performed, and the result is
sion to an absorbing state. The data are then consistent wihown in the inset. Note, in contrast to the sinusoidal case, the
a hyperboliclike behavior of the form, «AA®, with expo-  appearance of additional harmonic terms, needed to build the abrupt
nenta=4.55. The deviation from this behavior, observed foredges.
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S —— SRR AAgc/Agc
4.6x10-1
Pe(L) 3.4x107 1
2.1x10" A
1.7x10°1 4
1.3x10"
e 1=16 6.3x102 + ®
—— L=22
—— L=32 4.1x102
0. —— =48 | . R
. S S N ool ol
0.000 0.100 0.1695 0.200 Lwv
Ag

_ _ FIG. 9. Log-log plot of AA vs L obtained assumingy,
FIG. 8. Plot of P¢(L) vs A, obtained for samples of different =0.1794. This value renders the correct correlation length exponent

sizesL. The smooth “s” shapes steadily approach to the abrupt, =0.729 given by the slope of the straight line. For more details,
jump Pg(L=c0) at Ay(L ==)=0.1695(vertical ling. The horizon-  gee the text.

tal line indicates the location &#.(L)=0.5, which is defined as the

L-dependent critical probability. For more details see the text. Figure 9 shows a log-log plot dhA=Ay () —Ay (L)
versusL. In order to obtain a critical exponent compatible

the corresponding Fourier analysis, which reveals that, iwith the DP universality class, namely, =0.729[16] one

this case, it is necessary for more harmonic terms to build upas to assumé,.=0.1794, which represents a very small

the output due to the abrupt edges of the input square signaghift of 0.009 to the previous estimation &f;.=0.1695,

Fitting the maximum, medium, and minimum valuesNtft) obtained by means of ES. So, conclude that our finite-size

versust, we have obtainedy™=0.22+0.04, » =0.22 study is consistent with the ES and the transition belongs to

+0.04, andy®=0.22+0.04, respectively. This and results of the universality class of directed percolatidi].

other ES’s(not shown here for the sake of spaadlow us to

conclude that second-order IPT’s driven by rectangular per- IV. CONCLUSIONS

turbation also belong to the universality class of DP. As ex- The dynamic response of a forest fire model with immune
pected, the location of the critical curve becomes shifted agees to an oscillatory variation of the input parameter has
compared with the sinusoidal input, shown in Fig. 6. In fact,been studied. Second-order irreversible phase transitions
keeping the period constant one sees that critical amplitudedriven by an oscillatory parameter are found. The critical
of the rectangular input are slightly smaller than those coredge between an active state with fire fronts and an absorb-
responding to the sinusoidal input. ing state where the fire becomes extinguished depends on the
Another approach to the study of dynamic response is t@mplitude and the period of the harmonic input. The transi-
perform simulations within the reactive reginigee Fig. tion points were located accurately by means of epidemic
and close to the critical edge. In this case, the fact that flucstudies. All irreversible transitions were found to belong to
tuations of the stochastic system may irreversibly drive ithe universality class of directed percolation. Our studies,
into the absorbing state can be used. TRYEL) is defined performed in a forest-fire model, can be _stralgh'gforwardly
as the probability of fire extinction in a lattice of side ~ €Xténded to other processes exhibiting irreversible phase
Figure 8 shows plots oP4(L) versus the amplitude of the transitions, such as, e.g., catalyzed reaction systems, contact

. . ; : : rocesses, models of living societies, branching annihilating
input signal, corresponding to samples of different sides. I : ’ : .
this case the period of the oscillation is kept fixedTat55 walkers, etc. We also expect that our numerical results will

MCS's. Figure 8 also shows the location of the critical am_further stimulate the study of the dynamic response of sys-

. . S tems close to irreversible transitions, an interesting topic
plitude in the thermodynamic I|m|AgC(L=00)=O.1695, @S which remains almost unexplored. g top
determined by means of ES’s. In contrast to the stepwise and

abrupt change oP.(«) from 0 to 1 which takes place right ACKNOWLEDGMENTS

at Ag (), using finite samples one observes smooth varia- This work is financially supported by CONICET, UNLP,
tions of P¢(L) which steadily approach to the stepped shapesNPCyT, Fundacio Antorchas (Argentina, and the
whenL is increased. The-dependentritical amplitude of a  Volkswagen FoundatiofGermany. We are very grateful to
finite sample[AgC(L)] is defined forP¢(L)=0.5 (also see M. A. Munoz for his significant theoretical contribution.

Fig. 8. According to the finite-size scaling thedfy7],
APPENDIX: FIELD THEORETICAL ARGUMENTS

A (LY=A. (0)+ML ™Y 3 ON THE OSCILLATING IMMUNITY FOREST

0ol L) =Ag () ® FIRE MODEL

whereM is a constant and, is the correlation length expo- In the presence of a constant immunity rate the critical
nent in the spatial direction. aspects of the forest-fire model and/or other epidemic models

036119-6



IRREVERSIBLE PHASE TRANSITIONS DRIVEN BY AN . .. PHYSICAL REVIEW B3 036119

with partial immunization can be described by reggeon field As on these short time scales, there are no anomalous,
theory[58,59. Therefore, all these models share their criticalcritical, fluctuations, we can safely substitute variables with
universal properties with directed percolatidri]. The mini-  their mean values, averaged over a time pefatdleast as
mal Langevin equation capturing the physics at criticality islong as one deals with large scale, asymptotic properties

[11,58. Therefore, Eq(A3) can be rewritten as
dp(x,t)
p =AV2h(X,1) +1 h(X,1) —bp?(x,1) + Ve n(x,1) (?Q( Y =AV2Q(x,7)+roQ(x,7)—bQ(x, T)f d(x,t)dt
(A1)

T

where\, r, andb are constantsp(x,t) is a density field, and + \/af n(x,t)dt

7 is a Gaussian white noise whose only nonvanishing cumu- 0

lants are{ 7(x,t) n(x’,t"))=D&(x—x") 5(t—t"). S AV2Q(X,7)+ 10Q(X, 7) — DQ(X, 7) + OE(X.1),

The most relevant modification induced by switching on a
periodic immunity rate at this level is thathas to be re-

placed by a time dependent function:-r,+ A cost). Fol-

(A4)

lowing the renormalization group spirit we can integrate outwhere we have defined a Gaussian ndie 7) as the aver-
short times and space scales. In this way, integrating Ecaged value ofp(x,t) over a period, anth=bT. We have a

(A1) in time over a signal period =2=/w, dividing by T,
and defining a new order parameter

1T
Q(x,7)= ?fo dt ¢(x,t) (A2)

(with 7=t/T), one obtains

M:)\VZQ(x, T)+r0Q(X.T)—bfT¢2(X't)dt
ot 0

T
+ J \/gn(x,t).
0

(A3)

reggeon field theory equation, identical to E41), where
@(x,1) is replaced byQ(x, 7). Consequentlyall the critical
exponents associated with(Qr) are expected to take di-
rected percolation values

Observe that for any value offor which cosgt) is posi-
tive, the system is locally in time in the active phase; there-
fore, a growth on the averaged valuedis expected at that
time. The system returndocally in time) to the absorbing
phase whenever cas)<O0; i.e., at these values, magnitudes
like, e.g.,N(t) start to decrease. Zeros of the signal corre-
spond to extrema of the output. This fact provides a simple
explanation for the presence of dephasing between input and
output signals, as shown in Fig(c3.
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