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Phase-field modeling of stress-induced instabilities
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A phase-field approach describing the dynamics of a strained solid in contact with its melt is developed.
Using a formulation that is independent of the state of reference chosen for the displacement field, we write
down the elastic energy in an unambiguous fashion, thus obtaining an entire class of models. According to the
choice of reference state, the particular model emerging from this class will become equivalent to one of the
two independently constructed models on which brief accounts have been given recently@J. Müller and M.
Grant, Phys. Rev. Lett.82, 1736~1999!; K. Kassner and C. Misbah, Europhys. Lett.46, 217~1999!#. We show
that our phase-field approach recovers the sharp-interface limit corresponding to the continuum model equa-
tions describing the Asaro–Tiller–Grinfeld instability. Moreover, we use our model to derive hitherto un-
known sharp-interface equations for a situation including a field of body forces. The numerical utility of the
phase-field approach is demonstrated by reproducing some known results and by comparison with a sharp-
interface simulation. We then proceed to investigate the dynamics of extended systems within the phase-field
model which contains an inherent lower length cutoff, thus avoiding cusp singularities. It is found that a
periodic array of grooves generically evolves into a superstructure which arises from a series of imperfect
period doublings. For wave numbers close to the fastest-growing mode of the linear instability, the first period
doubling can be obtained analytically. Both the dynamics of an initially periodic array and a random initial
structure can be described as a coarsening process with winning grooves temporarily accelerating whereas
losing ones decelerate and even reverse their direction of motion. In the absence of gravity, the end state of a
laterally finite system is a single groove growing at constant velocity, as long as no secondary instabilities arise
~that we have not been able to see with our code!. With gravity, several grooves are possible, all of which are
bound to stop eventually. A laterally infinite system approaches a scaling state in the absence of gravity and
probably with gravity, too.
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I. INTRODUCTION

Already when introducing the notion of a surface quant
Gibbs implicitly entertained the idea of a phase fieldf: any
density of an extensive quantity~e.g., the mass density! be-
tween two coexisting phases changes gradually~but swiftly!
from its value in one phase to its value in the other. T
existence of a transition zone, though microscopically
atomic extent~far enough from a second-order phase tran
tion!, underlies the very Gibbs definition of surface quan
ties. In phase transition phenomena, either of first or sec
order, this notion has been adopted in Landau’s spirit.
cause energy is an extensive quantity, too, there is an e
energetic cost associated with the transition region, cha
terized in the appropriate thermodynamical potential den
by a term of the forme* (¹f)2, e* being the stiffness of the
transition region.

The notion of a phase field has appeared abundantly in
literature in the context of phase transition phenomena@1–3#.
The transition width diverges for a second-order phase t
sition at the critical point, and thus it is essential to introdu
the transition region. For a first-order transition, such a
liquid–solid interface, conferring an importance to the int
face thickness may seem quite anecdotic if one is intere
in properties which occur on a scale larger than the ato
one; typical examples are dendritic patterns occuring at
1063-651X/2001/63~3!/036117~27!/$15.00 63 0361
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scale of amm. Nevertheless, it is here where phase-fie
modeling has become most useful in numerical treatmen

Before phase-field models became popular, it seem
quite natural to treat the surface as a geometric location
which boundary conditions are imposed~e.g., for a moving
front the normal velocity is proportional to the jump in th
gradient of the temperature or concentration field!. This is
the so-called sharp interface approach, adopted both in
lytical and numerical studies in a variety of contexts of fro
problems.

There has been an upsurge of interest in the phase-
approach to free-boundary problems more recently, tho
the method was actually introduced pretty early@4# as a com-
putational tool to model solidification. Various studie
@5–10# have demonstrated the virtues of this method
moving-boundary problems.

Regarding how to use phase-field models, there are
distinctly different philosophies. These may be best d
cussed considering dendritic growth, where a set of w
established continuum equations exists, describing phen
ena in terms of a sharp interface. On the basis of t
knowledge, a phase-field model can be justified by sim
showing that it is asymptotic to the correct sharp-interfa
description, i.e., that the latter arises as the sharp-inter
limit of the phase-field model when the interface width
taken to zero. This is definitely a sufficient condition for th
©2001 The American Physical Society17-1
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phase-field model to yield a correct description of the c
tinuum limit, providing the interface thickness is taken sm
enough. Small enough sometimes may mean impractic
small. The second approach to phase-field modeling is
guess or derive an appropriate form for the free energy of
two-phase system, including the energy cost of the transi
region and to regard this as a physical model in its own rig
In this case, one might actually forgo considering the limit
small interface thickness and such a model would even m
sense, if the strict limit of vanishing interface width did n
correspond to sensible physics.

Of course, a problem arises if a phase-field model
tained in the second way gives predictions that are differ
from that of the sharp-interface equations. A follower of t
first philosophy would then discard the phase-field mod
whereas one of the second might contemplate the possib
that his model contain more physics than the sharp-inter
model. In the case of dendritic growth the situation is pre
clear: the sharp-interface model gives the right answ
However, this statement cannot be generalized easily, s
not all sharp-interface models are as well-founded as tha
dendritic growth and because the extreme smallness of
interface width cannot always be guaranteed~it might, for
example, become doubtful for a phase transition that is o
weakly first order!.

A related issue is the question of thermodynamic con
tency, i.e., the derivation of the model in the spirit of Gib
from a free-energy or entropy functional. It is clear that w
a known sharp-interface limit in mind, there is no need at
to obtain a phase-field model this way~which would mean to
make it ‘‘thermodynamically consistent’’! as long as one en
sures its asymptotic approach to this limit. In fact, it h
turned out that in some cases where both a thermodyn
cally consistent formulation of a phase-field model and
nonvariational formulation exist, the latter was numerica
more efficient @11# and hence preferable on practic
grounds.

On the other hand, thermodynamic consistency has
virtues. This can be seen particularly well in the case c
sidered here, the influence of elasticity on the stability o
solid interface. It is quite straightforward to write down th
contribution of the elastic energy to the total free ener
Hence if we have a good idea about the physical origin of
free energy to be considered, the corresponding phase-
model is easily obtained, and it isbound to be right. As a
result, one mayderive sharp-interface equations in cas
where they are not known.

For the Grinfeld instability to be considered here, t
sharp-interface equationsare well-known. Nevertheless, it is
of course tremendously satisfying if they simply pop out
the phase-field equations as the sharp-interface limit.
only does this provide a natural countercheck of our ans
for the free energy, but it also gives us a new angle of vi
at the instability, leading to the prediction of circumstanc
in which the Grinfeld instability shouldnot occur under an-
isotropic stress, but might appear withisotropic stress. We
shall consider this point in Sec. II.

Let us return to the advantages of the phase-field meth
The first virtue of phase fields is pretty obvious: instead
03611
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tracking permanently thea priori unknown interface position
in the sharp-interface limit, and imposing nontrivial boun
ary conditions for the discontinuity of the fields, the interfa
in the phase-field approach is nothing but the location o
rapid variation of the fieldf, while the two phases are
treated as the same entity. Thus there is no boundary co
tion to be imposed in the transition region, a fact whi
greatly facilitates both the numerical implementation a
analysis. This is done at some price: one must, in princip
mix disparate length~and thus time! scales: the pattern
length and the interfacial width, whose ratio may range o
many orders of magnitude. This may render the numer
procedure excessively expensive, a fact which would quic
take us back to the sharp-interface problem, where the s
length scales out of the problem.

As discussed recently@12#, the sharp-interface limit tha
one would like to represent when writing the phase-fie
equations only makes physical sense on ‘‘outer’’ leng
scales much larger than the physical extentl c of the transi-
tion region, and thus does not depend structurally on
details of the interface shape on the innerl c scale. The math-
ematical question, formulated in the framework of pha
field models, of formally recovering the sharp interface d
scription via an asymptotic~multiscale! expansion in the
limit l c→0 might, from this point of view, seem irrelevan

It should, however, be kept in mind that the actual mat
ing conditions are imposed for the limit, where an ‘‘inner
variable ~defined in the transition region! goes to infinity.
This entails a certain amount of liberty in the choice of fun
tions defining the free-energy density, because the pre
behavior of these functions on the inner scale does not m
ter. Hence the validity of a phase-field model can indeed
judged by simply showing that it asymptotically reproduc
the correct sharp-interface description. Whether the ad
tional information encoded in the structure of the phase-fi
model on the inner scale is physically relevant is a ques
to be decided on a case by case basis~as implied by our
discussion above!.

An example where this is relevant is provided by t
Young condition for the contact angle of a droplet on a su
strate. This is a condition on ‘‘outer’’ scales, while the inn
scale is rather governed by van der Waals interactions
thin liquid film with the substrate, leading to some nontrivi
corrections of the wetting profile at small atomic leng
scales. In other words, what matters in the phase-field
scription is not that the width of the interface be of atom
extent, but rather that it be small in comparison with t
scale of the pattern of interest.

This physical argument has been cast in a mathema
form in @11#, where thethin-interface limitwas considered,
arising from an alternative asymptotic procedure. This ha
be contrasted with the sharp-interface limit with the sm
parameter being the ratio of the interface thickness to
capillary length. Making the width of the interface sma
only in comparison with the scale of the pattern leads t
rather important enhancement of the computing speed,
rendering the phase-field approach attractive with regard
numerical efficiency as well. Unfortunately, in most syste
the thin-interface limit is not as easily accessible as for d
7-2
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PHASE-FIELD MODELING OF STRESS-INDUCED . . . PHYSICAL REVIEW E63 036117
dritic growth in the thermal model@11#. Hence it is difficult
in general to make our argument mathematically rigoro
However, we will give consideration to length scales in S
II clarifying what are the ratios that have to be kept small
our model to be a good description. Moreover, we ha
checked that the dependence of the results on the inter
width becomes weak for the small values that we use for
latter.

Finally the phase-field approach has the additional vir
of regularizing instabilities, such as the development
cuspy structures, often setting severe limitations in numer
studies. In the elastic system, we are led to the ques
whether the sharp-interface models still make sense in
limit where they predict finite-time singularities. No suc
singularities arise in the phase-field model, thus possibly
tending the range of validity of the latter beyond that of t
former. This will be discussed in more detail in Sec. IV.

In the context of growth phenomena phase-field
proaches have been introduced in problems involving te
perature or concentration fields. There are myriads of si
tions, however, where the corresponding transition
monitored, or at least affected, by strain. A typical situati
is a solid under uniaxial stress. This leads to the Asa
Tiller–Grinfeld ~ATG! instability @13,14# ~see Ref.@15# for a
recent review!. A surface corrugation allows to lower th
stored elastic energy. Other examples of particular inte
include solid–solid transformations, phases in nonequi
rium gels, molecular beam epitaxy, solidification of lava, e
It is thus highly desirable to develop a phase-field appro
including the stress as an active variable. Very recently,
groups, Müller–Grant ~MG! and Kassner–Misbah~KM !
@16,17#, have independently developed such an approach
have given a brief account on it.

This paper will present extensive discussions of this qu
tion and give new results. We shall also provide a comp
son between the MG and KM models and point out simila
ties and dissimilarities. As already known from shar
interface simulations@18,19#, a solid under stress presents
somehow stringent behavior in that no stable steady-s
solutions seem to exist. This is also the case from analyt
studies in the long-wavelength limit@20#. Nozières had
shown@21# that the bifurcation from the planar front to th
deformed one is subcritical~the analog of a first-order tran
sition!. The study of Spencer and Meiron@22# focused on
structures with a given basic wave number in the absenc
gravity ~where the instability does not have a threshold! and
on systems in which the transport mechanism necessary
the instability to manifest itself is surface diffusion. The
find that in the unstable range of wave numbers~i.e., for
wave numbers below the marginal value, above which s
face tension stabilizes the planar interface! there exist finite-
amplitude steady-state solutions, if the wave number is c
enough to marginal. This branch of steady-state soluti
terminates by structures developing cusp singularities,
spite the stabilizing influence of surface tension. It cannot
overemphasized that this result is not an artifact of their
merics. Indeed, they investigated carefully the effects of
merical fine-graining using a code with spectral accura
and their discretization sequence seems to get fine enou
03611
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render their extrapolation valid. The evidence for the appe
ance of true cusps in the sharp-interface continuum mo
becomes compelling, if one takes into account the work
Chiu and Gao@23# who found analytical solutions develop
ing cusp singularities in finite time. The conclusion of Spe
cer and Meiron is that for generic initial conditions, inclu
ing sufficiently small wave numbers, finite-time singulariti
will always occur. Moreover, they state that this is also tr
in the presence of gravity~beyond the threshold! and under
fairly general conditions.

For a physical system, finite-time singularities will be pr
vented by intervening effects that are not considered in
model. This would mean that nonlinear elasticity and pl
ticity have to be taken into account. For example, the form
tion of dislocations~plasticity! could blunt cusps again.

Two questions then arise. What kind of structures can
expected before cusp formation and what kind of structu
will prevail eventually? Our previous study@19# has shown
that the initial cellular pattern may develop into a superstr
ture, where a groove or several of them accelerate in a s
tacular fashion, thus relieving the stresses in their surrou
ings significantly and causing nearby grooves to rece
Further evolution of the structure was difficult to handle n
merically, due to the development of cusps which appea
the numerics, as they should according to the analytic res
@23#. In the phase-field approach presented here, no cu
can arise. The question is of course legitimate, whether
model, which allows one to track the dynamics of the stru
ture much beyond the times where earlier studies had to
numerically, still gives a faithful description of the physic
Here we take the point of view that the details of the desc
tion in the locations, where stresses become large, may
be correctly captured by the model, since we neither inclu
nonlinear elastic effects nor other effects such as capil
overpressure explicitly@24#. If they have the right sign, thes
might prevent cusp formation@22#. However, the result of
any such effect must be to blunt cusps, which the phase-fi
model does. As we shall see, it does so in a nonobtru
way by introducing a cutoff for interface curvature. Mor
over, away from the cusps, stresses are low enough for lin
elasticity to apply. Hence, we believe that the developm
of the overall morphology is still correctly described by th
phase-field model.

A more detailed justification would point out that nonlin
ear elasticity will first make itself felt by stresses increasi
more slowly as a function of strains than in the linear ca
and that next plasticity will act to introduce an upper cuto
for stresses, where the material will yield. Now the effect
any resulting modification in the stress-strain relationship
the remaining body can be reproduced by cutting out
piece of material where linear elasticity ceases to hold and
requiring boundary conditions at the edge of the cut-
piece that correspond to the correct stresses. Wheneve
material yields near a would-be singularity of the stress fi
~arising within linear elasticity!, these boundary condition
will essentially be that the stresses are close to the y
stress at the boundary. This is mimicked by the phase-fi
model in which the maximum supportable stress is, fo
given geometry, determined by the interface width.
7-3
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Therefore we think this is one case where the phase-fi
model can do more in the description of the physical sys
than its sharp-interface limit.

It will emerge that usually one leading groove continu
to deepen while neighboring ones recede after the winner
started to relieve the stress that kept them growing. Fin
the surface shows a single deep groove evolving in time
becoming a location of a strong stress accumulation, poss
until the fracture threshold is reached. Presumably, be
that stage is reached the validity of the model will bre
down. We shall make some speculation on future directi
to elucidate the physical behavior in real systems. For
neric initial conditions, we may consider the dynamics a c
tinual coarsening process which initially develops as
scribed in@16# and later is dominated by groove growth a
shrinkage.

The paper is organized as follows. In Sec. II we give
continuum equations ordinarily used in the description of
Grinfeld instability. This is mainly done in order to introduc
appropriate length and time scales in nondimensionaliz
the equations; then we present our phase-field approach
discuss how the interface width has to be chosen in comp
son with the other length scales. We demonstrate how
phase-field model can be employed to derive new sh
interface equations in the presence of body forces brea
rotational invariance.

Section III presents validation results, a comparison of
MG and KM models and describes the main findings of o
simulations. Section IV sums up the results and discus
perspectives. The mathematically rigorous asymptotic
pansion used to derive the sharp-interface limit has been
egated to Appendix A, as the calculation is somew
lengthy and would interrupt the flow of the text. Since w
use the MG model in a slightly different form from tha
presented originally@16#, we give the connection betwee
the two formulations in Appendix B. Finally, Appendix C
contains the analytic derivation via conformal mapping
the stresses for a particular interface shape to be comp
with the numerics.

II. GRINFELD INSTABILITY

A. Sharp-interface equations

A description of the basic ingredients of the Grinfeld i
stability has been given elsewhere@15#. Therefore we may
restrict ourselves to explaining the physical mechanism
giving the equations.

We wish to describe the behavior of a solid submitted
uniaxial stress, at the surface of which material transpor
possible. Consider the example of a solid in contact with
melt. An accidental corrugation of the surface will act
reduce the stress at its tip and increase it in the valleys
to it. That is, the solid can decrease its average elastic en
density by growing tips~where the stress is lower! and by
increasing the depths of valleys~where it gets rid of materia
having a higher density of elastic energy due to lar
stresses!. This tendency is most easily cast into equations
writing down the chemical potential differenceDm5ms
2m l at the interface~the subscripts refer to the solid an
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liquid or nonsolid phases, respectively! @19#:

Dm5
12n2

2Ers
~s tt2snn!

21
1

rs
gk1

Dr

rs
gz~x!. ~1!

Herein, the first term is of elastic origin;s tt andsnn are the
normal stresses tangential and perpendicular to the interf
E is Young’s modulus,n the Poisson number, andrs the
density of the solid. The second term describes the stab
ing influence of the surface stiffnessg, taken isotropic here
~so it becomes identical to the surface energy!. k is the cur-
vature of the interface; for simplicity, we consider the tw
dimensional case only. Finally, the third term is the con
bution of gravity (g), where Dr5rs2r l is the density
contrast between the solid and the liquid~or vacuum! and
z(x) is the interface position, given by itsz coordinate~thez
axis is oriented antiparallel to the gravitational force!. Equa-
tion ~1! holds for plane strain. For plane stress, the prefac
12n2 has to be dropped.

The dynamics is then described by giving the normal
locity in terms of the chemical potential difference. For
solid in contact with its melt this would simply be

vn52
1

k
Dm, ~2!

wherek is an inverse mobility with the dimension of a ve
locity. In the case of a solid in contact with vacuum a
surface diffusion as the prevailing transport mechanism
would havevn5D¹2Dm instead.

Of course, in order to computevn we must first obtain the
stresses entering Eq.~1!. This involves solving an elastic
problem (] js i j 50) with a prescribed external stress a
boundary conditions on the interface, assuming an appro
ate constitutive law. Ordinarily, Hooke’s law for isotrop
elastic bodies is assumed@therefore we have only two elasti
constants in Eq.~1!#. Neglecting the capillary overpressur
which usually is a good approximation, we have as bound
conditions at the interfacesnn52p, wherep is the pressure
in the second phase, andsnt50, i.e., the shear stress van
ishes.

A linear stability analysis of a planar interface under t
dynamics given by Eqs.~1! and ~2!, but with the chemical
potential in the liquid shifted such that a planar interface i
steady-state solution, yields the following dispersion relat
(v is the growth rate,q the wave number!

v5
1

krs
H 2s0

2~12n2!

E
q2gq22DrgJ . ~3!

s0 is the uniaxial external stress. Equation~3! provides us
with a critical wave numberqc5ADrg/g ~an inverse capil-
lary length! and a critical stresss0c5@gqcE/(12n2)#1/2,
below which the planar interface is stable. The wave num
of the fastest-growing mode can be inverted to give a len

l 15
gE

s0
2~12n2!

. ~4!
7-4
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PHASE-FIELD MODELING OF STRESS-INDUCED . . . PHYSICAL REVIEW E63 036117
Apart from a prefactor of 2/p, this length is identical to the
so-called Griffith length.

An initially unstressed planar interface will not remain
its original equilibrium position, even when only a su
threshold stress is applied, i.e., when it is ‘‘stable.’’ O
dynamical equations predict that it has a nonzero velocity
long asDm is different from zero. Hence it will recede t
smaller values ofz. If the density of the solid is bigger tha
that of the liquid, the chemical potential on the solid side
the receding interface decreases faster than that on the l
side and there is a new equilibrium position which can
computed directly from Eq.~1! and which evaluates to

Dz[2 l 252
12n2

2DrgE
s0

2 . ~5!

Equations~4! and ~5! provide us with two independen
length scales of the problem, the first of which is due to
competition between stress and surface energy, while
second arises from the competition between stress and g
ity. For the purpose of nondimensionalizing equations,l 1 is
more appropriate, as this length does not diverge in the l
of vanishing density difference~or gravity!. To obtain a
natural time scalet, we can replaceq in either of the two
wave-number dependent terms of Eq.~3! by 1/l 1. This leads
to

t5
krsgE2

s0
4~12n2!2

. ~6!

The nondimensional version of the dispersion relation th
reads (ṽ5tv,q̃5 l 1q)

ṽ52q̃2q̃22
l 1

2l 2
, ~7!

which shows clearly that the problemwithout gravity ~when
l 2 becomes infinite! can be made parameter free, i.e., elas
and other parameters only set the time and length sca
apart from that we should expect the same dynamics fo
systems.With gravity, the dynamics is essentially determin
by the ratio of the two length scales introduced.

B. Elastic energy and state of reference

Let us now proceed to investigate the contributions to
free energy of the same system. The phase-field model
then consist in writing the free-energy density that takes i
consideration the global elastic energy in both phases.

As usual with elastic problems, it is important to spec
the state of reference defining the positions of material p
ticles with respect to which displacements are measu
This is crucial whenever the reference state is not that o
undeformed body but one that is subject to prestrain
~which will turn out useful later!. In order to make this poin
clear, and in the hope of helping subsequent discussions
would like first to dwell on this issue.
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If the only energy present is elastic energy and Hook
law holds true, the free energy per unit volume can be w
ten as

f 5mui j ui j 1
l

2
uii

2 , ~8!

where summation over double subscripts is implied.l andm
are the Lame´ constants,m being better known as the she
modulus. For plane strain, these elastic constants are re
to Young’s modulus and the Poisson ratio viam5E/@2(1
1n)# andl5En/@(11n)(122n)#. The stress tensors i j is
then

s i j 5
] f

]ui j
52mui j 1lukkd i j

52mS ui j 2ukk

d i j

d D1Kukkd i j . ~9!

K5l12m/d is the bulk modulus, and the last relation h
the advantage of making explicit the parts of the stress ten
causing pure shape and pure volume changes, respecti
(d is the spatial dimension.! We will nevertheless mainly use
the relations containingm andl, which are more compact
The implied reference state here isui j 50, for which s i j
50.

However, if we choose a reference state given by a
ferent strain tensorui j

(0) , setting ũi j 5ui j 2ui j
(0) , then we

should not simply replaceui j by ũi j in Eq. ~9!, as the stress
tensor and the elastic energy are, in principle, measur
quantities and should thus be unaffected by a change
strain reference state. Hence we have to write

s i j 52m~ ũi j 1ui j
(0)!1l~ ũkk1ukk

(0)!d i j , ~10!

and change definition~8! accordingly, i.e., replaceui j by
ũi j 1ui j

(0) . In this situation, the zero-strain state would not
stress-free. An alternative way to specify a reference s
would then consist in giving the stress of the zero-str
state.

In general, the free energy of thermodynamic system
der consideration will not only contain elastic contribution
Then theequilibrium state, corresponding to a minimum o
the free energy, may not be a state of vanishing strain
trivial example is a solid in equilibrium with its melt, wher
the equilibrium state in the solid corresponds to the str
produced by the equilibrium pressurep of the liquid ~the
equilibrium stress tensor of the solid is2pd i j ). The form of
the free-energy density accounting for such a situation is
Eq. ~8! @which does not exhibit a minimum atui j

(eq)5” 0# but

f 5m~ui j 2ui j
(eq)!~ui j 2ui j

(eq)!1
l

2
~uii 2uii

(eq)!2. ~11!

This is manifestly minimum atui j
(eq) and the nonzero value o

the latter quantity takes into account nonelastic contributi
to the free energy. If we now define the stress via the fi
relation in Eq.~9!, i.e.,s i j 5] f /]ui j , it will be nonzero only
7-5
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if there are forces driving the system away from equilibriu
If we rather define it via the second equality of Eq.~9!,
meaning that we sets i j 52mui j 1lukkd i j ~which is now dif-
ferent from ] f /]ui j ), it will describe, in addition to these
forces, the prestress necessary to keep the system in eq
rium. An invariant relation between stresses and strains
lows from requiring

f 5E
ui j

(eq)

ui j
~s i j 2s i j

(eq)!dui j , ~12!

which leads to

s i j 2s i j
(eq)52m~ui j 2ui j

(eq)!1l~ukk2ukk
(eq)!d i j . ~13!

Once boths i j
(eq) andui j

(eq) are specified, this equation gives u
an unambiguous relationship between stresses and str
Depending on which variables we choose to define the
erence state, we obtain the conjugate variables of the s
state from Eq.~13!. If we choose, for instance, a strain-fre
state as reference, this equation will provide us with the c
responding stress of reference, if we choose a stress
state of reference, it will yield the strain of reference.

As an example we can look at a case where the equ
rium stress iss i j

(eq)52p0d i j , and ask what should the stra
be. Hooke’s law, written in a such a way that the absence
strain implies the absence of stress as well@see Eq.~9!#, then
gives us an equilibrium strain

ui j
(eq)52

p0

2m1ld
d i j . ~14!

Since the free energy must not depend on the choic
reference state, it is clear that it does not matter whether
useui j or ũi j in Eq. ~13!, providing that we use the correc
values of ui j

(eq) and ũi j
(eq) , respectively. Suppose that w

choose another reference state characterized by the s
tensor ũi j in such a way that when the strain is zero, t
stress is equal to2p0sd i j . A vanishing strain then corre
sponds to a prestressed situation. If the equilibrium stres
again 2p0d i j as above, we must have a new equilibriu
strain ũi j

(eq) obeying, according to our invariant relation~13!,

2p0sd i j 1p0d i j 522mũi j
(eq)2lũkk

(eq)d i j . After a simple ma-
nipulation we obtain

ũi j
(eq)5

p0s2p0

2m1ld
d i j . ~15!

Of course, Eq.~14! is a special case of Eq.~15! for p0s

50. The free energy, expressed byũi j , then reads
03611
.

lib-
l-

ins.
f-
me

r-
ee

-

of

of
e

ain

is

f 5m~ ũi j 2ũi j
(eq)!~ ũi j 2ũi j

(eq)!1
l

2
~ ũi i 2ũi i

(eq)!2

5mũi j ũi j 1
l

2
ũi i ũ j j 1~p02p0s!ũi i

1
d

2~2m1ld!
~p02p0s!

2. ~16!

It should be realized that Eqs.~11! and~16! describe exactly
the same situation, if corresponding values for the str
fields without and with a tilde are inserted. At this point w
have said nothing about applied external stresses. Howe
if we choose, say, vanishing displacement as a bound
condition at a planar interface directed along thex direction,
then this will correspond to two different physical situatio
for the two different choices of the state of reference. Let
for simplicity assumep050. According to Eq.~14!, we then
haveui j

(eq)50, and Eq.~11! implies Eq.~8!. Settinguxx50
in Eq. ~9! we obtain because of the boundary conditionszz
50 that alsouzz50, and there is no stress at all. On th
other hand, if we setũxx50, we have to use Eqs.~13! and
~15! to obtain the elastic state of the solid. The bounda
condition forszz implies uzz5p0s /(2m1l), which in turn
leads tosxx522mp0s /(2m1l); hence vanishing displace
ment along our planar interface means a solid that is ho
geneously strained in thex direction with a prestresss0
5sxx .

As we shall see later, the latter choice of the state
reference has been made in the phase-field model discu
in @16#, the former~setting p0s50) in @17#. These are the
most natural choices, although an infinity of~less natural!
alternatives is available.

C. The phase-field model

The total~solid1liquid! free energy of the system can b
written as

F@f,$ui j %#5E dVF f ~f,$ui j %!1
1

2
Ge2~“f!2G , ~17!

wheree is a length parameter controlling the order of ma
nitude of the transition region described by the phase fie
G53g/e is the energy density corresponding to the surfa
energyg being distributed over a layer of width'e. ~The
factor 3 is just a convenient choice, simplifying later deriv
tions.!

If we start from the invariant form~13!, we can set up a
whole class of phase-field models at once and specify
reference state later. In order to be able to write a sin
elastic energy expression for the two-phase system, we
mally treat the liquid as a shear-free solid~not including
hydrodynamics!. We will discuss some consequences of th
approach later.

A straightforward ansatz for the elastic energy density
then
7-6
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f el~f,$ui j %!5h~f! f sol~$ui j %!1@12h~f!# f liq~$ui j %!

5h~f!H m~ui j 2ui j ,s
(eq)!~ui j 2ui j ,s

(eq)!

1
l

2
~uii 2uii ,s

(eq)!2J 1@12h~f!#
l̃

2

3~uii 2uii ,l
(eq)!2, ~18!

where f sol($ui j %) and f liq($ui j %) are the densities of elasti
energy in the solid and in the liquid, respectively, and wh
h(f) may be interpreted as a ‘‘solid fraction’’ which mu
be equal to one in the solid and equal to zero in the liqu
We chooseh(f)5f2(322f) for reasons of convenience
with this choiceh8(f)50 for f50 and forf51, i.e., in
the bulk phases. This leads to the advantage~see Appendix
A! that the zeroth-order solution of the asymptotic expans
in powers ofe is valid to all orders in the outer region con
sidered.

Since different reference states may be chosen in the s
and in the liquid, the equilibrium strains carry a subscrips
or l, respectively. This would not be necessary here, beca
the prefactor@h(f) or 12h(f)] decides whether the equ
librium expression for the strain in the liquid or in the sol
has to be taken. However, as soon as we take deriva
with respect tof, this criterion of distinction becomes am
biguous, so we prefer to make the difference explicit fro
the outset.l̃ is the bulk modulus of the liquid.

To account for the possibility of a phase transition, w
introduce a double well potential

f dw~f!52Gg~f!, ~19!

where g(f)5f2(12f)2. The minimum atf51 corre-
sponds to the solid phase, the one atf50 to the liquid
phase. Note that while this potential looks similar to t
fourth-order polynomial used in the Landau theory
second-order phase transitions, it is employed in quite a
ferent manner here. The two minima correspond to the
phases and the symmetry of the potential is of second
importance; in Landau’s approach, symmetry considerati
are at the heart of the theory, the symmetric minima desc
the same phase, and the second phase corresponds
unstable maximum in between. Since in our case both ph
sit at a minimum, the transition described by the double w
potential is of first order. We do not need a sixth-order po
nomial as would be necessary in Landau’s theory for fi
order phase transitions.

Gravity will be included in essentially the same way as
the sharp-interface equations discussed above; i.e., its e
as a body force in the mechanical equilibrium condition
neglected but its influence on the chemical potential is ta
into account. This is a good approximation usually~one can
estimate the cross-effect of gravity on the elastic energy to
on the order ofrsgH/s0!1, for typical heightsH of the
sample!. Then the contribution of gravity to the free-energ
density becomes
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f grav~f,z!5~z2z0!$rsh~f!1r l@12h~f!#%g

5~z2z0!h~f!Drg1~z2z0!r lg, ~20!

where we have taken the zero point of this potential ene
at z5z0. Note that in taking fixed values forDr and forrs ,
we also neglect the second-order effect caused by den
changes due to strain.

Finally, we wish to be able to control the equilibrium
position of the interface ‘‘by hand’’ via addition of a con
stant to the free-energy density of one phase; this phen
enological contribution to the total free-energy density m
be conveniently written as

f c~f!52h~f!
12n2

2E
s00

2 52h~f!
2m1l

8m~m1l!
s00

2

~21!

and it is normalized such that by settings005s0 , we can
keep the equilibrium position of the planar interface at t
fixed valuez0, independent ofs0. This is useful, for ex-
ample, if one wishes to assess the relative position of
maxima or minima of an evolving structure with respect to
planar interface at the same external stress. Because o
recession of a planar interface according to Eq.~5!, such a
comparison would otherwise be difficult.

Collecting all contributions, we obtain for the total free
energy density

f ~f,$ui j %,z!5 f dw~f!1 f el~f,$ui j %!1 f grav~f,z!1 f c~f!

5GS 2g~f!1
e

3g H h~f!Fm~ui j 2ui j ,s
(eq)!

3~ui j 2ui j ,s
(eq)!1

l

2
~uii 2uii ,s

(eq)!2G
1@12h~f!#

l̃

2
~uii 2uii ,l

(eq)!21h~f!

3F ~z2z0!Drg2
2m1l

8m~m1l!
s00

2 G
1~z2z0!r lgJ D . ~22!

Note that here the terms in braces, in particular the ela
term, have acquired a prefactore. This e dependence is spu
rious, as we have taken the prefactorG}1/e in front of ev-
erything, and the factore just serves to cancel this out. I
fact, the only contribution to the free energy that can depe
on e explicitly is the double well potential, which must en
sure that in the limite→0 the only possible states are th
bulk phases and must therefore become infinite for all val
of f different from 1 or 0. All the other energies can depe
on e only implicitly via h(f), the local solid fraction of the
two-phase system.

We then requiref to satisfy a relaxation equation for
nonconserved order parameter. This equation takes the
7-7
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]f

]t
52R

dF

df
, ~23!

and the prefactorR should contain the mobility 1/k defined
in Eq. ~2!. The dimension ofR must be (energy densit
3 time)21, which leads us to choosingR51/(3krse). This
essentially amounts to setting the time scale for the evolu
of f ~which must be related to the width of the transitio
region, because it is only in this region wheref has an
appreciable dynamics!.

We arrive at

]f

]t
5

g

krs
F¹2f2

1

e2 S 2g8~f!1
e

3g
h8~f!H m~ui j 2ui j ,s

(eq)!

3~ui j 2ui j ,s
(eq)!1

l

2
~uii 2uii ,s

(eq)!22
l̃

2
~uii 2uii ,l

(eq)!2

1~z2z0!Drg2
2m1l

8m~m1l!
s00

2 J D G . ~24!

Herein, g8(f) and h8(f) are the derivatives ofh(f) and
g(f) with respect to their argument. As we have mention
before,h8(f) vanishes in the solid as well as in the liqu
phases@see Eq.~A24!#.

In writing down an equation for the evolution of the ela
tic variables, we have to be careful about the fact that
strains ui j ,i , j 51, . . . ,d are not independent quantitie
Therefore the variational derivativesdF/dui j are not inde-
pendent. Instead of introducing Lagrangian multipliers,
can, however, exploit the fact that the componentsui ,i
51, . . . ,d of the displacement, related to the strains via Eq
~33!, are independent variables. Assuming that the tim
scales of our problem are large in comparison with sou
propagation times, we conclude that the variational deri
tives dF/dui are equal to zero. This is an adiabaticity a
sumption. Hence we obtain

05
dF

dui
5

]

]xj

dF

dui j

5
]

]xj
$h~f!~s i j 2s i j

(eq)!

2@12h~f!#~p2p(eq)!d i j %. ~25!

This is nothing but a generalized elasticity problem, with t
generalized stress tensor given by the quantity in braces

Before moving to a demonstration of the sharp-interfa
limit, let us discuss scales. Since the elastic problem~25! is
formally linear in the strains, rendering it nondimensiona
straightforward and unenlightening. On the other hand,
ing to cast Eq.~24! into nondimensional form, we realiz
that besides the length and time scales discussed in Sec.
we need a third length scalel 35g/K, apart from the width
of the transition regione. So the phase-field model contain
four length scales altogether.
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Normalizing elastic moduli and stresses by the bu
modulus, i.e., settingM5m/K, L5l/K, L̃5l̃/K, and
S005s00/K, we obtain

]f

] t̃
5¹̃2f2

l 1
2

e2 S 2g8~f!1
e

3l 3
h8~f!H M ~ui j 2ui j ,s

(eq)!

3~ui j 2ui j ,s
(eq)!1

L

2
~uii 2uii ,s

(eq)!22
L̃

2
~uii 2uii ,l

(eq)!2

1
2l 3

l 2
~ z̃2 z̃0!2

2M1L

8M ~M1L!
S00

2 J D , ~26!

where t̃ 5t/t is the nondimensional time andz̃5z/ l 1 and
¹̃5 l 1¹ are nondimensionalized spatial operators. Phy
cally, l 3 represents an atomic scale. For many materials,g/K
is on the order of the lattice constant.

For the phase-field model to work properly, we must im
pose some conditions on the length scalee. We definitely
neede/ l 1!1 to have a decently sharp interface. Moreov
the h8(f) term must not become too large in comparis
with the g8(f) one, otherwise one of the minima of th
double well will move away from the positionf50 or f
51. This appears to suggest that we also neede/ l 3!1. We
compute some typical values. Using the material parame
of solid He@25#, the system for which the Grinfeld instabilit
has been unambiguously demonstrated by Torii and Bal
@26#, we obtain the estimatesl 1'0.1 cm, l 2'0.1 cm, l 3
'1029 cm, andt'1 s. If we had to requiree! l 3, we
would have a problem with very disparate length scales
our numerical grid would have to be smaller thanl 3, whereas
the length scales governing pattern formation arel 1 and l 2.
Fortunately, the quantitye/3l 3 appearing in Eq.~26! is mul-
tiplied by squared strains, and theui j are on the order of
1024. Moreover, we have 2l 3 / l 2'231028 and the last term
in braces can be estimated by1

4 S00
2 '231028. Therefore the

actual condition for our model to be useful is 10283e
!3l 3, which is much easier to achieve. In our simulation
we typically had 10283e/3l 3'0.1.

Equations~24! and ~25! constitute the basic phase-fie
equations for the phase transformation under stress.

To specify our model completely, we have to indicate t
equilibrium stresses and strains. Let us assume the follow
forms for the stress-strain relationships in the two phase

s i j 52p0sd i j 12mui j 1lukkd i j , ~27!

p5p0l2l̃ukk , ~28!

and require the equilibrium pressure to bep0. For a planar
interface, this fixes the normal stress in thez direction to be
szz

(eq)52p0. If we assume the equilibrium stress tensor to
isotropic~a very natural assumption in most cases!, we have
s i j

(eq)52p0d i j , andui j ,s
(eq) in the solid is given by Eq.~15!. In

the liquid, we haveuii ,l
(eq)5(p0l2p0)/l̃. Note that only the

displacement divergence¹u5uii appears in the elastic en
ergy of the liquid. This gives us a degree of freedom~neither
7-8
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uxx nor uzz are fixed separately in the liquid, only their su
is! that will turn out important later.~Without this degree of
freedom, it would not be feasible to treat the liquid as
shear-free solid, as will be discussed in Appendix A.!

Inserting these equilibrium values into Eqs.~24! and~25!,
we obtain as a basic equation of motion for the phase fi
~introducing the abbreviationk̃5krs)

]f

]t
5

g

k̃
H ¹2f2

1

e2 F2g8~f!1
e

3g
h8~f!

3S mui j ui j 1
l2l̃

2
uii

2 1Dpuii 1DW1Drg

3~z2z0! D G J , ~29!

where we have defined further abbreviations

Dp5p0l2p0s ~30!

and

DW5
1

2
d

~p02p0s!
2

2m1ld
2

1

2

~p02p0l !
2

l̃
2

2m1l

8m~m1l!
s00

2 .

~31!

The elastic problem can be cast into the suggestive form

05
]

]xj
$h~f!s i j 2@12h~f!#pd i j %, ~32!

from which it is even more transparent that the expressio
braces is nothing but a generalized stress tensor. Note
the phase-field model always guarantees exact mecha
equilibrium with respect to this stress tensor, but that
validity of a linear relationship between strains and gene
ized stresses is only warranted outside the interface reg
where the values off cease to depend on theui j . ~This
means that in the vicinity of sharp groove tips we will aut
matically have deviations from Hooke’s law, albeit they a
not modeled to satisfy a particular nonlinear constitutive
lation.!

These equations are to be solved subject to the condit
that the phase field approaches its limiting values in the b
phases. To make them closed equations, we have to rep
s i j andui j by the field variablesui using the definition of the
strain tensor

ui j 5
1

2 S ]ui

]xj
1

]uj

]xi
D ~33!

and Hooke’s law.
It remains now to be shown that this model reproduces

sharp-interface limit when the width of the interface is sma
This calculation is given in Appendix A. Its central result
formula ~A50!, which we rewrite here in nondimension
form ~for s0050):
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ṽn52H 1

2

~s tt2snn!
2

s0
2

1k̃1
l 1

2l 2
~ z̃2 z̃0!J . ~34!

The ansatz proposed in@16# is slightly different. One dif-
ference mainly concerns theinterpretationor philosophy of
the approach. In the MG model, the phase field is conside
the variable determining the shear modulus. The shear mo
lus is the macroscopic quantity deciding whether a piece
condensed matter is solid or fluid. Hence the phase-field
der parameter differentiates between liquid and fluid and
a transparent meaning in the context of liquid–solid tran
tions. Of course, the model can be extended easily to the
of two solids with nonvanishing shear moduli on both sid
of the interface. In the KM approach, the traditional a
more conventional view is taken that the phase field deci
between two phases characterized by their respective
energy densities. That one of these phases is a liquid i
secondary importance, as it were. Again, in principle,
might be another solid. Of course, if the second phase cho
is a liquid, then its shear modulus must vanish. And inde
this is guaranteed in the current form of both models
construction. For ease of further comparison, we give
phase-field equations of@16# in Appendix B and show how
they are mapped onto the form~29!, ~32!.

In concluding this section, we would like to comme
briefly on the consequences of an anisotropic equilibri
strain. Suppose we submit a body consisting of piezoelec
material to a homogeneous electric field.~Alternatively, we
could consider some magnetrostrictive material under the
fluence of a magnetic field.! This body will contract or ex-
pand until it reaches a new equilibrium state compatible w
the body forces exerted by the field. The new state will ha
anisotropic strain and, assuming isotropic elastic propert
an anisotropic stress tensor as well@27#. What will the sur-
face dynamics of such a body be, if uniaxial stress is app
in addition, as in the setup of the Grinfeld instability? O
course, the assumption that the equilibrium stress rem
constant is an oversimplification now, since the dielect
properties of the solid and its melt will usually differ, henc
the electric field would become inhomogeneous as soon
an interfacial shape change occurs. Let us nevertheless
sume the simplest possible situation, an anisotropic but c
stant equilibrium state

s i j
(eq)52p0d i j 1x0d ixd jx . ~35!

Using the stress-strain relationship~27!, this can be inserted
into our expression for the elastic energy density of the so
which then becomes

f sol~$ui j %!5mui j ui j 1
l

2
uii

2 1Dpuii 1
1

2

Dp2

m1l
2x0u11

2x0

Dp

2~m1l!
1x0

2 2m1l

8m~m1l!
, ~36!

where we have setp0l5p0 for simplicity.
7-9
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It is then straightforward to derive the sharp-interfa
limit for this modified phase-field model. The result rea
~on settings0050, z050)

vn52
1

krs
H gk1Drgz1

12n2

2E
~s tt2snn2x0!2

1F2~12n2!

E
x0~s tt2snn!2

11n

E
x0

2Gnx
2

1
2n~11n!

E
x0

2nx
4J , ~37!

wherenx is the component of the interface normal inx di-
rection. Rotational invariance is broken.

We are not aware of any previous mention of this eq
tion in the literature, nor do we think this interesting case h
been treated. In fact, what we have demonstrated here is
the phase-field model can be used toderive hitherto un-
known sharp-interface equations in a transparent way.

It is clear from Eq.~37! that an isotropic stress tensor, i.e
s tt5snn does not necessarily entail a stable planar interfa
whereas settings tt2snn5x0, i.e., providing ananisotropic
stress tensor, we will have a linearly stable planar front
lution with interface positionz50. This is easily seen from
the fact that the terms containingnx

2 andnx
4 do not contribute

in a linear stability analysis, becausenx is directly propor-
tional to the perturbation and hence its square and fo
power have to be dropped. Note also that the symmetry
the dynamics with respect to a replacement ofs tt2snn by
its negative value does not hold anymore in this situation

While this equation opens a new line of research, we w
refrain here from pursuing this topic any further.

III. NUMERICAL RESULTS

A. Validation of the model

In order to verify that our phase-field description leads
a quantitatively correct description of the instability, at lea
before cusps set in, we have performed a number of num
cal tests.

Based on a simple finite-difference scheme, the numer
implementation is set up in a rectangular geometry. The b
tom half of the rectangle is filled with solid, the top wit
liquid. This is realized by setting the phase fieldf equal to a
tanh-like function taking the value one in the bottom regi
and zero in the top region of the geometry.f is kept at these
values one and zero exactly at the bottom and top lines of
numerical grid, respectively. Periodic boundary conditio
are applied at the lateral boundaries. The initial interface
set by an appropriate modulation of the region wheref
crosses the value12 and was in most cases taken to be sin
soidal or flat with a random perturbation.

The boundary and initial conditions for the fieldsux and
uz are chosen differently for the KM and MG models as w
be described now.

Within the KM model, where we assume strains to van
at equilibrium~henceDp50), we took thex derivatives of
both displacement fields periodic in thex direction in our
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initial simulations, in order to obtain periodic strains. Late
we switched to simpler helical boundary conditions forux ,
i.e., we took ux(L,z)5ux(0,z)1Luxx,0 , where L is the
length of the rectangle along thex direction, and periodic
boundary conditions foruz . This change in boundary cond
tions did not affect results in any essential way. All the sim
lations of the KM model discussed here were carried
with these boundary conditions~whereas those in@17# were
done with periodicx derivatives!. At the bottom of the sys-
tem, the values of the fields are fixed to values correspond
to a homogeneously strained solid; at the top,ux is fixed and
the derivative]zuz chosen such that the condition¹u50 is
satisfied.ux is initialized as a linear functionux5xuxx,0 and
the inital uz is determined via integration of Eq.~A38!.

For simulations of the MG model~or rather its variant
considered here!, the fields were all taken periodic in thex
direction, whereas the boundary conditions in thez direction
were as in the KM model. We did not yet attempt to u
spectral methods for the solution which would require pe
odicity in the z direction as well~achievable by simply re-
flecting the system at its bottom, and including the ima
into the numerical box@16#!. Initialization was done by set
ting ux50 everywhere and computinguz from Eq. ~A38!
again.

The elastic equations were solved by successive o
relaxation, the time integration was performed by a forma
second-order accurate midpoint scheme. Since we did
update the elastic fields at the half time step, the form
accuracy was not attained. The most time-consuming pa
the simulation was the relaxation scheme and a way to o
come its restrictions has been given in@16# as is discussed in
Appendix B. Since it requires an approximation to the so
tion of the elastic problem even at the analytic level (m/K
has to be small!, we did not implement it in our two-
dimensional simulations. We intend to compare the qua
of this approximation to the solution of the full problem
before employing it in a 3D simulation, where its use
essential for reasons of computational efficiency. Most of
computations were done with the material parameters of
lium to facilitate comparison with experiments Therefo
whenever we do not indicate different choices, our para
eters were chosen as described in@25#. Times and lengths
given without units are in seconds and centimeters, resp
tively. Since our nondimensional time unit is about one s
ond and the nondimensional length scale about 0.1 cm,
simply corresponds to using 10l 1 instead ofl 1 as the basic
length scale.

One of our numerical tests consisted in reproducing
instability threshold to within 2% accuracy, another one
verifying the subcritical nature of the bifurcation, first dem
onstrated analytically by Nozie`res@21#. A short discussion of
the last feature has been given in@17#, so we will not elabo-
rate on it here@28#. We consider a few more tests, howeve

Figure 1 gives the dispersion relation determined for th
values of the external stress and compares it with the a
lytical result from linear stability theory. The KM model wa
used here as it gave more accurate results at finitee.

To obtain the dispersion relation, we simply followed th
dynamics of a system initialized with a small-amplitude c
7-10
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PHASE-FIELD MODELING OF STRESS-INDUCED . . . PHYSICAL REVIEW E63 036117
sine profile for a number of different wavelengths and co
puted the amplitude of the evolving structure for a series
times. The interface was determined as the contour level
responding tof5 1

2 . Then the amplitude time series wa
fitted to an exponential function which provided the grow
rate of the interface. Takings00 equal to the applied stres
s0, we fixed the average position of the interface. Amp
tudes were computed in two different ways, both of whi
are not influenced by the average interface position. The
method was simply to take the square root of the spa
variance ofz(x); as a second measure for the amplitude
took the modulus of the Fourier component correspondin
the wavelength chosen. On the figure, these two meth
give essentially indistinguishable results within the size
the symbols. System sizes used were the wavelengthl f of
the fastest-growing mode and a number of rational multip
and fractions thereof~ranging from 1

4 l f to 3l f). Since we
kept the number of numerical grid points the same for all
systems atl f , the mesh size had to be varied. The interfa
thicknesse was in general kept above32 of the mesh size,
which gives a resolution of five points for the region whe
the phase field varies between 10% and 90% of its maxim
value. For smaller values ofe, locking effects to be dis-
cussed shortly became conspicuous@30#.

The agreement between analytic results and numeric
determined points is satisfactory both above (s052.8
3104 dynes/cm2) and below (s052.43104 dynes/cm2)
the instability threshold. Two points are worth mentionin
First at q'30 cm21, there are two symbols each for th
growth rates corresponding to the two larger stresses. T
were given to roughly indicate the possible error in the n
merical result when the growth rate has a large nega
value. Points belowq'20 cm21 did not show a comparabl
error. The two different values were obtained by fitting w
the initial and the final half of the data points, respective

FIG. 1. Dispersion relation. Symbols indicate the results of
merical simulations, lines depict the analytic theory. Material
rameters are those of helium. Solid line and squares:s052.8
3104 dynes/cm2,e50.009; dashed line and inverted triangles:s0

52.63104 dynes/cm2,e50.01; dash-dotted line and triangles:s0

52.43104 dynes/cm2,e50.012. Mesh sizes: h50.0054, h
50.0063, andh50.0074, respectively.
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We ascribe the difference to the fact that the amplitude of
interface becomes smaller than its widthe, a situation in
which the phase-field description is no longer reliable. F
example, the final planar interface is not located exactly
z50, about which the initial cosine was centered, albeit
deviation is smaller than the interface width. Second,
overall agreement is surprisingly good in view of the fa
that a phase-field model is not particularly well-suited to t
determination of a dispersion relation at all. For in order
approach the limit of an infinitesimal perturbation of a plan
interface one should choose very small amplitudes, but t
must not be smaller than the interface widthe. Reduction of
e is possible in principle but soon leads to prohibitive co
putation times. With the sharp-interface model that we inv
tigated in parallel@29#, it was no problem to take amplitude
of 1024 and to obtain nice exponential growth or decay d
ing long time intervals, whereas here we were restricted
starting amplitudes on the order of 0.05 or larger.

Our next test consists in investigating the dynamics o
planar interface with both the KM and MG models. Fro
Eqs.~1! and ~2! we obtain the equation of motion

ż52
1

krs
S ~12n2!

2E
s0

21Drgz D , ~38!

which is, given the initial conditionz(0)50, solved by

z~ t !52~12e2Drgt/krs!
~12n2!

2DrgE
s0

2 . ~39!

This analytic result is compared with simulations of the tw
models in Fig. 2.

What is cleared up by the figure is that even with a we
resolved interface width~we havee54h) the MG model is
slightly off the analytic final position, whereas the KM on
converges well towards it. With larger values of the nume
cal mesh size, convergence of the former model gets e
worse. Forh50.007,e50.011 the KM model still agrees
reasonably well with the analytic curve while the MG one
off by about 10% fort54. Both models show deviation
from exponential behavior with this set of parameters due
metastability effects of the discrete set of interface poin

-
-

FIG. 2. Recession dynamics of a planar interface. Solid li
KM model; dashed line: MG model; dash-dotted line: analytic
sult ~39!. The dash-dotted line is hard to see; it almost coincid
with the solid one. To discern it, one should look at the left part
the figure.s0523104 dynes/cm2, e50.008, andh50.002.
7-11
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KASSNER, MISBAH, MÜLLER, KAPPEY, AND KOHLERT PHYSICAL REVIEW E63 036117
This problem, which is particularly critical for interfac
pieces parallel to one of the coordinate axes, has been
cussed in detail in@30#. At small interface velocities, the sum
of the energies of the discrete points of the phase field in
double well potential may vary at successive time st
~whereas the energy of a continuous field is degenerate u
arbitrary translations!. Therefore the interface is slowe
down if the energy of its discretization increases due to m
tion and accelerated if it decreases. For a sufficiently sm
driving force, the interface may stop moving, i.e., lock in
some favorable position. Apparently, the MG model is mo
susceptible to these effects than the KM one.

The ultimate reason for the different behavior of the tw
models is that they are only asymptotically equivalent, i
they describe the same system only in the limite→01. For
any finitee, the equations obeyed by the phase field and
displacements are not the same in the two models. One
observe this directly by comparing the different terms co
tributing to, e.g.,] tf. In the MG model, the termDpuii of
Eq. ~29! is frequently the largest interface term affectin
] tf, whereas this term is equal to zero in the KM mod
Moreover, the sum of all terms multiplyingh8(f) is not the
same in both equations.

The difference can also be seen in comparing a nume
simulation of the sharp-interface model~1!,~2! itself, using
an integral equation approach, with the phase-field mod
We will report on details of this alternative approach els
where @29#. Figure 3 shows the interface evolving in th
phase-field calculation for two different values ofe and com-
pares them with the sharp-interface result starting from
same initial condition, after the same time interval.

Again the KM model fares slightly better in the compa
son for the same value ofe. In the groove, however, both
models deviate from the sharp-interface result but appro
it more closely for the smaller interface thickness. The sha
interface model produces a more strongly pointed groove

FIG. 3. Comparison of phase-field models for different interfa
widths with the sharp-interface model. Solid lines: KM mod
dashed lines: MG model; dash-dotted line: sharp-interface mo
The phase-field curves with the shallower minima corresponde
50.01 ~mesh sizeh50.0688), those with the deeper minima toe
50.005 (h50.0344).s052.53104 dynes/cm2 and t50.25. Ini-
tial interface amplitude: 0.05.
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expected. It should be emphasized that this simulation is
far from the limit of the temporal validity range of the shar
interface model. This limit is signaled either by a crash of t
program due to the singular behavior of the bottom of
groove or by the appearance of a spurious steady state, w
can be achieved by overstabilization of the interface.

Why the KM model agrees better with the sharp-interfa
model for a given value of the interface width is a difficu
question, to which we cannot offer any deep answer. Also
cannot exclude that for a different choice of the functio
h(f) andg(f), the MG model would be superior. It shoul
be kept in mind that the functions employed in@16# are not
the same as those used here~see Appendix B!.

Since we wish to make sure that effects of translatio
symmetry breaking are not due to our using a model
which periodicity is imperfectly implemented, we will us
the MG variant in the following simulations. The difference
between the two models are small, after all. Also the M
model has the advantage of being more easily treated u
pseudospectral methods based on Fourier series due t
periodic boundary conditions, with a gain in accuracy th
might help to offset its apparent disadvantage.

The conclusion from Fig. 3 is that the phase-field mod
give decent agreement with a sharp-interface calculation
regions where the curvature is not too large. Whereas
sharp-interface computation cannot be meaningfully con
ued by very much beyond the time shown in the figuret
50.25), the phase-field models both have no problem
continuing the simulation to times well beyondt51.

As anticipated above, we take the point of view that a r
solid cannot develop exact cusps, because plastic eff
such as the generation of dislocations will intervene. Th
will relieve stresses and thus prevent infinite densities of
elastic energy. The phase-field model does the same t
and we shall see below that it does so by introducing a cu
to the curvature. More quantitative modeling would requ
one to explicitly take into account models of nonlinear ela
ticity or plasticity, which is beyond the scope of this articl
Nevertheless, as we can see from Fig. 3, the behavior
from the sharp tip of the groove is described reasonably w
by the phase-field model for both values ofe and is almost
independent of the interface width. Therefore we believe t
the phase-field approach correctly reproduces the qualita
behavior of a situation in which plastic effects occur only
the minima of the grooves.

Results obtained under this hypothesis will be discus
in the next section.

B. Dynamics of extended systems

When simulating periodic structures, one realizes that
small supercritical stresses, where the system takes a
time to develop deep grooves, symmetry breaking of
takes place with one of the grooves getting ahead of
others. This symmetry breaking must be triggered by
merical noise from roundoff or truncation errors. For hig
stresses, where the system develops grooves reaching
system bottom within a relatively short lapse of time, th
does not happen. Figure 4 gives an example of a struc

e

l.
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PHASE-FIELD MODELING OF STRESS-INDUCED . . . PHYSICAL REVIEW E63 036117
grown at about three times the critical stress. The interfac
plotted at constant time increments (Dt50.05). A shift in
the chemical potential of the liquid has been made to k
the position of a planar front fixed.

The structure remains periodic in the time interval cons
ered and three equally deep grooves evolve. Note the p
liar shape of the cells. From flat tips there emerge sligh
curved slopes on the side of the cells. Then there is a s
bend downward into the deep groove. The appearance of
bend renders it plausible that the time of formation of a cu
in the sharp-interface description has already passed
from then on the dynamics should be governed by the c
vature bound. In the final stage of this dynamics all groo
move at constant velocity. Figure 5 gives the curvatures
the interfaces displayed in Fig. 4 and demonstrates that
radius of curvature at the bottom of the grooves rema
constant and is close toe, which was equal to 0.02 in thi
simulation.

The curvature was calculated from the contour line de
ing the interface position. Since the representation of
line (f50.5) was constructed by determining its intersect

FIG. 4. Dynamics fors0583104 dynes/cm2, e50.02. MG
model with prestresss00583104 dynes/cm2. The fastest-growing
mode is atl f50.067, the wavelength of the pattern isl5

2
3 . Note

that the two axes are the same scale.
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points with the squares of the numerical grid, the discreti
tion points were unevenly spaced~two intersections with
grid lines parallel to thex andy axes can be arbitrarily clos
to each other, the next may be as far away asA2h). There-
fore our curvature results are pretty noisy, even after ap
cation of a smoothing procedure. Nevertheless, they cle
indicate the approximate constancy of the curvature in
groove tips.

Since we have the stresses at our disposal, too, we
calculate the final velocity of the grooves. Figure 6 gives
contour plot of the stressessxx , corresponding to the fina
time of the simulation from Fig. 4,t50.45. The interface is
drawn as a solid line, the contour lines are broken lines
different styles. What we have plotted here is not a gene
ized stress tensor component, as defined by Eq.~A4!, but
simply the stress in the solid. Therefore the contour lines
stresses far in the liquid are meaningless@in the dynamic
equations, they are multiplied byh(f)'0#, although they
become important when entering the interface region. Fr
the figure, we estimate a maximum value ofs tt'23105 in
the bottom of the groove~and a similar value is obtaine
from the corresponding figure forszz). Inserting this, the

FIG. 5. Evolution of interface curvature, corresponding to t
interfaces of Fig. 4.
e-
ed,

-
e
ex-
as

the
FIG. 6. Stresses att50.45 ~lowest curve in
Fig. 4!. Six contour values are displayed, the s
quence of line patterns is dashed, dash-dott
and dotted with an increasing value ofsxx and an
increment of 43104 dynes/cm2 between succes
sive curves. To distinguish lines with the sam
pattern from each other, the values have been
plicitly marked at those curves where there w
enough room, e.g., forsxx543104 dynes/cm2.
The lower dash-dotted curve corresponds to
value of the applied external stress.
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KASSNER, MISBAH, MÜLLER, KAPPEY, AND KOHLERT PHYSICAL REVIEW E63 036117
value of the curvature and the positionz of the groove bot-
tom into Eq.~1!, we obtain for the velocityvn521.6. As-
suming that the interface grew at this velocity from the o
set, we obtain for its final position the valuez520.7. The
data show that it is actually atz520.72, which is easily
explicable by the inaccuracy of our estimate of the maxim
stress. From the contour plot we do not obtain more tha
rough figure as stresses vary rapidly in the interface reg

In a straight and narrow crack, the stress scales with
square root of the distance from its tip@23#. Therefore a
reduction of the tip radius by a factor of 2 will increase bo
the stress term and the curvature term of Eq.~1! by a factor
of 2. As long as the gravity term in Eq.~1! is negligible
~which, incidentally, it is not in the simulation of Fig. 4, it
contribution is about as large as that of the curvature for
last curve!, this means that the velocity of the groove w
roughly double whene is halved. This trend has been co
firmed in the simulations, although the observed ratio
slightly smaller than the predicted one, but then our groo
do not yet really have an extremely small width compa
with their length.

The next three figures show a simulation at a str
roughly 20% above the critical value. Our numerical b
contains six wavelengths of the pattern initially. One of t
grooves has, however, been made 2% deeper than its n
bors. Contrary to the situation in Fig. 4, no prestress w
applied, so a planar interface would move downward t
new equilibrium position. This kind of motion is superim
posed on the shape-changing dynamics and serves nice
separating the curves on the plot.

The temporal dynamics can be divided into several sta
At first, the sinusoidal pattern changes its shape in the w
already discussed by Nozie`res@21#: the tips become flat and
the grooves pointed. After some time, the interface beco
similar to a cycloid but with different depths of the groove
Also, the dynamics almost comes to a halt. Below, we sh
discuss the similarity with a cycloid in more detail~see Fig.
10!. It holds up tot52.5 approximately, which is the time o
the lowest curve in Fig. 7. At this point the apparent perio
icity of the pattern has doubled.~Of course, strictly speaking
this periodicity has been broken from the outset by our m
ing one groove a little deeper. But this was only to avoid
being broken by numerical noise in an uncontrolled mann
i.e., to introduce a well-defined perturbation.!

The groove that was ahead initially wins the competiti
for the elastic field; the losing grooves fall back and ev

FIG. 7. Dynamical evolution of a perturbed interface ats0

51.16sc (s0533104 dynes/cm2, e50.025, E53.23108

dynes/cm2). MG model, no prestress. Time interval between curv
0.25; the final time is 2.5. After an initial phase of acceleration,
interface slows down and approaches a cycloid-like curve.
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close again. This is shown in Fig. 8, displaying the tempo
continuation of Fig. 7. In the initial structure of Fig. 8~the
solid line that is shallowest in the big grooves!, the smaller
grooves are deeper than in the final one~the dashed line
which is deepest in the big grooves but shallowest in
small ones!. At the end of the period of time depicted in Fig
8, there are three clear survivors and three losers of the c
petition.

Finally, as shown in Fig. 9, only one groove survives.
velocity is almost constant over a range of times. Eventua
it slows down and grows sideways towards the end, wh
may have to do with the fact that it gets too close to t
bottom of the numerical box~which is at z521). Also
gravity has a decisive decelerating effect here.

What we observe, then, is a coarsening process that se
to proceed via imperfect period doubling transitions. B
cause our system has only six grooves, we cannot explic
see more than the first period doubling here. These tra
tions are local in the following sense. Not all grooves s
viving the first period doubling get ahead of the others
multaneously. Rather what happens is that first the winn
groove gets ahead of its nearest neighbors, screening ea
them off the stress field on one side a little. This causes th

s
e FIG. 8. Continuation of the evolution from Fig. 7. Initial tim
t52.75, time stepDt50.25, final timet55.0. The biggest groove
is still accelerating, while the other even-numbered grooves ha
roughly constant velocity and seem to decelerate towardst55.0.
Odd-numbered grooves retract. They are deepest att52.75 and
have almost closed att55.0.

FIG. 9. Continuation of the evolution from Fig. 8. Initial tim
t55.25, time stepDt50.25, final timet58.0. The winning groove
has a constant velocity most of the time.
7-14
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PHASE-FIELD MODELING OF STRESS-INDUCED . . . PHYSICAL REVIEW E63 036117
neighbors to grow more slowly, making them screen off th
next neighbors on the other side less. So these get ahe
their neighbor grooves, and so on. The perturbation mad
one groove moves through the array in an alternating fa
ion. In an infinite system, one could imagine a series
‘‘near’’ period doublings propagating through the arra
These morphology changes are not exact period doub
transitions because there is no restabilization of a struc
with doubled periodicity. The system remains dynamic~but
see the discussion on gravity below! which means that the
foremost groove does not get slower than its competit
which would be necessary for length adjustment.

The first of these period doublings may be discussed a
lytically in some detail. Consider the shape of the interfa
close to the last time of Fig. 7. It can be modeled appro
mately by a curve that we would like to call a ‘‘double c
cloid.’’ A parameter representation of this curve is given

x5j2A sinkj2B sin 2kj, ~40!

z52A coskj2B cos 2kj. ~41!

Figure 10 compares a double cycloid with the interface
t52. The wave number 2k (59.425) is given by the basic
periodicity of the initial interface~before it is perturbed!, the
amplitudesA and B have been fitted ‘‘by eye’’ and the
double cycloid has been shifted using translational inv
ance in thex direction.~Its position in thez direction can also
be adjusted, which corresponds to a particular choice of
initial chemical potential of the liquid.!

Since we made only one of the grooves deeper than
others, the agreement of the groove minima is not quite p
fect, as we can adjust only the depths of this groove and
nearest neighbors by an appropriate choice of the two p
tive constantsA andB. Had we taken an initial perturbatio
of periodicity length 2p/k instead of a local one in the simu
lation, a much better agreement would have been obtai
The purpose of this comparison, however, is not to claim t
the interface shape goes precisely to a double cycloid
only to show that it may be well-approximated by such
curve, which can be considered a cycloid~with amplitudeB)
modified by a small perturbation of twice its wavelength.
our fit shown in Fig. 10 we haveA'B/10.

Our key observation is then that we can solve the sha
interface elastic problem for a double cycloid exactly in
extension of the work of Gaoet al. @23#, using a conformal
mapping technique. This solution is given in Appendix C.
what follows, we will neglect the gravity term, a procedu

FIG. 10. Comparison of the interface att52 from Fig. 7
~dashed line! with a double cycloid~solid line!.
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that we justify later. The evaluation of the nondimension
velocity via Eq. ~34! for the double cycloid yields, in the
bottoms of the grooves@see Appendix C, Eq.~C31!#

ṽn52
1

2@12k„A~21!m12B…#2

3H S 112Bk1
11Bk

12Bk
Ak~21!mD 2

2ak@A~21!m14B#J , ~42!

wherea52k/qf is the ratio of the actual wave number of th
basic cycloid and the wave number of the fastest-grow
mode. The formula with oddm holds for the minima with
depth22Bk1Ak, that with evenm for those with depth
22Bk2Ak. A condition for the solution to hold is that ther
are no self-crossings of the curve, therefore we must req
Ak12Bk,1. Let us now assume thatA!B, i.e., that the
pattern actually is a slightly perturbed cycloid~where the
perturbation has twice the basic wavelengthp/k). Then the
denominator in Eq.~42! in front of the braces goes to zer
for evenm as 2Bk approaches the value 1. This is the finit
time singularity, already identified by Gaoet al. @23#. The
velocity goes to2`, if the braces remain positive, whic
they do for small enougha, i.e., when the wavelength i
large enough. For smallA, we can expand Eq.~42!. This
gives

ṽn52
1

2@12k„A~21!m12B…#2 H ~122Bk!214~12a!

3Bk1Ak~21!mF2
~11Bk!~112Bk!

12Bk
2aG J , ~43!

a formula that shows that the marginal value ofa is 1. Thus
for wavelengths larger than that corresponding to the fast
growing mode (a'1), the velocity will diverge in the deep
est minima, leading to cusps in the sharp-interface limit. W
could leave the gravity term out of this consideration beca
it never diverges for finitez.

Now assuming we are at or slightly above the wavelen
of the fastest-growing mode, we can see from Eq.~43! that
for (122Bk)2,Ak the velocity ispositivein the secondary
minima corresponding to oddm @31#. This meansresolidifi-
cation and closure of the corresponding grooves.

Suppose for a moment thatA50. Then the system with a
sharp interface will evolve towards a cusped cycloid, i.
2Bk will increase towards 1. But this means that eventua
a point will be reached where 122Bk is small enough that
any perturbation will be larger than (122Bk)2. In this case,
our equations state that~for 12a!1) the tip perturbed in
this way in the right direction~i.e., the perturbation mus
reduce the depth of the groove! will recede again, its velocity
will become positive. A groove tip that is perturbed in th
other direction will approach the cusp singularity even fas
and reduce the speed of its neighbors. Of course, not
7-15
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perturbations are periodic; what happens when only a lo
perturbation is applied can be seen from the simulation.

What the analytic calculation shows, then, is that the fi
period-doubling bifurcation appears before the cusp singu
ity is reached if the periodicity of the system is equal to t
wavelength of the fastest-growing mode. Whereas the bi
cation to a set of alternatingly receding and advanc
grooves may happen for any wavelength larger than this o
whether it will happen before or after the predictable time
cusp formation depends on the strength of the perturbat
present in the system. In the simulation of Figs. 7–9,
periodicity of the unperturbed system is23 and the wave-
length of the fastest-growing mode is 0.5.

Ordinarily, the time when the finite-time singularity ap
pears in the sharp-interface system will be too short for
losing grooves to have appreciably retracted. In our pha
field model, there are no finite-time singularities, so the e
lution can continue. It is then highly plausible that furth
period doublings occur, even though we have no anal
model for these. But on general grounds, we expect scr
ing of neighboring grooves to become more effective as
grooves get deeper. Hence the process should repeat, ev
wavelengths far from, but above,l f .

The difference between the cases of a wavelength clos
that of the fastest-growing mode and one far above it is
in the former case, thefirst period doubling will happenbe-
fore the timet* , at which cusps form in the sharp-interfac
limit, whereas in the latter case, it will happen afterwar
This case is, in fact, realized in Fig. 4, where the wavelen
of the fastest-growing mode is about one tenth of the p
odicity length. From Fig. 6, we can infer that the trans
tional symmetry with respect to the basic wavelengthl5 2

3

has already been broken by numerical noise~the stress pat-
tern does not show this periodicity in the upper half of t
picture, this symmetry breaking will slowly propagate in
the lower half where everything still appears periodic!.

Another interesting conclusion from formula~42! is that
for a.1, i.e., for systems with small enough waveleng
stable steady states may be possible, because then su
tension may succeed in overwhelming the effects of str
For a.1 andA50, the formula predicts that a cycloid be
comes stationary in its minima before the appearance
cusps. We hope to report on this aspect in the future.

Finally, let us have a look at a system with a rando
initial condition. Figure 11 shows the evolution starting fro
an interface resulting from uniformly random perturbatio
of a planar front. We see that first some ten waves deve
which is already a coarsened structure, as the wave num
of the fastest-growing linear mode would correspond
about 24 waves fitting into the system. However, the ini
amplitude is too small for this wavelength to become clea
visible. Some time later, there are much fewer features
eventually, only two grooves remain.

Whether one of the two will die off in the end is not clea
since this is a simulation with gravity. Hence the large
groove is bound to stop at some time, because the stress
curvature terms remain constant once all other grooves
sufficiently small, but the gravity term continues to increa
If the second-largest groove still has a positive velocity wh
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the first stops, it will not reverse its growth direction, b
only grow to a point where its velocity becomes zero.

An example, where the final state actually consists of t
grooves, is shown in Fig. 12. Here the applied stress
smaller than in Fig. 11, so the pattern does come to a
within the numerical box, after a long time (t'60). Note
that during most of the period where two grooves are do
nant, one of them is ahead. Once it stops, the second
proaches and in the end it has the same length as the firs
numerical accuracy. In the case of two periodically repea
grooves, this is to be expected for symmetry reasons. W
three or more grooves, it is also conceivable that not al
them are the same length in the steady state.

We think that in the absence of gravity, the situation
this strongly nonlinear region is very similar to the evolutio
of a Saffmann–Taylor finger in a Laplacian field. The Lam´
equations determining the displacement field are scale inv
ant just as the Laplace equation@and in fact, Eq.~34! is scale
invariant for l 25`#. Once a strongly nonlinear state ha
been reached, none of the length scales discussed in S
can play a role anymore, since they only govern the lo
behavior of the growth pattern. The long-range elastic fi
will determine the factors tt2snn of the destabilizing term
in Eq. ~34! and this factor will be the larger, the fewer com
petitors of a groove have grown to the same depth. This

FIG. 11. Evolution of a random interface.s053.5
3104 dynes/cm2, e50.05. Periodic boundary conditions, i.e., M
model. 0<t<11.6 andDt50.4.

FIG. 12. Evolution of a random interface with periodic boun
ary conditions. s052.83104 dynes/cm2, e50.035, 0,t
<80.0 andDt50.8. The final interface has only two grooves a
no further substructure. It is symmetric with respect to two symm
try axes at the two central positions between the two grooves.
7-16
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lead to smaller grooves not growing anymore. This situat
bears strong similarities to the growth of thermal cracks
scribed in@32#. The main difference is that there, a loser
the competition will simply stop growing. In our case, it w
even shrink again, for the crystal cannot only melt but a
freeze again, and whether it will do so is simply determin
by the chemical potential difference@Eq. ~1!#.

An analogous behavior is found in the side branching
tivity of a dendrite in the region about 20–50 tip radii behi
the tip@33,34#. There coarsening is observed, too, which a
proceeds via imperfect period doubling. If this dynamics c
be described in terms of a series of nonequilibrium ph
transitions at all, these would have to be considered fi
order transitions because of the discussed locality asp
There is no diverging length scale in a single transition.

We expect that the dynamics of large systems can be
scribed by scaling laws similar to those given previously
the growth of needles in a Laplacian field@35#. The fact that
‘‘needles’’ can shrink again in the elastic problem shou
modify the long-time behavior of the needle density, whi
must pass through a maximum and then go to zero a
function of time, for any needle length.

To some extent, this expectation is supported by
coarsening scenario described in@16# in which extended sys
tems without gravity are studied using random initial con
tions. They measured the Fourier transform of the heig
height correlation functionS(q,t) and observed dynamica
scaling. For early times, they observed a strong simila
between this behavior and early-stage soinodal decomp
tion in long-range systems. For later times, when the lin
theory no longer describes the data, coarsening is evid
The location of the peakqmax of S(q,t) moves to smaller
wave numbers as the peak height increases and shar
The peak height followsS(qmax,t);ta11, where a'2,
while the peak width sharpens with time asw;t2g, where
g'0.5. The former dependence is due to the total interf
length increasing linearly with time for any unstable wa
number. The latter dependence is due to competitive or
ing between different wave numbers, analogous to phase
dering. Within the accuracy of their study, they find that t
structure factor shows scale invariance:S(q,t)/S(qmax,t)
5S* (q* ), where the scaled wave numberq* 5(q
2qmax)/w. Fitting to S* ;(q* )d and S* ;(1/q* )c, for
small and largeq* , respectively, givesd;122 andc;5
26.

It is, however, difficult to assess to which time regim
these results correspond when compared with the pre
simulations, because the freedom to rescale parameters
been used extensively in@16#. Since the vanishing of groove
does not seem to be a dominant mechanism of coarsenin
their simulations, it is likely that the time windows consi
ered in@16# and here have little overlap and that the stage
needle-like growth of the grooves is never reached in@16#.
Of course, the concept of short and long times is ambigu
in the absence of gravity due to the scale invariance of
~34! for l 25`. However, one can compare the depths
grooves with their lateral distances to decide whether gro
is best described as a competition of wave numbers~a Fou-
rier space concept! or as a competition of needles~a real-
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space concept!. In this context, it is also important to realiz
that the validity of the simulations in@16# is restricted to
small values ofm/K with the parameterh0 ~see Appendix B!
being O(1), hence these simulations are quantitative o
for external stressess05O(m). For these stresses, the sta
describable as a forest of needles is only obtained afte
long time@of order (K/m)4#. Therefore the scaling exponen
obtained in@16# might not be relevant to the scenario di
cussed here, which makes an analytic treatment along
lines of @35# even more desirable, because it could prov
these exponents.

In an infinite system what we have depicted here is pr
ably just the continuation of the coarsening scenario
scribed in@16#.

It should also be pointed out that for sufficiently wid
systems, i.e., in particular for infinite ones, this dynam
may be an intermediate state only. Once a groove beco
sufficiently long, stresses along its side may become la
enough to provoke a Grinfeld instability of the ‘‘side walls
of this crack-like structure, as has been shown by Brener
Marchenko@37#. Whether or not this happens, depends
how efficiently the stresses are relaxed along the grooves
the speed of the grooves, on the perturbation amplitude,
This secondary instability might completely change the sc
ing behavior, possibly leading to tip splitting of the groov
and tree-like structures. So far, we have not seen anythin
this kind in our simulations.

In a system of finite lateral extent~or periodicity!, coars-
ening will in the absence of gravity generally lead to t
disappearance of all grooves except one which will grow
constant velocity. If gravity is present, several grooves c
survive and in a sufficiently deep system they will stop on
they reach a depth where the gravity term compensates
stress one.

IV. CONCLUSIONS

In this article, we have constructed a class of phase-fi
models from a free-energy functional including the elas
energy density. A salient feature of the model is that
liquid is treated as a shear-free solid, which is to be c
trasted with phase-field models taking into account hydro
namic effects in solidification, where the solid is usua
treated as a liquid of infinite viscosity@36#. Our approach
implies the artificial introduction of coherence conditions
the interface which is, however, counterbalanced by the
that the only relevant elastic variable in the liquid is¹u. A
whole class of models is obtained instead of a single one
a consequence of the freedom of choice for the state of
erence used in measuring displacements. We compared
two most natural choices and found them to yield sligh
different numerical results despite their asymptotic equi
lence.

Having investigated a large number of laterally small a
extended systems, we are able to describe the generic
namic behavior. For systems smaller than the wavelengt
the fastest-growing mode of linear stability theory but larg
than that of the marginal mode~where surface tension stab
lizes the planar interface!, stable steady-state strucures a
7-17
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possible even in the sharp-interface limit. This is similar
the findings by Spencer and Meiron@22# for the case of
transport via surface diffusion, even though we think t
whole picture is more complex than what they describ
@38#. Here we did not show detailed results on small syste
but focused on extended systems.

The casewithout gravity is particularly simple, as the
equation of motion can then be made parameter-free@Eq.
~34! without the last term#. Initially, an interface may grow
periodically but as soon as perturbations break the perio
ity, coarsening will proceed via approximate period doubli
transitions. Supposing randomized perturbations, the in
face will, after a sufficient lapse of time, not look muc
different from one started with random initial condition
~compare Figs. 9 and 11!. If the system is of finite latera
extent~but infinitely deep!, only a single groove will survive
growing at constant velocity, determined by the final co
stant stress and constant surface tension terms near it
The final velocity will scale with the system widthL and the
radius of curvaturee asvn;L/e. All the other grooves will
eventually retract, i.e., they will not even survive keeping
finite depth, which is different from the behavior of crac
@32#. For wide systems, stresses near the groove tips
become large enough to trigger a secondary instability@37#
which would considerably modify the system behavior a
allow the appearance of complex crack morphologies. It
however, possible that this will arise only in the case of fin
perturbations, as grooves may grow too fast in this situa
for the instability to develop before it is ‘‘advected’’~relative
to the groove tip! into a region of very small stresses alon
the groove. If the system is laterally infinite, its state will fir
follow dynamical scaling as studied in@16# and should then
cross over to the scaling dynamics described here with
number of grooves continually decreasing according t
power law, possibly with logarithmic corrections. Altern
tively, the coarsening scenarios observed in@16# and in this
article might be governed by the same scaling laws, w
their difference being only apparent. The emphasis of@16#
was on the scaling laws governing coarsening, that of
present study is on themechanismof coarsening. Obviously
this situation calls for large-scale simulations in order to
termine the scaling exponents in cases where the mecha
presented here is definitely at work already.

If the mentioned secondary instability@37# becomes im-
portant, the identified state of competing grooves will
only of intermediate nature. Of course, all our considerati
hold only as long as linear elasticity remains valid in t
bulk, nonlinear elastic effects may alter the scenario.

With gravityincluded~which was not considered in@16#!,
there are some modifications. First, it is now possible fo
planar interface to be stable~apart from a vertical transla
tion!. Once the threshold of the instability has been e
ceeded, the behavior will be similar to the case without gr
ity. However, we predict that it is possible for sever
grooves to survive in a finite system and that they will eve
tually stop growing because the stress does not increase
yond a certain magnitude due to the lateral system wid
whereas the gravity term increases as long as a groove
deeper. That several grooves may survive has to do with
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fact that now we have length scales in Eq.~34!. More
simple-mindedly we can immediately see that once the b
gest groove stops, the second-largest will not retract if it s
has a downward velocity at that moment. Once the sec
stops, we can repeat the argument for the third, and so
The final state will consist of a number of grooves, proba
of different lengths and disordered. In laterally infinite sy
tems, it seems likely that a scaling state will prevail, possi
with a modified scaling exponent. Because now both stres
at the tips of the largest grooves and the gravity terms c
tinue to grow, but they will both grow linearly with the
length of the grooves. If initially the stress was large enou
to overcompensate the gravity term, it will presumably s
like that. It is, however, not excluded that starting from sp
cific initial conditions a system can be stabilized by grav
in the end.
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APPENDIX A: DERIVATION
OF THE SHARP-INTERFACE LIMIT

In deriving the sharp-interface limit, we will restrict our
selves to the two-dimensional case as we did in discus
the sharp-interface equations~where we used only two stres
components and only one curvature!. The generalization to
three dimensions is, however, straightforward. We may
Eqs. ~29! and ~32! as outer equations, to be used in the re
gions where the gradient of the phase field is small. F
convenience we setz050.

To obtain theinner equations, we transform to a loca
system of ~orthogonal! curvilinear coordinates comoving
with the interface, with one coordinate axis parallel to¹f;
the corresponding coordinate will be calledr, while the sec-
ond will be conveniently expressed by the arclengths along
the interface@39#. We introduce a stretched variable lettin
r 5 ẽr. It is then easy to see that a distinguished limit of E
~29!, leading to a nontrivial inner equation that allows one
satisfy the boundary conditions, is obtained by settingẽ
5e. In saying this, we have assumed that the stresses
strains behave properly under rescaling, i.e., do not dive
Designating by capital letters the values of the fields in
inner domain~where the gradient of the phase field is larg!,
we then have the inner equations
7-18
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2
v
e

]rF5
g

k̃
H 1

e2
]r

2F1
k

e
]rF1]s

2F2
1

e2 F2g8~F!

1
e

3g
h8~F!S mUi j Ui j 1

l2l̃

2
Uii

2 1DpUii

1DW1DrgzD G J , ~A1!

05
1

e
]rS̃rr1]sS̃rs1k~S̃rr2S̃ss!, ~A2!

05
1

e
]rS̃sr1]sS̃ss1k~S̃rs1S̃sr!, ~A3!

where

S̃ab5h~F!Sab2„12h~F!…Pdab ~A4!

is the generalized stress tensor of the two-phase system
order to obtain Eqs.~A1!–~A3!, we have used

¹5
1

e
n]r1t]s , ~A5!

¹25
1

e2
]r

21
k

e
]r1]s

2 , ~A6!

valid at r50 ~and to leading and following order ine for
rÞ0, too!. Derivatives such as]xux can then be expressed
invariant form asex(ex¹)u, which leads to the following
relations for the strain tensor components in the new coo
nates:

Urr5
1

e
]rUr , ~A7!

Uss5]sUs1kUr , ~A8!

Urs5Usr5
1

2 S ]sUr1
1

e
]rUs2kUsD . ~A9!

The next step consists in solving the outer and inner eq
tions via an asymptotic analysis that leads to a globally va
approximation for small interface thicknesse approaching
the sharp-interface equations ase→01. To this end we ex-
pand both outer and inner fields in powers ofe:

f~x,z,t !5f0~x,z,t !1ef1~x,z,t !1•••, ~A10!

ui j ~x,z,t !5ui j
(0)~x,z,t !1eui j

(1)~x,z,t !1•••, ~A11!

and

f~x,z,t !5F~r,s,t !5F0~r,s,t !1eF1~r,s,t !1•••,
~A12!

ui j ~x,z,t !5Ui j ~r,s,t !5Ui j
(0)~r,s,t !1eUi j

(1)~r,s,t !1•••,
~A13!
03611
In

i-

a-
d

where, due to the transformation properties of tensors,
can think of the subscriptsi , j as running either over the
values (x,z) or (r ,s) and (r,s), respectively. Our basic field
equations are, however, equations not for the strains bu
the displacement fields. Thus the expansion of theUi j (r,s,t)
induces one for the displacement components:

ur5Ur~r,s,t !5Ur
(0)~r,s,t !1eUr

(1)~r,s,t !1•••,
~A14!

us5Us~r,s,t !5Us
(0)~r,s,t !1eUs

(1)~r,s,t !1•••.
~A15!

Now the physical requirement that bothur and us remain
finite in the limit e→01 allows us to conclude from Eqs
~A7! and ~A9! that neitherUr

(0) nor Us
(0) can depend onr,

hence

Ur
(0)5Ur

(0)~s,t !, ~A16!

Us
(0)5Us

(0)~s,t !. ~A17!

Furthermore, we have matching conditions for 1!r
!e21 that can be obtained from the inner and outer exp
sions by equating equal powers ofe ~and taking into accoun
that the variabler is itself e dependent!:

F0~r,s,t !;f0~r ,s,t !ur 560 , r→6`, ~A18!

F1~r,s,t !;@f1~r ,s,t !1r] rf0~r ,s,t !#ur 560 , r→6`,
~A19!

Uab
(0)~r,s,t !;uab

(0)~r ,s,t !ur 560 , r→6`, ~A20!

where we use the; symbol in the sense of asymptot
equality, i.e., f (x);g(x), x→x0 is equivalent to
limx→x0

f (x)/g(x)51, and for two series inx2x0 we re-
quire this relation for each corresponding pair of terms.

The relations induced by Eq.~A20! for the displacements
are more complicated. We just give two examples. Beca
each derivative with respect tor comes with a factor 1/e
when transformed into a derivative with respect tor, we
haveUrr

(0)5]rUr
(1) and hence

lim
r→6`

]rUr
(1)~r,s,t !5] rur

(0)~r ,s,t !ur 560 . ~A21!

Our second example is even more instructive. We write

lim
r→6`

Uss
(0)~r,s,t !5 lim

r→6`

@]sUs
(0)~s,t !1kUr

(0)~s,t !#

5]sUs
(0)~s,t !1kUr

(0)~s,t !

5@]sus
(0)~r ,s,t !1kur

(0)~r ,s,t !#ur 560 ,

~A22!

which shows that the linear combinationus
(0)1kur

(0) must be
continuous across the interface.

Finally, we need the expansions of all functions off in
powers ofe, e.g.:
7-19
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h~f!5h~f0!1eh8~f0!f1

1e2S h8~f0!f21
1

2
h9~f0!f1

2D1•••, ~A23!

and we will use the obvious abbreviationsh0 , h08 , etc., for
functions off0. Let us note a few useful relations in pas
ing:

h8~f!56f~12f!, ~A24!

g~f!5f2~12f!25S 1

6
h8~f! D 2

, ~A25!

g8~f!52f~12f!~122f!5
1

18
h8~f!h9~f!,

~A26!

We have now collected all the prerequisites to perfo
the asymptotic analysis providing the sharp-interface lim

First, we note that the outer solution to lowest order@or-
der e22 of Eq. ~29!# is simply given byg8(f0)50, which
yields the solutionsf050, f051, and f05 1

2 @see Eq.
~A26!#. The last of these is unstable and also not compat
with the boundary conditions in typical numerical setups. W
assumef050 for r .0, corresponding to the liquid phas
andf051 for r ,0, corresponding to the solid phase. Equ
tion ~A24! tells us thath8(f0)50, and hence these solution
are valid at all orders ofe. Usingh(f0)50 in the liquid and
h(f0)51 in the solid, we immediately see that Eq.~32!
turns into the mechanical equilibrium condition for the liqu
and solid, respectively:

] i p50 ~ liquid!, ~A27!

] js i j 50 ~solid!. ~A28!

This is again true at all orders ofe, and we can write the
zeroth-order piece of the result in the form:

p(0)5p0l2l̃ukk
(0)5p05const, ~A29!

s i j
(0)52p0sd i j 12mui j

(0)1lukk
(0)d i j . ~A30!

Later, we will look at two reference states in particular. O
is the ‘‘natural’’ choicep0s5p0l , i.e., the unstrained state
hydrostatic and corresponds to the same pressure in the
uid and in the solid. If moreover, this pressure is chos
equal to the equilibrium pressurep0, then we haveukk

(0)[0
in the liquid at equilibrium. The second choice correspon
to assuming a finite differenceDp5p0l2p0s while keeping
p0l5p0. This means that zero strain corresponds to a p
stressed solid, with a stress tensors i j 52p0d i j 1Dpd i j , i.e.,
the deviation from equilibrium is the isotropic tensorDpd i j .
Both approaches can be exploited numerically.

We now consider the inner solution. The lowest order
Eq. ~A1! gives

]r
2F022g8~F0!50. ~A31!
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This equation can be solved by standard methods. Multip
ing by ]rF0, we immediately obtain a first integral, writte
down here for further reference,

]rF0522F0~12F0!52 1
3 h08 , ~A32!

which is solved byF05 1
2 (12tanhr), and this solution sat-

isfies the matching conditions~A18!.
From the strain equations~A2! and ~A3! we obtain to

lowest order

]rS̃rr
(0)50, ~A33!

]rS̃sr
(0)50, ~A34!

which on integration fromr52` to r5` together with the
matching conditions~A20! yields

s rr
(0)ur 5025S̃rr

(0)~2`!5S̃rr
(0)~`!52P52p0 ,

~A35!

ssr
(0)ur 5025S̃sr

(0)~2`!5S̃sr
(0)~`!50. ~A36!

The limiting values ofS̃rr
(0) and S̃sr

(0) can be gathered from
Eq. ~A4!. Obviously, these two equations constitute the co
dition of mechanical equilibrium at the interface, ass rr

(0) and
ssr

(0) are the normal and shear components of the stress te
of the outer solution there.

However, the strain equations provide more informati
than just mechanical equilibrium on the outer scale. W
write Eq. ~A33! explicitly in terms of the strains and inte
grate indefinitely with respect tor, which yields

h0@~2m1l2l̃ !Urr
(0)1~l2l̃ !Uss

(0)1Dp#

1l̃~Urr
(0)1Uss

(0)!5 f ~s,t !, ~A37!

where f (s,t) is a function of integration, to be determine
from the matching conditions. This is straightforward a
yields f (s,t)5p0l2p0. Moreover, we know that the only
spatial dependence ofUss

(0) is that ons @see Eqs.~A22! and
~A17!#, which suggests to solve forUrr

(0) in terms ofUss
(0) .

The result is

Urr
(0)5

21

~2m1l2l̃ !h01l̃
$Dph01p02p0l

1@ l̃1~l2l̃ !h0#Uss
(0)%. ~A38!

The advantage of this equation is that it provides us with
full r dependence ofUrr

(0) , allowing the explicit evaluation
of integrals onr containing the strains. An analogous proc
dure for the second strain equation determinesUsr

(0) to be
equal to zero.

Now we proceed to the next-order equation forF. Writ-
ten out explicitly, it reads
7-20
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2v]rF05
g

k̃
H ]r

2F11k]rF022g09F12
h08

3g

3S m@Urr
(0)21Uss

(0)2#1
l2l̃

2
~Urr

(0)1Uss
(0)!2

1Dp~Urr
(0)1Uss

(0)!1DW1Drgz~s! D J ,

~A39!

where we have usedUsr
(0)50. With the help of Eqs.~A24!

and ~A32!, we can arrange this as

LF15
h08

3g H k̃v1gk1m@Urr
(0)21Uss

(0)2#

1
l2l̃

2
~Urr

(0)1Uss
(0)!21Dp~Urr

(0)1Uss
(0)!

1DW1Drgz~s!J , ~A40!

with L[]r
222g09 being a self-adjoint linear operator. Th

solvability condition for this inhomogeneous linear equati
is that the right-hand side be orthogonal to the left-sided n
eigenspace ofL. Since L is Hermitean, we know that the
translational mode]rF0 is an appropriate eigenvector:

]rF0L5L]rF050. ~A41!

Multiplying Eq. ~A40! by 3g]rF0 from the left and integrat-
ing on r, we find

05E
2`

`

drH k̃v1gk1m@Urr
(0)21Uss

(0)2#

1
l2l̃

2
~Urr

(0)1Uss
(0)!21Dp~Urr

(0)1Uss
(0)!

1DW1Drgz~s!J h08]rF0 . ~A42!

Now we can exploit Eq.~A38!, telling us that ther de-
pendence of the braces in Eq.~A42! is fully contained in
their dependence onh0. All the integrals can be done ana
lytically, using

I[2E
2`

`

dr f ~h0!h08]rF0

52E
1

0

dF0f „h~F0!…h8~F0!

5E
0

1

dh f~h!. ~A43!

Integrals that appear in Eq.~A42! are
03611
ll

I 152E
2`

`

drh08]rF051, ~A44!

I 252E
2`

`

drUrr
(0)h08]rF0 , ~A45!

I 352E
2`

`

drUrr
(0)2h08]rF0 . ~A46!

The evaluation of the latter two integrals is as straightf
ward as that of the first, although a little more tedious. W
just give the final result for the solvability condition, takin
p0l5p0 for simplicity:

2 k̃v5gk1Drgz1
m

2~m1l!~2m1l!
@2~m1l!Uss

(0)

1Dp#22
2m1l

8m~m1l!
s00

2 , ~A47!

At this point we may specify our choice of reference sta
for the solid. First, let us assume that the unstrained s
corresponds to a state of equal hydrodynamic pressure in
two phases, i.e.,p0s5p0l , or Dp50. This is the KM choice.
Then taking the limitr→2` of Eq. ~A38! we get (Uss

(0)

5uss
(0))

urr
(0)5

2luss
(0)

2m1l
, ~A48!

implying sss
(0)2s rr

(0)52m(uss
(0)2urr

(0))54m(m1l)uss
(0)/(2m

1l), from which we obtain

uss
(0)5

2m1l

4m~m1l!
~s tt

(0)2snn
(0)!, ~A49!

where we have now switched to the conventional notat
for the principal components of the stress tensor in the n
mal and tangential directions (s rr 5snn , sss5s tt). Finally,
expressing the Lame´ constants by Young’s modulus and th
Poisson ratio, we arrive at

v52
1

k̃
H 12n2

2E
@~s tt

(0)2snn
(0)!22s00

2 #1gk1DrgzJ ,

~A50!

which is the desired sharp-interface limit.@In Eqs. ~1! and
~2!, s0050.#

A remark is in order here. The phase-field equations
ply the continuity ofuss

(0) across the interface. As this quan
tity is obviously nonzero whenever the solid is strained, t
means that we will not haveuss

(0)50 in the liquid. However,
we will still have uss

(0)1urr
(0)50, i.e., the divergence of the

displacement vector vanishes in the liquid. But this is all th
matters, because it is only this quantity that enters the
scription of the liquid.

The reason foruss
(0)5” 0 in the liquid is that the phase-fiel

description imposescoherenceof the strain across the inter
7-21
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face, which ultimately goes back to our viewing the liquid
a ~shear-free, but nonetheless! solid. For a true liquid in con-
tact with a solid there is no such coherence condition as
free to slip on the solid surface. Therefore it could alwa
keep its strain tensor isotropic~if such a notion made much
sense at all for a liquid!. The reason why we can neverthele
model the liquid as a solid is the additional degree of fre
dom that arises in the description of a liquid by having tw
fields ux anduz at our disposal even though only their com
bination¹u enters the free-energy expression. Therefore
can compensate, so to speak, for imposing~nonphysical! co-
herence by allowing~equally nonphysical! anisotropic strain
in the liquid.

At this point we may also note that if we were to mod
the elastic properties of two real solids by the current pha
field approach, we would necessarily impose coherenc
the interface. The treatment of noncoherent solid–solid in
faces via phase fields would require some rethinking of
method.

Concerning computational purposes, one disadvantag
the chosen reference state is that it is not very well-suited
the use of periodic boundary conditions, meaning perio
cally varying stresses and strains. The field equations are
up in terms of the displacements which acquire linearly
creasing or decreasing components in directions where
strain has a nonzero average. This observation motivate
consideration of a different reference state in the solid,
which the average strain due to the external stress is
tracted. This is the MG choice~see Appendix B!. If we im-
pose a constant stresss0 in the x direction, the stress tenso
in the solid is s i j 52p0d i j 1s0d i1d1 j and requiringuxx
50, we find that this is achieved by setting

Dp5
2m1l

2m
s0 . ~A51!

The corresponding homogeneous strain tensor is given
uxx50, uxz50, anduzz52Dp/(2m1l). We then obtain
taking the limitr→2` of Eq. ~A38!

urr
(0)5

2Dp2luss
(0)

2m1l
. ~A52!

This can be used to express

sss
(0)2s rr

(0)52m~uss
(0)2urr

(0)!

5
2m

2m1l
@2~m1l!uss

(0)1Dp#, ~A53!

wherefrom we obtain 2(m1l)uss
(0)1Dp5(2m1l)(s tt

(0)

2snn
(0))/2m, which on insertion in Eq.~A47! leads back to

Eq. ~A50!.
Note that even here we cannot requireuss

(0)5urr
(0)50 in

the liquid, which would implyuss
(0)50 at the interface and

thus, according to Eq.~A38!, urr
(0)52Dp/„2(m1l)…, i.e.,

urr
(0) would be constant along the interface. Then alsos tt

(0)

2snn
(0) would have to be constant, which would lead to

dynamics entirely different from that of the Grinfeld inst
03611
is
s

-

e

l
e-
at
r-
e

of
r

i-
set
-
he
the
n
b-

by

bility @where (s tt
(0)2snn

(0))2 increases in the grooves and d
minishes on the peaks#. Hence once again we are obliged
make use of the additional degree of freedom of the fie
inside the liquid, even though now we can imposeuxx

(0)

5uzz
(0)50 in the liquid as an initial condition~and as a far-

field boundary condition!, because this satisfies the periodi
ity requirement.

APPENDIX B: MAPPING OF THE MU¨ LLER –GRANT
MODEL TO THE PRESENT FORMULATION

The main difference between the form of the MG mod
given in @16# and the one given here is a different choice
the functionsg(f) andh(f). To make this conspicuous, w
will rename their original functions tog̃(f) andh̃(f) @since
the second function was calledg(f) in @16#, our renaming is
also useful to avoid unnecessary confusion here#. We shall
leave the gravity and shift termsf grav and f c out of the con-
sideration, since they were not used by MG.

Their double well potential is defined as

f dw~f!5
1

a
g̃~f!, ~B1!

with g̃(f)5f2(12f2)2, which is a sixth-order polynomia
and actually has a third minimum atf521. The latter does
not, however, play any role in the dynamics, provided
negativef values are given in the initial condition.a is a
constant to be identified via the sharp-interface limit.

Second, there is an elastic contribution to the free ene
which they give as

f el~f,$ui j %!5
1

2
K~¹•u!21m̃(

i j
S ui j 2

d i j

d
¹•uD 2

,

~B2!

whereK is the bulk modulus andm̃ the shear modulus which
is f dependent:

m̃5m1h̃~f!. ~B3!

The convenient choice

h̃~f!5 1
2 f22 1

4 f4, ~B4!

guarantees that both bulk phases keep their equilibrium
ues atf50 ~liquid! andf51 ~solid!. This is due to the fact
that h̃8(0)5h̃8(1)50, a propertyh̃(f) shares withh(f)
from the KM model~see Sec. II C!. Obviously, the true shea
modulus of thesolid is m5m1h̃(1)5m1/4.

For simplicity and since it does not change the behav
qualitatively, the bulk modulus is assumed to be the sam
both phases. However, this restriction can be easily drop
by replacingK with K5K01K1h̃(f).

As reference state they chose a prestressed state o
solid with sxx5s0, in which the strainsuxx anduxz for a flat
surface vanish. This entails that the state in which all stra
vanish is a hydrostatic state with a different stress value.
7-22
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described by MG using a parameterh0 and@as may be veri-
fied easily from Eq.~B8! below# in this state we havesxx

5szz5h0h̃(1)5h0/4. As a result, there is a relation be
tween the new parameterh0 and the external stresss0 in the
uniaxially stressed reference state

h05
8~K1m1/4!

m1
s0 . ~B5!

The free energy density is then given as the sum
f dw(f) and f el(f,$ui j %) and two additional terms
(h0

2/2K)h̃(f)2 andh0h̃(f)¹•u. The first of these terms de
scribes an energy shift, the second an additional coup
between the phase field and the elastic field~beyond that
already implied by thef dependence of the shear modul
and, possibly, the bulk modulus!. A nice feature of the ap-
proach given in the present paper is that these terms
automatically generatedby accounting for the fact that th
equilibrium state does not have vanishing strain when
MG reference state is used: these are the terms conta
p02p0s in Eq. ~16! and the corresponding termsDpuii and
DW in Eq. ~29!.

The free energy density is then given by:

f ~f,ui j !5
1

a
g̃~f!1

h0
2

2K
h̃~f!21h0h̃~f!¹•u

1
1

2
K~¹•u!21m̃(

i j
S ui j 2

d i j

d
¹•uD 2

.

~B6!

The first term is the double well potential. The second a
third terms are due to the particular choice of referen
frame, andh0 is related to the externally applied stress
described by Eq.~B5!. Applying the same line of reasonin
as in Sec. II C, they obtain a system of coupled partial d
ferential equations:

]f

]t
52G̃F1

a
g̃8~f!2 l 2¹2f1

h0
2

K
h̃~f!h̃8~f!

1h0h̃8~f!¹•u1m1h̃8~f!(
i j

S ui j 2
d i j

d
¹•uD 2G

~B7!

and

]s i j

]xj
5

]

]xi
@h0h̃~f!1K¹•u#12m1

]

]xj
F h̃~f!

3S ui j 2
d i j

d
¹•uD G

50. ~B8!

They show in @40# that the phase field equations of th
model also converge to the sharp interface equations.
expanding the solution of the mechanical equilibrium con
03611
f
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re

e
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d
e
s

-

y
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tion to first order in the shear modulus they were able
integrate out the elastic fields, so that they were left with
equation forf only. That allowed them to use a pseudospe
tral method with which they could study wide periodic sy
tems and three-dimensional systems@16#.

Whether this expansion is entirely consistent is an op
question, since they considerh0 an independent paramete
that is O(1), whereas for fixeds0 we actually haveh0

5O(1/m1), and m1 is the small quantity in the expansion
Probably this does not really matter in the absence of gra
where the precise value ofh0 is immaterial as it only sets the
time scale. The problem may be more awkward in the pr
ence of gravity.

Equations~B7! and ~B8! are in a form that allows direc
comparison with Eqs.~29! and ~32!, respectively. First note
that in two dimensionsK5l1m5l1m1/4 and that we
must setl̃5K to have the same elastic constants in the t
sets of equations. In two dimensions, we have@ui j

2(d i j /d)¹•u#25ui j ui j 2
1
2 uii

2 ~summations overi and j are

implied! and because ofl2l̃52m, we obtain

mui j ui j 1
l2l̃

2
uii

2 5
1

4
m1S ui j 2

d i j

d
¹•uD 2

, ~B9!

which shows that on replacingh̃(f) with 1
4 h(f) the term of

Eq. ~B7! that is quadratic in the strains becomes equal to
corresponding term of Eq.~29!. Common prefactors will be
discussed below. We then see immediately that the ch
Dp5h0/4 will make the linear terms equal. This choice
the right one as is revealed by a quick comparison of
~B5! with Eq. ~A51!, derived in Appendix A. Next we have
to compare the constant terms which areh0

2/K and DW.
Here we notice that in@16#, it was assumed thatp0l5p0
50. If we furthermore sets0050, then we infer from Eq.
~31! that DW5Dp2/2K5h0

2/32K. Now the f-dependent

factor of h0
2/K in Eq. ~B7! is h̃(f)h̃8(f)5 1

2 ]@ h̃(f)2#/]f.
We have checked by directly performing the sharp-interfa
limit of the original MG model, that this limit does no
change whenh̃(f)2 is replaced with1

4 h̃(f) ~the solid and
liquid phase limits are obviously unchanged!. Doing this re-
placement first and then substituting1

4 h(f) for h̃(f), we get
identity of the constant terms, too.

Finally, the prefactors should be discussed. In order
make the prefactor of the elastic expressions the same in
equations, we must setG̃51/(3k̃e), which shows thatl 2

53ge. To determine the factor 1/a of the double well po-
tential in Eq. ~B7!, one must actually perform the sharp
interface limit@because the potential is not the same as in
~29!#, which yieldsa53e/8g. With these choices, Eqs.~B7!
and ~29! are asymptotically equivalent.

The comparison of the equations describing mechan
equilibrium is even more straightforward. Inserting the e
pressions ~27! and ~28! with p0l50 and p0s52Dp

52h0/4 into Eq.~32! and usingl̃5K, we get
7-23
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05
]

]xj
H h~f!Fh0

4
d i j 1Kukkd i j 12mS ui j 2

1

2
ukkd i j D G

1@12h~f!#Kukkd i j J
5

]

]xi
Fh0

4
h~f!1KukkG12m

]

]xj
Fh~f!S ui j 2

1

2
ukkd i j D G ,

~B10!

which is obviously identical to Eq.~B8!, once we replace
h(f)/4 by h̃(f).

APPENDIX C: ANALYTIC SOLUTION OF THE ELASTIC
PROBLEM FOR THE DOUBLE CYCLOID

In this appendix~only!, we switch back from our notation
for geometric relations in the plane which was based o
coordinate system spanned by thex andz axes~thus remind-
ing ourselves that in reality we have a three-dimensional s
tem and we suppress deformations in they direction! to the
more conventional use ofx andy for the planar coordinates
This way we ‘‘liberate’’ the symbolz for use as a complex
variable:z5x1 iy .

We wish to solve the elastic problem in a half-infini
geometry, the top of which is bounded by the double cycl
given by Eq.~41! with z replaced byy. In the complex plane
this curve is described by

z5x1 iy5j2 iAe2 ikj2 iBe22ikj ~C1!

and because the parameterj is real, this equation also define
a conformal mapping from thez plane to thez plane, where
z5j1 ih, mapping the curvez(x) to thej axis.

To rephrase the elastic problem in the complex plane,
use the Goursat function formalism. Its basic statements
be easily inferred from the representation of two-dimensio
elasticity in terms of a single scalar function, the Airy fun
tion x(x,y). Setting sxx5]y

2x, syy5]x
2x, and sxy

52]x]yx, the mechanical equilibrium equations] js i j 50
are automatically satisfied. Hooke’s law for isotropic bod
then implies thatx obeys the biharmonic equation:

¹4x50. ~C2!

In terms of the complex variablesz and z̄5x2 iy , the La-
placian becomes¹254] z̄]z @because]x5]z1] z̄ , ]y5 i (]z
2] z̄)#, hence the most general form of the solution to E
~C2! is given by

x~x,y![x̃~z,z̄!5 z̄f 1~z!1g1~z!1z f2~ z̄!1g2~ z̄!,
~C3!

where f j , gj ( j 51,2) are analytic functions of their argu
ments. Since we are looking for real solutions, we can
strict ourselves to two independent complex functions
stead of four, i.e., we can write
03611
a

s-

d

e
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s
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-
-

x̃~z,z̄!5
1

2 H z̄f~z!1E c~z!dz1zf~z!1E c~z!dz̄J ,

~C4!

where an overbar denotes complex conjugation. In this
mula,f andc are the Goursat functions.

From Eq.~C4! we obtain by direct differentiation

sxx1syy5¹2x̃52@f8~z!1f8~z!#, ~C5!

syy2sxx12isxy52@ z̄f9~z!1c8~z!#. ~C6!

The displacements can also be expressed by the Go
functions@using Hooke’s law and Eqs.~C5! and ~C6!#, but
since we do not need the corresponding relation, we om
here.

We have boundary conditions for the stresses on the cu
given by Eq.~C1!, which one could attempt to use directly i
Eqs.~C5! and~C6! to obtain equations for the Goursat fun
tions. However, since we are going to employ conform
mapping, it is useful to keep the order of derivatives sm
the analytic evaluation of higher-order derivatives can
quite cumbersome. Thus it is desirable to reformulate
boundary conditions in partially integrated form. The for
( f x , f y) on the boundary can be condensed into a single c
plex number

f x1 i f y5sx jnj1 isy jnj

5~sxx1 isxy!nx1~syy2 isxy!iny , ~C7!

where (nx ,ny) is the normal vector to the boundary. Intro
ducing the arclengths, we have~directings such thats→`
corresponds tox→`)

nx1 iny52
dy

ds
1 i

dx

ds
5 i

dz

ds
~C8!

and thus

f x1 i f y5
1

2
~sxx1syy!i

dz

ds
1

1

2
~syy2sxx22isxy!i

dz̄

ds

5@f8~z!1f8~z!# i
dz

ds
1@zf9~z!1c8~z!# i

dz̄

ds

5 i
d

ds
$f~z!1zf8~z!1c~z!%. ~C9!

Integrating this local relation along the boundary, we obt

2 i f [2 i E ~ f x1 i f y!ds5f~z!1zf8~z!1c~z!,

~C10!

which allows one to apply the boundary condition in expre
sions involving first-order derivatives only.

We subtract the stress at infinity from our~linear! elastic
equations to be able to work with analytic functions that a
bounded at infinity. Hence we set
7-24
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s i j 5s i j
(0)1s0d ixd jx ~C11!

and replaces i j with s i j
(0) in Eqs.~C5! and~C6! above. Tak-

ing the equilibrium pressure in the liquid equal to ze
~which we can do without loss of generality!, the boundary
conditions at the liquid–solid interface (s i j nj50) become

s i j
(0)nj52s0d ixnx , ~C12!

translating into

f x1 i f y5s0

dy

ds
⇒2 i f 5

1

2
~ z̄2z!s0 , ~C13!

where we have dropped an arbitrary constant of integrat
Before embarking on the actual calculation, we ought

ponder one more point. We would like to solve a proble
with periodic boundary conditions for strains and stresse
the x direction. But periodicity of the strains does not imp
periodicity of the displacements nor does it imply periodic
of the Goursat functions. On the other hand, the use of p
odic functions greatly facilitates the derivation. As noted
Spencer and Meiron@22#, we can express the Goursat fun
tions by periodic functionsf0 andc0 via

f~z!5f0~z!,
~C14!

c~z!5c0~z!2zf08~z!.

The mathematical problem is then to find two period
functionsf0 andc0, analytic in the domain occupied by th
solid, satisfying

f0~z!1~z2 z̄!f08~z!1c0~z!52 1
2 ~z2 z̄!s0 ~C15!

at the interface and remaining bounded fory→2`. The
solution to this problem must be unique apart from poss
additive constants to the functionsf0(z) andc0(z).

We transform to thez plane, using the analytic continua
tion of Eq. ~C1!

z5z2 iAe2 ikz2 iBe22ikz[v~z!. ~C16!

This maps the interface to the real axis and the solid to
half planeh,0. To designate functions in thez plane, we
put a tilde on the letter they have in thez plane:

f0~z!5f0„v~z!…[f̃0~z!,
~C17!

c0~z!5c̃0~z!.

The derivative off0 transforms as follows:

f08~z!5f̃08~z!
dz

dz
5

f̃08~z!

v8~z!
. ~C18!

Our task therefore is to construct two analytic functio
satisfying
03611
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f̃0~j!1@v~j!2v̄~j!#
f̃̄08~j!

v̄8~j!

1 c̄̃0~j!52
s0

2
@v~j!2v̄~j!# ~C19!

on the real axis (h50) and remaining bounded ash
→2`. v(j) is given by Eq.~C16!, hence

v8~j!512Ake2 ikj22Bke22ikj ~C20!

and Eq.~C19! becomes (A andB are real!

f̃0~j!2 i ~Ae2 ikj1Be22ikj1Aeikj

1Be2ikj!
f̃08̄~j!

12Akeikj22Bke2ikj
1 c̄̃0~j!

5 i
s0

2
~Ae2 ikj1Be22ikj1Aeikj1Be2ikj!. ~C21!

Note thatf̃̄08(j) and c̄̃0(j) are functions that should be ana
lytically continued to the upper half plane, for

f̃̄08( z̄) @ c̄̃0( z̄)# is analytic in the upper half plane

f̃08(z) @c̃0(z)# is analytic in the lower half plane which i
what we need. The basic idea in constructing the solutio
to divide the terms in Eq.~C21! into two groups, one of
which corresponds to functions analytic in the upper h
plane, the other to those analytic in the lower half plane. T
equality between these two groups implies that each of th
is equal to a constant, which gives us two equations for
two functions sought. It is clear thatf̃0(j) belongs to the
terms of Eq.~C21! that are analytic in the lower half plan

~on replacement ofj by z) whereasc̄̃0(j) has to be analytic
in the upper half plane. The difficult term is the middle o
on the left hand side as it contains some expressions tha
analytic and bounded in the upper half plane~e.g.,eikj) but
also some for which this is the case in the lower half pla
~e.g.,e2 ikj). One way to proceed is to expand bothf̃0 and
c̃0 in a series in powers ofe2 ikj ~a one-sided Fourier series
so to speak!, to multiply Eq.~C21! by the denominator of the
middle expression, and to separate terms with plus signs
minus signs in the exponents. This gives a two-termed re
sion for f̃0 containing two constants that have to be det
mined from the analyticity properties. As it turns out, th
series forf̃0 is finite, only the two first terms are nonzer
This suggests that a close look at Eq.~C21! would have
revealed this property, allowing one to avoid the tedious
pansion procedure. Indeed, there is a more elegant way l
ing to this result. Its discovery is left as an exercise to
astute reader. Here, we simply take

f̃0~j!5a1e2 ikj1a2e22ikj ~C22!

as an ansatz. Inserting this into Eq.~C21!, we get
7-25
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a1e2 ikj1a2e22ikj1~Ae2 ikj1Be22ikj

1Aeikj1Be2ikj!
ā1keikj12ā2ke2ikj

12Akeikj22Bke2ikj

2 i
s0

2
~Ae2 ikj1Be22ikj1Aeikj1Be2ikj!

52 c̄̃0~j!. ~C23!

Since we have justc̃0(j) on the right-hand side, which mus
be analytically continued to the upper half plane and rem
bounded there, the left-hand side must not contain, after
stitution of z for j, any ‘‘dangerous’’ terms diverging ash
→`. Dangerous terms would obviously be the termse2 ikz

ande22ikz as well as the zeros of the denominator. Now,
have the conditionAk12Bk,1 and we haveueikzu<1 for
h>0. Therefore the denominator is always different fro
zero in the upper half plane. All we have to do then is
choosea1 anda2 such that the dangerous terms cancel. T
is straightforward fora2, since there are only two terms con
taining e22ikz, after the prefactor of the second term h
been multiplied with the numerator. There remains a te
proportional to e2 ikz, however, in the numerator, whic
must also be canceled by the choice ofa1. The result is

a15
s0

2
i

A

12Bk
,

~C24!

a25
s0

2
iB.

From this, we immediately getf̃0 as

f̃0~z!5
s0

2
i H A

12Bk
e2 ikz1Be22ikzJ . ~C25!
03611
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Oncef̃0 is known, c̃0 is obtained from Eq.~C23! using
Eq. ~C24!. Since it is not needed in the following, we om
the result. In the caseA50 or B50, results for the double
cycloid reduce to those of Gaoet al. @23# for the simple
cycloid ~after transforming back to the nonperiodic Gours
functions!.

To compute the tangential stresses on the boundary,
need onlyf̃0. Since we know the normal stresses to be eq
to zero from the boundary condition, we can writes tt

5tr s5sxx
(0)1syy

(0)1s0. We have

sxx
(0)1syy

(0)52F f̃08~z!

v8~z!
1

f̃̄08~z!

v̄8~z!
G , ~C26!

which, when specialized to the boundary, gives us

s tt5
s0

2
H 11

11Bk

12Bk
Ake2 ikj12Bke22ikj

12Ake2 ikj22Bke22ikj
1c.c.J .

~C27!

In the grooves of the pattern, we havekj5mp hence
e2 ikj5(21)m, e22ikj51, from which we obtain the tan
gential stress as

s tt5s0

11
11Bk

12Bk
Ak~21!m12Bk

12Ak~21!m22Bk
. ~C28!

To obtain the normal velocity in the grooves, we need
curvature there. The curvature is easily calculated from
parametric representation of the double cycloid
we
k52
x8~j!y9~j!2y8~j!x9~j!

@x8~j!21y8~j!2#3/2

5
k3@A218B216AB coskj#2k2@A coskj14B cos 2kj#

~A2k214B2k214ABk2 coskj1122Ak coskj24Bk cos 2kj!3/2
~C29!

and its value in the bottom of the grooves is (coskj561)

k52
k2@A~21!m14B#

@12Ak~21!m22Bk#2
. ~C30!

Note that as a cusp is approached (Ak12Bk→1), s tt
2 and the curvature diverge with the same denominator, for evenm.

Inserting Eqs.~C28! and ~C30! into Eq. ~34! for the nondimensional normal velocity and neglecting the gravity term
obtain

ṽn52
1

2@12Ak~21!m22Bk#2 H S 112Bk1
11Bk

12Bk
Ak~21!mD 2

22l 1k2@A~21!m14B#J , ~C31!
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where we have nondimensionalized the curvature via multiplication byl 1. Settinga52l 1k, we generate Eq.~42!. Note that
if we consider the amplitudeA to be a small perturbation of a cycloid determined byB, the basic wave number is 2k, not k.
Thena is just the ratio of the basic wave number and the wave number of the fastest-growing mode.
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