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Phase-field modeling of stress-induced instabilities
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A phase-field approach describing the dynamics of a strained solid in contact with its melt is developed.
Using a formulation that is independent of the state of reference chosen for the displacement field, we write
down the elastic energy in an unambiguous fashion, thus obtaining an entire class of models. According to the
choice of reference state, the particular model emerging from this class will become equivalent to one of the
two independently constructed models on which brief accounts have been given r¢deMifler and M.

Grant, Phys. Rev. Let82, 1736(1999; K. Kassner and C. Misbah, Europhys. Léit6, 217(1999]. We show

that our phase-field approach recovers the sharp-interface limit corresponding to the continuum model equa-
tions describing the Asaro—Tiller—Grinfeld instability. Moreover, we use our model to derive hitherto un-
known sharp-interface equations for a situation including a field of body forces. The numerical utility of the
phase-field approach is demonstrated by reproducing some known results and by comparison with a sharp-
interface simulation. We then proceed to investigate the dynamics of extended systems within the phase-field
model which contains an inherent lower length cutoff, thus avoiding cusp singularities. It is found that a
periodic array of grooves generically evolves into a superstructure which arises from a series of imperfect
period doublings. For wave numbers close to the fastest-growing mode of the linear instability, the first period
doubling can be obtained analytically. Both the dynamics of an initially periodic array and a random initial
structure can be described as a coarsening process with winning grooves temporarily accelerating whereas
losing ones decelerate and even reverse their direction of motion. In the absence of gravity, the end state of a
laterally finite system is a single groove growing at constant velocity, as long as no secondary instabilities arise
(that we have not been able to see with our golléith gravity, several grooves are possible, all of which are
bound to stop eventually. A laterally infinite system approaches a scaling state in the absence of gravity and
probably with gravity, too.
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. INTRODUCTION scale of aum. Nevertheless, it is here where phase-field
modeling has become most useful in numerical treatments.
Already when introducing the notion of a surface quantity Before phase-field models became popular, it seemed
Gibbs implicitly entertained the idea of a phase figldany  quite natural to treat the surface as a geometric location on
density of an extensive quantifg.g., the mass densjtype-  which boundary conditions are imposéglg., for a moving
tween two coexisting phases changes gradually swiftly) ~ front the normal velocity is proportional to the jump in the
from its value in one phase to its value in the other. Thegradient of the temperature or concentration fielthis is
existence of a transition zone, though microscopically ofthe so-called sharp interface approach, adopted both in ana-
atomic exten{far enough from a second-order phase transidytical and numerical studies in a variety of contexts of front
tion), underlies the very Gibbs definition of surface quanti-problems.
ties. In phase transition phenomena, either of first or second There has been an upsurge of interest in the phase-field
order, this notion has been adopted in Landau’s spirit. Beapproach to free-boundary problems more recently, though
cause energy is an extensive quantity, too, there is an exttae method was actually introduced pretty eddyas a com-
energetic cost associated with the transition region, charagutational tool to model solidification. Various studies
terized in the appropriate thermodynamical potential density5—-10] have demonstrated the virtues of this method in
by a term of the forme* (V ¢)?, €* being the stiffness of the moving-boundary problems.
transition region. Regarding how to use phase-field models, there are two
The notion of a phase field has appeared abundantly in thdistinctly different philosophies. These may be best dis-
literature in the context of phase transition phenonidr. cussed considering dendritic growth, where a set of well-
The transition width diverges for a second-order phase trarestablished continuum equations exists, describing phenom-
sition at the critical point, and thus it is essential to introduceena in terms of a sharp interface. On the basis of this
the transition region. For a first-order transition, such as &nowledge, a phase-field model can be justified by simply
liquid—solid interface, conferring an importance to the inter-showing that it is asymptotic to the correct sharp-interface
face thickness may seem quite anecdotic if one is interestedescription, i.e., that the latter arises as the sharp-interface
in properties which occur on a scale larger than the atomidimit of the phase-field model when the interface width is
one; typical examples are dendritic patterns occuring at théaken to zero. This is definitely a sufficient condition for the
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phase-field model to yield a correct description of the contracking permanently the priori unknown interface position
tinuum limit, providing the interface thickness is taken smallin the sharp-interface limit, and imposing nontrivial bound-
enough. Small enough sometimes may mean impracticallgry conditions for the discontinuity of the fields, the interface
small. The second approach to phase-field modeling is tt the phase-field approach is nothing but the location of a
guess or derive an appropriate form for the free energy of theapid variation of the field¢$, while the two phases are
two-phase system, including the energy cost of the transitiotreated as the same entity. Thus there is no boundary condi-
region and to regard this as a physical model in its own righttion to be imposed in the transition region, a fact which
In this case, one might actually forgo considering the limit ofgreatly facilitates both the numerical implementation and
small interface thickness and such a model would even makenalysis. This is done at some price: one must, in principle,
sense, if the strict limit of vanishing interface width did not mix disparate lengthland thus timg scales: the pattern
correspond to sensible physics. length and the interfacial width, whose ratio may range over

Of course, a problem arises if a phase-field model obmany orders of magnitude. This may render the numerical
tained in the second way gives predictions that are differenprocedure excessively expensive, a fact which would quickly
from that of the sharp-interface equations. A follower of thetake us back to the sharp-interface problem, where the small
first philosophy would then discard the phase-field modeljength scales out of the problem.
whereas one of the second might contemplate the possibility As discussed recentlyl2], the sharp-interface limit that
that his model contain more physics than the sharp-interfacene would like to represent when writing the phase-field
model. In the case of dendritic growth the situation is prettyequations only makes physical sense on “outer” length
clear: the sharp-interface model gives the right answersscales much larger than the physical extenof the transi-
However, this statement cannot be generalized easily, sind®n region, and thus does not depend structurally on the
not all sharp-interface models are as well-founded as that falletails of the interface shape on the inhescale. The math-
dendritic growth and because the extreme smallness of thematical question, formulated in the framework of phase-
interface width cannot always be guaranté@dmight, for  field models, of formally recovering the sharp interface de-
example, become doubtful for a phase transition that is onlgcription via an asymptoti¢multiscalg expansion in the
weakly first ordey. limit |.—0 might, from this point of view, seem irrelevant.

A related issue is the question of thermodynamic consis- It should, however, be kept in mind that the actual match-
tency, i.e., the derivation of the model in the spirit of Gibbsing conditions are imposed for the limit, where an “inner”
from a free-energy or entropy functional. It is clear that with variable (defined in the transition regidrgoes to infinity.

a known sharp-interface limit in mind, there is no need at allThis entails a certain amount of liberty in the choice of func-
to obtain a phase-field model this wayhich would mean to tions defining the free-energy density, because the precise
make it “thermodynamically consistent’as long as one en- behavior of these functions on the inner scale does not mat-
sures its asymptotic approach to this limit. In fact, it haster. Hence the validity of a phase-field model can indeed be
turned out that in some cases where both a thermodynamjudged by simply showing that it asymptotically reproduces
cally consistent formulation of a phase-field model and ahe correct sharp-interface description. Whether the addi-
nonvariational formulation exist, the latter was numericallytional information encoded in the structure of the phase-field
more efficient [11] and hence preferable on practical model on the inner scale is physically relevant is a question
grounds. to be decided on a case by case bdas implied by our

On the other hand, thermodynamic consistency has itdiscussion above
virtues. This can be seen particularly well in the case con- An example where this is relevant is provided by the
sidered here, the influence of elasticity on the stability of ayoung condition for the contact angle of a droplet on a sub-
solid interface. It is quite straightforward to write down the strate. This is a condition on “outer” scales, while the inner
contribution of the elastic energy to the total free energyscale is rather governed by van der Waals interactions of a
Hence if we have a good idea about the physical origin of thehin liquid film with the substrate, leading to some nontrivial
free energy to be considered, the corresponding phase-fietwrrections of the wetting profile at small atomic length
model is easily obtained, and it Bound to be right As a  scales. In other words, what matters in the phase-field de-
result, one mayderive sharp-interface equations in casesscription is not that the width of the interface be of atomic
where they are not known. extent, but rather that it be small in comparison with the

For the Grinfeld instability to be considered here, thescale of the pattern of interest.
sharp-interface equatiorsse well-known. Nevertheless, it is This physical argument has been cast in a mathematical
of course tremendously satisfying if they simply pop out ofform in [11], where thethin-interface limitwas considered,
the phase-field equations as the sharp-interface limit. Noarising from an alternative asymptotic procedure. This has to
only does this provide a natural countercheck of our ansatbe contrasted with the sharp-interface limit with the small
for the free energy, but it also gives us a new angle of viewparameter being the ratio of the interface thickness to the
at the instability, leading to the prediction of circumstancescapillary length. Making the width of the interface small
in which the Grinfeld instability shouldiot occur under an- only in comparison with the scale of the pattern leads to a
isotropic stress, but might appear wiotropic stress. We  rather important enhancement of the computing speed, thus
shall consider this point in Sec. II. rendering the phase-field approach attractive with regard to

Let us return to the advantages of the phase-field methosumerical efficiency as well. Unfortunately, in most systems
The first virtue of phase fields is pretty obvious: instead ofthe thin-interface limit is not as easily accessible as for den-
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dritic growth in the thermal modéglL1]. Hence it is difficult ~ render their extrapolation valid. The evidence for the appear-
in general to make our argument mathematically rigorousance of true cusps in the sharp-interface continuum model
However, we will give consideration to length scales in Secbhecomes compelling, if one takes into account the work of
I clarifying what are the ratios that have to be kept small forChiu and Gad 23] who found analytical solutions develop-
our model to be a good description. Moreover, we havang cusp singularities in finite time. The conclusion of Spen-
checked that the dependence of the results on the interfacer and Meiron is that for generic initial conditions, includ-
width becomes weak for the small values that we use for théng sufficiently small wave numbers, finite-time singularities
latter. will always occur. Moreover, they state that this is also true
Finally the phase-field approach has the additional virtuen the presence of gravitgbeyond the thresholdand under
of regularizing instabilities, such as the development offairly general conditions.
cuspy structures, often setting severe limitations in numerical For a physical system, finite-time singularities will be pre-
studies. In the elastic system, we are led to the questiomented by intervening effects that are not considered in the
whether the sharp-interface models still make sense in thmodel. This would mean that nonlinear elasticity and plas-
limit where they predict finite-time singularities. No such ticity have to be taken into account. For example, the forma-
singularities arise in the phase-field model, thus possibly extion of dislocationgplasticity) could blunt cusps again.
tending the range of validity of the latter beyond that of the Two questions then arise. What kind of structures can be
former. This will be discussed in more detail in Sec. IV.  expected before cusp formation and what kind of structures
In the context of growth phenomena phase-field ap-will prevail eventually? Our previous studyt9] has shown
proaches have been introduced in problems involving temthat the initial cellular pattern may develop into a superstruc-
perature or concentration fields. There are myriads of situature, where a groove or several of them accelerate in a spec-
tions, however, where the corresponding transition igacular fashion, thus relieving the stresses in their surround-
monitored, or at least affected, by strain. A typical situationings significantly and causing nearby grooves to recede.
is a solid under uniaxial stress. This leads to the Asaro-urther evolution of the structure was difficult to handle nu-
Tiller—Grinfeld (ATG) instability[13,14] (see Ref[15] fora  merically, due to the development of cusps which appear in
recent review. A surface corrugation allows to lower the the numerics, as they should according to the analytic results
stored elastic energy. Other examples of particular intereg23]. In the phase-field approach presented here, no cusps
include solid—solid transformations, phases in nonequilibcan arise. The question is of course legitimate, whether the
rium gels, molecular beam epitaxy, solidification of lava, etc.model, which allows one to track the dynamics of the struc-
It is thus highly desirable to develop a phase-field approacture much beyond the times where earlier studies had to fail
including the stress as an active variable. Very recently, twaumerically, still gives a faithful description of the physics.
groups, Miier—Grant (MG) and Kassner—Misbat{KM) Here we take the point of view that the details of the descrip-
[16,17], have independently developed such an approach artibn in the locations, where stresses become large, may not
have given a brief account on it. be correctly captured by the model, since we neither include
This paper will present extensive discussions of this quesnonlinear elastic effects nor other effects such as capillary
tion and give new results. We shall also provide a comparioverpressure explicitlj24]. If they have the right sign, these
son between the MG and KM models and point out similari-might prevent cusp formatiof22]. However, the result of
ties and dissimilarities. As already known from sharp-any such effect must be to blunt cusps, which the phase-field
interface simulation$18,19, a solid under stress presents amodel does. As we shall see, it does so in a nonobtrusive
somehow stringent behavior in that no stable steady-statway by introducing a cutoff for interface curvature. More-
solutions seem to exist. This is also the case from analyticadver, away from the cusps, stresses are low enough for linear
studies in the long-wavelength limit20]. Noziees had elasticity to apply. Hence, we believe that the development
shown[21] that the bifurcation from the planar front to the of the overall morphology is still correctly described by the
deformed one is subcriticéthe analog of a first-order tran- phase-field model.
sition). The study of Spencer and Meird@2] focused on A more detailed justification would point out that nonlin-
structures with a given basic wave number in the absence @ar elasticity will first make itself felt by stresses increasing
gravity (where the instability does not have a thresh@ldd  more slowly as a function of strains than in the linear case
on systems in which the transport mechanism necessary f@nd that next plasticity will act to introduce an upper cutoff
the instability to manifest itself is surface diffusion. They for stresses, where the material will yield. Now the effect of
find that in the unstable range of wave numbérs., for  any resulting modification in the stress-strain relationship on
wave numbers below the marginal value, above which surthe remaining body can be reproduced by cutting out the
face tension stabilizes the planar interfatteere exist finite-  piece of material where linear elasticity ceases to hold and by
amplitude steady-state solutions, if the wave number is closeequiring boundary conditions at the edge of the cut-out
enough to marginal. This branch of steady-state solutionpiece that correspond to the correct stresses. Whenever the
terminates by structures developing cusp singularities, dematerial yields near a would-be singularity of the stress field
spite the stabilizing influence of surface tension. It cannot béarising within linear elasticity these boundary conditions
overemphasized that this result is not an artifact of their nuwill essentially be that the stresses are close to the yield
merics. Indeed, they investigated carefully the effects of nustress at the boundary. This is mimicked by the phase-field
merical fine-graining using a code with spectral accuracymodel in which the maximum supportable stress is, for a
and their discretization sequence seems to get fine enough ¢iven geometry, determined by the interface width.

036117-3



KASSNER, MISBAH, MULLER, KAPPEY, AND KOHLERT PHYSICAL REVIEW E63 036117

Therefore we think this is one case where the phase-fieltiquid or nonsolid phases, respective[yL9]:
model can do more in the description of the physical system )
than its sharp-interface limit. A= 1-v (o

It will emerge that usually one leading groove continues # 2Eps- U
to deepen while neighboring ones recede after the winner has
started to relieve the stress that kept them growing. FinalhjHerein, the first term is of elastic origiwy, ando,, are the
the surface shows a single deep groove evolving in time andormal stresses tangential and perpendicular to the interface,
becoming a location of a strong stress accumulation, possibli is Young’s modulus,y the Poisson number, ang the
until the fracture threshold is reached. Presumably, befordensity of the solid. The second term describes the stabiliz-
that stage is reached the validity of the model will breaking influence of the surface stiffness taken isotropic here
down. We shall make some speculation on future directiongso it becomes identical to the surface engrgyis the cur-
to elucidate the physical behavior in real systems. For gevature of the interface; for simplicity, we consider the two-
neric initial conditions, we may consider the dynamics a condimensional case only. Finally, the third term is the contri-
tinual coarsening process which initially develops as debution of gravity @), where Ap=p,—p, is the density
scribed in[16] and later is dominated by groove growth and contrast between the solid and the liqumt vacuum and
shrinkage. Z(x) is the interface position, given by itscoordinatethe z

The paper is organized as follows. In Sec. |l we give theaxis is oriented antiparallel to the gravitational fordéqua-
continuum equations ordinarily used in the description of thetion (1) holds for plane strain. For plane stress, the prefactor
Grinfeld instability. This is mainly done in order to introduce 1—»? has to be dropped.
appropriate length and time scales in nondimensionalizing The dynamics is then described by giving the normal ve-
the equations; then we present our phase-field approach afatity in terms of the chemical potential difference. For a
discuss how the interface width has to be chosen in comparsolid in contact with its melt this would simply be
son with the other length scales. We demonstrate how the
phase-field model can be employed to derive new sharp- 1
interface equations in the presence of body forces breaking Un= ™ EA“' @
rotational invariance.

Section Ill presents validation results, a comparison of thevherek is an inverse mobility with the dimension of a ve-
MG and KM models and describes the main findings of ourocity. In the case of a solid in contact with vacuum and
simulations. Section IV sums up the results and discussesurface diffusion as the prevailing transport mechanism we
perspectives. The mathematically rigorous asymptotic exwould havev,=DV2A u instead.
pansion used to derive the sharp-interface limit has been rel- Of course, in order to compute, we must first obtain the
egated to Appendix A, as the calculation is somewhaktresses entering E@l). This involves solving an elastic
lengthy and would interrupt the flow of the text. Since we problem @jo'ijzo) with a prescribed external stress and
use the MG model in a slightly different form from that houndary conditions on the interface, assuming an appropri-
presented originallyf16], we give the connection between ate constitutive law. Ordinarily, Hooke’s law for isotropic
the two formulations in Appendix B. Finally, Appendix C elastic bodies is assumgitherefore we have only two elastic
contains the analytic derivation via conformal mapping ofconstants in Eq(1)]. Neglecting the capillary overpressure,
the stresses for a particular interface shape to be compargghich usually is a good approximation, we have as boundary

,, 1 Ap
—0onn) "t — vkt —gL(X). 1)
Ps Ps

with the numerics. conditions at the interface,,,= — p, wherep is the pressure
in the second phase, ang,;=0, i.e., the shear stress van-
Il. GRINFELD INSTABILITY ishes.
_ ) A linear stability analysis of a planar interface under the
A. Sharp-interface equations dynamics given by Eqg1) and (2), but with the chemical

A description of the basic ingredients of the Grinfeld in- potential in the liquid shifted such that a planar interface is a
stability has been given elsewhdrt5]. Therefore we may steady-state solution, yields the following dispersion relation
restrict ourselves to explaining the physical mechanism anw is the growth rateq the wave number
giving the equations.

We wish to describe the behavior of a solid submitted to 1 [205(1-1?) )
uniaxial stress, at the surface of which material transport is Tl B 47 —Apg. )
possible. Consider the example of a solid in contact with its
melt. An accidental corrugation of the surface will act to o, is the uniaxial external stress. Equatit8) provides us
reduce the stress at its tip and increase it in the valleys nexith a critical wave numbeg.=\Apg/y (an inverse capil-
toit. That s, the solid can decrease its average elastic energyry length and a critical stressro.=[yq.E/(1—»?)]*?,
density by growing tipgwhere the stress is loweand by  pelow which the planar interface is stable. The wave number

increasing the depths of vallegshere it gets rid of material  of the fastest-growing mode can be inverted to give a length
having a higher density of elastic energy due to larger

stressels This tendency is most easily cast into equations by vE
writing down the chemical potential differencéu= uq = (4)
—w at the interface(the subscripts refer to the solid and op(1-v9)
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Apart from a prefactor of 24, this length is identical to the If the only energy present is elastic energy and Hooke’s
so-called Griffith length. law holds true, the free energy per unit volume can be writ-
An initially unstressed planar interface will not remain atten as
its original equilibrium position, even when only a sub-
threshold stress is applied, i.e., when it is “stable.” Our
dynamical equations predict that it has a nonzero velocity as
long asAp is different from zero. Hence it will recede to i o
smaller values of. If the density of the solid is bigger than Where summation over double subscripts is impliednd w
that of the liquid, the chemical potential on the solid side ofare the Lameconstantsu being better known as the shear
the receding interface decreases faster than that on the liquigodulus. For plane strain, these elastic constants are related
side and there is a new equilibrium position which can bel® Young's modulus and the Poisson ratio yia= E/[2(1

Ao
F= peujjuij+ 5 Ui, ()

computed directly from Eq(1) and which evaluates to ;V)] and\=Ev/[(1+v)(1-2v)]. The stress tensar;; is
then
Ab= .= 1_1/2 2 5 of
(== 2ApgE 70 © Oij = o0 T 2mUij T MU
i

Equations(4) and (5) provide us with two independent dij
length scales of the problem, the first of which is due to a =2p| Uy “ Uy
competition between stress and surface energy, while the
second arises from the competition between stress and grak-=\ +2u/d is the bulk modulus, and the last relation has
ity. For the purpose of nondimensionalizing equatidpss  the advantage of making explicit the parts of the stress tensor
more appropriate, as this length does not diverge in the limitausing pure shape and pure volume changes, respectively.
of vanishing density differencéor gravity). To obtain a (d is the spatial dimensionWe will nevertheless mainly use
natural time scaler, we can replace in either of the two the relations containinge and\, which are more compact.
wave-number dependent terms of £8). by 11;. This leads  The implied reference state here ug=0, for which oy;
to =0.

However, if we choose a reference state given by a dif-

kpsyE? ferent strain tensou(”, setting u;=u;—u’, then we
od(1— 12)2" 6) should not simply replacaij by ﬁij in Eq. (9), as the stress
tensor and the elastic energy are, in principle, measurable

+Kukk5ij . (9)

. . . . . . guantities and should thus be unaffected by a change of
The nondimensional version of the dispersion relation ther), . .

ds b G- 1.0) strain reference state. Hence we have to write
reads pw=r1w,q=1.q

| oijzzﬂ(aij+ui(j0))+)\(akk+ u(k?())(slj , (10)
w=20—q T 20, (7)  and change definitiori8) accordingly, i.e., replacey; by
u;+uf. In this situation, the zero-strain state would not be

which shows clearly that the problewithout gravity (when stress-free. An al.terr)atn/.e.way to specify a reference stqte
|, becomes infinitecan be made parameter free, i.e., elasticvould then consist in giving the stress of the zero-strain
and other parameters only set the time and length scaleState. _

apart from that we should expect the same dynamics for all N general, the free energy of thermodynamic system un-

by the ratio of the two length scales introduced. Then theequilibrium state corresponding to a minimum of
the free energy, may not be a state of vanishing strain. A

. trivial example is a solid in equilibrium with its melt, where
B. Elastic energy and state of reference the equilibrium state in the solid corresponds to the strain

Let us now proceed to investigate the contributions to theproduced by the equilibrium pressupeof the liquid (the
free energy of the same system. The phase-field model wikquilibrium stress tensor of the solid+sp&;;). The form of
then consist in writing the free-energy density that takes intdhe free-energy density accounting for such a situation is not
consideration the global elastic energy in both phases.  Eg. (8) [which does not exhibit a minimum af*%+ 0] but

As usual with elastic problems, it is important to specify
the state of reference defining the positions of material par-
ticles with respect to which displacements are measured.
This is crucial whenever the reference state is not that of an
undeformed body but one that is subject to prestrainingrhis is manifestly minimum ani(fQ) and the nonzero value of
(which will turn out useful later In order to make this point the latter quantity takes into account nonelastic contributions
clear, and in the hope of helping subsequent discussions, we the free energy. If we now define the stress via the first
would like first to dwell on this issue. relation in Eq.(9), i.e., oy;=df/du;; , it will be nonzero only

A
F= pa(uy = ufF) (uy = D) + S (U —ufFDZ (1)
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if there are forces driving the system away from equilibrium.
If we rather define it via the second equality of H®),
meaning that we set;; = 2 uu;; + AU d;; (which is now dif-
ferent from gf/du;;), it will describe, in addition to these

forces, the prestress necessary to keep the system in equilib-

PHYSICAL REVIEW E63 036117

-~ o~ -~ o~ N o -
f= pu(uy;—uff D) (uy;—uffd) + 7 (Ui~ uf*)?

Ao
24

= pUij Uij + S U5 Uj; + (Po— Pos) Uii

rium. An invariant relation between stresses and strains fol-

lows from requiring

ij

u
- |
ui(jeq)

(oij— otV du;, (12)

which leads to

i — o ®V= 2 (U — U + A (U~ uSD) 8. (19

Once botmi(jeq’ andui(je") are specified, this equation gives us

+ m( Po— Pos)”. (16)

It should be realized that Eq&l1) and(16) describe exactly

the same situation, if corresponding values for the strain
fields without and with a tilde are inserted. At this point we
have said nothing about applied external stresses. However,
if we choose, say, vanishing displacement as a boundary
condition at a planar interface directed along xhdirection,

then this will correspond to two different physical situations
for the two different choices of the state of reference. Let us
for simplicity assumey,=0. According to Eq(14), we then
haveui(jeq)zo, and Eq.(11) implies Eq.(8). Settingu,,=0

an unambiguous relationship between stresses and straing.Eq. (9) we obtain because of the boundary conditiey
Depending on which variables we choose to define the ref=( that alsou,,=0, and there is no stress at all. On the

erence state, we obtain the conjugate variables of the samgar hand

if we seti,,=0, we have to use Eq$13) and

state from Eq(13). If we choose, for instance, a strain-free (15 to obtain the elastic state of the solid. The boundary

state as reference, this equation will provide us with the cor

responding stress of reference, if we choose a stress-fr
state of reference, it will yield the strain of reference.

As an example we can look at a case where the equilib

rium stress isr{*¥= —pyd;; , and ask what should the strain

condition for o,, implies u,,= pos/(2+\), which in turn

§&ads too, = —2upos/ (2 +N\); hence vanishing displace-

ment along our planar interface means a solid that is homo-
geneously strained in the direction with a prestress

be. Hooke’s law, written in a such a way that the absence of as we shall see later, the latter choice of the state of

strain implies the absence of stress as \s#k Eq(9)], then
gives us an equilibrium strain

Po

eq__ __Po_ o
u i (14)

Since the free energy must not depend on the choice of
reference state, it is clear that it does not matter whether we

useuj; or Tjij in Eq. (13), providing that we use the correct
values of u™® and u{*?, respectively. Suppose that we

reference has been made in the phase-field model discussed
in [16], the former(setting pgs=0) in [17]. These are the
most natural choices, although an infinity @¢éss natural
alternatives is available.

C. The phase-field model

The total(solid+liquid) free energy of the system can be

written as

1
F[dh{uij}]:f dV[f(dh{Uij}H ETEZ(VQS)Z ., (17)

choose another reference state characterized by the strain

tensorﬁij in such a way that when the strain is zero, the

stress is equal t6-posdjj - A vanishing strain then corre-
sponds to a prestressed situation. If the equilibrium stress
again —pod;; as above, we must have a new equilibrium
strainﬁi(je“) obeying, according to our invariant relati¢t3),
—Posdij + Podij = —Zuﬁi(jeq)— AuSYs;; . After a simple ma-
nipulation we obtain

~(eq)_ Pos™ Po

i 2 ad

(19

Of course, Eq.(14) is a special case of Eq15) for pgs
=0. The free energy, expressed]ﬁgy, then reads

wheree is a length parameter controlling the order of mag-
iitude of the transition region described by the phase field.
I'=3+/e is the energy density corresponding to the surface
energyy being distributed over a layer of widtk e. (The
factor 3 is just a convenient choice, simplifying later deriva-
tions)

If we start from the invariant forng13), we can set up a
whole class of phase-field models at once and specify the
reference state later. In order to be able to write a single
elastic energy expression for the two-phase system, we for-
mally treat the liquid as a shear-free solidot including
hydrodynamics We will discuss some consequences of this
approach later.

A straightforward ansatz for the elastic energy density is
then
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fe( @ {uij}) =h(d) fsol{uij}) +[1—h( ) Ifiq({uij}) fgral 9,2) = (2= 2o){psh(#) + p[1—N(¢)]}g
:h(d’)[ﬂ(uij _ui(ﬁi))(uij _ui(qu)) =(z—29)h(H)Apg+(z—2p)pi9, (20
where we have taken the zero point of this potential energy

\ 5 \ atz=z,. Note that in taking fixed values fdxp and forpg,
+ E(uii_ui(ie,g)) +H1-h(e)]5 we also neglect the second-order effect caused by density
changes due to strain.
X (U —ulEM)?, (18) Finally, we wish to be able to control the equilibrium

position of the interface “by hand” via addition of a con-
stant to the free-energy density of one phase; this phenom-
enological contribution to the total free-energy density may
e\be conveniently written as

where f¢({u;;}) and fj,({u;;}) are the densities of elastic
energy in the solid and in the liquid, respectively, and wher
h(¢) may be interpreted as a “solid fraction” which must
be equal to one in the solid and equal to zero in the liquid.

_ .2
We chooseh( )= ¢%(3—2¢) for reasons of convenience: fo(b)= _h(qg)l_vggoz _ h(¢)2'“—+)‘ggo
with this choiceh’(¢)=0 for =0 and for¢=1, i.e., in 2E Bu(pm+N)
the bulk phases. This leads to the advantege Appendix (21)

A) that the zeroth-order solution of the asymptotic expansion ) o

in powers ofe is valid to all orders in the outer region con- 2nd it is normalized such that by settingy= oo, we can

sidered. keep the equilibrium position of the planar interface at the
Since different reference states may be chosen in the solftk€d valuez,, independent obro. This is useful, for ex-

and in the liquid, the equilibrium strains carry a subscept &MPl€, if one wishes to assess the relative position of the

or I, respectively. This would not be necessary here, becaudB@xima or minima of an evolving structure with respect to a

the prefactofh(¢) or 1—h(#)] decides whether the equi- planar interface at the same external stress. Because of the

librium expression for the strain in the liquid or in the solid '€¢€SSIoN of a planar mtgrface achrdmg to B, such a

has to be taken. However, as soon as we take derivativé®mparison would otherwise be difficult.

with respect tog, this criterion of distinction becomes am- Collectlng_ all contributions, we obtain for the total free-

biguous, so we prefer to make the difference explicit fromEnergy density

the outsetX is the bulk modulus of the liquid.

To account for the possibility of a phase transition, we
introduce a double well potential

f(pfuijh, ) =Tfal @)+ el P Uij}) + fgad ¢,2) + (@)

€
=F(29(¢>)+ 3—y‘h(¢) (Ui — Uiy

fan()=2I"g( @), (19 N
X (U~ uffd) + (Ui~ U(eq))z}

where g(¢)= ¢?(1— ¢)?. The minimum at¢p=1 corre- e e

sponds to the solid phase, the onedat0 to the liquid 5

phase. Note that while this potential looks similar to the +[1-h(¢)]= (uj — ulEP) 2+ h( ¢)

fourth-order polynomial used in the Landau theory of 2 o

second-order phase transitions, it is employed in quite a dif-

ferent manner here. The two minima correspond to the two X

phases and the symmetry of the potential is of secondary

importance; in Landau’s approach, symmetry considerations

are at the heart of the theory, the symmetric minima describe +(z—zo)p|g] ) _ (22)

the same phase, and the second phase corresponds to the

unstable maximum in between. Since in our case both phases

sit at a minimum, the transition described by the double wellNote that here the terms in braces, in particular the elastic

potential is of first order. We do not need a sixth-order poly-term, have acquired a prefacter This e dependence is spu-

nomial as would be necessary in Landau’s theory for firstrious, as we have taken the prefactor 1/e in front of ev-

order phase transitions. erything, and the factoe just serves to cancel this out. In
Gravity will be included in essentially the same way as infact, the only contribution to the free energy that can depend

the sharp-interface equations discussed above; i.e., its effeen e explicitly is the double well potential, which must en-

as a body force in the mechanical equilibrium condition issure that in the limitt—0 the only possible states are the

neglected but its influence on the chemical potential is taketulk phases and must therefore become infinite for all values

into account. This is a good approximation usudtipe can  of ¢ different from 1 or 0. All the other energies can depend

estimate the cross-effect of gravity on the elastic energy to ben e only implicitly via h(¢), the local solid fraction of the

on the order ofpgH/oy<1, for typical heightsH of the two-phase system.

samplg. Then the contribution of gravity to the free-energy ~ We then requirep to satisfy a relaxation equation for a

density becomes nonconserved order parameter. This equation takes the form

A 2ut+tn -,
(z—29)Apg— Bu(uin) T
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d SF Normalizing elastic moduli and stresses by the bulk
E:_Ra_(p' (23 modulus, ie., settingV=u/K, A=K, A=N/K, and
S 00= 000/ K, we obtain

and the prefactoR should contain the mobility k/defined " 2

in Eg. (2). The dimension ofR must be (energy density 7P g2, 1 / €, . (eq)
xtime) ", which leads us to choosirg=1/(3kp.e). This SV | 29(@tgh (¢)‘ M (i = uij’s)
essentially amounts to setting the time scale for the evolution
of ¢ (which must be related to the width of the transition
region, because it is only in this region whege has an
appreciable dynami¢s

A A
X (Ui = uffd) + S (Ui U= 5 (i~ uif?)?

We arrive at 213 - - 2M+ A 52 .
+K(Z—Zo)—m oof | (26)

a¢_ Y V2 1 2q’ € h’ (eq) ~ -

ot Kps $- 2|29 (¢)+§ (h)) mluij=Ui’s) where t=t/7 is the nondimensional time anz=2z/l; and

s ~

V=1,V are nondimensionalized spatial operators. Physi-
cally, | ; represents an atomic scale. For many materidls,
is on the order of the lattice constant.

For the phase-field model to work properly, we must im-
pose some conditions on the length scaleWe definitely
neede/l ;<1 to have a decently sharp interface. Moreover,
the h'(¢) term must not become too large in comparison
with the g'(¢) one, otherwise one of the minima of the
c]double well will move away from the positiogp=0 or ¢
=1. This appears to suggest that we also ngég<l. We
compute some typical values. Using the material parameters
of solid He[25], the system for which the Grinfeld instability
as been unambiguously demonstrated by Torii and Balibar
26], we obtain the estimatel§~0.1 cm, l,~0.1 cm, I3

A X
X (U —uffd) + (Ui — uftd)?— 5 (Ui— ufe?)?
2+

+(Z—Zo)Apg—m0§oJ) : (24

Herein, g’ (¢) andh’(¢) are the derivatives ofi(¢) and
0(¢) with respect to their argument. As we have mentione
before,h’(¢) vanishes in the solid as well as in the liquid
phasegsee Eq(A24)].

In writing down an equation for the evolution of the elas-
tic variables, we have to be careful about the fact that th

strains u;; ,i,j=1,...d are not independent quantities. _ .
il D q ~10 % cm, andr=~1 s. If we had to requiree<ls, we

Therefore the variational derivative#=/Ju;; are not inde- Id h bl ith di te lenath |
pendent. Instead of introducing Lagrangian multipliers, welVou'd have a problem with very disparate length scales, as

can, however, exploit the fact that the componenisi ?hurrumtehrlcal ?”d would _have t(t)tbe sfmalletr.thglnwhe;jrleas
=1,... d of thedisplacementrelated to the strains via Eq. € length scales governing patitern formation igrandls.

(33), are independent variables. Assuming that the timeEortunately, the quantity/3|; appearing in Eq(26) is mul-

scales of our problem are large in comparison with soundP!i€d by squared strains, and thg; are on the order of
P g P 10~ 4. Moreover, we havel3/l,~2x10 8 and the last term

propagation times, we conclude that the variational deriva- X 2 %
braces can be estimated b¥ 5,~2x 10" 8. Therefore the

tives SF/Su; are equal to zero. This is an adiabaticity as-'" - ;
sumption. Hence we obtain actual condition for our model to be useful is fo<e

<3l3, which is much easier to achieve. In our simulations,
we typically had 108X €/313~0.1.

= E: i ﬁ Equations(24) and (25) constitute the basic phase-field
Oui  9Xj dujj equations for the phase transformation under stress.
P To specify our model completely, we have to indicate the
=—{h(¢)(oij— Ui(]_eq)) equilibrium stresses and strains. Let us assume the following
X forms for the stress-strain relationships in the two phases,
—[1-h($)](p—p©) 5} (25)
il i} =~ Pos0ij T 21U + AUk ij (27)
This is nothing but a generalized elasticity problem, with the ~
P=Poi — AUk, (28)

generalized stress tensor given by the quantity in braces.

Before moving to a demonstration of the sharp-interface d ire th ilibri ¢ E |
limit, let us discuss scales. Since the elastic prob(B) is and require the equilibrium pressure to jag For a planar

formally linear in the strains, rendering it nondimensional is'mg]r)face’ this fixes the normal str_e_ss_m thdirection to be
= —po- If we assume the equilibrium stress tensor to be

straightforward and unenlightening. On the other hand, tryZzz — s
ing to cast Eq.(24) into nondimensional form, we realize lsc;tr)oplc(a very natu(ga; assumption in most cagseee have
that besides the length and time scales discussed in Sec. Il &j; = — Podij » andu;Fd'in the solid is given by Eq(15). In
we need a third length scalg= y/K, apart from the width the liquid, we haveuf?=(py—po)/Xx. Note that only the
of the transition regiore. So the phase-field model contains displacement divergencéu=u; appears in the elastic en-

four length scales altogether. ergy of the liquid. This gives us a degree of freedgmaither
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Uy NOr u,, are fixed separately in the liquid, only their sum 5 1(og—on)? ~ 1y ~ -

is) that will turn out important latertWithout this degree of Un="13 —— tk+ T(g— o)t - (39
freedom, it would not be feasible to treat the liquid as a o 2

shear-free solid, as will be discussed in Appendix A.

Inserting these equilibrium values into E¢84) and(25), The ansatz proposed [i6] is slightly different. One dif-
we obtain as a basic equation of motion for the phase fielderence mainly concerns thisterpretationor philosophy of
(introducing the abbreviatiok=kps) the approach. In the MG model, the phase field is considered

the variable determining the shear modulus. The shear modu-
€ lus is the macroscopic quantity deciding whether a piece of
29'(¢) + S—h'(¢) condensed matter is solid or fluid. Hence the phase-field or-
Y der parameter differentiates between liquid and fluid and has
Y a transparent meaning in the context of quuid—_solid transi-
U Uy + Tuﬁ +Apu; + AW+ Apg tions. Of course, the modgl can be extended gasﬂy to tht=T case
of two solids with nonvanishing shear moduli on both sides
of the interface. In the KM approach, the traditional and
, (29) more conventional view is taken that the phase field decides
between two phases characterized by their respective free
energy densities. That one of these phases is a liquid is of
where we have defined further abbreviations secondary importance, as it were. Again, in principle, it
might be another solid. Of course, if the second phase chosen
Ap=po— Pos (30 s a liquid, then its shear modulus must vanish. And indeed,
this is guaranteed in the current form of both models by
construction. For ease of further comparison, we give the
5 ) phase-field equations §16] in Appendix B and show how
AW= ld(po_ Pos)® 1 (Po—Po)”  2um+A o2 they are mapped onto the for(@9), (32).
2" 2p+tNd 2 \ Bu(u+N) In concluding this section, we would like to comment
(3D briefly on the consequences of an anisotropic equilibrium
strain. Suppose we submit a body consisting of piezoelectric
The elastic problem can be cast into the suggestive form material to a homogeneous electric fie{dlternatively, we
could consider some magnetrostrictive material under the in-
fluence of a magnetic fieldThis body will contract or ex-
pand until it reaches a new equilibrium state compatible with
the body forces exerted by the field. The new state will have
from which it is even more transparent that the expression inisotropic strain and, assuming isotropic elastic properties,
braces is nothing but a generalized stress tensor. Note than anisotropic stress tensor as Welr]. What will the sur-
the phase-field model always guarantees exact mechanickce dynamics of such a body be, if uniaxial stress is applied
equilibrium with respect to this stress tensor, but that thén addition, as in the setup of the Grinfeld instability? Of
validity of a linear relationship between strains and generalcourse, the assumption that the equilibrium stress remain
ized stresses is only warranted outside the interface regiogonstant is an oversimplification now, since the dielectric
where the values ofp cease to depend on thg;. (This  properties of the solid and its melt will usually differ, hence
means that in the vicinity of sharp groove tips we will auto-the electric field would become inhomogeneous as soon as
matically have deviations from Hooke's law, albeit they arean interfacial shape change occurs. Let us nevertheless as-
not modeled to satisfy a particular nonlinear constitutive re-sume the simplest possible situation, an anisotropic but con-

b v _, 1
W‘ilv e

X

X(Z_Zo))

and

d
]

lation,) stant equilibrium state
These equations are to be solved subject to the conditions
that the phase field approaches its limiting values in the bulk Ui(jeq): —PoBij + Xo0ix Oix - (35)

phases. To make them closed equations, we have to replace
oij andu;; by the field variables; using the definition of the

strain tensor Using the stress-strain relationsh@y), this can be inserted

into our expression for the elastic energy density of the solid,
) which then becomes

1 du; aUJ
Uii=5| o T o, (33

2\9x; X 1 Ap?

A
V)= U U+ —u2 L
and Hooke's law. fsol({ulj}) /"Lullu” + 2U“+ApU“+ 2 /.L-i-)\ XoU11

It remains now to be shown that this model reproduces the Ap 24\
sharp-interface limit when the width of the interface is small. - Xo +XE2) K ,
This calculation is given in Appendix A. Its central result is 2(pt+N) Bu(ptN)
formula (A50), which we rewrite here in nondimensional
form (for opp=0): where we have sqig = p, for simplicity.

(36)
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It is then straightforward to derive the sharp-interfaceinitial simulations, in order to obtain periodic strains. Later,
limit for this modified phase-field model. The result readswe switched to simpler helical boundary conditions fqr,
(on settingoge=0, zy=0) i.e., we took u,(L,z)=u,(0,z)+Luyyo, WherelL is the
length of the rectangle along thedirection, and periodic
boundary conditions fou,. This change in boundary condi-
tions did not affect results in any essential way. All the simu-
lations of the KM model discussed here were carried out
”5 with these boundary conditiorigvhereas those ifl7] were

done with periodicx derivatives. At the bottom of the sys-

] tem, the values of the fields are fixed to values corresponding

2
—V
yk+Apgz+ f(lfn— Tan—X0)?

Un=—"7

Kps

2(1-17) 1+v ,
+ TXO(O-tt_O-nn)_ ?XO

2v(l+v) , ,

= xns (37)  to ahomogeneously strained solid; at the topis fixed and

the derivatived,u, chosen such that the conditidfu=0 is
satisfied.u, is initialized as a linear function,=xuyy o and
the inital u, is determined via integration of EGA38).

For simulations of the MG moddor rather its variant

wheren, is the component of the interface normalxrdi-
rection. Rotational invariance is broken.

. We are _not aware of any previous _m_enuon c_)f this equacnsidered hepe the fields were all taken periodic in the
tion in the literature, nor do we think this interesting case ha

. irection, whereas the boundary conditions in zitérection
been treated. In fact, what we have demonstrated here is hOWere as in the KM model. We did not yet attempt to use
the phase-field model can be used derive hitherto un- )

. ) ; spectral methods for the solution which would require peri-
knovyn sharp-interface equations in a transparent way. odicity in the z direction as well(achievable by simply re-
Itis clear from Eq.(37) tha}t an |sqtrop|c stress tenspr, €., flecting the system at its bottom, and including the image
0= 0y d0ES Not necessarily entail a stable planar mterfacelmo the numerical box16]). Initialization was done by set-
whereas setting— onn= X0, i-€., providing amanisotropic

) ; ting u,=0 everywhere and computing, from Eq. (A38
stress tensor, we will have a linearly stable planar front so- g Ux yw puting; a. (A38)

. o " = : again.
lution with interface positiorz=0. This is easily seen from g

. 4 : The elastic equations were solved by successive over-
the fact that the terms containing andny do not contribute  gjayation, the time integration was performed by a formally

in a linear stability analysis, becausg is directly propor-  gecond-order accurate midpoint scheme. Since we did not
tional to the perturbation and hence its square and fourt@pdate the elastic fields at the half time step, the formal
power have to be dropped. Note also that the symmetry Ofccyracy was not attained. The most time-consuming part of
the dynamics with respect to a replacemenigf-onn by the simulation was the relaxation scheme and a way to over-
its negative value does not hold anymore in this situation. come its restrictions has been giver{ €] as is discussed in
While this equation opens a new line of research, we W'”Appendix B. Since it requires an approximation to the solu-

refrain here from pursuing this topic any further. tion of the elastic problem even at the analytic levelK
has to be smal] we did not implement it in our two-
. NUMERICAL RESULTS dimensional simulations. We intend to compare the quality

of this approximation to the solution of the full problem
before employing it in a 3D simulation, where its use is
In order to verify that our phase-field description leads toessential for reasons of computational efficiency. Most of our
a quantitatively correct description of the instability, at leastcomputations were done with the material parameters of he-
before cusps set in, we have performed a number of numeriium to facilitate comparison with experiments Therefore
cal tests. whenever we do not indicate different choices, our param-
Based on a simple finite-difference scheme, the numericadters were chosen as described 2®]. Times and lengths
implementation is set up in a rectangular geometry. The botgiven without units are in seconds and centimeters, respec-
tom half of the rectangle is filled with solid, the top with tively. Since our nondimensional time unit is about one sec-
liquid. This is realized by setting the phase figlcequal to a  ond and the nondimensional length scale about 0.1 cm, this
tanh-like function taking the value one in the bottom regionsimply corresponds to using Iinstead ofl; as the basic
and zero in the top region of the geometyis kept at these length scale.
values one and zero exactly at the bottom and top lines of the One of our numerical tests consisted in reproducing the
numerical grid, respectively. Periodic boundary conditionsinstability threshold to within 2% accuracy, another one in
are applied at the lateral boundaries. The initial interface iserifying the subcritical nature of the bifurcation, first dem-
set by an appropriate modulation of the region whére onstrated analytically by Nozies[21]. A short discussion of
crosses the valug and was in most cases taken to be sinu-the last feature has been given[iv], so we will not elabo-

A. Validation of the model

soidal or flat with a random perturbation. rate on it herd 28]. We consider a few more tests, however.
The boundary and initial conditions for the fieldg and Figure 1 gives the dispersion relation determined for three

u, are chosen differently for the KM and MG models as will values of the external stress and compares it with the ana-

be described now. lytical result from linear stability theory. The KM model was
Within the KM model, where we assume strains to vanishused here as it gave more accurate results at finite

at equilibrium(henceAp=0), we took thex derivatives of To obtain the dispersion relation, we simply followed the

both displacement fields periodic in thedirection in our dynamics of a system initialized with a small-amplitude co-
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| | | | | L
0.00 —

-0.01

¢ (cm)

-0.02

-0.03

t (s)

T T T T T T FIG. 2. Recession dynamics of a planar interface. Solid line:

0 10 20 30 40 50 KM model; dashed line: MG model; dash-dotted line: analytic re-
1 sult (39). The dash-dotted line is hard to see; it almost coincides
q (cm ) with the solid one. To discern it, one should look at the left part of

the figure.op=2%10* dynes/cr, ¢=0.008, anch=0.002.
FIG. 1. Dispersion relation. Symbols indicate the results of nu- 'gure.ao 4 €

merical simulations, lines d_epict the_ an_alytic theory. Material pa-\we ascribe the difference to the fact that the amplitude of the
rameters are those of helium. Solid line and squares=2.8  jyiarface becomes smaller than its widkh a situation in
flo‘t d{.ges/crﬁ,gn(%).ogg; da,Shed line and inverted tf'ang'eﬁ: which the phase-field description is no longer reliable. For
;giﬁ 104 Sizizg rﬁlz;g:giz,da?\;;dsﬁttegizlgs ﬁidoltgggglesﬁ example, the final plar1.a-r.interfa.ce is not located exaqtly at
—0.0063. anch—0.0074 respectively. ’ z=0, about which the initial cosine was centered, albeit the
' ' deviation is smaller than the interface width. Second, the

sine profile for a number of different wavelengths and Com_overall agreement s sur_pnsmgly 9°0d In view O.f the fact
hat a phase-field model is not particularly well-suited to the

he ampli f the evolving str re for ri S X . : .
puted the amplitude of the evolving structure for a series Ogetermmatmn of a dispersion relation at all. For in order to

times. The interface was determined as the contour level COa roach the limit of an infinitesimal perturbation of a planar
responding to¢=3. Then the amplitude time series was | PP P P

fitted to an exponential function which provided the growth Ir:tuesrﬁcci gges;gﬁlilftﬁggc;ﬁi ;’nigfz?eacvmggﬁi‘:’ibg uc:fthey
rate of the interface. Takingyy equal to the applied stress

oo, We fixed the average position of the interface. Ampli-e is possible in principle but soon leads to prohibitive com-

tudes were computed in two different ways, both of Whichputation times. With the sharp-interface model that we inves-

. . . . tigated in paralle[29], it was no problem to take amplitudes
are not influenced by the average interface position. The fwstff 10~4 and to obtain nice exponential growth or decay dur-

method was simply to take the square root of the spatialﬁr)] long time intervals, whereas here we were restricted to
variance of{(x); as a second measure for the amplitude we g long ; ’
tarting amplitudes on the order of 0.05 or larger.

took the modulus of the Fourier component corresponding t& Our next test consists in investigating the dvnamics of a
the wavelength chosen. On the figure, these two method gating y

give essentially indistinguishable results within the size Ofglanar mte(;face W'thbb(.)th ;he KM _and 'fVIG n_10de|s. From
the symbols. System sizes used were the wavelexgtbf Egs.(1) and(2) we obtain the equation of motion

the fastest-growing mode and a number of rational multiples _ 1 ((1-?)

and fractions thereofranging from:\¢ to 3\;). Since we {=— Koo TO’S‘F Apgl |, (38
kept the number of numerical grid points the same for all the Ps

systems ah;, the mesh size had to be varied. The interface,ich is, given the initial conditio(0)=0, solved by
thicknesse was in general kept abovg of the mesh size,

which gives a resolution of five points for the region where ~ Apgtik (1—v?) )
the phase field varies between 10% and 90% of its maximum (O=—(A—e )5 F 0. (39
! . P9
value. For smaller values of, locking effects to be dis-
cussed shortly became conspicudg8]. This analytic result is compared with simulations of the two
The agreement between analytic results and numericallyhodels in Fig. 2.
determined points is satisfactory both above,€2.8 What is cleared up by the figure is that even with a well-

X 10* dynes/crd) and below ¢o=2.4x10* dynes/crf) resolved interface widtlwe havee=4h) the MG model is

the instability threshold. Two points are worth mentioning. slightly off the analytic final position, whereas the KM one
First at q~30 cm !, there are two symbols each for the converges well towards it. With larger values of the numeri-
growth rates corresponding to the two larger stresses. Thesal mesh size, convergence of the former model gets even
were given to roughly indicate the possible error in the nuiworse. Forh=0.007,e=0.011 the KM model still agrees
merical result when the growth rate has a large negativeeasonably well with the analytic curve while the MG one is
value. Points below~20 cni ! did not show a comparable off by about 10% fort=4. Both models show deviations
error. The two different values were obtained by fitting with from exponential behavior with this set of parameters due to
the initial and the final half of the data points, respectively.metastability effects of the discrete set of interface points.
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expected. It should be emphasized that this simulation is not

0.04 | far from the limit of the temporal validity range of the sharp-
interface model. This limit is signaled either by a crash of the
0.02 = program due to the singular behavior of the bottom of the
000 i groove or by the appearance of a spurious steady state, which
—_ can be achieved by overstabilization of the interface.
5,0_02 _ L Why the KM model agrees better with the sharp-interface
“ model for a given value of the interface width is a difficult
—0.04 B question, to which we cannot offer any deep answer. Also we
~0.06 4 B cannot exclude that for a different choice of the functions
h(¢) andg(¢), the MG model would be superior. It should
—0.08 = be kept in mind that the functions employed[i6] are not

| | | | the same as those used hésee Appendix B

0.00 0.20 0.40 0.60 Since we wish to make sure that effects of translational

x (em) symmetry breaking are not due to our using a model in

which periodicity is imperfectly implemented, we will use

FIG. 3. Comparison of phase-field models for different interfacethe MG variant in the following simulations. The differences

widths with the sharp-interface model. Solid lines: KM model; petween the two models are small, after all. Also the MG
dashed lines: MG model; dash-dotted line: sharp-interface modejodel has the advantage of being more easily treated using
The phase-field curves with the shallower minima correspond 0 hsedospectral methods based on Fourier series due to its

=0.01 (mesh sizeh=0.0688), thgfe with th% deeper minimado o rigdic boundary conditions, with a gain in accuracy that

tTa(I).i(r)l(t)Srfa(r::; %ﬁiﬁf‘&ag%gg%l dynes/cm andt=0.25. Ini-  ight help to offset its apparent disadvantage.
T The conclusion from Fig. 3 is that the phase-field models

This problem, which is particularly critical for interface givc_a decent agreement with a sharp-interface calculation in
pieces parallel to one of the coordinate axes, has been di&gions where the curvature is not too large. Whereas the
cussed in detail ifi30]. At small interface velocities, the sum Sharp-interface computation cannot be meaningfully contin-
of the energies of the discrete points of the phase field in théed by very much beyond the time shown in the figure (
double well potential may vary at successive time steps=0.25), the phase-field models both have no problem in
(Whereas the energy of a continuous field is degenerate undeé@ntinuing the simulation to times well beyone 1.
arbitrary translations Therefore the interface is slowed  As anticipated above, we take the point of view that a real
down if the energy of its discretization increases due to mosolid cannot develop exact cusps, because plastic effects
tion and accelerated if it decreases. For a sufficiently smafuch as the generation of dislocations will intervene. These
driving force, the interface may stop moving, i.e., lock into Will relieve stresses and thus prevent infinite densities of the
some favorable position. Apparently, the MG model is more€lastic energy. The phase-field model does the same thing
susceptible to these effects than the KM one. and we shall see below that it does so by introducing a cutoff
The ultimate reason for the different behavior of the twot0 the curvature. More quantitative modeling would require
models is that they are only asymptotically equivalent, i.e.one to explicitly take into account models of nonlinear elas-
they describe the same system only in the ligit0*. For ticity or plasticity, which is beyond the scope of this article.
any finite e, the equations obeyed by the phase field and thélevertheless, as we can see from Fig. 3, the behavior far
displacements are not the same in the two models. One cdfPm the sharp tip of the groove is described reasonably well
observe this directly by comparing the different terms cony the phase-field model for both values ©find is almost
tributing to, e.g.,0;¢. In the MG model, the termpu;; of mdependen_t of the interface width. Therefore we be||ev¢ th.at
Eq. (29) is frequently the largest interface term affecting the phase-field approach correctly reproduces the qualitative
d,¢, whereas this term is equal to zero in the KM modeLbeha\/_lo_r of a situation in which plastic effects occur only in
Moreover, the sum of all terms multiplyinig/ () is not the ~ the minima of the grooves. o _
same in both equations. _ Results obta!ned under this hypothesis will be discussed
The difference can also be seen in comparing a numericalh the next section.
simulation of the sharp-interface modd)),(2) itself, using
an integral equation approach, with the phase-field models.
We will report on details of this alternative approach else-
where [29]. Figure 3 shows the interface evolving in the ~ When simulating periodic structures, one realizes that for
phase-field calculation for two different valueseodnd com-  small supercritical stresses, where the system takes a long
pares them with the sharp-interface result starting from théime to develop deep grooves, symmetry breaking often
same initial condition, after the same time interval. takes place with one of the grooves getting ahead of the
Again the KM model fares slightly better in the compari- others. This symmetry breaking must be triggered by nu-
son for the same value &. In the groove, however, both merical noise from roundoff or truncation errors. For high
models deviate from the sharp-interface result but approacstresses, where the system develops grooves reaching the
it more closely for the smaller interface thickness. The sharpsystem bottom within a relatively short lapse of time, this
interface model produces a more strongly pointed groove, adoes not happen. Figure 4 gives an example of a structure

B. Dynamics of extended systems
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FIG. 4. Dynamics foro,=8x10" dynes/cr, e=0.02. MG
model with prestrese,,=8%10* dynes/cr. The fastest-growing FIG. 5. Evolution of interface curvature, corresponding to the
mode is at\;=0.067, the wavelength of the patterniis- % Note interfaces of Fig. 4.
that the two axes are the same scale.

points with the squares of the numerical grid, the discretiza-

grown at about three times the critical stress. The interface iion points were unevenly spacdtivo intersections with

plotted at constant time incrementdt=0.05). A shift in  grid lines parallel to thec andy axes can be arbitrarily close

the chemical potential of the liquid has been made to keepo each other, the next may be as far away/ak). There-

the position of a planar front fixed. fore our curvature results are pretty noisy, even after appli-
The structure remains periodic in the time interval consid-cation of a smoothing procedure. Nevertheless, they clearly

ered and three equally deep grooves evolve. Note the pecindicate the approximate constancy of the curvature in the

liar shape of the cells. From flat tips there emerge slightlygroove tips.

curved slopes on the side of the cells. Then there is a sharp Since we have the stresses at our disposal, too, we can

bend downward into the deep groove. The appearance of thialculate the final velocity of the grooves. Figure 6 gives a

bend renders it plausible that the time of formation of a cusgontour plot of the stresses,,, corresponding to the final

in the sharp-interface description has already passed artiine of the simulation from Fig. 4,=0.45. The interface is

from then on the dynamics should be governed by the curdrawn as a solid line, the contour lines are broken lines in

vature bound. In the final stage of this dynamics all groovedglifferent styles. What we have plotted here is not a general-

move at constant velocity. Figure 5 gives the curvatures oized stress tensor component, as defined by (B¢), but

the interfaces displayed in Fig. 4 and demonstrates that theimply the stress in the solid. Therefore the contour lines for

radius of curvature at the bottom of the grooves remainstresses far in the liquid are meaningl¢ss the dynamic

constant and is close te, which was equal to 0.02 in this equations, they are multiplied by(¢)~0], although they

simulation. become important when entering the interface region. From
The curvature was calculated from the contour line definthe figure, we estimate a maximum valuecqf~2x 10° in

ing the interface position. Since the representation of thishe bottom of the groovéand a similar value is obtained

line (¢=0.5) was constructed by determining its intersectionfrom the corresponding figure far,,). Inserting this, the

300

T - - - - T
I
]
L}
)

250

FIG. 6. Stresses dt=0.45 (lowest curve in

200 Fig. 4). Six contour values are displayed, the se-

b ' quence of line patterns is dashed, dash-dotted,
\ P00, and dotted with an increasing value®f, and an
-51 50 . ¥ increment of 4 10* dynes/cr between succes-

sive curves. To distinguish lines with the same

pattern from each other, the values have been ex-
plicitly marked at those curves where there was

enough room, e.g., for,,=4x 10" dynes/cr.

The lower dash-dotted curve corresponds to the
value of the applied external stress.
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FIG. 7. Dynamical evolution of a perturbed interface &g ! ' ' ' ! ' ! ' '
=1.160, (0,=3x10" dynes/ch, €=0.025, E=3.2x10°
dynes/crl). MG model, no prestress. Time interval between curves
0.25; the final time is 2.5. After an initial phase of acceleration, the
interface slows down and approaches a cycloid-like curve.

x (em)

FIG. 8. Continuation of the evolution from Fig. 7. Initial time
t=2.75, time step\t=0.25, final timet=>5.0. The biggest groove
is still accelerating, while the other even-numbered grooves have a
value of the curvature and the positigrof the groove bot-  youghly constant velocity and seem to decelerate towsds.0.
tom into Eq.(1), we obtain for the velocity ,=—1.6. As-  Odd-numbered grooves retract. They are deepe$t=&75 and
suming that the interface grew at this velocity from the out-have almost closed at=5.0.
set, we obtain for its final position the valde= —0.7. The
data show that it is actually at=—0.72, which is easily close again. This is shown in Fig. 8, displaying the temporal
explicable by the inaccuracy of our estimate of the maximuncontinuation of Fig. 7. In the initial structure of Fig.(&he
stress. From the contour plot we do not obtain more than &olid line that is shallowest in the big grooyethe smaller
rough figure as stresses vary rapidly in the interface regiongrooves are deeper than in the final oftee dashed line
In a straight and narrow crack, the stress scales with thevhich is deepest in the big grooves but shallowest in the
square root of the distance from its tj@3]. Therefore a small ones At the end of the period of time depicted in Fig.
reduction of the tip radius by a factor of 2 will increase both 8, there are three clear survivors and three losers of the com-
the stress term and the curvature term of @9.by a factor  petition.
of 2. As long as the gravity term in Edql) is negligible Finally, as shown in Fig. 9, only one groove survives. Its
(which, incidentally, it is not in the simulation of Fig. 4, its velocity is almost constant over a range of times. Eventually
contribution is about as large as that of the curvature for thét slows down and grows sideways towards the end, which
last curve, this means that the velocity of the groove will may have to do with the fact that it gets too close to the
roughly double where is halved. This trend has been con- bottom of the numerical boxwhich is at{=—1). Also
firmed in the simulations, although the observed ratio isgravity has a decisive decelerating effect here.
slightly smaller than the predicted one, but then our grooves What we observe, then, is a coarsening process that seems
do not yet really have an extremely small width comparedo proceed via imperfect period doubling transitions. Be-
with their length. cause our system has only six grooves, we cannot explicitly
The next three figures show a simulation at a stressee more than the first period doubling here. These transi-
roughly 20% above the critical value. Our numerical boxtions are local in the following sense. Not all grooves sur-
contains six wavelengths of the pattern initially. One of theviving the first period doubling get ahead of the others si-
grooves has, however, been made 2% deeper than its neigmultaneously. Rather what happens is that first the winning
bors. Contrary to the situation in Fig. 4, no prestress wagiroove gets ahead of its nearest neighbors, screening each of
applied, so a planar interface would move downward to ghem off the stress field on one side a little. This causes these
new equilibrium position. This kind of motion is superim-
posed on the shape-changing dynamics and serves nicely i, _— . . : . B
separating the curves on the plot. T~ R
The temporal dynamics can be divided into several stages
At first, the sinusoidal pattern changes its shape in the way —0-20
already discussed by Nozes[21]: the tips become flat and 1
the grooves pointed. After some time, the interface become5€_0,40 N -
similar to a cycloid but with different depths of the grooves. £
Also, the dynamics almost comes to a halt. Below, we shall*
discuss the similarity with a cycloid in more detésee Fig.
10). It holds up tot=2.5 approximately, which is the time of
the lowest curve in Fig. 7. At this point the apparent period- —0.-80
icity of the pattern has doubledOf course, strictly speaking 8
this periodicity has been broken from the outset by our mak-
ing one groove a little deeper. But this was only to avoid its
being broken by numerical noise in an uncontrolled manner,
i.e., to introduce a well-defined perturbatipn. FIG. 9. Continuation of the evolution from Fig. 8. Initial time
The groove that was ahead initially wins the competitiont=5.25, time steg\t=0.25, final timet=28.0. The winning groove
for the elastic field; the losing grooves fall back and evenhas a constant velocity most of the time.

-0.60 — ! -

|
RO Wil el
T

x (em)
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' ' ' ' ' ' ' - ' that we justify later. The evaluation of the nondimensional

0.00 -
/é\ i . \ s I velocity via Eq.(34) for the double cycloid yields, in the
S _o.10 B bottoms of the groovelsee Appendix C, Eq(C31)]
N - L

I T I T I T I T I ; - _ 1

0 L 2 3 4 " 2[1-k(A(—1)™+2B)]?

X (cm)
1+ Bk -\
FIG. 10. Comparison of the interface a2 from Fig. 7 X1 | 1+2Bk+ mAk(—l)

(dashed lingwith a double cycloidsolid line).
neighbors to grow more slowly, making them screen off their —ak[A(=1)"+4B](, (42
next neighbors on the other side less. So these get ahead of

their neighbor grooves, and so on. The perturbation made by here=2k/(q; is the ratio of the actual wave number of the
one groove moves through the array in an alternating fashyasic cycloid and the wave number of the fastest-growing
ion. In an _|nf|n|te sy_stem, one com_JId imagine a series ofpnde. The formula with oddn holds for the minima with
near” period doublings propagating through the array. gepth — 2Bk+ Ak, that with evenm for those with depth
These morphology changes are not exact period doubling og— Ak, A condition for the solution to hold is that there
transitions because there is no restabilization of a structurg,e no self-crossings of the curve, therefore we must require
with doubled periodicity. The system remains dynafiat a4 2Bk<1. Let us now assume th&<B, i.e., that the
see the discussion on gravity belowhich means that the pattern actually is a slightly perturbed cyclof@here the
foremost groove does not get slower than its Competitorsyeryyrhation has twice the basic wavelengtrk). Then the
which would be necessary for length adjustment. denominator in Eq(42) in front of the braces goes to zero
The first of these period doublings may be discussed angg; eyenm as Bk approaches the value 1. This is the finite-

lytically in some detail. Consider the shape of the interfac_e[ime singularity, already identified by Gaat al. [23]. The

close to the last time of Fig. 7. It can be modeled approx"velocity goes to—, if the braces remain positive, which
mately by a curve that we would like to call a

o ) ) “‘?‘0“*?'6 cy- they do for small enoughr, i.e., when the wavelength is
cloid.” A parameter representation of this curve is given by|arge enough. For smal, we can expand Eq42). This

x=§&—Asinké—B sin 2ké, (40) gives

z=—Acoské—B cos Xé. (41 Do=— ! |(1—23k)2+4(1—a)
2[1-k(A(—1)™+2B)]?

(1+Bk)(1+2BKk)
1-Bk B

Figure 10 compares a double cycloid with the interface at
t=2. The wave numberkR (=9.425) is given by the basic X Bk+Ak(—1)™ 2
periodicity of the initial interfacebefore it is perturbexl the
amplitudesA and B have been fitted “by eye” and the
double cycloid has been shifted using translational invari-@ formula that shows that the marginal valuesofs 1. Thus
ance in thex direction.(Its position in thez direction can also  for wavelengths larger than that corresponding to the fastest-
be adjusted, which corresponds to a particular choice of thgrowing mode ¢~1), the velocity will diverge in the deep-
initial chemical potential of the liquid. est minima, leading to cusps in the sharp-interface limit. We

Since we made only one of the grooves deeper than theould leave the gravity term out of this consideration because
others, the agreement of the groove minima is not quite peiit never diverges for finite.
fect, as we can adjust only the depths of this groove and its Now assuming we are at or slightly above the wavelength
nearest neighbors by an appropriate choice of the two pospf the fastest-growing mode, we can see from &®) that
tive constantsA andB. Had we taken an initial perturbation for (1—2Bk)2<Ak the velocity ispositivein the secondary
of periodicity length 2r/k instead of a local one in the simu- minima corresponding to odeah [31]. This meangesolidifi-
lation, a much better agreement would have been obtaineg@ation and closure of the corresponding grooves.

The purpose of this comparison, however, is not to claim that Suppose for a moment that=0. Then the system with a
the interface shape goes precisely to a double cycloid bwgharp interface will evolve towards a cusped cycloid, i.e.,
only to show that it may be well-approximated by such a2Bk will increase towards 1. But this means that eventually
curve, which can be considered a cycléidth amplitudeB) a point will be reached where-12Bk is small enough that
modified by a small perturbation of twice its wavelength. Inany perturbation will be larger than (12Bk)?. In this case,
our fit shown in Fig. 10 we havA~B/10. our equations state thafor 1— a<1) the tip perturbed in

Our key observation is then that we can solve the sharpthis way in the right directior(i.e., the perturbation must
interface elastic problem for a double cycloid exactly in anreduce the depth of the groowsill recede again, its velocity
extension of the work of Gaet al. [23], using a conformal will become positive. A groove tip that is perturbed in the
mapping technique. This solution is given in Appendix C. Inother direction will approach the cusp singularity even faster
what follows, we will neglect the gravity term, a procedure and reduce the speed of its neighbors. Of course, not all

o

] . (43
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perturbations are periodic; what happens when only a loca - PN T S T S R
perturbation is applied can be seen from the simulation. 0.00
What the analytic calculation shows, then, is that the first
period-doubling bifurcation appears before the cusp singular-—-0.20 —
ity is reached if the periodicity of the system is equal to the © _
wavelength of the fastest-growing mode. Whereas the bifur-\JfOAO |
cation to a set of alternatingly receding and advancing
grooves may happen for any wavelength larger than this one
whether it will happen before or after the predictable time of —0.60
cusp formation depends on the strength of the perturbation: 0 1 =2 3 4 5 6 7 8
present in the system. In the simulation of Figs. 7-9, the
periodicity of the unperturbed system s and the wave-
length of the fastest-growing mode is 0.5. FIG. 11. Evolution of a random interfaceoy,=3.5

Ordinarily, the time when the finite-time singularity ap- x10* dynes/cr, e=0.05. Periodic boundary conditions, i.e., MG
pears in the sharp-interface system will be too short for thenodel. O<t<11.6 andAt=0.4.
losing grooves to have appreciably retracted. In our phase-
field model, there are no finite-time singularities, so the evothe first stops, it will not reverse its growth direction, but
lution can continue. It is then highly plausible that further only grow to a point where its velocity becomes zero.
period doublings occur, even though we have no analytic An example, where the final state actually consists of two
model for these. But on general grounds, we expect screegrooves, is shown in Fig. 12. Here the applied stress is
ing of neighboring grooves to become more effective as alsmaller than in Fig. 11, so the pattern does come to a halt
grooves get deeper. Hence the process should repeat, evenwdthin the numerical box, after a long time~60). Note
wavelengths far from, but abovi; . that during most of the period where two grooves are domi-

The difference between the cases of a wavelength close tant, one of them is ahead. Once it stops, the second ap-
that of the fastest-growing mode and one far above it is thaproaches and in the end it has the same length as the first, to
in the former case, thérst period doubling will happeibe-  numerical accuracy. In the case of two periodically repeated
fore the timet*, at which cusps form in the sharp-interface grooves, this is to be expected for symmetry reasons. With
limit, whereas in the latter case, it will happen afterwards.three or more grooves, it is also conceivable that not all of
This case is, in fact, realized in Fig. 4, where the wavelengtiihem are the same length in the steady state.
of the fastest-growing mode is about one tenth of the peri- We think that in the absence of gravity, the situation in
odicity length. From Fig. 6, we can infer that the transla-this strongly nonlinear region is very similar to the evolution
tional symmetry with respect to the basic wavelength 2 of a Saffmann—Taylor finger in a Laplacian field. The Lame
has already been broken by numerical ndibe stress pat- equations determining the displacement field are scale invari-
tern does not show this periodicity in the upper half of theant just as the Laplace equatifand in fact, Eq(34) is scale
picture, this symmetry breaking will slowly propagate into invariant for I,=%«]. Once a strongly nonlinear state has
the lower half where everything still appears periodic been reached, none of the length scales discussed in Sec. Il

Another interesting conclusion from formu(d2) is that  can play a role anymore, since they only govern the local
for a>1, i.e., for systems with small enough wavelength,behavior of the growth pattern. The long-range elastic field
stable steady states may be possible, because then surfagd determine the factow;— o, of the destabilizing term
tension may succeed in overwhelming the effects of stressn Eq. (34) and this factor will be the larger, the fewer com-
For @>1 andA=0, the formula predicts that a cycloid be- petitors of a groove have grown to the same depth. This will
comes stationary in its minima before the appearance of
cusps. We hope to report on this aspect in the future.

Finally, let us have a look at a system with a random
initial condition. Figure 11 shows the evolution starting from
an interface resulting from uniformly random perturbations /g—o.zo _
of a planar front. We see that first some ten waves develop &
which is already a coarsened structure, as the wave numbe,_. ]
of the fastest-growing linear mode would correspond to
about 24 waves fitting into the system. However, the initial ‘
amplitude is too small for this wavelength to become clearly _ ‘ ' L
visible. Some time later, there are much fewer features anc
eventually, only two grooves remain.

Whether one of the two will die off in the end is not clear,
since this is a simulation with gravity. Hence the largest FiG. 12. Evolution of a random interface with periodic bound-
groove is bound to stop at some time, because the stress agff  conditions. o,=2.8x10* dynes/crd, €=0.035, O0<t
curvature terms remain constant once all other grooves are€80.0 andAt=0.8. The final interface has only two grooves and
sufficiently small, but the gravity term continues to increaseno further substructure. It is symmetric with respect to two symme-
If the second-largest groove still has a positive velocity whertry axes at the two central positions between the two grooves.

—-0.40 —
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lead to smaller grooves not growing anymore. This situatiorspace conceptin this context, it is also important to realize
bears strong similarities to the growth of thermal cracks dethat the validity of the simulations ifil6] is restricted to
scribed in[32]. The main difference is that there, a loser in small values ofu/K with the parameter), (see Appendix B
the competition will simply stop growing. In our case, it will being O(1), hence these simulations are quantitative only
even shrink again, for the crystal cannot only melt but alsdor external stresses,=0O(u). For these stresses, the state
freeze again, and whether it will do so is simply determineddescribable as a forest of needles is only obtained after a
by the chemical potential differen¢&q. (1)]. long time[of order (K/ux)*]. Therefore the scaling exponents
An analogous behavior is found in the side branching acobtained in[16] might not be relevant to the scenario dis-
tivity of a dendrite in the region about 2050 tip radii behind cussed here, which makes an analytic treatment along the
the tip[33,34). There coarsening is observed, too, which alsdines of [35] even more desirable, because it could provide
proceeds via imperfect period doubling. If this dynamics carthese exponents.
be described in terms of a series of nonequilibrium phase In an infinite system what we have depicted here is prob-
transitions at all, these would have to be considered firstably just the continuation of the coarsening scenario de-
order transitions because of the discussed locality aspectcribed in[16].

There is no diverging length scale in a single transition. It should also be pointed out that for sufficiently wide
We expect that the dynamics of large systems can be déystems, i.e., in particular for infinite ones, this dynamics
scribed by scaling laws similar to those given previously formay be an intermediate state only. Once a groove becomes
the growth of needles in a Laplacian figl8b]. The fact that  sufficiently long, stresses along its side may become large

“needles” can shrink again in the elastic problem shouldeénough to provoke a Grinfeld instability of the “side walls”
modify the long-time behavior of the needle density, whichof this crack-like structure, as has been shown by Brener and
must pass through a maximum and then go to zero as Mlarchenko[37]. Whether or not this happens, depends on
function of time, for any needle length. how efficiently the stresses are relaxed along the grooves, on
To some extent, this expectation is supported by thdéhe speed of the grooves, on the perturbation amplitude, etc.
coarsening scenario described 6] in which extended sys- This secondary instability might completely change the scal-
tems without gravity are studied using random initial condi-ing behavior, possibly leading to tip splitting of the grooves
tions. They measured the Fourier transform of the height-and tree-like structures. So far, we have not seen anything of
height correlation functiors(q,t) and observed dynamical this kind in our simulations.
scaling. For early times, they observed a strong similarity In a system of finite lateral exteor periodicity), coars-
between this behavior and early-stage soinodal decomposgning will in the absence of gravity generally lead to the
tion in long-range systems. For later times, when the lineaglisappearance of all grooves except one which will grow at
theory no longer describes the data, coarsening is evidengonstant velocity. If gravity is present, several grooves can
The location of the peakj,ax Of S(g,t) moves to smaller survive and in a sufficiently deep system they will stop once
wave numbers as the peak height increases and sharpetfigy reach a depth where the gravity term compensates the
The peak height followsS((maxt)~t**:, where a~2,  stress one.
while the peak width sharpens with time as-t~ 7, where
y=~0.5. The former dependence is due to the total interface
length increasing linearly with time for any unstable wave
number. The latter dependence is due to competitive order- In this article, we have constructed a class of phase-field
ing between different wave numbers, analogous to phase omodels from a free-energy functional including the elastic
dering. Within the accuracy of their study, they find that theenergy density. A salient feature of the model is that the
structure factor shows scale invarianc®(q,t)/S(Amax.t) liquid is treated as a shear-free solid, which is to be con-
=S*(g*), where the scaled wave numbeg*=(q trasted with phase-field models taking into account hydrody-
—Oma/W. Fitting to S*~(g*)? and S*~(1/q*)¥, for  namic effects in solidification, where the solid is usually
small and largeg*, respectively, give$~1—-2 and¢~5  treated as a liquid of infinite viscosity36]. Our approach
—6. implies the artificial introduction of coherence conditions at
It is, however, difficult to assess to which time regimesthe interface which is, however, counterbalanced by the fact
these results correspond when compared with the presetitat the only relevant elastic variable in the liquidVisl. A
simulations, because the freedom to rescale parameters hakole class of models is obtained instead of a single one as
been used extensively [ 6]. Since the vanishing of grooves a consequence of the freedom of choice for the state of ref-
does not seem to be a dominant mechanism of coarsening @rence used in measuring displacements. We compared the
their simulations, it is likely that the time windows consid- two most natural choices and found them to yield slightly
ered in[16] and here have little overlap and that the stage oflifferent numerical results despite their asymptotic equiva-
needle-like growth of the grooves is never reachefil®]. lence.
Of course, the concept of short and long times is ambiguous Having investigated a large number of laterally small and
in the absence of gravity due to the scale invariance of Egextended systems, we are able to describe the generic dy-
(34) for I,=». However, one can compare the depths ofnamic behavior. For systems smaller than the wavelength of
grooves with their lateral distances to decide whether growtlthe fastest-growing mode of linear stability theory but larger
is best described as a competition of wave numl@rBou- than that of the marginal modghere surface tension stabi-
rier space concepbr as a competition of needlda real- lizes the planar interfage stable steady-state strucures are

IV. CONCLUSIONS
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possible even in the sharp-interface limit. This is similar tofact that now we have length scales in E®4). More
the findings by Spencer and Meird22] for the case of simple-mindedly we can immediately see that once the big-
transport via surface diffusion, even though we think thegest groove stops, the second-largest will not retract if it still
whole picture is more complex than what they describechas a downward velocity at that moment. Once the second
[38]. Here we did not show detailed results on small systemstops, we can repeat the argument for the third, and so on.
but focused on extended systems. The final state will consist of a number of grooves, probably
The casewithout gravity is particularly simple, as the of different lengths and disordered. In laterally infinite sys-
equation of motion can then be made parameterffeg  tems, it seems likely that a scaling state will prevail, possibly
(34) without the last terrh Initially, an interface may grow with a modified scaling exponent. Because now both stresses
periodically but as soon as perturbations break the periodicat the tips of the largest grooves and the gravity terms con-
ity, coarsening will proceed via approximate period doublingtinue to grow, but they will both grow linearly with the
transitions. Supposing randomized perturbations, the inteflength of the grooves. If initially the stress was large enough
face will, after a sufficient lapse of time, not look much tg overcompensate the gravity term, it will presumably stay
different from one started with random initial conditions |ike that. It is, however, not excluded that starting from spe-

(compare Figs. 9 and 11If the system is of finite lateral  ific injtial conditions a system can be stabilized by gravity
extent(but infinitely deep, only a single groove will survive ;1 the end.

growing at constant velocity, determined by the final con-
stant stress and constant surface tension terms near its tip.
The final velocity will scale with the system widthand the
radius of curvature asv,~L/e. All the other grooves will
eventually retract, i.e., they will not even survive keeping a _ )
finite depth, which is different from the behavior of cracks  This work was supported by _the German Research Soci-
[32]. For wide systems, stresses near the groove tips ma§ty (Deutsche Forschungsgemeinschafider Grant No. Ka
become large enough to trigger a secondary instat[mw 672/4-2, which is gratefully acknowledged. Moreover, we
which would considerably modify the system behavior andacknowledge a PROCOPE grant for travel exchanges by the
allow the appearance of complex crack morphologies. It isSPAAD (German academic exchange seryic&rant No.
however, possible that this will arise only in the case of finite9619897, and the APAPEorresponding French organiza-
perturbations, as grooves may grow too fast in this situatiorion), Grant No. 97176, as well as financial support by the
for the instability to develop before it is “advectedtelative =~ TMR network “Pattern formation, noise and spatio-temporal
to the groove tipinto a region of very small stresses along chaos in complex systems.”

the groove. If the system is laterally infinite, its state will first

follow dynamical scaling as studied ji16] and should then

cross over to the scaling dynamics described here with the

number of grooves co_ntinually_ de_creasing faccording to a APPENDIX A: DERIVATION

power law, possm_ly with Iog.arlthm|c corrgctlons._AIte.rna— OF THE SHARP-INTERFACE LIMIT

tively, the coarsening scenarios observedlifi] and in this
article might be governed by the same scaling laws, with

their difference being only apparent. The emphasi$16] elves to the two-dimensional case as we did in discussing

was on the scaling laws governing coarsening, that of th harp-interf tiohshere w d onlv two str
present study is on thmechanisnof coarsening. Obviously, € sharp-intertace equationshere we used only two Stress
components and only one curvatur&he generalization to

this situation calls for large-scale simulations in order to de-

termine the scaling exponents in cases where the mechanis@ree dimensions is, however, §tra|ghtforward. We may use
presented here is definitely at work already. gs. (29 and(32) asouter equations, to be used in the re-

If the mentioned secondary instabilifg7] becomes im- gions where the gradient of the phase field is small. For

portant, the identified state of competing grooves will petONVenience we s, =0.

only of intermediate nature. Of course, all our considerationsé s-l;gn?bct)?l(grmimgr?e:) egtljjrz\i/till?nnesa'lrWfogr?jri]r?:t)é? (t:%rgol\?iﬁal
hold only as long as linear elasticity remains valid in the y 9 9

bulk, nonlinear elastic effects may alter the scenario. with the interface, with one coordinate axis paralleMe;

With gravityincluded(which was not considered [i16]), the corresponding coordinate will be calledwhile the sec-

there are some modifications. First, it is now possible for aond will be conveniently expressed by the arclengtiong

planar interface to be stablapart from a vertical transla- the~interface[39]. We introduce a stretched variable letting
tion). Once the threshold of the instability has been ex = e€p. Itis then easy to see that a distinguished limit of Eq.
ceeded, the behavior will be similar to the case without grav{29), leading to a nontrivial inner equation that allows one to
ity. However, we predict that it is possible for several satisfy the boundary conditions, is obtained by setting
grooves to survive in a finite system and that they will even-=¢€. In saying this, we have assumed that the stresses and
tually stop growing because the stress does not increase bgtrains behave properly under rescaling, i.e., do not diverge.
yond a certain magnitude due to the lateral system widthDesignating by capital letters the values of the fields in the
whereas the gravity term increases as long as a groove gatmer domainwhere the gradient of the phase field is Igrge
deeper. That several grooves may survive has to do with thee then have the inner equations
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v Y 1 2 K 2 1 2
_;(9P(I)=,E ?(9’7(1)4- ;ﬁpq)—f'é’sq)—? 29 (D)
. 5,
+3_‘}/h (P) /_LUijUij+TUii+ApUii
+AW+Apgz ] , (A1)

0= %apipp+as§ps+ k(S ,,—3s9, (A2)

O=E%iw+%iﬁ+ﬂiﬁ+iwx (A3)
where

S ap=h(®)3 (5= (1—h(D))PS,p (A4)

is the generalized stress tensor of the two-phase system.
order to obtain Eqs(A1)—(A3), we have used

\Y

1
= —nd,+tds, (A5)

2.1

v
&2

2, K 2
Iyt <+ s, (AB)
valid at p=0 (and to leading and following order ia for
p#0, too. Derivatives such ag,u, can then be expressed in
invariant form ase(e/V)u, which leads to the following

relations for the strain tensor components in the new coordi-

nates:
1
Upp=23,U,, (A7)
Uss=dsUst kU, (A8)
1 1
Ups=Us, =5 95U, + —d,Us—xUs ). (A9)

The next step consists in solving the outer and inner equa-
tions via an asymptotic analysis that leads to a globally valid

approximation for small interface thicknegsapproaching
the sharp-interface equations @as:0*. To this end we ex-
pand both outer and inner fields in powerseof

P(X,Z2,t)=po(X,Z2,t) + €d1(X,2,t)+---,  (AL10)
uij(x,.z,) =uP(x,z,) + eufP(x,z,)+ -, (ALl)
and
P(X,2,t)=D(p,s,t)=Do(p,s,1) + €Py(p,S,t)+ - -,
(A12)

uij(xvzrt): Uij(pysat):Ui(jO)(pvsrt)+ EUi(jl)(PyS,t)+ Tty
(A13)
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where, due to the transformation properties of tensors, we
can think of the subscripts, j as running either over the
values §,z) or (r,s) and (p,s), respectively. Our basic field
equations are, however, equations not for the strains but for
the displacement fields. Thus the expansion ofuhép,s,t)
induces one for the displacement components:

ur=U,(p,s)=UP(p,s,)+eUP(p,st)+- -,
(A14)

us=Uq(p,s.)=UP(p,5,t) + eUP(p,s,t) + - - -.
(A15)

Now the physical requirement that both and ug remain
finite in the limit e—~0" allows us to conclude from Egs.
(A7) and (A9) that neitherU!® nor U{”) can depend om,
hence

U@=uO(s,), (A16)

0)_1(0
In u@=u0s,t). (AL7)
Furthermore, we have matching conditions forka
<e ! that can be obtained from the inner and outer expan-
sions by equating equal powersofand taking into account

that the variable is itself e dependent

(Do(p,s,t)~¢o(r,s,t)|r:io, p;»ioo, (A]-S)
®l(pislt)~[¢l(risit)+p‘9r¢0(rvsit)]|r:i0! pﬁim;
(A19)

UQp.s.)~u(rs.)li=x0, p—ro, (A20)

where we use the- symbol in the sense of asymptotic
equality, ie., f(x)~g(x), x—Xy Iis equivalent to
Iimx_,xof(x)/g(x)zl, and for two series iK—xy we re-
quire this relation for each corresponding pair of terms.

The relations induced by E§A20) for the displacements
are more complicated. We just give two examples. Because
each derivative with respect to comes with a factor ¥
when transformed into a derivative with respectptp we
haveU{?)=a,U(Y and hence

Ilm aprjl)(plslt) = &I’UEO)(r vslt)ll’:io "

p—Ex

(A21)

Our second example is even more instructive. We write

lim UQ(p,s,t)= lim [0 (s,t)+ kU (s,1)]

p— e p— e

=a U (s,t) + kUP(s 1)
=[aeu(r,s,t) + ku(r, 5,01, - 0,
(A22)

which shows that the linear combinatiaf”’ + xu{® must be
continuous across the interface.

Finally, we need the expansions of all functions¢fin
powers ofe, e.g.:
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h(¢)=h(¢o) + eh’(po) b1 This equation can be solved by standard methods. Multiply-
L ing by d,®,, we immediately obtain a first integral, written
, " down here for further reference,
+ €’ ' (¢o) g2 +5h"(do) b1 |+, (A23)

3, Po=—20y(1—Dy)=— 3 hy, (A32)
and we will use the obvious abbreviatiohg, h}, etc., for o ol o) °0
_functions of . Let us note a few useful relations in pass- hich is solved by®,=%(1—tanhp), and this solution sat-
Ing. isfies the matching condition@18).
, From the strain equationgA2) and (A3) we obtain to
h'(¢)=64(1-¢), (A24) | owest order | »2 "

1 2 -
g<¢>=¢2<1—¢)2=(5h'<¢>> . (A2 725 =0, (A33)
, 1 3,29=0, (A34)

9'(#)=2¢(1~¢)(1-2¢)= 75" ()" (),

(A26) which on integr_a.tion fronp =—2top=o together with the
matching conditiongA20) yields

We have now collected all the prerequisites to perform

the asymptotic analysis providing the sharp-interface limit. g§9)|r20_:isz))(—oc)zigz))(oo): —P=—py,

First, we note that the outer solution to lowest orfiar (A35)
der e 2 of Eq. (29)] is simply given byg’(¢)=0, which
yields the solutions¢y=0, ¢o=1, and ¢o=35 [see Eq. U(S?)hzo—=E§g)(—°°)=2(sg)(°°)=0- (A36)

(A26)]. The last of these is unstable and also not compatible

with the boundary conditions in typical numerical setups. We Lo < (0) <(0)

assumeg,=0 for r>0, corresponding to the liquid phase, '€ limiting values of% ;7 and .5’ can be gathered from
and¢,=1 forr<0, corresponding to the solid phase. Equa-E_q_- (A4). Obwou_sly, thes_e_ tv_vo equatlons constltute)the con-
tion (A24) tells us thah’ () =0, and hence these solutions dition of mechanical equilibrium at the mterface,@@ and

are valid at all orders of. Usingh(¢o) =0 in the liquid and 0'5,) are the normal and shear components of the stress tensor
h(¢o)=1 in the solid, we immediately see that E@2  ©f the outer solution there. _ _ _
turns into the mechanical equilibrium condition for the liquid ~ However, the strain equations provide more information

and solid, respectively: than just mechanical equilibrium on the outer scale. We
write Eq. (A33) explicitly in terms of the strains and inte-
dip=0 (liquid), (A27) grate indefinitely with respect tp, which yields
djoij=0 (solid). (A28) hol (2u+A=N)UQD+ (A =X)UD+Ap]
This is again true at all orders @&f and we can write the +NUQ+UD)=1(s,t), (A37)
zeroth-order piece of the result in the form: e
©) ~ (0) where f(s,t) is a function of integration, to be determined
P =Poi — AUk’ = Po=CONSt, (A29)  from the matching conditions. This is straightforward and
) ) ©) yields f(s,t)=pg —po- Moreover, we know that the only
oi =~ PosSij + 2pUjj + AU 5 - (A30)  spatial dependence &f(? is that ons [see Eqs(A22) and

. . _ A17)], which suggests to solve fas®) in terms ofU{?.
Later, we will look at two reference states in particular. Onegl-he Pesult is g P ss

is the “natural” choicepys= Py, i.€., the unstrained state is
hydrostatic and corresponds to the same pressure in the lig-

uid and in the solid. If moreover, this pressure is chosen U@ — {Apho+ Po—Pol

equal to the equilibrium pressum, then we havaiY=0 PP (2utN=N)hg+X o e o

in the liquid at equilibrium. The second choice corresponds _ _

to assuming a finite differenc&p= pg — Pos While keeping +[X+ (A =X)hoJULD}. (A38)

Po=Po- This means that zero strain corresponds to a pre-
stressed solid, with a stress tensgr=—p,d;;+Apd;, i.e.,  The advantage of this equation is that it provides us with the

the deviation from equilibrium is the isotropic tensbps;; . full p dependence oB?), allowing the explicit evaluation
Both approaches can be exploited numerically. of integrals orp containing the strains. An analogous proce-
We now consider the inner solution. The lowest order ofdure for the second strain equation determihlé%) to be
Eqg. (Al) gives equal to zero.
5 Now we proceed to the next-order equation dor Writ-
95Po—2g' (Pg)=0. (A31)  ten out explicitly, it reads
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_Ué’pq)oz

y 4
= &iCDl"_KO"pq)O_Zqu)l

p[U02+ U2+ —— M

(U(0)+ U(O))Z

+Ap(UD+ ug‘;>)+Aw+Apgz(s))],
(A39)
where we have used?)=0. With the help of Eqs(A24)

and (A32), we can arrange this as

h!

Ld, == {kv+y;<+u[u(°)2+u(°)2]
A—X (0) 4 {1(012 (0)4 (0
+T(UPP+USS) +Ap(US)+ULY)

(A40)

PHYSICAL REVIEW &3 036117

|1=—f_m dphgd,do=1 (A44)
f dpUDhja,d, (A45)
l3=— J dpUD2hga, ;. (A46)

The evaluation of the latter two integrals is as straightfor-
ward as that of the first, although a little more tedious. We
just give the final result for the solvability condition, taking
Poi = Po for simplicity:

o= i (0)
kv=vyk+Apgz+ 2(,LL+)\)(2,LL+)\)[2(M+)\)USS
2pt+N

+Ap]?— (A47)

_rTA 2
8u(ut+n)

At this point we may specify our choice of reference state

+AW+APQZ(S)}’ for the solid. First, let us assume that the unstrained state

corresponds to a state of equal hydrodynamic pressure in the
with L=¢2 —Zg0 being a self-adjoint linear operator. The two phases, i.epgs=pPg , Or Ap=0. This is the KM choice.
solvab|llty condition for this inhomogeneous linear equationThen taking the limitp— —« of Eq. (A38) we get @J(O)
is that the right-hand side be orthogonal to the left-sided nuli=ul?)
eigenspace of. Sincel is Hermitean, we know that the

translational mode @, is an appropriate eigenvector:

»Po pprop g O N (A48)
9,PoL=L3,Py=0. (A41)

implying 09— =24 (uQ-u®)=4u(u+N)uQ/(2u

Multiplying Eq. (A40) by 3yd,®, from the left and integrat- +\), from which we obtain

ing on p, we find

o- |

A—X
+ 5 (U U2+ Ap(UD+UQ)

2t )\)( al— o), (A49)

~ uSS Al XN
dp|kv+‘yK+,u[UE)%)2+Ug%)2] Au(ptr
where we have now switched to the conventional notation
for the principal components of the stress tensor in the nor-
mal and tangential directionsr{, = o, 0ss= 0y). Finally,
expressing the Lameonstants by Young’'s modulus and the

Poisson ratio, we arrive at
+AW+Apgz(s) (hyd, . (A42)
1(1-v
=—= O — )2 521+ yr+ Apgz
Now we can exploit Eq(A38), telling us that thep de- v k|l 2E [(U )"~ 000l Tyt ApgZy,

pendence of the braces in EGA42) is fully contained in
their dependence ohg. All the integrals can be done ana-
lytically, using

(A50)

which is the desired sharp-interface limitn Egs. (1) and
(2), 000=0.]

A remark is in order here. The phase-field equations im-
ply the continuity ofu(o) across the interface. As this quan-
tity is obviously nonzero whenever the solid is strained, this
means that we will not have!?=0 in the liquid. However,
we will still have u®+u{®=0, i.e., the divergence of the
displacement vector vanishes in the liquid. But this is all that
matters, because it is only this quantity that enters the de-
scription of the liquid.

The reason fouQ+0 in the liquid is that the phase-field
description imposesoherenceof the strain across the inter-

0
- fl dDof (Do)’ (Do)

f:dhf(h). (A43)

Integrals that appear in E¢A42) are
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face, which ultimately goes back to our viewing the liquid asbility [where @{*’— ¢{%)? increases in the grooves and di-
a(shear-free, but nonethelgs®lid. For a true liquid in con-  minishes on the peaksHence once again we are obliged to
tact with a solid there is no such coherence condition as it isnake use of the additional degree of freedom of the fields
free to slip on the solid surface. Therefore it could alwaysinside the liquid, even though now we can imposg()
keep its strain tensor isotropid such a notion made much :ugg)zo in the liquid as an initial conditioand as a far-
sense at all for a liquid The reason why we can neverthelessfie|d houndary condition because this satisfies the periodic-
modelthe liquid as a solid is the additional degree of free-jty requirement.
dom that arises in the description of a liquid by having two
fieldsu, andu, at our disposal even though only their com-
binationVu enters the free-energy expression. Therefore we
can compensate, so to speak, for imposimonphysical co-
herence by allowingequally nonphysicalanisotropic strain The main difference between the form of the MG model
in the liquid. given in[16] and the one given here is a different choice of
At this point we may also note that if we were to model the functionsg(¢#) andh(¢). To make this conspicuous, we

the elastic properties of two real solids by the current phaseyij| rename their original functions tg(¢) andh(¢) [since
field approach, we would necessarily impose coherence ghe second function was callg¢) in [16], our renaming is
the interface. The treatment of noncoherent solid—solid intery|so yseful to avoid unnecessary confusion hevge shall
faces via phase fields would require some rethinking of thgeaye the gravity and shift ternfg,,, and f, out of the con-

method. _ _ sideration, since they were not used by MG.
Concerning computational purposes, one disadvantage of Thejr double well potential is defined as

the chosen reference state is that it is not very well-suited for

the use of periodic boundary conditions, meaning periodi- 1.

cally varying stresses and strains. The field equations are set fa(¢)=Z0(¢), (B1)

up in terms of the displacements which acquire linearly in-

creasing or decreasing components in directions where tr\ﬁith F() = %(1— $2)2, which is a sixth-order polynomial
strain has a nonzero average. This observation motivates tié%d actually has a third'minimum dt= — 1. The latter does
consideration of a different reference state in the solid, ir]”not however, play any role in the dynémics provided no
which the average strain d_ue to the exte_rnal stress is Su?fegiativeqs va,lues are given in the initial conditiora is a
tracted. This is the MG .ch0|c€5ee. Append|x B If we im- constant to be identified via the sharp-interface limit.

pose a constant stress in the x direction, the stress tensor Second, there is an elastic contribution to the free energy

APPENDIX B: MAPPING OF THE MU LLER —~GRANT
MODEL TO THE PRESENT FORMULATION

in the solid is aj;= —pgdij + 0¢di191; and requiringu,y ; ;
=0, we find that this is achieved by setting which they give as
1 S 2
2u+X\ Ny == W2+ % Ly,
Ap: 'L; 0p- (A51) fel(¢'{u|]}) ZK(V u) +Iu‘; (ulj d V u) ’
# (B2)

The corresponding homogeneous strain tensor is given by i ~ )
Uu=0, u,=0, andu,,=—Ap/(2x+\). We then obtain whereK is the bulk modulus ang the shear modulus which

taking the limitp— — o of Eq. (A38) is ¢ dependent:
o ~Ap—au® w=pih(e). (B3)
U, :2,u—+)\ (A52)

The convenient choice
This can be used to express

h(¢)=3 ¢~ i ¢*, (B4)
(0)_ (0)— (0)_,(0)
o oy /=2u(u uy’)
=0 s T guarantees that both bulk phases keep their equilibrium val-

ues at¢ =0 (liquid) and =1 (solid). This is due to the fact
thath’(0)=h'(1)=0, a propertyh(¢$) shares withh()

_ o o from the KM model(see Sec. Il € Obviously, the true shear
wherefrom we obtain 24+N)ulY+Ap=2u+N) (0l hodulus of thesolid is = 0,R(1)= wy/A.

2u
S 2ut\

[2(p+Muld+Ap],  (AS3)

—o{)/2u, which on insertion in Eq(A47) leads back to For simplicity and since it does not change the behavior
Eq. (A50). qualitatively, the bulk modulus is assumed to be the same in

Note that even here we cannot requir)=u{’=0 in  poth phases. However, this restriction can be easily dropped
the liquid, which would implyu{®=0 at the interface and by replacingK with K =Ko+ K,h(¢).
thus, according to EQ(A38), ul’=—Ap/(2(x+)\)), ie., As reference state they chose a prestressed state of the
uY would be constant along the interface. Then ai$®)  solid with o= oo, in which the strainsi,, andu,, for a flat
—o'® would have to be constant, which would lead to asurface vanish. This entails that the state in which all strains
dynamics entirely different from that of the Grinfeld insta- vanish is a hydrostatic state with a different stress value. It is
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described by MG using a parametgg and[as may be veri- tion to first order in the shear modulus they were able to
fied easily from Eq.B8) below] in this state we haver,, integrate out the elastic fields, so that they were left with an
=0,,= noh(1)=7o/4. As a result, there is a relation be- equation for¢ only. That allowed them to use a pseudospec-
tween the new parameteg, and the external stresg, in the  tral method with which they could study wide periodic sys-

uniaxially stressed reference state tems and three-dimensional systeh6].
Whether this expansion is entirely consistent is an open
~ 8(K+py/4) question, since they consider, an independent parameter
o=, %o (B5) that is O(1), whereas for fixedo, we actually havez,

=0(1/u1), and u4 is the small quantity in the expansion.

The free energy density is then given as the sum obrgpably this does not really matter in the absence of gravity
fa(¢) and fe(4,{u;;) and two additional terms \here the precise value of, is immaterial as it only sets the
(75/2K)h(¢)? and 7oh($)V - u. The first of these terms de- time scale. The problem may be more awkward in the pres-
scribes an energy shift, the second an additional couplingnce of gravity.
between the phase field and the elastic figdeyond that Equations(B7) and (B8) are in a form that allows direct
already implied by thep dependence of the shear modulus comparison with Eqs(29) and (32), respectively. First note
and, possibly, the bulk modulusA nice feature of the ap- that in two dimensionsK =X+ u=\+ /4 and that we

pr(:ach tQ'Vﬁ” in the tp;;:sent paptgr 'Sf th?ﬁ t?estetrt]e;rrt]s alfust sefh =K to have the same elastic constants in the two
automaucally genérate@dy accounting for the tact that In€ g equations. In two dimensions, we haje;

equilibrium state does not have vanishing strain when the o 12 . . .
MqG reference state is used: these are thge terms containir]_g(ﬁ_ij JA)V - u]"=ujju; — 3 Ui (summations over andj are
Po— Pos in Eq. (16) and the corresponding termspu; and  iMplied) and because of —A=— u, we obtain
AW in Eq. (29).

The free energy density is then given by:

A=A, 1 8ij 2
1. . ) - MUijUijJFTUii:ZMl Uij_FV'U , (B9
(¢, uij) = 29(#) + 5. oh(H) "+ moh($)V -u
1 ~ Big |’ - PR e g
+ EK(V.u)2+ ,uz Uij — FV'U . which shows that on replacirty( ¢) with 7h(¢) the term of
ij

Eq. (B7) that is quadratic in the strains becomes equal to the
(B6) corresponding term of Eq29). Common prefactors will be

discussed below. We then see immediately that the choice
The first term is the double well potential. The second and\p= 7y/4 will make the linear terms equal. This choice is
third terms are due to the particular choice of referencehe right one as is revealed by a quick comparison of Eq.
frame, andy, is related to the externally applied stress as(B5) with Eq. (A51), derived in Appendix A. Next we have
described by Eq(B5). Applying the same line of reasoning to compare the constant terms which ay§K and AW.
as in Sec. I C, they obtain a system of coupled partial dif-Here we notice that if16], it was assumed thaby = pg

ferential equations: =0. If we furthermore setro,=0, then we infer from Eq.
; L ) (31) that AW=Ap?/2K=73/32K. Now the ¢-dependent
a—(f= -T gg’(dv)—lzvzm %O'F]((ﬁ)'ﬁ’((j)) factor of 73/K in Eq. (B7) is h(¢)h' () =3d[h(¢)?]/d¢.

We have checked by directly performing the sharp-interface
5 2 limit of the original MG model, that this limit does not
+7oh ($)V-u+ uh' (4) (uij— ﬁv.u) } change wherh(¢)? is replaced withih(¢) (the solid and
1 liquid phase limits are obviously unchangeBoing this re-

(B7) placement first and then substitutifig(¢) for h(¢), we get
identity of the constant terms, too.

and Finally, the prefactors should be discussed. In order to
make the prefactor of the elastic expressions the same in both
ﬂ=i[noﬁ(qS)JrKV-u]JrZMi[F((ﬁ) equations, we must sdt=1/(3ke), which shows that?
IXj  IXi X] =3ye. To determine the factor 4/of the double well po-

g tential in Eq. (B7), one must actually perform the sharp-
ujj — #V ) u) interface limit[because the potential is not the same as in Eq.
(29)], which yieldsa=3€/8y. With these choices, Eq&B7)
-0. (B8) and (29) are asymptotically equivalent.

The comparison of the equations describing mechanical
They show in[40] that the phase field equations of this €quilibrium is even more straightforward. Inserting the ex-
model also converge to the sharp interface equations. BRressions (27) and (28) with pg=0 and pos=—Ap
expanding the solution of the mechanical equilibrium condi-= — 7,/4 into Eq.(32) and using\ =K, we get

1]
X
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1
Ujj — 2Ukk5ij” X(z,2)= [245(2 J¢(Z)d2+z¢ Z)+f lﬂ(Z)dA}
(CH

[h(¢)[ 5Ij+Kukk5IJ+21u

+[1-h(¢) KU where an overbar denotes complex conjugation. In this for-
mula, ¢ and ¢ are the Goursat functions.

From Eg.(C4) we obtain by direct differentiation

d 1
=0 _h(¢)+Kukk +2M& [h(ﬁé)(ulj ukk&]”

X B o
(B10) Oxxt Uyy:VZXZZ[(f”(Z)'*’d’,(Z)]a (CH
which is obviously identical to Eq(B8), once we replace Ty~ Oxxt 2oy =2[2¢"(2) + ' (2)]. (CH
h(¢#)/4 by h(&). The displacements can also be expressed by the Goursat
functions[using Hooke's law and Eq$C5) and (C6)], but
APPENDIX C: ANALYTIC SOLUTION OF THE ELASTIC since we do not need the corresponding relation, we omit it

PROBLEM FOR THE DOUBLE CYCLOID here. -
We have boundary conditions for the stresses on the curve

In this appendixonly), we switch back from our notation given by Eq.(C1), which one could attempt to use directly in
for geometric relations in the plane which was based on &qs.(C5) and(C6) to obtain equations for the Goursat func-
coordinate system spanned by thandz axes(thus remind-  tions. However, since we are going to employ conformal
ing ourselves that in reality we have a three-dimensional sysmapping, it is useful to keep the order of derivatives small,
tem and we suppress deformations in yheirection to the  the analytic evaluation of higher-order derivatives can be
more conventional use ofandy for the planar coordinates. quite cumbersome. Thus it is desirable to reformulate the
This way we “liberate” the symbok for use as a complex boundary conditions in partially integrated form. The force
variable:z=x+iy. (f«.f,) on the boundary can be condensed into a single com-

We wish to solve the elastic problem in a half-infinite plex number
geometry, the top of which is bounded by the double cycloid
given by Eq.(41) with zreplaced byy. In the complex plane, fxtify=oynj+ioyn
this curve is described by — (G 100yt (Fyy— 0Ny, (C7)
z=x+iy=¢—iAe M —iBe K¢ €D where (01.ny) is the normal vector to the boundary. Intro-

ducing the arclengtlk, we have(directings such thats— o

and because the paramefes real, this equation also defines corresponds tot— )
a conformal mapping from theplane to theZ plane, where
{=¢&+17n, mapping the curve(x) to the ¢ axis. . dy . dx .dz

To rephrase the elastic problem in the complex plane, we Mt Iny=—4s'3s " as (C8)
use the Goursat function formalism. Its basic statements can
be easily inferred from the representation of two-dimensionahnd thus
elasticity in terms of a single scalar function, the Airy func-
tion x(x,y). Setting o=dx, oy=dix, and oy 1 dz 1 dz
= —dxdyx, the mechanical eqU|I|brium equatiowso; =0 fxtify=5 (Tt oyy)i qot 5 (oyy= o 2ioyy)i o
are automatically satisfied. Hooke’s law for isotropic bodies
then implies thaty obeys the biharmonic equation:

o e dz o dz
=[¢'(2)+ ' (2)]i go+[26" (D + ¥ (D]igg
V4x=0. (C2
d -
— =i—{d(2)+z¢'(2)+ ¥(2)}. C9
In terms of the complex variablesand z=x—1iy, the La- ds{d)( )28 (@ +y(2) €9
placian become¥?=44,0, [becaused,=d,+ d;, dy=i(d,
—d3) ], hence the most general form of the solution to Eq.
(C2) is given by

Integrating this local relation along the boundary, we obtain

L - - —ifz—iJ(fx+ify)ds:¢(z)+z¢’(z)+z,b(z),

X(va)EX(ZaZ):Zf1(2)+gl(z)+2f2(z)+gz(z)v( ) (C10

C3
which allows one to apply the boundary condition in expres-

where f;, g; (j=1,2) are analytic functions of their argu- sions involving first-order derivatives only.
ments. Since we are looking for real solutions, we can re- We subtract the stress at infinity from oflinear elastic
strict ourselves to two independent complex functions in-equations to be able to work with analytic functions that are
stead of four, i.e., we can write bounded at infinity. Hence we set

036117-24



PHASE-FIELD MODELING OF STRESS-INDUCED.. .. PHYSICAL REVIEW &3 036117

_ (0) =
O'ij—G'ij +005ix5jx (Cll) ~ . ¢’(§)
. Bo(£) +[ ()~ 0(§)]=
and replacer;; with o’ in Eqgs.(C5) and(C6) above. Tak- o' ()
ing the equilibrium pressure in the liquid equal to zero o o -
(which we can do without loss of generalitthe boundary +Tp0(§)= — ?O[w(g)—w(g)] (C19

conditions at the liquid—solid interfacer(jn;=0) become

Ui(-o)nj:—(fo@xnx: (c12  on the real axis §=0) and remaining bounded as
. ——o, w(&) is given by Eq.(C16), hence
translating into

o' (§)=1—Ake ke—2Bke 2ké (C20
. dy . 1
1Eer'fy:UOE:}_'f =5(2=2)0y, (€13 and Eq.(C19 becomes A andB are real
where we have dropped an arbitrary constant of integration. bo(&)—i(Ae ke Be2ké 4 pgke
Before embarking on the actual calculation, we ought to _
ponder one more point. We would like to solve a problem bo(€)

with periodic boundary conditions for strains and stresses in +Be”*) +4o(£)

the x direction. But periodicity of the strains does not imply

periodicity of the displacements nor does it imply periodicity oo ) ) ) .

of the Goursat functions. On the other hand, the use of peri- =i 7(Aef'k§+ Be 2két+ Agké+Be?kE). (C21)
odic functions greatly facilitates the derivation. As noted by

Spencer and Meirof22], we can express the Goursat func-

1— Akdké—2Bkerke

tions by periodic functionss, and i, via Note thatdy(¢) andig(€) are functions that should be ana-
lytically continued to the upper half plane, for if
Z)= Z ~_, TN ~ = . . .
0 L
#(2)=¢o(2), do(0) [Wo(Q)] is analytic in the upper half plane
_ , (C14 B6(2) [¥o(2)] is analytic in the lower half plane which is
W(2) = ho(2) = 2¢ho(2). what we need. The basic idea in constructing the solution is

to divide the terms in Eq(C21) into two groups, one of
which corresponds to functions analytic in the upper half
plane, the other to those analytic in the lower half plane. The
equality between these two groups implies that each of them
—— L — is equal to a constant, which gives us two equations for the

bo(2)+(2=2)¢o(2) + ¥o(2) == 2 (z=2)o0 (C19 5 functions sought. It is clear thabo(&) belongs to the

. - f Eq.(C2)) th lytic in the | half pl
at the interface and remaining bounded for» —~. The terms of Eq.(C21) that are anaiytic In the lower half plane

solution to this problem must be unique apart from possibldon replacement of by ¢) whereasj(£) has to be analytic

The mathematical problem is then to find two periodic
functions¢y and ¢, analytic in the domain occupied by the
solid, satisfying

additive constants to the functio(z) and ¢(z). in the upper half plane. The difficult term is the middle one
We transform to the plane, using the analytic continua- 9" the left hand side as it contains some expressions that are
tion of Eq.(C1) analytic and bounded in the upper half plaesg.,e'¢) but
also some for which this is the case in the lower half plane
z=(—iAe " —iBe Zki= (). (C16  (e.g.,e k). One way to proceed is to expand babh and

) ) ) i o in a series in powers @&~ k¢ (a one-sided Fourier series,
This maps the interface to the real axis and the solid to thgq tg speak to multiply Eq.(C21) by the denominator of the
half plane7<0. To designate functions in theplane, we  mjddle expression, and to separate terms with plus signs and

put a tilde on the letter they have in taeplane: minus signs in the exponents. This gives a two-termed recur-
_ ~ sion for ¢, containing two constants that have to be deter-
bo(2)= do(w(£))= do({), mined from the analyticity properties. As it turns out, the
~ (€19 series for?j;o is finite, only the two first terms are nonzero.
$o(2)=ho({)- This suggests that a close look at EG21) would have
o ) revealed this property, allowing one to avoid the tedious ex-
The derivative of¢, transforms as follows: pansion procedure. Indeed, there is a more elegant way lead-
0 ing to this result. Its discovery is left as an exercise to the
, ~, 4l 9oL astute reader. Here, we simply take
#D=F O ;= (18 i
w ~ . .
do(§)=ase "+ ae ¢ (C22
Our task therefore is to construct two analytic functions
satisfying as an ansatz. Inserting this into EG.21), we get
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ae Kt g e dkEy (peiké L B 2ike Once g, is known, 9y, is obtained from Eq(C23) using
WO Eq. (C24). Since it is not needed in the following, we omit
+ AdKEL B2k a ke +2a,k the result. In the casA=0 or B=0, results for the double
1— Akdké— 2B keAké cycloid reduce to those of Gaet al. [23] for the simple
cycloid (after transforming back to the nonperiodic Goursat

functions.

To compute the tangential stresses on the boundary, we
_ need onlyg,. Since we know the normal stresses to be equal
=—o(§). (C23)  to zero from the boundary condition, we can write,
=tro=0cO+ a'gg,)-f- 0o- We have

i (Ae kit Be 2kt AdkE - BeY)

Since we have jush,(£) on the right-hand side, which must
be analytically continued to the upper half plane and remain 3 —
bc_Jun.ded there, the Ieft-band side m”ust not cqntalr_l, after sub- )4 50— 5 bo(0) N ¢o(0)
stitution of £ for £, any “dangerous” terms diverging ag Oxx T Oyy —w’(g) o0
— o0, Dangerous terms would obviously be the terend<
ande™?%¢ as well as the zeros of the denominator. Now, we o .
have the conditio’Ak+2Bk<1 and we havee'{|<1 for which, when specialized to the boundary, gives us
7n=0. Therefore the denominator is always different from

(C26)

zero in the upper half plane. All we have to do then is to 1+Bk ke ke
choosea; anda, such that the dangerous terms cancel. This . g/ ke "o+2Bke
is straightforward fom,, since there are only two terms con- = " “okE +c.c.
taining e 2k¢, after the prefactor of the second term has 1-Ake ™= —2Bke
been multiplied with the numerator. There remains a term (€27
proportional toe ¢, however, in the numerator, which
must also be canceled by the choiceagf The result is In the grooves of the pattern, we hak&=mm hence
e ké=(—1)M e 2ké=1, from which we obtain the tan-
og. A gential stress as
M=% ' 1 Bk
oo (C29 1+ %;Ak(—l)meZBk
3,=—5"IB. o= . (29

1-Ak(—1)™-2Bk
From this, we immediately gep, as
To obtain the normal velocity in the grooves, we need the
curvature there. The curvature is easily calculated from the
parametric representation of the double cycloid

- A .
¢0(§):?i l_B|<e"k4“+Be‘2'ké”. (C25

_XEY'(H Y (HX(E)
[X'(§)2+y' (6732
k3[A%+8B2+ 6AB coské]— k[ A coské+ 4B cos k¢

= C29
(A%k?+ 4B%k?+ 4ABK coské+ 1—2Ak coské— 4Bk cos xk¢)3? (€29

and its value in the bottom of the grooves is (kés +1)

K?[A(—1)™+4B]
K= — . (C30
[1-Ak(—1)™—2Bk]?

Note that as a cusp is approachdk{2Bk—1), aft and the curvature diverge with the same denominator, for aven
Inserting Eqs(C28 and(C30) into Eq. (34) for the nondimensional normal velocity and neglecting the gravity term we
obtain

2

Bk m 2 m
TrAK= D™ —21 K A(-1)"+4B] |, (C31

~ 1
Un=— { 1+2Bk+
2[1-Ak(—1)"—2BKk]?
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where we have nondimensionalized the curvature via multiplicatioh b$ettinga= 21k, we generate Eq42). Note that
if we consider the amplitudé to be a small perturbation of a cycloid determinedBythe basic wave number ik2 notk.

Then« is just the ratio of the basic wave number and the wave number of the fastest-growing mode.
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