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Noisy random resistor networks: Renormalized field theory for the multifractal moments
of the current distribution
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We study the multifractal moments of the current distribution in randomly diluted resistor networks near the
percolation threshold. When an external current is applied between two termiaats<’ of the network, the
Ith multifractal moment scales zkz%|(')(x,x’)~|x—x’|"’I v wherev is the correlation length exponent of the
isotropic percolation universality class. By applying our concept of master opef&imsphys. Lett51, 539
(2000] we calculate the family of multifractal exponertg,} for =0 to two-loop order. We find that our
result is in good agreement with numerical data for three dimensions.
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I. INTRODUCTION media[5], polymers in disordered medj&], random ferro-
magnets[7], chaotic dissipative systeni8], and heartbeat
Percolation1] is a leading paradigm for disorder. It pro- [9].
vides an intuitively appealing and transparent model of the Due to the multifractality infinitely many exponents are
irregular geometry that occurs in disordered systems. Moreneeded to characterize the current distribution. Consider two
over, it is a prototype of a phase transition. Although perco-connected terminats andx’ of the network. Suppose a cur-
lation represents the simplest model of a disordered systementl is inserted ak and withdrawn ak’. Thelth moment of
it has many applications, e.g., polymerization, porous andhe current distribution, giveapart from technical details,
amorphous materials, thin films, spreading of epidemics, etcf. Sec. Il Q by
In particular the transport properties of percolation clus-
ters have gained a vast amount of interest over recent de- Ml(')(x,x'):<2 i§'> , (1.2)
cades. Random resistor networf®RN’s) are a prominent b c
model for transport on percolation clusters. By means of
RRN’s one can study the conductivity of disordered mediaWhere the sum runs over all current carrying borithe
which might be important for technical applications. Nonlin- backbong (---)c stands for the average over all diluted
ear random resistor networks, for which the voltage drogconfigurations, andy, is an abbreviation fot,/1, scales at
over an individual resistor depends on some power of thériticality as[11]
current flowing through it, can be exploited to derive various
fractal dimensions of percolation clusters. From the concep-

tual point of view, RRN's have the advantage that one canrpe x, constitute an infinite set of exponents which are not
formulate a field theoretic Hamiltonian amenable to renorg|ated to each other in a linear fashion, i.e., the multifractal

malization group analysis. Via RRN's one can learn aboutyoments do not show the usual gap scaling commonly en-
diffusion on disordered substrates, since the diffusion CONgountered in critical phenomena.

stantD and the conductivity®, of the system are related by Each of therl) is associated with a particular subset of

the Einstein relation backbone bonds having its distinct fractal dimension. Let
n(i) be the number of bonds carrying curréntUpon apply-

M (x,x") ~[x—x"| 7. (1.3

s = e’n D (1.1) ing the saddle point method one finds that the main contri-
KgT ™’ ' bution to thelth moment is given by10]
n(ip~|x=x'|'0, (1.4

wheree andn denote the charge and the density of the mo-

bile particles. The connection of the two problems is particuwith the multifractal spectrunf(l) and the multifractal ex-
larly important, since up to date no direct approach to diffu-ponentsx; being related to each other by a Legendre trans-
sion on percolation clusters by means of a dynamic fieldormation.f(l) can be interpreted as the fractal dimension of
theory exists. the subset of bonds dominatimg" .

In this paper we study the distribution of currents in  An elegant approach for studying the multifractal mo-
RRN'’s. The current distribution has many interesting fea-ments is to consider RRN’s with microscopic noise, i.e., ran-
tures, one of which is multifractality2]. This means that the dom networks in which the conductances of the individual
distribution is not controlled by one or two relevant lengthresistors fluctuate about some mean. These noisy RRN’s
scales, but rather by an infinite hierarchy of such lengthwere originally introduced by Rammeat al. [11] to study the
scales. The concept of multifractality was introduced for tur-effects of flicker (1f) noise. Flicker noise refers to the low
bulence3]. It has been applied successfully in diverse areagrequency spectrum of excess voltage fluctuations measured
including diffusion near fractalf4], electrons in disordered when a constant current is applied to a resistor. [Theoise
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cumulantCY(x,x’) of the total resistance between the ter- self-avoiding paths betweex and x’ is referred to as the
minals x and x’ is proportional toM |(I)(X,X') by virtue of  backbone betweem and x’. The power dissipated on the
Cohn’s theorenj12]. backbone is by definition

Historically, the existence of the set of multifractal expo- P=1(V,—V,). 2.2
nents{x,} was proposed by Rammat al.[11]. The authors o
determined several of their exponents for two dimension byusing Ohm’s law, it may be expressed entirely in terms of
numerical simulations. A set of exponefits,} equivalentto  voltages as
{—x v}, wherewv is the correlation length exponent for per-

colation, was also proposed by de Arcangedtsal. [13]. P=R(X,X") " XVy= V)%=, o (Vi—V)2=P({V}).
These authors derived their exponents for several hierarchi- o .
cal structures analytically. The field theoretic description of 2.3

multifractality in RRN’s was pioneered by Park, Harris, and "o .
Lubensky (PHL) [14]. Based on an approach by Stephen_HereR(x,x ) is the total resistance of the backbone, the sum

[15] they formulated a D x E)-fold replicated Hamiltonian is taken over all nearest_neighbor pairs on the cluster{¥hd
for noisy RRN's. The contributions to the Hamiltonian lead- denotes the corresponding set of voltages. As a consequence

ing to multifractal behavior contain powers of replica spacemc the variation principle

gradients analogous to powers of real space gradients, which 1

were accounted for as an origin of multifractality by Duplan- &—\/i EP({V})— EJ: 1jVi|=0, 24

tier and Ludwig[16]. PHL introduced a set of exponents

{¢,} identical to the se{—x,v} and calculated it to first gne obtains Kirchhoff's law

order in e=6—d, whered denotes the spatial dimension.

Later on Fourcade and Tremt_)lé:y?] gave a reinterpretation 2 o (Vi=Vj) =~ E =1, (2.5

of the work by PHL. Batroungt al. [18] computed several o N

multifractal exponents ford=3 by numerically solving )

Kirchhoff's equations. Recently Barttéeny et al. [19] per- ~ Wherel;=1(4; x— di «) and the summations extend over the

formed simulations indicating that in the thermodynamichearest neighbors of

limit the M{" do not exist forl <0. Alternatively to Eq.(2.3) the power can by rewritten in
In this article we study the moments of the current distri-{€rm$ of the currents as

bution by renormalized field theory. We extend our real

world interpretation of Feynman diagrafi2Z0—22 to RRN’s P=R(x,x')12=2> ppl3=P({lp}), (2.6)

with noise. Upon introducing multifractal moments for Feyn- b

man diagrams we reformulate the field theory of PHL in ayith (1,1 denoting the set of currents flowing through the

way that to our opinion is less complex and more intuitive. i jividual bonds,b={(i,j), and pb=ag1. Obviously the

By carefully analyzing the relevance of the field theoret'ccluster may contain closed loops as subnetworks. Suppose

operators related to the noise cumulants, we show that thge e 4re currentd (°°P)} circulating independently around a
multifractality is associated with dangerously irrelevant mas'complete set of independent closed loops. Then the power is

terdopedrato.rsEZS].. WI? calculate the se;} for II =0 to sec- | a function not only ofl but also of the set of loop currents.
on ?r ler ine. Finally, we compare our result to numerical The potential drop around closed loops is zero. This gives
simulations. rise to the variation principle

J
g1 (loop)

Il. THE MODEL P({1(ooP)} [)=0. 2.7

This section provides background on noisy RRN’s. It is
guided by the work of Stephei5] and PHL[14]. Equation(2.7) may be used to eliminate the loop currents
and thus provides us with a method to determine the total
resistance of the backbone via Eg.6).

) ) ) ] Since the resistance of the backbone depends on the con-
Consider ad-dimensional lattice, where bonds betWee”figurationsC of the randomly occupied bonds, one intro-

nearest neighboring sitésand] are randomly occupied with  g,ces an average - - ) over these configurations. It is im-

probability p or empty with probability +p. Each occupied  ortant to recognize that the resistance between disconnected

bond(i,j) has a conductance, ;. Unoccupied bonds have jtes s infinite. Therefore one considers only those sites

conductance zero. The bonds obey Ohm’s law andx’ known to be on the same cluster. In practice this is
o (Vi=V =1, (2.1) done t_)y introdt_;cing _the i_ndicgto_r functigp(x,x") which,

for a given configuratioit, is unity if xandx’ are connected

and zero otherwise. Then th#n moment of the resistande

with respect to the averade- - ) subject tox andx’ being

on the same cluster is given by

A. Random resistor networks

wherel; ; is the current flowing through the bond frgnto i
andV; is the potential at sité

Suppose a curreritis injected into a cluster at siteand
withdrawn at sitex’. The union of all sites belonging to all {(XOGXDROGX DY Hx (X, X)) - (2.9
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B. Noise in random resistor networks exg c(Ns)]={exp(\ dpp)}
In the following we consider RRN’s with noise in the © . n
sense that the conductanceg of occupied bonds fluctuate :f dy h(y)exp()\sy)zexp< 2 )‘_U )
about some mean. To be specific, thg are equall_y and iz nt "
independently distributed random variables with meaand (2.15

higher cumulants\(=2). The distribution functiorf might,
for example, be Gaussian. Nevertheless, our considerationghere v,=c,s" with ¢, being constants. In general
are not limited to this particular choice. In order to suppresgR(x,x’)'}{® depends on the entire set of cumulafis}.
unphysical negative conductances, the assummiﬁhg; However, in the limits— 0 the leading term is proportional
is made. In general the backbone resistance will depend di® v, as we will see immediately. Consider the generating
the set of conductances of occupied bodds}. Its noise  function C(\) of the cumulantgR(x,x’)'}{,

average will be denoted by
exp[qx)]:J 11 dépy gs(Spp)eXd ANROXX)].
{R(x,x')}fzf l'b[ dopf(ap)R(X,X") (2.9 b

(2.16
and the corresponding cumulants by Expansion of the backbone resistance in a power series in the
| opy, leads to
d
R(X,x")'HO =—Infexd ANR(X, X ) ]}y —o. (2.10
{ ANEL oo ex C(\)]= f IT dys h(ys)exg A\R%(x,x")
b
Both kinds of disorder, the random dilution of the lattice B
and the fluctuation of the bond conductances about their 0SS s MR(x,x")
meano, influence the statistical properties of the backbone k=16, 7., by K! dpp,- -+ Ipp, ,ybl S Yy
resistance. They are reflected by the moments P
’ ’ ’ ’ (217)
M@ (x,x") = (XX RO e {x(xx))e  (2.19)

where R%(x,x’) is the resistance whedp,=0 for every
and the cumulants bondb. Equation(2.17) can be rearranged as

CROXX) = (XXX RO HN e x (XX ))e. (212 exgC(\)]

x k ok ,
C. Moments of the current distribution :ex{ )\RO(X,X’)-H\E E M
The noise cumulant€{) characterize the distribution of K2 broe P k'apbl. Py »
R
currents flowing through the network. This section provides oK
a relation between th€® and the moments of the current x—}ﬂ exdc(z,)]
distribution. 0Zp, - - 9Zp, ASEH[IR(GX ) 3pyl [

Equation (2.9 defines the noise average as an average
with respect to the distribution of the bond conductanegs ore - |
Equally well one might express the backbone resistance in =X AR°(X,x )+|—21 (\s) Clzb
terms of the bond resistances and average over the distribu- -

IR(X,x")
Ipp

J

tion of the p,. Since theo, are independently and equally * _
distributed, thep,, are distributed by the same means. As- +E fi(\S") |, (2.18
sume that the distribution function of the deviatiofgy, =2

=pp—p Of the resistance of each bond from its average

wheref; are functions ohs'. Hence, forl =2,
has the form

IR | !
g (5pb)zlh<%) 213  (ROGOHI=c X (S;—Pb) |[1+09]. (219
s s |'s ' o
and that In the limit s— 0 the leading term is
’ | 2l
) b dpp o b\l

. . . : . (2.20
s is a variable with units of resistance that sets the scale of
the distribution. With this form ofjs, thenth cumulanty,, of  where we have used Cohn’s theorem E&6). Upon substi-
Spp tends to zero as". This follows from the generating tution of Eg.(2.20 into Eq. (2.12 one finds for the noise
functionc(\s) of thev,: cumulants
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COx,x)=v, M (x,x"), 2.2)  with VP =(v{t® v(P:A) andzis the normalization
. . o . .
i.e., the noise cumular@y’ is proportional to thdth multi Z({agﬁ)},C)zf H dv,
fractal moment j
Ip)? 1 .
(1 " — ’ b ' lw
M (x,x )—<X(X,X )% ( | ) >C/<X(X,X ))c (2.22 Xexp{—EP({V},{aff)},C)+7§i: V2|,
of the current distribution. (2.29
_ _ Note that we have introduced an additional power term
D. Generating function (iw/2)2;VZ. This is necessary to give the integrals in Egs.

Our aim is to determin€{) . Hence the task is to solve (2.27) and(2.29 a well defined meaning. Without this term
the set of Kirchhoff's equation§2.5) and to perform the the integrands depend only on voltage differences and the
averages over the diluted lattice configurations and the noiséltegrals are divergent. Physically the new term corresponds
This can be achieved by employing the replica techniqud© grounding each lattice site by a capacitor of unit capacity.
[15]. In order to treat the averagés. - )¢ and{- - -}; sepa- The original situation may be restored by taking the limit of

rately, PHL introduced X E)-fold replicated voltages, vanishing frequencyp—0. .
(1) (1D) The integrations in Eq(2.27) can be carried out by em-
Vi e ploying the saddle point method. Since the integrations are
Vx—>\7x= : : _ (2.23 Gaussian the saddle point method is exact in this case. The
VED V(ED) saddle point equation is identical to the variation principle
X X stated in Eq.(2.4). Thus the maximum of the integrand is

Note from the definitions Eq2.12 and Eq.(2.10 that nd
one has to treat the two averages independently in the calc
lation of C{". In contrast, for calculating/ " it is not nec-

determined by the solution of Kirchhoff's equatiof®.5)
. E N(B)2
essary to distinguish between the two averages because oféX,X';\)= H exp —— RA(x,x") . (230
could also introduce a composite distribution function A=l flc
f"™ o) =(1-p)d(o)+pf(o) (2.24  The right hand side of Eq2.30 may be expanded in terms
of the cumulants defined in EQR.10. This gives
- -12
one introduces G(x,x’;)\)=<exr{l21 (|—|K|(7\){R(X.X’)'}$C) > :

() =explin- Vi), (2.2 231

where X-V,=32F_ N@Av(®A and X#0. The corre- WwhereK, is defined by
sponding correlation functions

E
GOX,X' 1 X) = (Y () Y- (X ) rep (2.26 K= 2,

and a single, salp-fold, replication would be sufficient.
To construct a generating function for the noise cumulants

oo

D

2 (A2

a=1

. (2.32

are defined as We learn that the correlation functidgh can be exploited as

a generating function for the noise cumulants via

(x(X,X"))cCE(x,x")

- 1
G(x,x";N)=lim
D—0

i

iw - o o o
+7Z VZ+iXN- (V= Vy)
I

f];[a%

E
[I z{oP1.c)P
B=1

= —G(x,x";M)|i_g. (2.33
i PV {o{P},C) A[(—1/2"(nh) K ,(N)] X6
B=1

N =

Note thatM ’=Cc{).

(2.27) E. Field theoretic Hamiltonian

Since infinite voltage drops between different clusters
fl ¢ may occur, it is not guaranteed thatstays finite, i.e., the

L DE ; ; AN=0
Heredvjzl'l'i'ﬁildv}“*ﬁ), limit lim ;  Z”= is not well defined. Moreovei =0 has to

be excluded properly. Both problems can be handled by re-
sorting to a lattice regularization of the integrals in Egs.

D
PIV(A) ' (B) C)= (B) (@B _\y(@B2 (92 5
(VO {al?).C)= 2 2 i Vi R (2.27) and (2.29. One switches to voltage variable$

a=1(.J)

036103-4



NOISY RANDOM RESISTOR NETWORKS:

=A6K taking discrete values on aD{X E)-dimensional
torus, i.e.,k is chosen to be alXx E)-dimensional integer
with —M<k@P<M and k(*P=k@Pmod(2M). A6
=60\ /M is the gap between successive voltages apds

PHYSICAL REVIEW E3 036103
o 1o
h(§)=— > 6 (2.39

and

the voltage cutoff. The continuum may be restored by taking

Oy — o andA #— 0. By settingby, = 6,M, M=m?, and, re-
spectively,A 6= 6y/m, the two limits can be taken simulta-

neously viam— . Since the voltage and current variables

are conjugateor is affected by the discretization as well:

N=ANT, ANAO=7IM, (2.34)

where | is a (DX E)-dimensional integer taking the same

p E 1 D
9) = — ;) (e, B)
K(8) In[ - p[ﬂl{exr{ 20521(0 A
=In[

o S

In the limit of perfect transports—0, K(5) goes to its

i

] . (2.40

A(')K (8)

values ask. This choice guarantees that the completenessocal limit K(§)=K8§,5, with K being a positive constant.

and orthogonality relations

exp(iN- 0)=55 5 (2.353
(2M)DE Eg o X0 mod(2MAN)
and
1 Lo o
> exXpiN- 0)= 85 Gmodaman (2.35D

(2M)PE T

do hold. Equation(2.35 provides us with a Fourier trans-
form in replica space.

Fourier transformation one introduces the Potts sfi2ds$
®j(x)=(2M) PE X exp(iX- 6)yi(x)= 87,5, —(2M) ~°F
A#0
(2.3

subject to the conditioX 5® 5(x) =0.
Now we revisit Eq.(2.27). Carrying out the average over

In this discrete picture there ar
(2M)PE—1 independent state variables per lattice site. Upo

The interaction part of the Hamiltonian reduces to

H int _

rep

—K(Zj> PIEFOLT)E (2.4
A e
This represents nothing more than theME-state Potts
model which is invariant against all {2)°F! permutations
of the Potts spingj.

In the case of imperfect transport tH5, ) 0e Symmetry

is lost. For finitec and A(M=0, K(8) is an exponentially
decreasing function in replica space with a decay rate pro-

%ortronal too L. Then, for Iargecr, the HamiltonianH ¢,

escribes a translationally and rotationally invariant short
range interaction of Potts spins in real and replica space with
an external one-site potentifa( 5).
Admitting fluctuations of the resistances{™ >0, results
in breaking the rotationaD(DE) replica space symmetry of
the interaction part of the Hamiltonian. The Fourier trans-

form of K(#8),

the diluted lattice configurations and the noise provides us _ 1

with the weight exp{-H,) of the average- -

Hiep= —In<{exr{ —%P({?}H '7“’ 2

'>repr

).

E
1
=—> [ — Z— BB — ghn2
& In< =1[exr{ 20-”(6?I 6;”’)

o

).

—%"Z 02. (2.37

By dropping a constant teriNgIn(1—p), with Ng being the
number of bonds in the undiluted lattice, one obtains

Hiep=— 2, K(8i—6)) 2 h(d)=—2> > K(8
(i) W) g0
— ) Pj())— 2 2 h(6)®;(i), (2.39
where

2 exp(—i)T- 5)K(§),

ARRPIVICE

(2.42

is expediently evaluated by switching back to continuous
voltages,

K(N)= f:dﬁexp(—iii- E)In[ 1+ 1Tpp
Xexr{lZ ADOK l(g)“
=1

where we have dropped a factorfg) ~°E. Taylor expan-
sion of the logarithm yields a series of terms of the form

(—1/2)

(2.43

(2.49

| ddexq % i-a0- 3, b

wherea the b, are constants of orded(s%). In addition to
the expansion of the logarithm we expand in a power series
in s, so that Eq(2.44 becomes
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[

f déexd —i\- 5—a§§2][1+|_22 (Es)'Pl(E)]. (2.45 R(ﬁ)=7+wﬁ2+l_22 v K((N), (2.50

Here theP, are homogeneous polynomials of orddrig X With w=w; andv,=v . Nevertheless, the neglected terms
that are sums of terms proportional to will regain some importance later on since they are required
for the renormalization of the, .
The K, are homogeneous polynomials of orddr Eor |

i .
il;lz Ki(9) (2.46 =2 they posses§[O(D)E] symmetry. Thus, allowing for
AM=>0 results in losing the rotation@(DE) in favor of
such thats;il,=1. Completing squares in the exponential in the SLO(D)F] symmetry. o
Eq. (2.45 gives It is worth pointing out thav, /w'~A"/¢'~¢!| i.e., the

conditions— 0 translates inte,<w'. Consequently one has

NG o — to take the limitv;,— 0 before the limitw— 0 in calculating
e - = fﬁdeGXF{—aUG ] the exponents associated with the
We proceed with the usual coarse graining step and re-
< - N place the Potts spind j(x) by order parameter fields(x, 5)

X[1+|22 (US)IPI( 6—1 E)] which inherit the constrainE je(x,8)=0. We model the

corresponding field theoretic Hamiltonidit in the spirit of
N2 © Landau as a mesoscopic free energy from local monomials
=exp{——_ [ 1+2 (0s)' of the order parameter field and its gradients in real and
dao 1=2 replica space. The gradient expansion is justified since the

= - interaction is short ranged in both spaces. Purely local terms
A p A in repli have t tth Pott
Pl=|+ -+ "P_|=|+---|{, (247 Inreplica space have to respect the f8lm)oe Potts sym-
o o metry. After these remarks we write down the Landau-
Ginzburg-Wilson type Hamiltonian

where we have omitted multiplicative factors decorating the

X

P,. Due to the homogeneity of the,, Eq. (2.47) can be (. 1 - ~ -
rearranged as H=|d XE(; 5 #(X, OK(A, V) e(x,0)
N2 ” - - g _— ia)(_,2 -
exg ———{ 1+ > S[o '"Py(N)+- - 507+ 5 0%e(x,0) 1, (251
dac =2
_ - where
o P ()]
D,E _(92
- " ' K(A,Vi=7+A+w _
2 Y ) (A,V5) >, o)
=expg ———=|{ 1+ >, |=| [1+0O(s)]P;/(N) ¢,
4ac I'=1 \ O d E D _ P I
+ —. (25
(2.48 2‘2 U'BZ‘l Z‘l (96(*9)2 (252

up to multiplicative factori. Ey keeping only the leading |, Eq. (2.51) we have neglected terms of ordet or higher,
contributions, one finds tha€(\) can be expanded as which are irrelevant in the renormalization group sensev,
. andv, are now coarse grained analogs of the original coef-
- o - - ficients appearing in E42.50. Note again that{ reduces to
— 2
K(N) =71+ pgl WpA p"';l vpPI(A), (249 the usual (M)PE-state Potts model Hamiltonian by setting
v,=0 andw=0, as one retrieves purely geometrical perco-

with 7, prg—p, andvpl~A(')/;2' being expansion coef- lation in the limit of vanishingy, andw.

ficients.
. - . . F. Relevance of the noise terms
It is known that the termsrvp)\2p are irrelevant in the
renormalization group sense fpe2 (see, e.g.[20]). From Irrelevant variables that cannot be taken to zero because

Sec. Il F it can be inferred that the P,(X) are irrelevantas (h€ quantity one is looking at either vanishes or diverges in
: this limit have been given the nangangerously irrelevant

well. However, the terms proportional () are indis-  yariablesby Fisher[25]. Later on this notion was introduced
pensable in studying the noise cumulants; they are dangeto field theory by Amit and Pelit{26]. A characteristic
ously irrelevant. Therefore, we restrict the expansion Offeature of dangerously irrelevant variables is that corrections
K(\) to due to them determine the asymptotic behavior of quantities
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with the above property, so that their effect is felt arbitrarily wheref, is a scaling function. We learn from E®.59 that
close to the transitiofi27]. In this section we show that the the coupling constants, appear only aw,/wX. Dimen-
v, are dangerously irrelevant. They are irrelevant on dimensjonal analysis of the Hamiltonian shows that2~ w2 and
sional grounds, i.e., they are associated with a negative naive

. . . Ky (N)~ 2, wherep is an inverse length scale, i.ev\?
dimension. However, we cannot simply take theto zero de"( L ~, h ® ve di _g 2 Th /)\k
by appealing to their irrelevance, because the amplitudes &" Ok K(A) have a nal\(e imension 2. Thus/w

and hence the,/w“ have a negative naive dimen-

the noise cumulants vanish in this limit. s | X X
In the remainder of this article we focus on vanishingSion: This leads to the conclusion that theare irrelevant
frequency w=0. Let P denote the set of parameters cOUPlngs.

{7,w,v,}. We introduce a scaling factds for the voltage Tho'ugh irrelevant, one must not sgt;O in calculating
variable: #—b . By substitution ofe(x, )= ¢’ (x,b#) the the noise exponents. In order to see this we expand the scal-

Hamiltonian turns into ing functionf, in Eq. (2.59,

" 1 " COx ) mw, fo ) =w{ cO e L
H[cp’(x,bﬁ),P]:fdde 5@ (XbBK(A,V7) ROUXX) T, Wk NI ES WV
[4

(2.60

X @' (X,b8)+ %go’(x,b5)3]. (253  with C{" being expansion coefficients dependingnx’,

and . It is important to recognize that{),=0 because the
corresponding terms are not generated in the perturbation
calculation. Equatiori2.60 can be rewritten as

Renaming the scaled voltage variab#&s=bé yields

- 1 -
H[ @' (X, 6 ),P]zf ddx; [540 (x,0")K(A,bV5) , (2.6D

, Vi+1
CR ((x.x );T,W,{Uk}):lﬂ[Cfl)+C|(21W_l)I+ o

X' (x,0")+ ggo’(x, 5’)3]. (2.54  where the first term on the right hand side gives the leading
behavior. Thu€{) vanishes upon setting=0 and we can-
Obviously the voltage cutoff is affected by the scaling asOt gain any further information aboGty’. In particular, we
well: 6,,—b8,,. However, if the limits are taken in the ap- cannot determine the associated noise exponent. In other
propriate order, namelyp —0 and thenm— o, the depen- WOrds, thev, are dangerously irrelevant in investigating the
, ’ . . |=
dence of the theory on the cutoff drops out. Thus, we carfitical properties of theck ™).

identify 8’ and @ and hence
I1l. RENORMALIZATION GROUP ANALYSES

H[‘P(X'bg)'P]zH[‘P(X' 5)'7),]' (2.59 A. Diagrammatic expansion
where P’ ={7,b%w,b?'v,}. The diagrammatic elements contributing to our renormal-
Now consider correlation functions ization group improved perturbation calculation are the
three-point vertex- g and the propagator
GN({Xa 5}1 T,W,{U|}): J' D(P (P(Xl1 51) e (P(XN ’ gN) 1— 5)‘\—‘,6’
Xexq_H[@(ng)rlp]}v (256) p2+T+W)T2+2 U|K|()T)
=2
where D indicates an integration over the set of variables
{o(x, )} for all x and 6. Equation(2.55 implies _ 1 3 if,ff 3.0
P R '
Gu({x, 8} 7., {v}) =Gy({x,bB}; 70w, {bZv }). (2.5 PP T WA+ D, 01K (V)

The two-point correlation functios, is the Fourier trans-

form of (¢(X) ¥_5 (X)), . We deduce from Eq2.3) that ~ Note that we have switched to »,{) representation by

employing Fourier transformation in real and replica space.

K|()T)CS)((X,X');T,W,{vk}) The notation in Eq(SE) is somewhat symbolic. To treat the
irrelevant termsv,K;(\) properly, we have to expand the
=b*2'K|(X’)CS)((x,x’);r,bzw,{bz"uk}). (2.58 propagator in a power series in theand discard all contri-
butions of higher than linear order in the. In other words,
We are free to choose?=w 1. This gives the irrelevant terms have to be treated as insertions.
Equation(3.1) shows that the principal propagator decom-
CS)((X,X’);T,W,{vk}):w'f,( (X,X’);T,|U—t] ) (2.59 poses intp aﬁpropagato.r carryi@s (conducting and one_
w not carrying\’s (insulating. This allows for a schematic
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whereX is an external current angic} denotes a complete
set of independent loop currents.

The real world interpretation suggests an effective way of
computing the conducting diagrams. We learned from the
discussion above that the irrelevant terms have to be treated
by means of insertions,

1 - - -
om=—§mjd%2;mumﬂnm¢vprx» (33
A

where(p,\) denotes the Fourier transform @fx, 6). The
resulting diagrams are of the type displayed on the left hand
side of Fig. 2. We express the current-dependent part of such
a diagram in terms of its powd,

_SiU|Z K|()\Hi)eXF{ _sz: SIX)JZ
{x}

FIG. 1. Conducting diagrams to two-loop order. The bold lines - o o
symbolize principal propagators, the light lines stand for conduct- = _Sivlz Ki(hpexdwP(\ {«})]. (3.9
ing, and the dashed lines for insulating propagators. We point out {rch

that the conducting diagrams inherit their combinatorial factor fromThe summation is carried out by completing the squares in
thler FO'd d""_‘%ra?' For example, the_dlla;graﬂmndB have to be  he exponential. The corresponding shift in the loop currents
calculated with the same combinatorial factor 1/2. is given by the minimum of the quadratic forR) which is

N o ) ] ~ determined by a variation principle completely analogous to
decomposition of principal diagrams into sums of conductinghe one stated in Eq2.7). Thus, completing of the squares is

diagrams consisting of conducting and insulating propagagquivalent to solving Kirchhoff's equations for the diagram.
tors. To two-loop order, we obtain the conducting diagramst |eads to

listed in Fig. 1.

—s > K ﬂnd+$ Ci,j({s});j>
{x}

B. Multifractal moments of Feynman diagrams
From the decomposition in Sec. Ill A a real world inter- - - o
pretation of the conducting Feynman diagrams emerges XeXF{_WR({S}))\ —WZ Bij({sh)«i-
[20,21. They may be viewed as resistor networks them- !
selves with conducting propagators corresponding to conﬁ!nd:o({s}))‘: is the current induced by the external current
ductors and insulating propagators corresponding to opelrp]'to '

O N - edgei. ¢i({s}) andC; ;({s}) are homogeneous functions
bor)ds. The parametess@ppearing in a Schwinger parametri of the Schwinger parameters of degree zep.({s}) and
zation of the conducting propagators, !

the total resistance of the diagraR{{s}) are homogeneous

. (39

1 functions of the Schwinger parameters of degree 1. By a
= suitable choice of the; the matrix constituted by thB, ; is
p2+r+wf2+2 U|K|()\H) rendered diagonal, i.eB; ;~ &; ;. At this stage it is conve-
=

nient to switch to continuous currents and to replace the
summation by an integration,

=fddsex;{—s P2+ 7+ WNZ+ D, mK,()T)) L
0 “ zﬁjnda (3.6
{;} i=1

(3.2

- whered is an abbreviation fofl>'5_,d«(*# andL stands
correspond to resistances and the replica variables cur-  for the number of independent conducting loops. This inte-
rents. The replica currents are conserved in each vertex arffation is Gaussian and therefore straightforward. In the limit
we may write for each edgeof a diagramfi=fi(f,{;}), D—0 one obtains

FIG. 2. Calculation scheme. The hatched
ovals symbolize an arbitrary number of closed
conducting loops. The solid dots indicate inser-
tions.
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—su KN+ ==sici({sh?v K(N)+- . (3.7

The terms neglected in E¢B.7) are not required in calculat-
ing the ¢, . This issue is discussed in detail in Sec. Il C.
Diagrammatically, the calculation scheme can be condensed
into Fig. 2. Appendix B illustrates the calculations in terms

of an example. FIG. 3. 00 inserted into a diagram with external legs.
So far we have inserte@® (") only in one of the conduct-
ing propagators. However, each of them has to get an inser- Pr(f)p2a¢(p,f)”, (3.11)

tion. Moreover, the integrations over loop momenta and
Schwinger parameters remain to be carried out. All in all,\hare
each diagram can be written as
1(p?,X)=1p(p?) = Iw(P)WRZ = 1{) (p?)v K (R) + - - - P.(M)=1IT Ki(X)" (3.12
I

|~ 11— RUsMHwWi2— cO(fs .
_fo H ds[1-R{sHwA*—CY({sipuvKi(A) with 3ir;=r is a homogeneous polynomial of degree. 2
Note that the notation we use here and in the following is
+---1D(p%{s}). (3.8 symbolic, since such a counterterm has to depend on the
entire set of external momenta and curre@ftep,f)” is, for

Here D(p?,{s;}) stands for the int d btai o -
ere D(p~,{s;}) stands for the integrand one obtains upon xample, an abbreviation faF"_ (p; ,X.).

Schwinger parametrization of the corresponding diagram i

the usualg® theory.C({s}) is defined as The leading contribution comes from operators having the
' ' same naive dimension &), i.e., those satisfying
C“)({Si})=2 sci({sh?=2> s(N"N)?, (3.9 2(1+2-3)=2(r+a+n—3). 3.13

where the sum runs over all conducting propagators of th&lére we expressed the naive dimension with the help of Eq.
diagram. Notice the analogy of tt@&"({s}) to the general- (C8). Forn=2 one is led td>r, i.e., the insertion ot ( )_ _
ized multifractal moments we introduce in Appendix A. generates operators containing homogeneous polynomials in
Thus, we refer to th€({s;}) as multifractal moments of the _repllca currents of degree equal to or lower thanl2
conducting Feynman diagrams. particular© () generates an operator of type

C. Renormalization and scaling UIKI()T) ¢(p,):))2- (3.19

Suﬁfagggﬂ'%'e"%rgggggsﬁ?ﬁ lstrsr?g;a:ngetémigﬂgs rg:cn:r;r?(l)r'l'he important question now is if the other operators gener-
) : i ated by©O (") generate operators of this type, too. Consider
malized field theory{28]. The renormalization of the,, yo'™ g P typ

) L o . n=3. With the help of Eq(3.13 one obtaind —1=r=1,
however, involves some peculiarities that we will discuss iNyvhere the second inequality is a consequence of the limit
this section.

An operator®; of a given naive dimensiop®,] inserted D—0. Bearing in mind that maximal homogeneous polyno-

one time in a vertex function generates in general new primiMials of degred —1 in \ are generated, we reinsert these
tive divergences corresponding to all operators of equal oPPerators of the type in Eq3.11) with n=3 into two-leg
lower naive dimension. Thus, one needs these newly geneflidgrams(see Fig. 4. The resulting terms are of the form
ated operators as counterterms in the Hamiltonian. -, -
The operators of lower naive dimension can be isolated P (MP* ¢(p,))?, (3.19
by additive renormalization,
with the leading contributions satisfying+a+n—3=r’
0—0=0,— X ;0. (3.10 +a’—1.. Thl..IS:_)I"Br-f—a—a'-l”.’.L, i.e., the homogeneous
[0]I<[0j] polynomials inA may have a higher degree thah How-

. . o _ ) ) . ever, they are of the type
Dimensional regularization in conjunction with minimal sub-

traction leads tc; ; containing at least a factor. TheseX; ;
vanish at the critical point. Hence, the operators of lower
naive dimension will not be considered in the following.

As argued in Sec. Il B the term proportional #p in Eq.
(3.8 is generated by inserting the operatof!. Inserting
0" into a diagram witm external leggsee Fig. 3 gener-
ates primitive divergences that must be canceled by counter- FIG. 4. An operator of the type in E¢3.11) with n=3 inserted
terms of the structure into a two-leg diagram.
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o o - au dint
Po(N)=Ky (M) T KN, (3.16 BW=p——| , kW=p——/ , (3233
2<i=r du|, r |,
with Z;ir;<r<I-1 and Zjir;+s=r’. These polynomials Jlnw 9
have a higher symmetry than the origingl. Z(U)I,U«ﬁ— , y(u):,ua—lnz , (3.23b
We conclude tha® (") generates itself and an entire fam- Ko molo
ily of new operators but these in turn do not genefat8. In
principle, the entire family of operators associated witH) M(u)=— iln Z() (3.239
has to be taken into account in the renormalization proce- i M(?,u =l '

dure, leading to a renormalization in matrix form,
where the bare quantities are kept fixed while taking the

ON_, OO =zHHM)., (3.17)  derivatives, into the Gell-Mann-Low renormalization group
- = = — equation
The vector [ 07+,8(9+ ﬁ+ §0+N 1440
N N mo=t Bt TR AWt Sy |1ty
O(I):(O(I),Og), ) (3.18 u du or ow 2 °|Z L
X Gr({X,WN2}; 7,U, 1) 50)=0. (3.24

contains the family associated with("). For the remaining

renormalizations, we employ the same scheme 480 The particular form of the Wilson functions can be extracted

. R from the renormalization scheme and thdactors. At the
e—e=2"p, to7=27'Z,r1, (3.193 infrared stable fixed point*, determined by3(u*)=0, the
renormalization group equation reduces to

o o
W_)szflzwwl g_)g:Z*3/ZZE.]/2G;1/2ul/2ME/2.

J J
(3.19b 7 x 2 x L ()%
M&,LL+TK aT+wg 8W+2y i-i—l/
In Eq. (3.19 € stands for 6-d and the factorG, o .
=(4m) 9" (1+€/2), with T’ denoting the Gamma func- XGN({XWATF 7,u™, 1) 60 =0, (3.25

tion, is introduced for convenience. |
According to the arguments given above the renormalizawhere y*=y(u*), «*=«(u*), {*={(u*), and Z( x
tion matrix =yO*). -
The matrixy" inherits the simple structure &,

ZW=1+0(u) (3.20 =
_ T Yo o
has a particularly simple structure, \ 0 6 ... o
z0 o . 0 LA N (3.26
o <o - O o ¢ - O
zZO0=\ ] (3.2
= ’ ’ B Owing to this structure}1)=(1,0, ...,0¥ is a right eigen-
o ¢ - 90 vector of y)* with eigenvaluey"*. The remaining right
, _ , eigenvectors with eigenvalueg’* , k=2, we denote by
where 1 stands for the unit matrix ané symbolizes ele- k). The left eigenvectors of* are(1|=(1,0,...,0)

ments that we do not evaluate. In this paper, we determin

Z" to the order of two loopsZ, Z,, andZ, are the usual

Potts modelZ factors. They have been computed to three

loop order by de Alcantara Bonfiet al. [29]. Z,, is known

to two-loop order[2_0]. _ Y% =] 1) yO* (1] + > [K)y* (K| (3.27)
The unrenormalized theory has to be independent of the = k=2

length scalew ! introduced by renormalization. In particu-

lar, the connected\-point correlation functions with an in- ~ Now it is important to realize that

sertion of O must be independent qf, i.e.,

&nd(k|=(0,0, ...,0). In terms of the eigenvectors{)*
_can be spectrally decomposed into -

(LO=00+, o OP=A0,
Jd o 0 o o o - k=2
M@GN({X,WKZ};T,Q)Q(DIO (3.22

(KOW=2 0 O, (3.29

for all N. Equation(3.22 translates via the Wilson functions k=2
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i.e., only A" contains the operata? (" we are interested in.
We substitute Eq.3.27 into the renormalization group
equation(3.25 and act on the entire equation witt|. The
result is

N
/.L—+TK*—+W§*—+E’}/

a a P
m ar oW

+ 9O G (X, WhZ}; 7,u* ) 40»=0.  (3.29

Equation(3.29 is solved by the method of characteristics.

The solution reads

Gn({X,WNZ}; 7,u* 1) 40)

—0 y* N2+ (D%

XGN({QX,Qg*W)TZ}; QK*T,U*,Q,LL)A(I). (3.30

To derive a scaling relation for the correlation functions, a

dimensional analysis remains to be performed. It yields

Gn({XWNZ}; 7,U, 1) 4 1)
= p(d-2N2-2

X Gn({uX, " 2WRZ w7 27,u,1) 40 (3.31)

From Egs.(3.30 and(3.31) we deduce the scaling behavior

Gn({XWNZ}; 7,U, 1) 4 )
— Q(d—2+ nNI2— iy Iv

XGy({ex.e ¥"w\?}; o M ruF u) 4. (332
n=7y* andv=(2—«*) ! are the well known critical expo-
nents for percolation. They are known to third orderen
[29]:

.1 208,
=Y T T 21 9261
93619 256 1. -
T~ 8168202 720353 | € TOleD), (339
and
iy wya 5 589
v=02=) =548 370a4°
[ 718519 89 1.
130601232 720853 |€ 1O
(3.34)

Note that{ in Egs.(3.33 and(3.34) stands for the Riemann

PHYSICAL REVIEW E3 036103

FIG. 5. Dependence of the noise exponefiton e=6—d.

1
=1+ —€+ 62+O(63).

42" 3087

¢=v(2—{") (3.39
The noise exponent, are defined by);= v(2— y("*). The
expansion ofi; to second order i is given below.

Now we are in the position to derive the scaling behavior
of C¥. From Eq.(3.32 we find upon choosing =|x
—x'| 7! and Taylor expanding that the two-point correlation
function G=G, scales at criticality as

G(X,X";N)=|x—x'|2797 {1+ WN?x—x'| #/”

+o K (N)x=x|4""+...},  (3.36
where we have dropped several arguments for notational
simplicity. With Eq. (2.33 the desired scaling behavior of
c® is now readily obtained as

(3.37

At this point, we emphasize once more the outstanding
role of the® ", which warrants calling them master opera-
tors[23]. Each multifractal momeril (") has a master opera-
tor as field theoretic counterpart. The master operators are
highly and dangerously irrelevant in the renormalization
group sense. Therefore, each master operator needs in gen-
eral a myriad of other irrelevant operators for renormaliza-
tion. However, the renormalization of these servant operators
does not induce their master. It follows that the servant op-
erators can be neglected in determining the scaling index of
their master operator, i.e., one is spared the computation and
diagonalization of giant renormalization matrices.

Our e-expansion result for the noise exponents reads

CO~|x—x'|N"".

62

€
YT 2D 123481+ 1311219

X [313— 672y+1(3327- 4032y — 81{4(— 389+ 273y)
+1[ — 2076+ 1008y + | (— 881+ 336y)|})

—672A1+1)2(1+21)%¥(1+21)]+0(€%), (3.38

zeta function and should not be confused with the Wilson

function defined abovep=v(2—¢*) is the resistance expo-
nent known to second order in[30,20,

in agreement to first order iawith the one-loop calculation
by PHL. y=0.57725 ... denotes Euler's constant and
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pears that the dependenceygfon dimensionality is too rich
1.8 in structure to be approximated well @t 2 by a series of a
few terms.
¥, 1.6
v
1.4 V. CONCLUSIONS
1.2 We studied the multifractal moments of the current distri-
0 1 2 3 4 bution in RRN's by renormalized field theory. Our approach

! thrived on two cornerstones. First, the Feyman diagrams for
FIG. 6. Dependence af, /v on| in three dimensions. The line RRN'’s can be interpreted as being resistor networks them-
shows our rationally approximatedexpansion. The numerical val- Selves. In this paper we extended our real world interpreta-
ues, symbolized by the dots, are taken from Moukaf2d] (I tion by introducing multifractal moments for Feynman dia-
=0) and Batroungt al. [18] (1=1,2,3). Moukarzel determined the grams. The real world interpretation proves to be a powerful
backbone dimensio®g= i, /v. Batrouniet al. studied the multi-  tool which allows a highly efficient calculation of the dia-
fractal moments in a fixed voltage ensemble, i.e., for fixed extergrams.
nally applied voltage. The authors state a formula for switching The second cornerstone was our concept of master opera-
from the multifractal exponents for the fixed voltage ensemble totors. Whereas the field theoretic operator associated with the
those for the fixed current ensemble. In this formula a minus sigitesistance exponend is relevant in the renormalization
appears to be missing. Correctly, their exponeiit are related o group sense, the operators associated with/ihe are dan-
the /v via i [v=21x(2)=x(2l). gerously irrelevant master operators. Due to their irrelevance
) . ) , the master operators generate a multitude of other irrelevant
stands for the Digamma functiof81]. Equation(3.38 is  gperators, the servants, which in principle must all be taken
valid not only forl=2 since it can be continued analytically into account in the renormalization procedure. The servants,
down tol=0. A plot of ¢ versuse is given in Fig. 5. We  powever, do not influence the scaling index of their master.
point out that Eq(3.38 evaluated at=1 is in conformity  \yithout this property, one would have to compute and diag-
with the result for¢ stated in Eq(3.39), i.e., our result for  gpalize entire renormalization matrices for determining the
i satisfies an important consistency check stemming frony, =~ These renormalization matrices are giants for large
C)=M{’. Blumenfeldet al. [32] proved thaty; is a con-  Without the master property it would be essentially impos-
vex monotonically decreasing functionlofNote from Fig. 5 sible to compute they, for arbitraryl.
that our result fory; captures this feature for reasonable  To our knowledge this is the first time that an entire fam-
values ofe. It reduces to unity in the limit—c as one ily of multifractal exponents has been calculated to two-loop
expects from the relation af.. to the fractal dimension of order, at least for percolation. Our result is for dimensions
the red bondgsee Appendix & Moreover, analytic continu-  near the upper critical dimension 6 the most accurate analytic
ation of 4 to | =0 shows thaty,=vDg up to orderO(e®) as  estimate for thej; that we know of. It fulfils several consis-

expectedsee Appendix G tency checks. Moreover, it agrees remarkably well with nu-
merical data fold=3. As one expects, the agreement suffers
IV. COMPARISON TO NUMERICAL DATA on further decreasing the dimension. The dependence of the

¢ on dimensionality appears to be too complex for good
In this section we compare our result fgy to numerical  approximation ati=2 by a series of a few terms.

values. Instead of working witl# directly we compare), /v We expect that our concept of master operators can be
because data for exponents of this type are available in thgpplied to other systems showing multifractality. It works,
literature. For the comparison it is not sufficient to simply for example, to describe the moments of the current distribu-
evaluate Eq(3.38 at e=3 or e=4. The puree expansion tjon in random resistor diode networks. A two-loop calcula-
gives poor quantitative predictions for small spatial dimen-tion of the corresponding family of mutifractal exponents
sion. However, one can improve tleexpansion by incor-  will be reported in the near futuf@5]. Another example for
porating rigorously known features. We carry out a rationakhe applicability of the concept of master operators is the
approximation which takes into account that v=1 in one  problem of diffusion near polymers. For this problem von
dimension. In practice this is done by adding an appropriat&erber and Holovatci40] formulated a field theory that
third-order term to the expansion off, /v. We refrain from  comprises dangerously irrelevant operators. Due to the sym-
stating the formula so obtained explictly because it is a littlemetry properties of their operators no other irrelevant opera-
lengthy. Instead we plot it foe=3, i.e.,d=3, in Fig. 6. Our  tors are generated in the perturbation calculations of these
analytic result shows remarkable agreement with the availauthors. Thus, the operators studied by von Ferber and Ho-
able numerical data fat= 3 [33,18. Forl =0 our result lies lovatch are particularly simple instances of master operators.
slightly outside the error bars of the simulations. However,Their scaling index is not influenced by any other operator
the deviation of the values is less than 3%. Fer1,2,3 our  simply because the number of their servants is zero. In this
result is within the error bars of the simulation. There aresense these master operators may be called poor.
also numerical values available fdo=2 [34,11. Here, how- It might turn out that the field theoretic operators associ-
ever, the agreement is much less pronounced. For ated with multifractal quantities are in general master opera-
=0,1,2,3,4 we find a deviation of the order of 30%. It ap-tors. In this case the concept of master operators would be a
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key in understanding the origin of multifractality, at least For networks like those described in Sec. Il one has

from a field theoretic point of view. {6ppH{9 =0, . However, in a more general situation the in-
dividual bonds may be composed of a series of elementary
ACKNOWLEDGMENT resistors. The elementary resistors are assumed to have inde-

endently and identically distributed resistances with nﬁan

We acknowledge support by the Sonderforschungsberei hd higher cumulants;_,. Then

237 “Unordnung und groRRe Fluktuationen” of the Deutsche
Forschungsgemeinschaft. —
{5PB}$C):nbvn:p_—bUnr (A8)
APPENDIX A: GENERALIZATION OF COHN'S p
THEOREM AND GENERALIZED MULTIFRACTAL
MOMENTS wheren,, denotes the number of elementary resistors consti-
tuting bondb and py, is the average resistance of that bond.

Upon incorporating a factop ! into the constants,, we
finally find

Consider a generalized power of the form

P({Ib}>=§ puF (1), (A1)

PO = PpoF ()", A9
whereF is some function of bond currentg. As argued in (P v”% poF (1) (A9)

Sec. I, 1, is in general a function of the external currént

and a complete set of loop currefit§’}. We can exploit the  \yith SopeF(Ip)" being the nth multifractal moment of
variation principle(2.7) to eliminate the loop currents. As a F(l,).

result we obtain théy, as a function of and{py} only. The

solutions we denote by'”d The derivative of the power
P{I"™) so obtained with respect to bond resistange
reads In this Appendix we illustrate the calculation scheme
sketched in Sec. Ill B for diagram (see Fig. L For the sake

APPENDIX B: COMPUTATION OF DIAGRAMS: |

of ind
AP({1%) PULY) e +E E aF(1yr) ot . (az)  Of simplicity, we focus on its contribution to the renormal-
Ipp Por— iy ETIO) pp ization ofv,. We neglect all other parts and obtain
The second term on the right hand side vanishes by virtue of * ) - o
the variation principlg2.7), A=— 0 dsids,D(p*{s}) 2 exdwP(X, k)]
ind ind - o o
&P({| })_2 &F(|br)_0 A3 X{Slszz(K)+5202K2(K+)\)}, (Bl)
al® 5 Pb al® ' é3)

. whereP(X, k)= —s;k2—S,(k+ )2 is, according to the real
Renamingl ,=1 'g‘d we finally obtain world interpretation, the power of the diagram, and
D(p?{s}) stands for

IP({lp})
e F(lp) (Ad) g2
D(p*{si})= ?J' exd — (s1+5,) 7= 5,0°—S,(q+p)?]
as a generalization of Cohn’s theorem. He( b)zlﬁ one a (B2)
retrieves the original theorem
. ) with [, being an abbreviation for (2) ~%?/d%. It is con-
IR(x,x") Iy -4 . .
22 (A5)  Vvenient to switch back to continuous currents and replace the
Ipp | summation over the loop current by an integration,

Having generalized the power it is natural to generalize o w BN

the multifractal moments as well. Consider the cumulants of A= —J dSldSzD(DZ,{Si})j dx exgdWP(\, k)]

the generalized power, 0 o

o X{8102K (k) + S0 ,K5(k+ N )} (B3)

{P}?=— In{exp(\P)}. (A6) . . -

O\ The integration over the loop current is simplified by com-

pleting the squares in the exponential One looks for the

In analogy to the resistance cumulants one finds for the leagdyinimum of the quadratic forrTP()\ K) The minimum is

ing behavior in the limis—0 determined by a variation principle completely analogous to
9P the one stated in Eq2.7). Thus completing the squares is

{Pn}gc)_E ( ) {6pMO=">" F(I,)8pp{®. (A7)  equivalent to solving Kirchhoff's equations for the diagram.
9Po b We obtain
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- | asids,n . fsent - Refswi?

S1v2K5

X f dk exd — (s, +S,)Wk?]

S

-«

N

X I?_ +52U2K2 I?"F 5: (B4)

|

whereR({s;}) =s;S,/(s;+Sy) is the total resistance of the
diagram. Note thas,\/(s; +S,) is, apart from a factor, the
replica current induced by the external replica currenn
the propagator parametrized by. slf/(sl+ s,) is the rep-
lica current induced in the propagator parametrizecgbyn
the limit D—0 we find

S1TSy S1+S,

, 1 fw ds,ds,
¥ am®lo (5,45,

X exf — (sy+8,) 7— R({s1}) (pP?+WA?)]

d

2
$1S; U2

(51+5s)° W

5153

-

N)+2

>

)4v2K2( A%, (B5)

(s1+s2

where we have carried out the momentum integration a
well. Expanding the exponential and keeping only the terms

proportional tov, gives

1 = dsds,
(47T)dlzfo T ol

A=-g

|

S

(s1+s)*

2
Sq SlSZ [20) “p

0oKH(N) +2————
2 (s1+52)° W

2.3
$1S;, v

(sp+s)* W

<>,

N2(p?+wWN?)

2.5
$1S;
(51+5,)°

szz(ﬁ)(p2+wX’2)]. (B6)

The integral over the last term is convergent and therefore
neglected. The remaining integrations are rendered straight-

forward by the change of variables —tx and s,—t(1
—X). Upon expanding the result for smal=6—d we ob-
tain

(B7)
where we have introduce® = (47)"Y2I'(1+ €/2) for
convenience. We learn that not only primitive divergence
proportional toKz(f) but also those proportional toN 2,
p2h2 and (\2)2 are generated.
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APPENDIX C: SUPERFICIAL DEGREE OF DIVERGENCE
OF OPERATOR INSERTIONS

Consider the insertion of a local operatorby adding a
term to the Hamiltonian,
H—H+ f di%>, O(x,), (C1)
4
whereQ is a local monomial of degreein the fieldse with
A derivatives in real an® derivatives in replica space. In a

diagram composed oP propagatorsV three-leg vertices,
and the insertion there are

L=P—(V+1)-1 (C2
loops. The topological relation
3V+n=2P+E (C3

balances the number of legs. Each propagator behaves for
large momenta as 47 and hence reduces the superficial de-
gree of divergence of the diagram by 2. The insertion in-
creases it byA+ B. Thus the superficial degree of divergence
o[ O] of the diagram with insertion is

S O]=dL+A+B—2P. (C4)

é/\/ith help of Egs.(C2) and(C3) one finds
go1= 2% 972 29 s (s
[O]= ——V+——n+——E+A+B.  (CH

In contrast, the superficial degree of divergentef the
diagram without insertion is
d—6 2—d

s=d+——V+——E,

5 5 (C6)

The difference

d-2
——n+A+B—d

AO1- 6=

(C7)
is identical to the naive dimensidr©] of the insertion. For
d=6 it reduces to

[O]=2n+A+B—d. (C8)

APPENDIX D: COMPUTATION OF DIAGRAMS: I

Here we give details of the calculation of the conducting
Feynman diagrams listed in Fig. 1 for arbitrdryWe focus
on the contributions of the diagrams to the renormalization
of thev,, i.e., those terms appearing in E@.8) propor-
tional tov,. The other terms appearing in E®.8) will be
omitted throughout the entire Appendix for the sake of nota-
tional simplicity. For details of the calculation of the contri-
butions to the renormalization off we refer to[20]. The
)T—independent parts of the conducting diagrams correspond
to the usual diagrams found in the literature on the Potts
model [24] and can be calculated by standard proceedures

J28].

We start with diagramA. The part ofA required in the
calculation ofyy reads for vanishing external momentum
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2

g (= ) Expansion for smale=6—d yields
A== Soki(R) [ dsids, | ext—(si+ ) o)

A=—g% K (X’)—2 Ce - (D4)
s, | s, |7 T+ D(n+2) e T
X[sl s;+s +Sz(s +s ] (b1 i i i i
1752 172 The calculation ofB is particularly simple. Thus we

wheren=2I. Carrying out the momentum integration gives Mmerely state the result

oKk (5[ ! B=-g% K(X’)%ff’z (D5)
A=—g v|K|()\)(4W—)d,2fo dsldsz(ler—sz)d’z 26T

Now we turn to the two-loop diagrams. As an example,
e (D2)  we consider the diagra@. As a first step, we determine the
(sp+s)" currents flowing through the conducting propagators. Kirch-
hoff's law Eq. (2.5 applies to the four vertices of the dia-
gram. This allows us to eliminate three of the five unknown
currents(one of the vertices is inactive with respect to this

- 1 1
— _ 2 _ . Ny
A==g7iKi(M) (47T)d/2f0 dx(1=x)x" purpose since the external curraninust be conservedThe
potential drop around closed loops is zero. Hence we can

$1S9
Xexd —(s;+5Sy)7]

Changing variabless; —t(1—x) ands,—tx, leads to

2 o od eliminate the two remaining unknown currents and express

X fo dtt®“exp( —t7) all currents flowing through conducting propagators in terms
of the Schwinger parameters andThe momentum integra-

) - 1 d\ 4 s tions are straightforward. They can be done by using the

=-g U|K|()\)(47T)d,2 (n+1)(n+2)r ST saddle point method, which works exactly here since the

momentum dependence is purely quadratic. After the mo-
(D3) mentum integration we have

5
g“ o 5 ex;{—rzlsi)
]dlz S1

C=—= oK x—f :
2 vkl )(477)d 0i=1 S[(Sl‘f‘SZ+S5)(S3+S4+85)_S§

Sy(S3+S,+S5) +54S5

(S1+S,+S5)(Sg+Sq+S5) — S8

S1(S3+ 8,4+ S5) +S3S5 S4(S3+S4+S5) +S,S5

+S; S3 S4

S3(S3+S4+S5) +51S5 ] "

(S1+5,+S5)(Sg+Sy+S5) — S8 (S1+5,+S5)(Sg+Sy+S5) — S8 (S1+5,+S5)(Sg+Sy+85) — S8

+Sg

S»S3— 1S4 "
(S1+S,+S5)(Sg+Sy+S5) — S8

5
g o f‘ws | exp(—rzlsi)

=——uvKi(N)—— i
I 0i=1 S[(lersz+s5)(s3+s4+55)—5§]dlz+n

2 (4)d

X {431[Sy(S3+ 54+ S5) +54S5]"+ S5 83— 51841} (D6)

At this stage, the change of variables—t;(1—X), S,—11X, S3—t,(1—-Yy), s4—toy, andss—t5 turns out to be useful. It
leads to

S
=T l()\)(4w)d

exn:_ T(tl+t2+t3)]
[yt + oty +tytg]9200n 2

o 1
f dtldtzdtgf dxdy
0 0

X {4t (1= x)[xty(ty+t3) + ytotg]"+ta(tyty) "[x—y]"} (D7)

The integrations ovex andy are straightforward and can be looked up in a t4B&. After some additional algebra we obtain
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4
g - 1 o exd — r(ty+ty+tg)]
C: - 7U|K|()\)—dJ' dtldtzdt3 a2
(477) 0 [t1t2+t2t3+t1t3]
y 2 ta(tsty)"t N 4 taltyto+tota+tyts]?
(N+1)(N+2) [tyt,+tota+tyta]”  (NHL(N+2)(N+3) ty(ty+to)
1t2 2'3 13
. 4 tiltato+tatgttats]® 4 3ttt
(n+1)(n+2)(n+3) (t;+1,)? (N+1)(N+2)(N+3) t[tyty+tots+1tts]"
4 t2+3t2+2 4 t3t2+2t2+1

_ - . D8
(N+1)(N+2)(N+3) (t;+1,) 7 tytr+tpta+tgtg]"  (NT1)(N+2) (t1+tz)[t1t2+t2t3+t1t3]”] (08

We find it convenient to express the remaining integrals in 4

- 1
terms of the parameter integrals given in Appendix E. ForH=— ?U|K|()\)—d
the sake of notational simplicity we introduce the notation (4m)
5
i+j+k

. exp — 72, S

Mﬁj,k:(_1)|+]+kﬁMﬂ(avbic”a:b:c:f- (D9) = O p( 'Zl '
da'ablac X S 3
051 [(S1+Sy+Ss)(SgHSy) +555,]¥ "

wherey<{1.3.4, and X{251[55(5+5) 1™+ 255 585"

ok G itk + 5[ (S1+52)(S3+S4) +5354]"}. (D13
I\/Iiu,“j,k(n)z(_:I-)I+J+ ﬁMM(aib=C;n)|a=b=c=TI

dga b’ e Here, the change of variableg—t,x, s;—t1y, S,—t3(1

(D10) —X—Y), S3—t,, ands,—t; simplifies the integration. We
. obtain
where u €{5,6,7,8. In terms of the parameter integrals we
obtain 4 .
H=—9 Kk (X)Lf dt,dt,dt
SE ) R —r v 2T el T
2 (n+1)(n+2) xfld Jl—xd exfl — it ta+ty)]
X
_2M;,O,l(n)_4MZ,1,1(n)_2M8,2,1(n)] 0 0 y[t1t2+t2t3+t1t3]d/2+n 1
3 3 X{2yty[ Xty (to+t3) ]+ 2t Xty t5]"
T D+ 2)(nr3) M Ma0ot Mise )
+ Xt [ (1= X)ty(ty+tg) +totg]"}. (D14)
—M$ o) =M1 () —M5 o) —MJ, ()]} The integrations ovex andy are again straightforward. In
terms of the parameter integrals we find
(D11
) _ 94 NG 1 4 4 4
The final result reads H=—ZuiKi(h)) — m['\/‘ 1017 Mg11t M1 0]
4 2
_ 9 - CGe . an+12 b [2ME, (n)+ ML, (n)+ M, (n
C——?U|K|()\)TT (n+1)(n+2)(n+3)6 (n+1)(n+2)[ 0,1,0( ) 2,0,1( ) 1,1,1( )]
1
L An—2Fy(n+3)+12 2 _ + W[Mioﬁ M3+ (n+4M3 ]
(n+1)(n+2)(n+3)  (n+1)(n+2)4(n+3)
D12 6 I
(D12 Tt DT 2)(nt3) MiodM+ Moy dMIf.
The diagram® to G can be evaluated in the same fashion. (D15)
As another example we consider diagrémDetermina-
tion of the noise cumulants d¢f leads to Finally we obtain
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gt ~GI 1
H= = oK) ~ i DT 2)e
4 8n—F,(n+3)+24

T ht12n+2)%e 3t D)(nt2)(n+3)

11 1
+
6(n+1)%(n+2)%2 3(n+1)(n+2)%(n+3)

4n+6
J ) (D16)

" (n+1)3(n+2)3

The diagramg to L can be treated in a similar manner.

APPENDIX E: PARAMETER INTEGRALS

PHYSICAL REVIEW E3 036103

stated are obtained by employing the dimensional regulariza-
tion scheme. The parameter integhf* given below was
introduced by Breuer and Jans4&7]. The notationM? we
reserved for a parameter integral we introduced2i@] but
which is not used here. For notational briefness we define

" In 1
Fm(n)Zkgm (k>(—1)km- (ED)

F., is related to the Digamma functioll via

NI[¥(m)—P(n+1)]

Pl = (= D)™ A= mr

(E2

This Appendix contains a list of the parameter integrals
we use in the calculation of the noise exponents. The results The parameter integrals we use in calculating ghere

Ml(a,b,c)=J !
pa(a+p?)(b+g?)[c+(p+a)?]

1 (= exd — (at;+bty+ct
_ fdtldtzdtg A (@bt et))
(4m)?Jo [tats +taty+tyt,] 2
_Ge L 2 (@t et 39— [ 2+ 2| [a2 (b ¢)+ b2~ <(a+ c)+ ¢~ (a+ b)] - 3ab E3
“Be|le 1)@ ¢t gttt tbro) (at+c)+c™ “(atb)]-3abci, (B3
1 (= exfd —(at;+bt,+ct 1
M3(a,b,c)= df dt;dtdts L d/zf)zz| 3
(4m)4Jo [tat; +tgto+tsts] [ti+15]
G, 1 L48) ‘b i) g 24 2 2 13 —eab 2.5 ca
“2¢|® s Taso ¢ (AP gt te @D yg e b5t (B9
1 (= exd —(at+bt,+ct tit
M%a,b,c)= df dt;dtdts L R d/23)1] =
(4m)dJo [taty +Htatp+tytp]27 % [ty+1,]°
G .2 +10 1-<(a+b 1+4 +1 2+b2+1 b ES
“2¢| " s tasg ¢ @Dl gcrg) 3@ b+ gab). =
1 (= exd — (at,+bt,+ct th
M>(a,b,c;n)= dJ' dtydtdty S L dg)] ; n
(4m)9Jo [tat; +tgto+tt5] [ti+t5]
G2 n+1 25n+1) 1 1
__ el 3-¢ _ e S 3—e____
66{a e I MU R e )
6 15+3«1r +2)+3¥(2)-6¥(n+4) |+ 2‘fb3+21+3F
% - (n+2) (2)—6¥(n+4)|+a PRI 1(n)
+g2-€ 3+27+3F +1)|+c2 ¢ ! 6+9 3V (n+2)+6W¥(n+3)+3
@ e s Pt et s S 4 — 3V (n+2)+6¥(n+3)+ 3y
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1 6 9
2—¢€ o _
O b o T 5 3 (T D=3V () +6¥ (n+3)
+b3;+b2ai+b2c——3abci (E6)
2(n—=1)n 2n 2n(n+1) n+1|’
1 (= exd — (at;+ bty +cty)] t5[t;+t,]"
M(a,b,c;n)= df dtydtgdt, (2t Dt W;? el
(47T) 0 [t3t1+t3t2+t1t2]
B GE e (n+2)(n+3) n+3 11(n+2)(n+3) 2(n+3) 1 1 . 3 —F 3
R 12 6e | 72 T Tt plFent I Fan+3)]
foe T3 5043 1 1 U . 201+3) 13n+3) 1 1 L
T T R L U R e P T B LU
+C—(1+e)b2 E+§ _EC_(:H—E)HZ—C_(:H—E)ab (E?)
€ 2 2
1 (= exf] — (at;+bt,+cty)] t1 152
M(a.b.cin)= (4w)dfo dtdtzdts [tat;+toty+tyt,]9270 [ty+1t,]3
3t1 3t2 1t2 1 2
G2 . 2 1 11 1 1
=——{b%°¢ + + +a’ +c?
6e (n+2)e (n+2)2 6(n+2) 3(n+2) 10(n—=21)n(n+1)(n+2)
+a’b +a’c +b?a +b%c 3 +c?a !
2(n+2) 4(n+1)(n+2) n+2 4(n+1)(n+2) 5n(n+1)(n+2)
1
2
+CblGKn+1ﬂn+2)+abcﬂn+1ﬂn+2J’ &9
MS(a,b,C;n): df dtldtzdts di2+n 2 r2]+lt3
(47T) 0 [t3t1+t3t2+t1t2]
_ GZ oL 2 2n+3 1 1 1
e (D42 (n+1)2nt2)?  tDn+2)| 2+ Dn+2)  CaintH(nt2)|"
(E9

In addition to the parameter integrals we use

C=-—

1 (= ex] — m(ty+ty+t t
- fdtldtzdtg d-rtttrt)]  t
(4m)®Jo [taty+taty+t,t,]92 2 ta(ty + 1)

GI (31
" e e 2/

(E10

APPENDIX F: CONDUCTING DIAGRAMS IN TERMS OF
PARAMETER INTEGRALS

Here we list our results for the conducting two-loop dia-
grams in terms of the parameter integrals given in Appendix
E. For notational simplicity, we show only the parts of the

diagrams proportional to,K|(f):
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?U|K|()\)

2 8 7
(nr1y(nt2) Miodn) = 2Mz0,4(n)

4
T D+ 2)(n+3)

—4M7; (n)—2MJ, (n)]

X[M+M g,o,0+ M i,l,o_ M ?,o,o(n) -M 811’0(n)
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E=—g—v| Ky (N){ — M3, dn)

(n+1)(n+2)

1 1 5
D 2)(ne3) Maoot 3Ma o MiodI),

(F3)
g’ o
F=_?UIKI()\){M%,LO_’_M%,L]}' (F4)
g* o
G=— S viKi(M)Mz4,, (FS)
4 1 4 4
H:_—U| |()\) (n+1)[M 01+MO,1,1+M1,1,0]

T D2y [2Masdm+ Maeu(n) + M1y 4(n)]

1

3
Fnrzmeg Mo

1My (n+ MY ]

D2 Miedm 'V';’lyo(”)]]'

(F6)
g4
|=—EU| |()\){ M300+M 12(n)], (F7)
=9 Ki(\)| =5 M3, ¢n)
2 VK| D (nr ) M2ad
1 5
T D+ 2)(n+3) HMeodM
+(n—1)M3 o4+ 3(n— 1)M§,1'0]] , (F8)
g* 1
K==ZukK |()\)+ M300+2M21o]’ (F9
g* 1
L:__U| |()\) M300 (F].O)

2

APPENDIX G: RELATION TO THE BACKBONE AND
THE RED BOND DIMENSION

From Eq.(2.2)) it is evident that only those bonds with
=1 contribute toC(R“). Consequentlyy., is related to the
fractal dimensiord,.q Of the singly connectetted) bonds via
d;eq= ¥,/ v. Coniglio[38,39 proved that,.q= 1/v, which in
turn leads tog,,=1. As mentioned above, our result fgf
matches this consistency requirement.

Another trivial consequence of E@.21) is thatC{) is
proportional to the average number of bor{tlee massy of

the backbone. Henag is related to the backbone dimension

Dg by

PHYSICAL REVIEW E3 036103

¢O:VDB' (Gl)

This relation can also be obtained on the level of Feynman
diagrams. Reconsider the definition of the noise cumulants
for Feynman diagrams E@3.9). In the limit|—0 the noise
cumulant reduces to the sum of Schwinger parameters of
conducting propagators,

CcO(sH=2 s. (G2

Now we take a short detour to our renormalized field theory
of diluted networks in which the occupied bonds obey a
generalized Ohm’s law~ 1" [21,22. In these networks, the
nonlinear resistanc®,(x,x’) averaged subject t® and x’
being on the same cluster,

M, (X,X") = (XOGXDRA(X,X ) /(X (XX ), (G
obeys at criticality
M, (x,x")=|x—x"| % . (G4

In analogy toR({s;}) we introduced the notion of the non-
linear resistanc®, ({s;}) of Feynman diagrams. In the limit
r——1* we found

-4@@=ZS» (G5

Hence we can identif€(¥({s;}) andR_,({s;}). This leads
to the conclusion thayy=¢_,1. ¢_, is related to the fractal
dimensionDg of the backbone viap_;=vDg, and hence
we obtain once more EqG1). Equation(G1) provides an-
other consistency check for our res(8t38), which is indeed
fulfilled. Moreover, Eq.(G1) can be used to calculaif, to
third order ine from our three-loop result fobg [21,22,

oo_p, L 172, 74639-2268Q(3) 34 of et
BT 21 9261° zosator € Ol
(G6)
We obtain

L, 8

Yo=1t et 1538
166823+41731Z(3) o .
21781872 (9. (67
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