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Noisy random resistor networks: Renormalized field theory for the multifractal moments
of the current distribution

Olaf Stenull and Hans-Karl Janssen
Institut für Theoretische Physik III, Heinrich-Heine-Universita¨t, Universitätsstraße 1, 40225 Du¨sseldorf, Germany

~Received 13 July 2000; published 15 February 2001!

We study the multifractal moments of the current distribution in randomly diluted resistor networks near the
percolation threshold. When an external current is applied between two terminalsx andx8 of the network, the
l th multifractal moment scales asMI

( l )(x,x8);ux2x8uc l /n, wheren is the correlation length exponent of the
isotropic percolation universality class. By applying our concept of master operators@Europhys. Lett.51, 539
~2000!# we calculate the family of multifractal exponents$c l% for l>0 to two-loop order. We find that our
result is in good agreement with numerical data for three dimensions.
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I. INTRODUCTION

Percolation@1# is a leading paradigm for disorder. It pro
vides an intuitively appealing and transparent model of
irregular geometry that occurs in disordered systems. Mo
over, it is a prototype of a phase transition. Although per
lation represents the simplest model of a disordered sys
it has many applications, e.g., polymerization, porous a
amorphous materials, thin films, spreading of epidemics,

In particular the transport properties of percolation clu
ters have gained a vast amount of interest over recent
cades. Random resistor networks~RRN’s! are a prominent
model for transport on percolation clusters. By means
RRN’s one can study the conductivity of disordered med
which might be important for technical applications. Nonli
ear random resistor networks, for which the voltage d
over an individual resistor depends on some power of
current flowing through it, can be exploited to derive vario
fractal dimensions of percolation clusters. From the conc
tual point of view, RRN’s have the advantage that one c
formulate a field theoretic Hamiltonian amenable to ren
malization group analysis. Via RRN’s one can learn ab
diffusion on disordered substrates, since the diffusion c
stantD and the conductivityS of the system are related b
the Einstein relation

S5
e2n

KBT
D, ~1.1!

wheree andn denote the charge and the density of the m
bile particles. The connection of the two problems is parti
larly important, since up to date no direct approach to dif
sion on percolation clusters by means of a dynamic fi
theory exists.

In this paper we study the distribution of currents
RRN’s. The current distribution has many interesting fe
tures, one of which is multifractality@2#. This means that the
distribution is not controlled by one or two relevant leng
scales, but rather by an infinite hierarchy of such len
scales. The concept of multifractality was introduced for t
bulence@3#. It has been applied successfully in diverse ar
including diffusion near fractals@4#, electrons in disordered
1063-651X/2001/63~3!/036103~20!/$15.00 63 0361
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media@5#, polymers in disordered media@6#, random ferro-
magnets@7#, chaotic dissipative systems@8#, and heartbeat
@9#.

Due to the multifractality infinitely many exponents a
needed to characterize the current distribution. Consider
connected terminalsx andx8 of the network. Suppose a cur
rent I is inserted atx and withdrawn atx8. Thel th moment of
the current distribution, given~apart from technical details
cf. Sec. II C! by

MI
( l )~x,x8!5K (

b
i b
2l L

C

, ~1.2!

where the sum runs over all current carrying bonds~the
backbone!, ^•••&C stands for the average over all dilute
configurations, andi b is an abbreviation forI b /I , scales at
criticality as @11#

MI
( l )~x,x8!;ux2x8u2xl. ~1.3!

The xl constitute an infinite set of exponents which are n
related to each other in a linear fashion, i.e., the multifrac
moments do not show the usual gap scaling commonly
countered in critical phenomena.

Each of theMI
( l ) is associated with a particular subset

backbone bonds having its distinct fractal dimension. L
n( i ) be the number of bonds carrying currenti. Upon apply-
ing the saddle point method one finds that the main con
bution to thel th moment is given by@10#

n~ i l !;ux2x8u f ( l ), ~1.4!

with the multifractal spectrumf ( l ) and the multifractal ex-
ponentsxl being related to each other by a Legendre tra
formation.f ( l ) can be interpreted as the fractal dimension
the subset of bonds dominatingMI

( l ) .
An elegant approach for studying the multifractal m

ments is to consider RRN’s with microscopic noise, i.e., ra
dom networks in which the conductances of the individu
resistors fluctuate about some mean. These noisy RR
were originally introduced by Rammalet al. @11# to study the
effects of flicker (1/f ) noise. Flicker noise refers to the low
frequency spectrum of excess voltage fluctuations meas
when a constant current is applied to a resistor. Thel th noise
©2001 The American Physical Society03-1
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cumulantCR
( l )(x,x8) of the total resistance between the te

minals x and x8 is proportional toMI
( l )(x,x8) by virtue of

Cohn’s theorem@12#.
Historically, the existence of the set of multifractal exp

nents$xl% was proposed by Rammalet al. @11#. The authors
determined several of their exponents for two dimension
numerical simulations. A set of exponents$z2l% equivalent to
$2xln%, wheren is the correlation length exponent for pe
colation, was also proposed by de Arcangeliset al. @13#.
These authors derived their exponents for several hierar
cal structures analytically. The field theoretic description
multifractality in RRN’s was pioneered by Park, Harris, a
Lubensky ~PHL! @14#. Based on an approach by Steph
@15# they formulated a (D3E)-fold replicated Hamiltonian
for noisy RRN’s. The contributions to the Hamiltonian lea
ing to multifractal behavior contain powers of replica spa
gradients analogous to powers of real space gradients, w
were accounted for as an origin of multifractality by Dupla
tier and Ludwig @16#. PHL introduced a set of exponen
$cn% identical to the set$2xnn% and calculated it to first
order in e562d, where d denotes the spatial dimensio
Later on Fourcade and Tremblay@17# gave a reinterpretation
of the work by PHL. Batrouniet al. @18# computed severa
multifractal exponents ford53 by numerically solving
Kirchhoff’s equations. Recently Barthe´lémy et al. @19# per-
formed simulations indicating that in the thermodynam
limit the MI

( l ) do not exist forl ,0.
In this article we study the moments of the current dis

bution by renormalized field theory. We extend our re
world interpretation of Feynman diagrams@20–22# to RRN’s
with noise. Upon introducing multifractal moments for Fey
man diagrams we reformulate the field theory of PHL in
way that to our opinion is less complex and more intuitiv
By carefully analyzing the relevance of the field theore
operators related to the noise cumulants, we show that
multifractality is associated with dangerously irrelevant m
ter operators@23#. We calculate the set$c l% for l>0 to sec-
ond order ine. Finally, we compare our result to numeric
simulations.

II. THE MODEL

This section provides background on noisy RRN’s. It
guided by the work of Stephen@15# and PHL@14#.

A. Random resistor networks

Consider ad-dimensional lattice, where bonds betwe
nearest neighboring sitesi and j are randomly occupied with
probabilityp or empty with probability 12p. Each occupied
bond ^ i , j & has a conductances i , j . Unoccupied bonds hav
conductance zero. The bonds obey Ohm’s law

s i , j~Vj2Vi !5I i , j , ~2.1!

whereI i , j is the current flowing through the bond fromj to i
andVi is the potential at sitei.

Suppose a currentI is injected into a cluster at sitex and
withdrawn at sitex8. The union of all sites belonging to a
03610
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self-avoiding paths betweenx and x8 is referred to as the
backbone betweenx and x8. The power dissipated on th
backbone is by definition

P5I ~Vx2Vx8!. ~2.2!

Using Ohm’s law, it may be expressed entirely in terms
voltages as

P5R~x,x8!21~Vx2Vx8!
25(

^ i , j &
s i , j~Vi2Vj !

25P~$V%!.

~2.3!

HereR(x,x8) is the total resistance of the backbone, the s
is taken over all nearest neighbor pairs on the cluster, and$V%
denotes the corresponding set of voltages. As a consequ
of the variation principle

]

]Vi
F1

2
P~$V%!2(

j
I jVj G50, ~2.4!

one obtains Kirchhoff’s law

(̂
j &

s i , j~Vi2Vj !52(̂
j &

I i , j5I i , ~2.5!

whereI i5I (d i ,x2d i ,x8) and the summations extend over th
nearest neighbors ofi.

Alternatively to Eq.~2.3! the power can by rewritten in
terms of the currents as

P5R~x,x8!I 25(
b

rbI b
25P~$I b%!, ~2.6!

with $I b% denoting the set of currents flowing through th
individual bonds,b5^ i , j &, and rb5sb

21 . Obviously the
cluster may contain closed loops as subnetworks. Supp
there are currents$I (loop)% circulating independently around
complete set of independent closed loops. Then the pow
a function not only ofI but also of the set of loop currents
The potential drop around closed loops is zero. This gi
rise to the variation principle

]

]I (loop)
P~$I (loop)%,I !50. ~2.7!

Equation~2.7! may be used to eliminate the loop curren
and thus provides us with a method to determine the t
resistance of the backbone via Eq.~2.6!.

Since the resistance of the backbone depends on the
figurations C of the randomly occupied bonds, one intr
duces an averagê•••&C over these configurations. It is im
portant to recognize that the resistance between disconne
sites is infinite. Therefore one considers only those sitex
and x8 known to be on the same cluster. In practice this
done by introducing the indicator functionx(x,x8) which,
for a given configurationC, is unity if x andx8 are connected
and zero otherwise. Then thel th moment of the resistanceR
with respect to the average^•••&C subject tox andx8 being
on the same cluster is given by

^x~x,x8!R~x,x8! l&C /^x~x,x8!&C . ~2.8!
3-2
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B. Noise in random resistor networks

In the following we consider RRN’s with noise in th
sense that the conductancessb of occupied bonds fluctuat
about some mean. To be specific, thesb are equally and
independently distributed random variables with means̄ and
higher cumulantsD ( l>2). The distribution functionf might,
for example, be Gaussian. Nevertheless, our considera
are not limited to this particular choice. In order to suppre
unphysical negative conductances, the assumptionD ( l )!s̄ l

is made. In general the backbone resistance will depend
the set of conductances of occupied bonds$sb%. Its noise
average will be denoted by

$R~x,x8!% f5E )
b

dsbf ~sb!R~x,x8! ~2.9!

and the corresponding cumulants by

$R~x,x8! l% f
(c)5

] l

]l l
ln$exp@lR~x,x8!#% f ul50 . ~2.10!

Both kinds of disorder, the random dilution of the lattic
and the fluctuation of the bond conductances about t
means̄, influence the statistical properties of the backbo
resistance. They are reflected by the moments

MR
( l )~x,x8!5^x~x,x8!$R~x,x8! l% f&C /^x~x,x8!&C ~2.11!

and the cumulants

CR
( l )~x,x8!5^x~x,x8!$R~x,x8! l% f

(c)&C /^x~x,x8!&C . ~2.12!

C. Moments of the current distribution

The noise cumulantsCR
( l ) characterize the distribution o

currents flowing through the network. This section provid
a relation between theCR

( l ) and the moments of the curren
distribution.

Equation ~2.9! defines the noise average as an aver
with respect to the distribution of the bond conductancessb .
Equally well one might express the backbone resistanc
terms of the bond resistances and average over the dist
tion of the rb . Since thesb are independently and equal
distributed, therb are distributed by the same means. A
sume that the distribution function of the deviationsdrb

5rb2 r̄ of the resistance of each bond from its averager̄
has the form

gs~drb!5
1

s
hS drb

s D ~2.13!

and that

lim
s→0

gs~drb!5d~drb!. ~2.14!

s is a variable with units of resistance that sets the scale
the distribution. With this form ofgs , thenth cumulantvn of
drb tends to zero assn. This follows from the generating
function c(ls) of the vn :
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exp@c~ls!#5$exp~ldrb!% f

5E dy h~y!exp~lsy!5expS (
n51

`
ln

n!
vnD ,

~2.15!

where vn5cnsn with cn being constants. In genera
$R(x,x8) l% f

(c) depends on the entire set of cumulants$vn%.
However, in the limits→0 the leading term is proportiona
to v l as we will see immediately. Consider the generat
function C(l) of the cumulants$R(x,x8) l% f

(c) ,

exp@C~l!#5E )
b

ddrb gs~drb!exp@lR~x,x8!#.

~2.16!

Expansion of the backbone resistance in a power series in
drb leads to

exp@C~l!#5E )
b

dyb h~yb!expFlR0~x,x8!

1l(
k51

`

(
b1 , . . . ,bk

sk

k!

]kR~x,x8!

]rb1
•••]rbk

U
r̄

yb1
. . . ybkG ,

~2.17!

where R0(x,x8) is the resistance whendrb50 for every
bondb. Equation~2.17! can be rearranged as

exp@C~l!#

5expFlR0~x,x8!1l(
k52

`

(
b1 , . . . ,bk

sk

k!

]kR~x,x8!

]rb1
•••]rbk

U
r̄

3
]k

]zb1
•••]zbk

G)b
exp@c~zb!#U

lsSb[ ]R(x,x8)/]rb] u r̄

5expFlR0~x,x8!1(
l 51

`

~ls! lcl(
b

S ]R~x,x8!

]rb
U

r̄
D l

1(
i 52

`

f i~lsi !G , ~2.18!

where f i are functions oflsi . Hence, forl>2,

$R~x,x8! l% f
(c)5cl(

b
S s

]R~x,x8!

]rb
U

r̄
D l

@11O~s!#. ~2.19!

In the limit s→0 the leading term is

$R~x,x8! l% f
(c)5v l(

b
S ]R~x,x8!

]rb
U

r̄
D l

5v l(
b

S I b

I D 2l

,

~2.20!

where we have used Cohn’s theorem Eq.~A5!. Upon substi-
tution of Eq. ~2.20! into Eq. ~2.12! one finds for the noise
cumulants
3-3
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CR
( l )~x,x8!5v l M I

( l )~x,x8!, ~2.21!

i.e., the noise cumulantCR
( l ) is proportional to thel th multi-

fractal moment

MI
( l )~x,x8!5K x~x,x8!(

b
S I b

I D 2l L
C

Y ^x~x,x8!&C ~2.22!

of the current distribution.

D. Generating function

Our aim is to determineCR
( l ) . Hence the task is to solv

the set of Kirchhoff’s equations~2.5! and to perform the
averages over the diluted lattice configurations and the no
This can be achieved by employing the replica techniq
@15#. In order to treat the averages^•••&C and $•••% f sepa-
rately, PHL introduced (D3E)-fold replicated voltages,

Vx→VJx5S Vx
(1,1)

••• Vx
(1,D)

A � A

Vx
(E,1)

••• Vx
(E,D)

D . ~2.23!

Note from the definitions Eq.~2.12! and Eq.~2.10! that
one has to treat the two averages independently in the ca
lation of CR

(n) . In contrast, for calculatingMR
(n) it is not nec-

essary to distinguish between the two averages because
could also introduce a composite distribution function

f comp~s!5~12p!d~s!1p f~s! ~2.24!

and a single, sayD-fold, replication would be sufficient.
To construct a generating function for the noise cumula

one introduces

clJ~x!5exp~ i lJ•VJx!, ~2.25!

where lJ•VJx5(a,b51
D,E l (a,b)Vx

(a,b) and lJÞ0J. The corre-
sponding correlation functions

G~x,x8;lJ !5^clJ~x!c2lJ~x8!& rep ~2.26!

are defined as

G~x,x8;lJ !5 lim
D→0K H 1

)
b51

E

Z~$sb
(b)%,C!D

E )
j

dVJ j

3expF2
1

2 (
b51

E

P~$VW (b)%,$sb
(b)%,C!

1
iv

2 (
i

VJ i
21 i lJ•~VJx2VJx8!G J

f

L
C

. ~2.27!

HeredVJ j5)a,b51
D,E dVj

(a,b) ,

P~$VW (b)%,$sb
(b)%,C!5 (

a51

D

(
^ i , j &

s i , j
(b)~Vi

(a,b)2Vj
(a,b)!2 ~2.28!
03610
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with VW x
(b)5(Vx

(1,b) , . . . ,Vx
(D,b)), andZ is the normalization

Z~$sb
(b)%,C!5E )

j
dVj

3expF2
1

2
P~$V%,$sb

(b)%,C!1
iv

2 (
i

Vi
2G .

~2.29!

Note that we have introduced an additional power te
( iv/2)( iVi

2 . This is necessary to give the integrals in Eq
~2.27! and ~2.29! a well defined meaning. Without this term
the integrands depend only on voltage differences and
integrals are divergent. Physically the new term correspo
to grounding each lattice site by a capacitor of unit capac
The original situation may be restored by taking the limit
vanishing frequency,v→0.

The integrations in Eq.~2.27! can be carried out by em
ploying the saddle point method. Since the integrations
Gaussian the saddle point method is exact in this case.
saddle point equation is identical to the variation princip
stated in Eq.~2.4!. Thus the maximum of the integrand
determined by the solution of Kirchhoff’s equations~2.5!
and

G~x,x8;lJ !5K )
b51

E H expF2
lW (b)2

2
R(b)~x,x8!G J

f
L

C

. ~2.30!

The right hand side of Eq.~2.30! may be expanded in term
of the cumulants defined in Eq.~2.10!. This gives

G~x,x8;lJ !5K expF(
l 51

`
~21/2! l

l !
Kl~lJ !$R~x,x8! l% f

(c)G L
C

,

~2.31!

whereKl is defined by

Kl~lJ !5 (
b51

E F (
a51

D

~l (a,b)!2G l

. ~2.32!

We learn that the correlation functionG can be exploited as
a generating function for the noise cumulants via

^x~x,x8!&CCR
(n)~x,x8!

5
]

]@~21/2!n~n! !21Kn~lJ !#
G~x,x8;lJ !ulJ50J . ~2.33!

Note thatMR
(1)5CR

(1) .

E. Field theoretic Hamiltonian

Since infinite voltage drops between different cluste
may occur, it is not guaranteed thatZ stays finite, i.e., the
limit lim

D→0
ZDE is not well defined. Moreover,lJ50J has to

be excluded properly. Both problems can be handled by
sorting to a lattice regularization of the integrals in Eq
~2.27! and ~2.29!. One switches to voltage variablesuJ
3-4
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5DukJ taking discrete values on a (D3E)-dimensional
torus, i.e.,kJ is chosen to be a (D3E)-dimensional integer
with 2M,k(a,b)<M and k(a,b)5k(a,b)mod(2M ). Du
5uM /M is the gap between successive voltages anduM is
the voltage cutoff. The continuum may be restored by tak
uM→` andDu→0. By settinguM5u0M , M5m2, and, re-
spectively,Du5u0 /m, the two limits can be taken simulta
neously viam→`. Since the voltage and current variabl
are conjugatedlJ is affected by the discretization as well:

lJ5Dl lJ, DlDu5p/M , ~2.34!

where lJ is a (D3E)-dimensional integer taking the sam
values askJ. This choice guarantees that the completen
and orthogonality relations

1

~2M !DE (
uJ

exp~ i lJ•uJ !5dlJ,0J mod(2MDl) ~2.35a!

and

1

~2M !DE (
lJ

exp~ i lJ•uJ !5duJ,0J mod(2MDu) ~2.35b!

do hold. Equation~2.35! provides us with a Fourier trans
form in replica space. In this discrete picture there
(2M )DE21 independent state variables per lattice site. Up
Fourier transformation one introduces the Potts spins@24#

FuJ~x!5~2M !2DE (
lJÞ0J

exp~ i lJ•uJ !clJ~x!5duJ,uJx
2~2M !2DE

~2.36!

subject to the condition(uJFuJ(x)50.
Now we revisit Eq.~2.27!. Carrying out the average ove

the diluted lattice configurations and the noise provides
with the weight exp(2Hrep) of the averagê•••& rep,

H rep52 lnK H expF2
1

2
P~$uJ%!1

iv

2 (
i

uJ i
2G J

f
L

C

52(
^ i , j &

lnK )
b51

E H expF2
1

2
s i , j

(b)~uW i
(b)2uW j

(b)!2G J
f
L

C

2
iv

2 (
i

uJ i
2 . ~2.37!

By dropping a constant termNBln(12p), with NB being the
number of bonds in the undiluted lattice, one obtains

H rep52(
^ i , j &

K~ uJ i2uJ j !2(
i

h~ uJ i !52(
^ i , j &

(
uJ,uJ8

K~ uJ

2uJ8!FuJ~ i !FuJ8~ j !2(
i

(
uJ

h~ uJ !FuW~ i !, ~2.38!

where
03610
g

s

e
n

s

h~ uJ !5
iv

2 (
i

uJ i
2 ~2.39!

and

K~ uJ !5 lnH 11
p

12p)
b51

E H expF2
1

2
s (b) (

a51

D

~u (a,b)!2G J
f
J

5 lnH 11
p

12p
expF(

l 51

`
~21/2! l

l !
D ( l )Kl~ uJ !G J . ~2.40!

In the limit of perfect transport,s→0, K(uJ) goes to its
local limit K(uJ)5KduJ,0J , with K being a positive constant
The interaction part of the Hamiltonian reduces to

H rep
int 52K(

^ i , j &
(

uJ
FuJ~ i !FuJ~ j !. ~2.41!

This represents nothing more than the (2M )DE-state Potts
model which is invariant against all (2M )DE! permutations
of the Potts spinsFuJ .

In the case of imperfect transport thisS(2M )DE symmetry
is lost. For finites̄ and D (n)50, K(uJ) is an exponentially
decreasing function in replica space with a decay rate p
portional to s̄21. Then, for larges̄, the HamiltonianH rep
describes a translationally and rotationally invariant sh
range interaction of Potts spins in real and replica space w
an external one-site potentialh(uJ).

Admitting fluctuations of the resistances,D (n).0, results
in breaking the rotationalO(DE) replica space symmetry o
the interaction part of the Hamiltonian. The Fourier tran
form of K(uJ),

K̃~lJ !5
1

~2M !DE (
uJ

exp~2 i lJ•uJ !K~ uJ !, ~2.42!

is expediently evaluated by switching back to continuo
voltages,

K̃~lJ !5E
2`

`

duJexp~2 i lJ•uJ !lnH 11
p

12p

3expF(
l 51

`
~21/2! l

l !
D ( l )Kl~ uJ !G J , ~2.43!

where we have dropped a factor (2uM)2DE. Taylor expan-
sion of the logarithm yields a series of terms of the form

E
2`

`

duJ expF2 i lJ•uJ2as̄uJ22(
l 52

bl~ s̄s! lKl~ uJ !G , ~2.44!

wherea the bl are constants of orderO(s0). In addition to
the expansion of the logarithm we expand in a power se
in s, so that Eq.~2.44! becomes
3-5
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E
2`

`

duJ exp@2 i lJ•uJ2as̄uJ2#H 11(
l 52

`

~s̄s! l Pl~ uJ !J . ~2.45!

Here thePl are homogeneous polynomials of order 2l in lJ

that are sums of terms proportional to

)
i>2

Ki~ uJ ! l i ~2.46!

such that( i i l i5 l . Completing squares in the exponential
Eq. ~2.45! gives

expF2
lJ2

4as̄
G E

2`

`

duJ exp@2as̄uJ2#

3H 11(
l 52

`

~s̄s! l PlS uJ2 i
lJ

2as̄
D J

5expF2
lJ2

4as̄
G H 11(

l 52

`

~s̄s! l

3F PlS lJ

s̄
D 1•••1s̄ (2r )Pl 2rS lJ

s̄
D 1•••G J , ~2.47!

where we have omitted multiplicative factors decorating
Pl . Due to the homogeneity of thePl , Eq. ~2.47! can be
rearranged as

expF2
lJ2

4as̄
G H 11(

l 52

`

sl@s̄2 l Pl~lJ !1•••

1s̄2( l 2r )Pl 2r~lJ !1•••#J
5expF2

lJ2

4as̄
G H 11 (

l 851

` S s

s̄
D l 8

@11O~s!#Pl 8~lJ !J ,

~2.48!

up to multiplicative factors. By keeping only the leadin
contributions, one finds thatK̃(lJ) can be expanded as

K̃~lJ !5t1 (
p51

`

wplJ2p1(
Pl

vPl
Pl~lJ !, ~2.49!

with t, wp;s̄2p, andvPl
;D ( l )/s̄2l being expansion coef

ficients.
It is known that the termswplJ2p are irrelevant in the

renormalization group sense forp>2 ~see, e.g.,@20#!. From
Sec. II F it can be inferred that thevPl

Pl(lJ) are irrelevant as

well. However, the terms proportional toKl(lJ) are indis-
pensable in studying the noise cumulants; they are dan
ously irrelevant. Therefore, we restrict the expansion
K̃(lJ) to
03610
e

r-
f

K̃~lJ !5t1wlJ21(
l 52

`

v lKl~lJ !, ~2.50!

with w5w1 and v l5vKl
. Nevertheless, the neglected term

will regain some importance later on since they are requi
for the renormalization of thev l .

The Kl are homogeneous polynomials of order 2l . For l
>2 they possessS@O(D)E# symmetry. Thus, allowing for
D (n).0 results in losing the rotationalO(DE) in favor of
the S@O(D)E# symmetry.

It is worth pointing out thatv l /wl;D ( l )/s̄ l;sl , i.e., the
conditions→0 translates intov l!wl . Consequently one ha
to take the limitv l→0 before the limitw→0 in calculating
the exponents associated with thev l .

We proceed with the usual coarse graining step and
place the Potts spinsFuJ(x) by order parameter fieldsw(x,uJ)
which inherit the constraint(uJw(x,uJ)50. We model the
corresponding field theoretic HamiltonianH in the spirit of
Landau as a mesoscopic free energy from local monom
of the order parameter field and its gradients in real a
replica space. The gradient expansion is justified since
interaction is short ranged in both spaces. Purely local te
in replica space have to respect the fullS(2M )DE Potts sym-
metry. After these remarks we write down the Landa
Ginzburg-Wilson type Hamiltonian

H5E ddx(
uJ

H 1

2
w~x,uJ !K~D,¹uJ!w~x,uJ !

1
g

6
w~x,uJ !31

iv

2
uJ2w~x,uJ !J , ~2.51!

where

K~D,¹uJ!5t1D1w (
a,b51

D,E
2]2

~]u (a,b)!2

1(
l 52

`

v l (
b51

E F (
a51

D
2]2

~]u (a,b)!2G l

. ~2.52!

In Eq. ~2.51! we have neglected terms of orderw4 or higher,
which are irrelevant in the renormalization group sense.t, w,
andv l are now coarse grained analogs of the original co
ficients appearing in Eq.~2.50!. Note again thatH reduces to
the usual (2M )DE-state Potts model Hamiltonian by settin
v l50 andw50, as one retrieves purely geometrical perc
lation in the limit of vanishingv l andw.

F. Relevance of the noise terms

Irrelevant variables that cannot be taken to zero beca
the quantity one is looking at either vanishes or diverges
this limit have been given the namedangerously irrelevant
variablesby Fisher@25#. Later on this notion was introduce
into field theory by Amit and Peliti@26#. A characteristic
feature of dangerously irrelevant variables is that correcti
due to them determine the asymptotic behavior of quanti
3-6
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with the above property, so that their effect is felt arbitrar
close to the transition@27#. In this section we show that th
v l are dangerously irrelevant. They are irrelevant on dim
sional grounds, i.e., they are associated with a negative n
dimension. However, we cannot simply take thev l to zero
by appealing to their irrelevance, because the amplitude
the noise cumulants vanish in this limit.

In the remainder of this article we focus on vanishi
frequency v50. Let P denote the set of paramete
$t,w,v l%. We introduce a scaling factorb for the voltage
variable:uJ→buJ. By substitution ofw(x,uJ)5w8(x,buJ) the
Hamiltonian turns into

H@w8~x,buJ !,P#5E ddx(
uJ

H 1

2
w8~x,buJ !K~D,¹uJ!

3w8~x,buJ !1
g

6
w8~x,buJ !3J . ~2.53!

Renaming the scaled voltage variablesuJ85buJ yields

H@w8~x,uJ8!,P#5E ddx(
uJ8

H 1

2
w8~x,uJ8!K~D,b¹uJ8!

3w8~x,uJ8!1
g

6
w8~x,uJ8!3J . ~2.54!

Obviously the voltage cutoff is affected by the scaling
well: uM→buM . However, if the limits are taken in the ap
propriate order, namely,D→0 and thenm→`, the depen-
dence of the theory on the cutoff drops out. Thus, we
identify uJ8 and uJ and hence

H@w~x,buJ !,P#5H@w~x,uJ !,P8#, ~2.55!

whereP85$t,b2w,b2lv l%.
Now consider correlation functions

GN~$x,uJ%;t,w,$v l%!5E Dw w~x1 ,uJ1!•••w~xN ,uJN!

3exp$2H@w~x,uJ !,P#%, ~2.56!

whereDw indicates an integration over the set of variab

$w(x,uJ)% for all x and uJ. Equation~2.55! implies

GN~$x,uJ%;t,w,$v l%!5GN~$x,buJ%;t,b2w,$b2lv l%!. ~2.57!

The two-point correlation functionG2 is the Fourier trans-
form of ^clJ(x)c2lJ(x)&H . We deduce from Eq.~2.31! that

Kl~lJ !CR
( l )
„~x,x8!;t,w,$vk%…

5b22lKl~lJ !CR
( l )
„~x,x8!;t,b2w,$b2kvk%…. ~2.58!

We are free to chooseb25w21. This gives

CR
( l )
„~x,x8!;t,w,$vk%…5wl f lS ~x,x8!;t,H vk

wkJ D , ~2.59!
03610
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wheref l is a scaling function. We learn from Eq.~2.59! that
the coupling constantsvk appear only asvk /wk. Dimen-
sional analysis of the Hamiltonian shows thatwlJ2;m2 and

vkKk(lJ);m2, wherem is an inverse length scale, i.e.,wlJ2

and vkKk(lJ) have a naive dimension 2. Thusvk /wk

;m222k and hence thevk /wk have a negative naive dimen
sion. This leads to the conclusion that thevk are irrelevant
couplings.

Though irrelevant, one must not setv l50 in calculating
the noise exponents. In order to see this we expand the s
ing function f l in Eq. ~2.59!,

CR
( l )
„~x,x8!;t,w,$vk%…5wl H Cl

( l ) v l

wl
1Cl 11

( l ) v l 11

wl 11
1•••J ,

~2.60!

with Ck
( l ) being expansion coefficients depending onx, x8,

andt. It is important to recognize thatCk, l
( l ) 50 because the

corresponding terms are not generated in the perturba
calculation. Equation~2.60! can be rewritten as

CR
( l )
„~x,x8!;t,w,$vk%…5v l H Cl

( l )1Cl 11
( l ) v l 11

wv l
1•••J , ~2.61!

where the first term on the right hand side gives the lead
behavior. ThusCR

( l ) vanishes upon settingv l50 and we can-
not gain any further information aboutCR

( l ) . In particular, we
cannot determine the associated noise exponent. In o
words, thev l are dangerously irrelevant in investigating th
critical properties of theCR

( l>2) .

III. RENORMALIZATION GROUP ANALYSES

A. Diagrammatic expansion

The diagrammatic elements contributing to our renorm
ization group improved perturbation calculation are t
three-point vertex2g and the propagator

12dlJ,0J

p21t1wlJ21(
l 52

`

v lKl~lJ !

5
1

p21t1wlJ21(
l 52

`

v lKl~lJ !

2
dlJ,0J

p21t
. ~3.1!

Note that we have switched to a (p,lJ) representation by
employing Fourier transformation in real and replica spa
The notation in Eq.~3.1! is somewhat symbolic. To treat th
irrelevant termsv lKl(lJ) properly, we have to expand th
propagator in a power series in thev l and discard all contri-
butions of higher than linear order in thev l . In other words,
the irrelevant terms have to be treated as insertions.

Equation~3.1! shows that the principal propagator decom
poses into a propagator carryinglJ ’s ~conducting! and one
not carrying lJ ’s ~insulating!. This allows for a schematic
3-7
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decomposition of principal diagrams into sums of conduct
diagrams consisting of conducting and insulating propa
tors. To two-loop order, we obtain the conducting diagra
listed in Fig. 1.

B. Multifractal moments of Feynman diagrams

From the decomposition in Sec. III A a real world inte
pretation of the conducting Feynman diagrams emer
@20,21#. They may be viewed as resistor networks the
selves with conducting propagators corresponding to c
ductors and insulating propagators corresponding to o
bonds. The parameterss appearing in a Schwinger paramet
zation of the conducting propagators,

1

p21t1wlJ21(
l 52

`

v lKl~lJ !

5E
0

`

dsexpF2sS p21t1wlJ21(
l 52

`

v lKl~lJ !D G ,

~3.2!

correspond to resistances and the replica variablesi lJ to cur-
rents. The replica currents are conserved in each vertex
we may write for each edgei of a diagramlJ i5lJ i(lJ,$kJ%),

FIG. 1. Conducting diagrams to two-loop order. The bold lin
symbolize principal propagators, the light lines stand for condu
ing, and the dashed lines for insulating propagators. We point
that the conducting diagrams inherit their combinatorial factor fr
their bold diagram. For example, the diagramsA andB have to be
calculated with the same combinatorial factor 1/2.
03610
g
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wherelJ is an external current and$kJ% denotes a complete
set of independent loop currents.

The real world interpretation suggests an effective way
computing the conducting diagrams. We learned from
discussion above that the irrelevant terms have to be tre
by means of insertions,

O ( l )52
1

2
v lE ddp(

lJ
Kl~lJ !f~p,lJ !f~2p,2lJ !, ~3.3!

wheref(p,lJ) denotes the Fourier transform ofw(x,uJ). The
resulting diagrams are of the type displayed on the left h
side of Fig. 2. We express the current-dependent part of s
a diagram in terms of its powerP,

2siv l(
$kJ%

Kl~lJ i !expF2w(
j

sjlJ j
2G

52siv l(
$kJ%

Kl~lJ i !exp@wP~lJ,$kJ%!#. ~3.4!

The summation is carried out by completing the squares
the exponential. The corresponding shift in the loop curre
is given by the minimum of the quadratic formP, which is
determined by a variation principle completely analogous
the one stated in Eq.~2.7!. Thus, completing of the squares
equivalent to solving Kirchhoff’s equations for the diagram
It leads to

2siv l(
$kJ%

Kl S lJ i
ind1(

j
Ci , j~$s%!kJ j D

3expF2wR~$s%!lJ22w(
i , j

Bi , j~$s%!kJ i•kJ j G . ~3.5!

lJ i
ind5ci($s%)lJ is the current induced by the external curre

into edgei. ci($s%) andCi , j ($s%) are homogeneous function
of the Schwinger parameters of degree zero.Bi , j ($s%) and
the total resistance of the diagramR($s%) are homogeneous
functions of the Schwinger parameters of degree 1. B
suitable choice of thekJ i the matrix constituted by theBi , j is
rendered diagonal, i.e.,Bi , j;d i , j . At this stage it is conve-
nient to switch to continuous currents and to replace
summation by an integration,

(
$kJ%

→E )
i 51

L

dkJ i , ~3.6!

wheredkJ is an abbreviation for)a,b51
D,E dk (a,b) andL stands

for the number of independent conducting loops. This in
gration is Gaussian and therefore straightforward. In the li
D→0 one obtains

t-
ut
d
d
r-
FIG. 2. Calculation scheme. The hatche
ovals symbolize an arbitrary number of close
conducting loops. The solid dots indicate inse
tions.
3-8
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2siv lKl~lJ i
ind!1•••52sici~$s%!2lv lKl~lJ !1•••. ~3.7!

The terms neglected in Eq.~3.7! are not required in calculat
ing the c l . This issue is discussed in detail in Sec. III
Diagrammatically, the calculation scheme can be conden
into Fig. 2. Appendix B illustrates the calculations in term
of an example.

So far we have insertedO ( l ) only in one of the conduct-
ing propagators. However, each of them has to get an in
tion. Moreover, the integrations over loop momenta a
Schwinger parameters remain to be carried out. All in
each diagram can be written as

I ~p2,lJ !5I P~p2!2I W~p2!wlJ22I V
( l )~p2!v lKl~lJ !1•••

5E
0

`

)
i

dsi@12R~$si%!wlJ22C( l )~$si%!v lKl~lJ !

1•••#D~p2,$si%!. ~3.8!

Here D(p2,$si%) stands for the integrand one obtains up
Schwinger parametrization of the corresponding diagram
the usualf3 theory.C( l )($si%) is defined as

C( l )~$si%!5(
i

sici~$s%!2l5(
i

si~lJ i
ind/lJ !2l , ~3.9!

where the sum runs over all conducting propagators of
diagram. Notice the analogy of theC( l )($si%) to the general-
ized multifractal moments we introduce in Appendix A
Thus, we refer to theC( l )($si%) as multifractal moments o
conducting Feynman diagrams.

C. Renormalization and scaling

By employing dimensional regularization and minim
subtraction we proceed with standard techniques of re
malized field theory@28#. The renormalization of thev l ,
however, involves some peculiarities that we will discuss
this section.

An operatorOi of a given naive dimension@Oi # inserted
one time in a vertex function generates in general new pri
tive divergences corresponding to all operators of equa
lower naive dimension. Thus, one needs these newly ge
ated operators as counterterms in the Hamiltonian.

The operators of lower naive dimension can be isola
by additive renormalization,

Oi→Ôi5Oi2 (
[Oj ] ,[Oi ]

Xi , jOj . ~3.10!

Dimensional regularization in conjunction with minimal su
traction leads toXi , j containing at least a factort. TheseXi , j
vanish at the critical point. Hence, the operators of low
naive dimension will not be considered in the following.

As argued in Sec. III B the term proportional tov l in Eq.
~3.8! is generated by inserting the operatorO ( l ). Inserting
O ( l ) into a diagram withn external legs~see Fig. 3! gener-
ates primitive divergences that must be canceled by coun
terms of the structure
03610
ed

r-
d
l,

in

e

r-

n

i-
r
r-

d

r

r-

Pr~lJ !p2af~p,lJ !n, ~3.11!

where

Pr~lJ !5)
i

Ki~lJ !r i ~3.12!

with ( i i r i5r is a homogeneous polynomial of degree 2r .
Note that the notation we use here and in the following
symbolic, since such a counterterm has to depend on
entire set of external momenta and currents.f(p,lJ)n is, for
example, an abbreviation for) i 51

n f(pi ,lJ i).
The leading contribution comes from operators having

same naive dimension asO ( l ), i.e., those satisfying

2~ l 1223!52~r 1a1n23!. ~3.13!

Here we expressed the naive dimension with the help of
~C8!. For n52 one is led tol>r , i.e., the insertion ofO ( l )

generates operators containing homogeneous polynomia
the replica currents of degree equal to or lower than 2l . In
particularO ( l ) generates an operator of type

v lKl~lJ !f~p,lJ !2. ~3.14!

The important question now is if the other operators gen
ated byO ( l ) generate operators of this type, too. Consid
n>3. With the help of Eq.~3.13! one obtainsl 21>r>1,
where the second inequality is a consequence of the l
D→0. Bearing in mind that maximal homogeneous polyn
mials of degreel 21 in lJ are generated, we reinsert the
operators of the type in Eq.~3.11! with n>3 into two-leg
diagrams~see Fig. 4!. The resulting terms are of the form

Pr 8~lJ !p2a8f~p,lJ !2, ~3.15!

with the leading contributions satisfyingr 1a1n235r 8
1a821. Thus, r 8>r 1a2a811, i.e., the homogeneou
polynomials inlJ may have a higher degree than 2l . How-
ever, they are of the type

FIG. 3. O ( l ) inserted into a diagram withn external legs.

FIG. 4. An operator of the type in Eq.~3.11! with n>3 inserted
into a two-leg diagram.
3-9



-

ce

-

iza

in

e

th
-

-

s

the
p

ed

OLAF STENULL AND HANS-KARL JANSSEN PHYSICAL REVIEW E63 036103
Pr 8~lJ !5K1~lJ !s )
2< i<r

Ki~lJ !r i, ~3.16!

with ( i i r i<r< l 21 and ( i i r i1s5r 8. These polynomials
have a higher symmetry than the originalKl .

We conclude thatO ( l ) generates itself and an entire fam
ily of new operators but these in turn do not generateO ( l ). In
principle, the entire family of operators associated withO ( l )

has to be taken into account in the renormalization pro
dure, leading to a renormalization in matrix form,

Ô( l )→O7 ( l )5Z( l )Ô( l ). ~3.17!

The vector

Ô( l )5~O ( l ),Ô2
( l ) , . . . ! ~3.18!

contains the family associated withO ( l ). For the remaining
renormalizations, we employ the same scheme as in@20#,

w→w° 5Z1/2w, t→t°5Z21Ztt, ~3.19a!

w→w° 5Z21Zww, g→g°5Z23/2Zu
1/2Ge

21/2u1/2me/2.
~3.19b!

In Eq. ~3.19! e stands for 62d and the factor Ge
5(4p)2d/2G(11e/2), with G denoting the Gamma func
tion, is introduced for convenience.

According to the arguments given above the renormal
tion matrix

Z( l )511O~u! ~3.20!

has a particularly simple structure,

Z( l )5S Z( l ) L ••• L

0 L ••• L

A A � A

0 L ••• L

D , ~3.21!

where1 stands for the unit matrix andL symbolizes ele-
ments that we do not evaluate. In this paper, we determ
Z( l ) to the order of two loops.Z, Zt , andZu are the usual
Potts modelZ factors. They have been computed to thre
loop order by de Alcantara Bonfimet al. @29#. Zw is known
to two-loop order@20#.

The unrenormalized theory has to be independent of
length scalem21 introduced by renormalization. In particu
lar, the connectedN-point correlation functions with an in
sertion ofÔ( l ) must be independent ofm, i.e.,

m
]

]m
G° N~$x,w° lJ2%;t° ,g° !Ô( l )50 ~3.22!

for all N. Equation~3.22! translates via the Wilson function
03610
-

-

e

-

e

b~u!5m
]u

]m U
0

, k~u!5m
] ln t

]m U
0

, ~3.23a!

z~u!5m
] ln w

]m U
0

, g~u!5m
]

]m
ln ZU

0

, ~3.23b!

g ( l )~u!52m
]

]m
ln Z( l )U

0

, ~3.23c!

where the bare quantities are kept fixed while taking
derivatives, into the Gell-Mann-Low renormalization grou
equation

H Fm ]

]m
1b

]

]u
1tk

]

]t
1wz

]

]w
1

N

2
gG11g ( l )J

3GN~$x,wlJ2%;t,u,m!Ô( l )50. ~3.24!

The particular form of the Wilson functions can be extract
from the renormalization scheme and theZ factors. At the
infrared stable fixed pointu* , determined byb(u* )50, the
renormalization group equation reduces to

H Fm ]

]m
1tk*

]

]t
1wz*

]

]w
1

N

2
g* G11g ( l )* J

3GN~$x,wlJ2%;t,u* ,m!Ô( l )50, ~3.25!

where g* 5g(u* ), k* 5k(u* ), z* 5z(u* ), and g ( l )*
5g ( l )(u* ).

The matrixg ( l ) inherits the simple structure ofZ( l ),

g ( l )5S g ( l ) L ••• L

0 L ••• L

A A � A

0 L ••• L

D . ~3.26!

Owing to this structure,u1&5(1,0, . . . ,0)T is a right eigen-
vector of g ( l )* with eigenvalueg ( l )* . The remaining right

eigenvectors with eigenvaluesgk
( l )* , k>2, we denote by

uk&. The left eigenvectors ofg ( l )* are ^1u5(1,L, . . . ,L)
and^ku5(0,L, . . . ,L). In terms of the eigenvectors,g ( l )*
can be spectrally decomposed into

g ( l )* 5u1&g ( l )* ^1u1 (
k>2

uk&gk
( l )* ^ku. ~3.27!

Now it is important to realize that

^1uÔ( l )5Ô( l )1 (
k>2

L Ôk
( l )5A ( l ),

^kuÔ( l )5 (
k>2

L Ôk
( l ) , ~3.28!
3-10
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i.e., onlyA ( l ) contains the operatorO ( l ) we are interested in
We substitute Eq.~3.27! into the renormalization group
equation~3.25! and act on the entire equation with^1u. The
result is

Fm ]

]m
1tk*

]

]t
1wz*

]

]w
1

N

2
g

1g ( l )GGN~$x,wlJ2%;t,u* ,m!A ( l )50. ~3.29!

Equation~3.29! is solved by the method of characteristic
The solution reads

GN~$x,wlJ2%;t,u* ,m!A ( l )

5%g* N/21g( l )*

3GN~$%x,%z* wlJ2%; %k* t,u* ,%m!A ( l ). ~3.30!

To derive a scaling relation for the correlation functions
dimensional analysis remains to be performed. It yields

GN~$x,wlJ2%;t,u,m!A ( l )

5m (d22)N/222

3GN~$mx,m22wlJ2%; m22t,u,1!A ( l ). ~3.31!

From Eqs.~3.30! and~3.31! we deduce the scaling behavio

GN~$x,wlJ2%;t,u,m!A ( l )

5% (d221h)N/22c l /n

3GN~$%x,%2f/nwlJ2%; %21/nt,u* ,m!A ( l ). ~3.32!

h5g* andn5(22k* )21 are the well known critical expo
nents for percolation. They are known to third order ine
@29#:

h5g* 52
1

21
e2

206

9261
e2

1F2
93 619

8 168 202
1

256

7203
z~3!Ge31O~e4!, ~3.33!

and

n5~22k* !215
1

2
1

5

84
e1

589

37 044
e2

1F 716 519

130 691 232
2

89

7203
z~3!Ge31O~e4!.

~3.34!

Note thatz in Eqs.~3.33! and~3.34! stands for the Riemann
zeta function and should not be confused with the Wils
function defined above.f5n(22z* ) is the resistance expo
nent known to second order ine @30,20#,
03610
.

n

f5n~22z* !511
1

42
e1

4

3087
e21O~e3!. ~3.35!

The noise exponentsc l are defined byc l5n(22g ( l )* ). The
expansion ofc l to second order ine is given below.

Now we are in the position to derive the scaling behav
of CR

( l ) . From Eq. ~3.32! we find upon choosing%5ux
2x8u21 and Taylor expanding that the two-point correlatio
function G5G2 scales at criticality as

G~x,x8;lJ !5ux2x8u22d2h$11wlJ2ux2x8uf/n

1v lKl~lJ !ux2x8uc l /n1•••%, ~3.36!

where we have dropped several arguments for notatio
simplicity. With Eq. ~2.33! the desired scaling behavior o
CR

( l ) is now readily obtained as

CR
( l );ux2x8uc l /n. ~3.37!

At this point, we emphasize once more the outstand
role of theO ( l ), which warrants calling them master oper
tors @23#. Each multifractal momentMI

( l ) has a master opera
tor as field theoretic counterpart. The master operators
highly and dangerously irrelevant in the renormalizati
group sense. Therefore, each master operator needs in
eral a myriad of other irrelevant operators for renormaliz
tion. However, the renormalization of these servant opera
does not induce their master. It follows that the servant
erators can be neglected in determining the scaling inde
their master operator, i.e., one is spared the computation
diagonalization of giant renormalization matrices.

Our e-expansion result for the noise exponents reads

c l511
e

7~11 l !~112l !
1

e2

12348~11 l !3~112l !3

3†3132672g1 l „332724032g28l $4~23891273g!

1 l @2207611008g1 l ~28811336g!#%…

2672~11 l !2~112l !2C~112l !‡1O~e3!, ~3.38!

in agreement to first order ine with the one-loop calculation
by PHL. g50.577 215 . . . denotes Euler’s constant andC

FIG. 5. Dependence of the noise exponentsc l on e562d.
3-11
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stands for the Digamma function@31#. Equation ~3.38! is
valid not only for l>2 since it can be continued analytical
down to l 50. A plot of c l versuse is given in Fig. 5. We
point out that Eq.~3.38! evaluated atl 51 is in conformity
with the result forf stated in Eq.~3.35!, i.e., our result for
c l satisfies an important consistency check stemming fr
CR

(1)5MR
(1) . Blumenfeldet al. @32# proved thatc l is a con-

vex monotonically decreasing function ofl. Note from Fig. 5
that our result forc l captures this feature for reasonab
values ofe. It reduces to unity in the limitl→` as one
expects from the relation ofc` to the fractal dimension o
the red bonds~see Appendix G!. Moreover, analytic continu-
ation ofc l to l 50 shows thatc05nDB up to orderO(e3) as
expected~see Appendix G!.

IV. COMPARISON TO NUMERICAL DATA

In this section we compare our result forc l to numerical
values. Instead of working withc l directly we comparec l /n
because data for exponents of this type are available in
literature. For the comparison it is not sufficient to simp
evaluate Eq.~3.38! at e53 or e54. The puree expansion
gives poor quantitative predictions for small spatial dime
sion. However, one can improve thee expansion by incor-
porating rigorously known features. We carry out a ratio
approximation which takes into account thatc l /n51 in one
dimension. In practice this is done by adding an appropr
third-order term to thee expansion ofc l /n. We refrain from
stating the formula so obtained explictly because it is a li
lengthy. Instead we plot it fore53, i.e.,d53, in Fig. 6. Our
analytic result shows remarkable agreement with the av
able numerical data ford53 @33,18#. For l 50 our result lies
slightly outside the error bars of the simulations. Howev
the deviation of the values is less than 3%. Forl 51,2,3 our
result is within the error bars of the simulation. There a
also numerical values available ford52 @34,11#. Here, how-
ever, the agreement is much less pronounced. Fol
50,1,2,3,4 we find a deviation of the order of 30%. It a

FIG. 6. Dependence ofc l /n on l in three dimensions. The line
shows our rationally approximatede expansion. The numerical val
ues, symbolized by the dots, are taken from Moukarzel@33# ( l
50) and Batrouniet al. @18# ( l 51,2,3). Moukarzel determined th
backbone dimensionDB5c0 /n. Batrouniet al. studied the multi-
fractal moments in a fixed voltage ensemble, i.e., for fixed ex
nally applied voltage. The authors state a formula for switch
from the multifractal exponents for the fixed voltage ensemble
those for the fixed current ensemble. In this formula a minus s
appears to be missing. Correctly, their exponentsx(n) are related to
the c l /n via c l /n52l x(2)2x(2l ).
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pears that the dependence ofc l on dimensionality is too rich
in structure to be approximated well atd52 by a series of a
few terms.

V. CONCLUSIONS

We studied the multifractal moments of the current dis
bution in RRN’s by renormalized field theory. Our approa
thrived on two cornerstones. First, the Feyman diagrams
RRN’s can be interpreted as being resistor networks th
selves. In this paper we extended our real world interpre
tion by introducing multifractal moments for Feynman di
grams. The real world interpretation proves to be a powe
tool which allows a highly efficient calculation of the dia
grams.

The second cornerstone was our concept of master op
tors. Whereas the field theoretic operator associated with
resistance exponentf is relevant in the renormalization
group sense, the operators associated with thec l>2 are dan-
gerously irrelevant master operators. Due to their irreleva
the master operators generate a multitude of other irrele
operators, the servants, which in principle must all be ta
into account in the renormalization procedure. The serva
however, do not influence the scaling index of their mas
Without this property, one would have to compute and dia
onalize entire renormalization matrices for determining
c l . These renormalization matrices are giants for largel.
Without the master property it would be essentially impo
sible to compute thec l for arbitrary l.

To our knowledge this is the first time that an entire fa
ily of multifractal exponents has been calculated to two-lo
order, at least for percolation. Our result is for dimensio
near the upper critical dimension 6 the most accurate ana
estimate for thec l that we know of. It fulfils several consis
tency checks. Moreover, it agrees remarkably well with n
merical data ford53. As one expects, the agreement suffe
on further decreasing the dimension. The dependence o
c l on dimensionality appears to be too complex for go
approximation atd52 by a series of a few terms.

We expect that our concept of master operators can
applied to other systems showing multifractality. It work
for example, to describe the moments of the current distri
tion in random resistor diode networks. A two-loop calcu
tion of the corresponding family of mutifractal exponen
will be reported in the near future@35#. Another example for
the applicability of the concept of master operators is
problem of diffusion near polymers. For this problem vo
Ferber and Holovatch@40# formulated a field theory tha
comprises dangerously irrelevant operators. Due to the s
metry properties of their operators no other irrelevant ope
tors are generated in the perturbation calculations of th
authors. Thus, the operators studied by von Ferber and
lovatch are particularly simple instances of master operat
Their scaling index is not influenced by any other opera
simply because the number of their servants is zero. In
sense these master operators may be called poor.

It might turn out that the field theoretic operators asso
ated with multifractal quantities are in general master ope
tors. In this case the concept of master operators would

r-
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o
n

3-12



st

ei
he

t

a

r

e

iz
o

a

as
n-
tary
inde-
n

sti-
d.

e

l-

l
nd

the

-
the

to
is

.

NOISY RANDOM RESISTOR NETWORKS: . . . PHYSICAL REVIEW E63 036103
key in understanding the origin of multifractality, at lea
from a field theoretic point of view.
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APPENDIX A: GENERALIZATION OF COHN’S
THEOREM AND GENERALIZED MULTIFRACTAL

MOMENTS

Consider a generalized power of the form

P~$I b%!5(
b

rbF~ I b!, ~A1!

whereF is some function of bond currentsI b . As argued in
Sec. II, I b is in general a function of the external currenI
and a complete set of loop currents$I ( l )%. We can exploit the
variation principle~2.7! to eliminate the loop currents. As
result we obtain theI b as a function ofI and$rb% only. The
solutions we denote byI b

ind . The derivative of the powe
P($I b

ind%) so obtained with respect to bond resistancerb

reads

]P~$I b
ind%!

]rb
5F~ I b

ind!1(
l

(
b8

rb8

]F~ I b8
ind

!

]I ( l )

]I ( l )

]rb
. ~A2!

The second term on the right hand side vanishes by virtu
the variation principle~2.7!,

]P~$I b
ind%!

]I ( l )
5(

b
rb

]F~ I b8
ind

!

]I ( l )
50. ~A3!

RenamingI b5I b
ind we finally obtain

]P~$I b%!

]rb
5F~ I b! ~A4!

as a generalization of Cohn’s theorem. ForF(I b)5I b
2 one

retrieves the original theorem

]R~x,x8!

]rb
5S I b

I D 2

. ~A5!

Having generalized the power it is natural to general
the multifractal moments as well. Consider the cumulants
the generalized power,

$Pn% f
(c)5

]n

]ln
ln$exp~lP!% f . ~A6!

In analogy to the resistance cumulants one finds for the le
ing behavior in the limits→0

$Pn% f
(c)5(

b
S ]P

]rb
U

r̄
D n

$drb
n% f

(c)5(
b

F~ I b!n$drb
n% f

(c) . ~A7!
03610
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d-

For networks like those described in Sec. II one h
$drb

n% f
(c)5vn . However, in a more general situation the i

dividual bonds may be composed of a series of elemen
resistors. The elementary resistors are assumed to have
pendently and identically distributed resistances with mear̄
and higher cumulantsv l>2. Then

$drb
n% f

(c)5nbvn5
r̄b

r̄
vn , ~A8!

wherenb denotes the number of elementary resistors con
tuting bondb and r̄b is the average resistance of that bon
Upon incorporating a factorr̄21 into the constantsvn we
finally find

$Pn% f
(c)5vn(

b
r̄bF~ I b!n, ~A9!

with (br̄bF(I b)n being the nth multifractal moment of
F(I b).

APPENDIX B: COMPUTATION OF DIAGRAMS: I

In this Appendix we illustrate the calculation schem
sketched in Sec. III B for diagramA ~see Fig. 1!. For the sake
of simplicity, we focus on its contribution to the renorma
ization of v2. We neglect all other parts and obtain

A52E
0

`

ds1ds2D~p2,$si%!(
kJ

exp@wP~lJ,kJ !#

3$s1v2K2~kJ !1s2v2K2~kJ1lJ !%, ~B1!

whereP(lJ,kJ)52s1kJ22s2(kJ1lJ)2 is, according to the rea
world interpretation, the power of the diagram, a
D(p2,$si%) stands for

D~p2,$si%!5
g2

2 E
q
exp@2~s11s2!t2s1q22s2~q1p!2#

~B2!

with *q being an abbreviation for (2p)2d/2*ddq. It is con-
venient to switch back to continuous currents and replace
summation over the loop current by an integration,

A52E
0

`

ds1ds2D~p2,$si%!E
2`

`

dkJ exp@wP~lJ,kJ !#

3$s1v2K2~kJ !1s2v2K2~kJ1lJ !%. ~B3!

The integration over the loop current is simplified by com
pleting the squares in the exponential. One looks for
minimum of the quadratic formP(lJ,kJ). The minimum is
determined by a variation principle completely analogous
the one stated in Eq.~2.7!. Thus completing the squares
equivalent to solving Kirchhoff’s equations for the diagram
We obtain
3-13
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A52E
0

`

ds1ds2D~p2,$si%!exp@2R~$si%!wlJ2#

3E
2`

`

dkJ exp@2~s11s2!wkJ2#H s1v2K2

3S kJ2
s2

s11s2
lJ D1s2v2K2S kJ1

s1

s11s2
lJ D J , ~B4!

whereR($si%)5s1s2 /(s11s2) is the total resistance of th
diagram. Note thats2lJ/(s11s2) is, apart from a factori, the
replica current induced by the external replica currentlJ in
the propagator parametrized bys1 . s1lJ/(s11s2) is the rep-
lica current induced in the propagator parametrized bys2. In
the limit D→0 we find

A52g2
1

~4p!d/2E0

` ds1ds2

~s11s2!d/2

3exp@2~s11s2!t2R~$si%!~p21wlJ2!#

3H s1s2
4

~s11s2!4
v2K2~lJ !12

s1s2
2

~s11s2!3

v2

w
lJ2J , ~B5!

where we have carried out the momentum integration
well. Expanding the exponential and keeping only the ter
proportional tov2 gives

A52g2
1

~4p!d/2E0

` ds1ds2

~s11s2!d/2
exp@2~s11s2!t#

3H s1s2
4

~s11s2!4
v2K2~lJ !12

s1s2
2

~s11s2!3

v2

w
lJ2

22
s1

2s2
3

~s11s2!4

v2

w
lJ2~p21wlJ2!

2
s1

2s2
5

~s11s2!5
v2K2~lJ !~p21wlJ2!J . ~B6!

The integral over the last term is convergent and there
neglected. The remaining integrations are rendered stra
forward by the change of variabless1→tx and s2→t(1
2x). Upon expanding the result for smalle562d we ob-
tain

A52g2
Ge

e
t2e/2

3H 1

15
v2K2~lJ !2

1

3

v2

w
lJ2t2

1

15

v2

w
lJ2~p21wlJ2!J ,

~B7!

where we have introducedGe5(4p)(2d/2)G(11e/2) for
convenience. We learn that not only primitive divergenc
proportional toK2(lJ) but also those proportional totlJ2,
p2lJ2 and (lJ2)2 are generated.
03610
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APPENDIX C: SUPERFICIAL DEGREE OF DIVERGENCE
OF OPERATOR INSERTIONS

Consider the insertion of a local operatorO by adding a
term to the Hamiltonian,

H→H1E ddx(
uJ

O~x,uJ !, ~C1!

whereO is a local monomial of degreen in the fieldsw with
A derivatives in real andB derivatives in replica space. In
diagram composed ofP propagators,V three-leg vertices,
and the insertion there are

L5P2~V11!21 ~C2!

loops. The topological relation

3V1n52P1E ~C3!

balances the number of legs. Each propagator behave
large momenta as 1/q2 and hence reduces the superficial d
gree of divergence of the diagram by 2. The insertion
creases it byA1B. Thus the superficial degree of divergen
d@O# of the diagram with insertion is

d@O#5dL1A1B22P. ~C4!

With help of Eqs.~C2! and ~C3! one finds

d@O#5
d26

2
V1

d22

2
n1

22d

2
E1A1B. ~C5!

In contrast, the superficial degree of divergenced of the
diagram without insertion is

d5d1
d26

2
V1

22d

2
E. ~C6!

The difference

d@O#2d5
d22

2
n1A1B2d ~C7!

is identical to the naive dimension@O# of the insertion. For
d56 it reduces to

@O#52n1A1B2d. ~C8!

APPENDIX D: COMPUTATION OF DIAGRAMS: II

Here we give details of the calculation of the conducti
Feynman diagrams listed in Fig. 1 for arbitraryl. We focus
on the contributions of the diagrams to the renormalizat
of the v l , i.e., those terms appearing in Eq.~3.8! propor-
tional to v l . The other terms appearing in Eq.~3.8! will be
omitted throughout the entire Appendix for the sake of no
tional simplicity. For details of the calculation of the contr
butions to the renormalization ofw we refer to @20#. The
lJ-independent parts of the conducting diagrams corresp
to the usual diagrams found in the literature on the Po
model @24# and can be calculated by standard proceedu
@28#.

We start with diagramA. The part ofA required in the
calculation ofc l reads for vanishing external momentum
3-14
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A52
g2

2
v lKl~lJ !E

0

`

ds1ds2E
q
exp@2~s11s2!~t1q2!#

3H s1S s2

s11s2
D n

1s2S s1

s11s2
D nJ , ~D1!

wheren52l . Carrying out the momentum integration give

A52g2v lKl~lJ !
1

~4p!d/2E0

`

ds1ds2

1

~s11s2!d/2

3exp@2~s11s2!t#
s1s2

n

~s11s2!n
. ~D2!

Changing variables,s1→t(12x) ands2→tx, leads to

A52g2v lKl~lJ !
1

~4p!d/2E0

1

dx~12x!xn

3E
0

`

dtt22d/2exp~2tt!

52g2v lKl~lJ !
1

~4p!d/2

1

~n11!~n12!
GS 32

d

2D td/223.

~D3!
03610
Expansion for smalle562d yields

A52g2v lKl~lJ !
2

~n11!~n12!

Ge

e
t2e/2. ~D4!

The calculation ofB is particularly simple. Thus we
merely state the result

B52g2v lKl~lJ !
Ge

2e
t2e/2. ~D5!

Now we turn to the two-loop diagrams. As an examp
we consider the diagramC. As a first step, we determine th
currents flowing through the conducting propagators. Kirc
hoff’s law Eq. ~2.5! applies to the four vertices of the dia
gram. This allows us to eliminate three of the five unknow
currents~one of the vertices is inactive with respect to th
purpose since the external currentlJ must be conserved!. The
potential drop around closed loops is zero. Hence we
eliminate the two remaining unknown currents and expr
all currents flowing through conducting propagators in ter
of the Schwinger parameters andlJ. The momentum integra
tions are straightforward. They can be done by using
saddle point method, which works exactly here since
momentum dependence is purely quadratic. After the m
mentum integration we have
in
C52
g4

2
v lKl~lJ !

1

~4p!dE0

`

)
i 51

5

dsi

expS 2t(
i 51

5

si D
@~s11s21s5!~s31s41s5!2s5

2#d/2 H s1F s2~s31s41s5!1s4s5

~s11s21s5!~s31s41s5!2s5
2G n

1s2F s1~s31s41s5!1s3s5

~s11s21s5!~s31s41s5!2s5
2G n

1s3F s4~s31s41s5!1s2s5

~s11s21s5!~s31s41s5!2s5
2G n

1s4F s3~s31s41s5!1s1s5

~s11s21s5!~s31s41s5!2s5
2G n

1s5F s2s32s1s4

~s11s21s5!~s31s41s5!2s5
2G nJ

52
g4

2
v lKl~lJ !

1

~4p!dE0

`

)
i 51

5

dsi

expS 2t(
i 51

5

si D
@~s11s21s5!~s31s41s5!2s5

2#d/21n

3$4s1@s2~s31s41s5!1s4s5#n1s5@s2s32s1s4#n%. ~D6!

At this stage, the change of variabless1→t1(12x), s2→t1x, s3→t2(12y), s4→t2y, ands5→t3 turns out to be useful. It
leads to

C52
g4

2
v lKl~lJ !

1

~4p!dE0

`

dt1dt2dt3E
0

1

dxdy
exp@2t~ t11t21t3!#

@ t1t21t2t31t1t3#d/21n
t1t2

3$4t1~12x!@xt1~ t21t3!1yt2t3#n1t3~ t1t2!n@x2y#n%. ~D7!

The integrations overx andy are straightforward and can be looked up in a table@36#. After some additional algebra we obta
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C52
g4

2
v lKl~lJ !

1

~4p!dE0

`

dt1dt2dt3
exp@2t~ t11t21t3!#

@ t1t21t2t31t1t3#d/2

3H 2

~n11!~n12!

t3~ t1t2!n11

@ t1t21t2t31t1t3#n
1

4

~n11!~n12!~n13!

t3@ t1t21t2t31t1t3#2

t1~ t11t2!

1
4

~n11!~n12!~n13!

t1@ t1t21t2t31t1t3#2

~ t11t2!2
2

4

~n11!~n12!~n13!

t3
n13~ t11t2!n11

t1@ t1t21t2t31t1t3#n

2
4

~n11!~n12!~n13!

t1
n13t2

n12

~ t11t2!2@ t1t21t2t31t1t3#n
2

4

~n11!~n12!

t3t1
n12t2

n11

~ t11t2!@ t1t21t2t31t1t3#nJ . ~D8!
i
o

n

e

n

We find it convenient to express the remaining integrals
terms of the parameter integrals given in Appendix E. F
the sake of notational simplicity we introduce the notatio

Mi , j ,k
m 5~21! i 1 j 1k

] i 1 j 1k

]ai]bj]ck
Mm~a,b,c!ua5b5c5t , ~D9!

wheremP$1,3,4%, and

Mi , j ,k
m ~n!5~21! i 1 j 1k

] i 1 j 1k

]ai]bj]ck
Mm~a,b,c;n!ua5b5c5t ,

~D10!

wheremP$5,6,7,8%. In terms of the parameter integrals w
obtain

C52
g4

2
v lKl~lJ !H 2

~n11!~n12!
@M1,0,0

8 ~n!

22M2,0,1
7 ~n!24M1,1,1

7 ~n!22M0,2,1
7 ~n!#

1
4

~n11!~n12!~n13!
@M1M2,0,0

3 1M1,1,0
3

2M1,0,0
6 ~n!2M0,1,0

6 ~n!2M3,0,0
7 ~n!2M2,1,0

7 ~n!#J .

~D11!

The final result reads

C52
g4

2
v lKl~lJ !

Ge
2

e
t2eH 4n112

~n11!~n12!~n13!e

1
4n22F2~n13!112

~n11!~n12!~n13!
2

2

~n11!~n12!2~n13!
J .

~D12!

The diagramsD to G can be evaluated in the same fashio
As another example we consider diagramH. Determina-

tion of the noise cumulants ofH leads to
03610
n
r

.

H52
g4

2
v lKl~lJ !

1

~4p!d

3E
0

`

)
i 51

5

dsi

expS 2t(
i 51

5

si D
@~s11s21s5!~s31s4!1s3s4#d/21n

3$2s1@s5~s31s4!#n12s3@s4s5#n

1s5@~s11s2!~s31s4!1s3s4#n%. ~D13!

Here, the change of variabless5→t1x, s1→t1y, s2→t1(1
2x2y), s3→t2, and s4→t3 simplifies the integration. We
obtain

H52
g4

2
v lKl~lJ !

1

~4p!dE0

`

dt1dt2dt3

3E
0

1

dxE
0

12x

dy
exp@2t~ t11t21t3!#

@ t1t21t2t31t1t3#d/21n
t1
2

3$2yt1@xt1~ t21t3!#n12t2@xt1t3#n

1xt1@~12x!t1~ t21t3!1t2t3#n%. ~D14!

The integrations overx and y are again straightforward. In
terms of the parameter integrals we find

H52
g4

2
v lKl~lJ !H 2

1

~n11!
@M1,0,1

4 1M0,1,1
4 1M1,1,0

4 #

1
1

~n11!~n12!
@2M0,1,0

8 ~n!1M2,0,1
7 ~n!1M1,1,1

7 ~n!#

1
1

~n12!~n13!
@M1,0,1

3 1M0,1,1
3 1~n14!M1,1,0

3 #

1
2

~n11!~n12!~n13!
@M1,0,0

6 ~n!1M2,1,0
7 ~n!#J .

~D15!

Finally we obtain
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H52
g4

2
v lKl~lJ !

Ge
2

e
t2eH 2

1

~n11!~n12!e

1
4

~n11!2~n12!2e
2

8n2F2~n13!124

3~n11!~n12!~n13!

2
11

6~n11!2~n12!2
1

1

3~n11!~n12!2~n13!

1
4n16

~n11!3~n12!3J . ~D16!

The diagramsI to L can be treated in a similar manner.

APPENDIX E: PARAMETER INTEGRALS

This Appendix contains a list of the parameter integr
we use in the calculation of the noise exponents. The res
03610
s
lts

stated are obtained by employing the dimensional regular
tion scheme. The parameter integralM1 given below was
introduced by Breuer and Janssen@37#. The notationM2 we
reserved for a parameter integral we introduced in@20# but
which is not used here. For notational briefness we defin

Fm~n!5 (
k5m

n S n
kD ~21!k

1

k2m11
. ~E1!

Fm is related to the Digamma functionC via

Fm~n!5~21!m11
n! @C~m!2C~n11!#

~m21!! ~12m1n!!
. ~E2!

The parameter integrals we use in calculating thec l are
M1~a,b,c!5E
p,q

1

~a1p2!~b1q2!@c1~p1q!2#

5
1

~4p!dE0

`

dt1dt2dt3
exp@2~at11bt21ct3!#

@ t3t11t3t21t1t2#d/2

5
Ge

2

6e H S 1

e
1

25

12D ~a32e1b32e1c32e!2S 3

e
1

21

4 D @a22e~b1c!1b22e~a1c!1c22e~a1b!#23abcJ , ~E3!

M3~a,b,c!5
1

~4p!dE0

`

dt1dt2dt3
exp@2~at11bt21ct3!#

@ t3t11t3t21t1t2#d/222

1

@ t11t2#3

5
Ge

2

2e H c22eS 1

15e
1

46

450D2c12e~a1b!S 1

3e
1

4

9D1c2e~a21b2!S 2

3e
1

13

18D1c2eabS 2

3e
1

5

9D J , ~E4!

M4~a,b,c!5
1

~4p!dE0

`

dt1dt2dt3
exp@2~at11bt21ct3!#

@ t3t11t3t21t1t2#d/221

t1t2

@ t11t2#3

5
Ge

2

2e H 2c22eS 2

15e
1

107

450D2c12e~a1b!S 1

3e
1

4

9D1
1

3
~a21b2!1

1

3
abJ , ~E5!

M5~a,b,c;n!5
1

~4p!dE0

`

dt1dt2dt3
exp@2~at11bt21ct3!#

@ t3t11t3t21t1t2#d/2

t1
n

@ t11t2#n

52
Ge

2

6e H a32eF2
n11

e
2

25~n11!

12
1

1

2
F2~n11!G1c32e

1

~n12!~n13!

3F2
6

e
2

15

2
13C~n12!13C~2!26C~n14!G1a22ebF3

e
1

21

4
1

3

2
F1~n!G

1a22ecF3

e
1

27

4
1

3

2
F1~n11!G1c22ea

1

n12 F6

e
1

9

2
23C~n12!16C~n13!13gG
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1c22eb
1

~n11!~n12! F6

e
1

9

2
23C~n11!23C~2!16C~n13!G

1b3
1

2~n21!n
1b2a

3

2n
1b2c

3

2n~n11!
23abc

1

n11J , ~E6!
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1
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52
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2
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12e
1

n13

6e
1
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72
1

2~n13!

9
2

1

24
1

1
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3e
2
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18
1

1

6
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1
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1

6
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1

3
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e
1

3

2D2
1
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~4p!dE0
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1

~n12!2
1
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1
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1c3

1

10~n21!n~n11!~n12!

1a2b
1
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1a2c

1

4~n11!~n12!
1b2a

1

n12
1b2c
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3

10n~n11!~n12!
1abc
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2~n11!~n12!J , ~E8!
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dt1dt2dt3
exp@2~at11bt21ct3!#
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52
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2n13
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1

1

~n11!~n12!G1a
1

~n11!~n12!
1c

1

n~n11!~n12!J .

~E9!
ia-
d

he
In addition to the parameter integrals we use

M5
1

~4p!dE0

`

dt1dt2dt3
exp@2t~ t11t21t3!#

@ t3t11t3t21t1t2#d/222

t3

t1~ t11t2!

5
Ge

2

e
t2eS 3

e
2

1

2D . ~E10!

APPENDIX F: CONDUCTING DIAGRAMS IN TERMS OF
PARAMETER INTEGRALS

Here we list our results for the conducting two-loop d
grams in terms of the parameter integrals given in Appen
E. For notational simplicity, we show only the parts of t
diagrams proportional tov lKl(lJ):
03610
ix

C52
g4

2
v lKl~lJ !H 2

~n11!~n12!
@M1,0,0

8 ~n!22M2,0,1
7 ~n!

24M1,1,1
7 ~n!22M0,2,1

7 ~n!#1
4

~n11!~n12!~n13!

3@M1M2,0,0
3 1M1,1,0

3 2M1,0,0
6 ~n!2M0,1,0

6 ~n!

2M3,0,0
7 ~n!2M2,1,0

7 ~n!#J , ~F1!

D52
g4

2
v lKl~lJ !H n213n16

2~n11!~n12!
M2,1,0

1

1
2

~n11!~n12!
M1,1,1

1 J , ~F2!
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E52
g4

2
v lKl~lJ !H 2
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~n11!~n12!
M2,1,0

5 ~n!

1
8

~n11!~n12!~n13!
@M3,0,0

1 13M2,1,0
1 2M3,0,0

5 ~n!#J ,

~F3!

F52
g4

2
v lKl~lJ !$M2,1,0

1 1M1,1,1
1 %, ~F4!

G52
g4

2
v lKl~lJ !M2,1,0

1 , ~F5!

H52
g4

2
v lKl~lJ !H 2

1

~n11!
@M1,0,1

4 1M0,1,1
4 1M1,1,0

4 #

1
1

~n11!~n12!
@2M0,1,0
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1
1

~n12!~n13!
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3 1~n14!M1,1,0

3 #

1
2

~n11!~n12!~n13!
@M1,0,0
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7 ~n!#J ,
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I 52
g4

2
v lKl~lJ !H 1
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M3,0,0

1 1M0,1,2
5 ~n!J , ~F7!

J52
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v lKl~lJ !H 2

~n11!~n12!
M2,1,0

5 ~n!

1
1

~n11!~n12!~n13!
@4M3,0,0

5 ~n!

1~n21!M3,0,0
1 13~n21!M2,1,0

1 #J , ~F8!

K52
g4

2
v lKl~lJ !H 1

3
M3,0,0

1 1
1

2
M2,1,0

1 J , ~F9!

L52
g4

2
v lKl~lJ !

1

6
M3,0,0
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APPENDIX G: RELATION TO THE BACKBONE AND
THE RED BOND DIMENSION

From Eq.~2.21! it is evident that only those bonds wit
I b5I contribute toCR

(`) . Consequently,c` is related to the
fractal dimensiondred of the singly connected~red! bonds via
dred5c` /n. Coniglio @38,39# proved thatdred51/n, which in
turn leads toc`51. As mentioned above, our result forc l
matches this consistency requirement.

Another trivial consequence of Eq.~2.21! is that CR
(0) is

proportional to the average number of bonds~the mass! of
the backbone. Hencec0 is related to the backbone dimensio
DB by
03610
c05nDB . ~G1!

This relation can also be obtained on the level of Feynm
diagrams. Reconsider the definition of the noise cumula
for Feynman diagrams Eq.~3.9!. In the limit l→0 the noise
cumulant reduces to the sum of Schwinger parameters
conducting propagators,

C(0)~$si%!5(
i

si . ~G2!

Now we take a short detour to our renormalized field the
of diluted networks in which the occupied bonds obey
generalized Ohm’s lawV;I r @21,22#. In these networks, the
nonlinear resistanceRr(x,x8) averaged subject tox and x8
being on the same cluster,

Mr~x,x8!5^x~x,x8!Rr~x,x8!&C/^x~x,x8!&C , ~G3!

obeys at criticality

Mr~x,x8!5ux2x8ufr /n. ~G4!

In analogy toR($si%) we introduced the notion of the non
linear resistanceRr($si%) of Feynman diagrams. In the limi
r→211 we found

R21~$si%!5(
i

si . ~G5!

Hence we can identifyC(0)($si%) andR21($si%). This leads
to the conclusion thatc05f21 . f21 is related to the fracta
dimensionDB of the backbone viaf215nDB , and hence
we obtain once more Eq.~G1!. Equation~G1! provides an-
other consistency check for our result~3.38!, which is indeed
fulfilled. Moreover, Eq.~G1! can be used to calculatec0 to
third order ine from our three-loop result forDB @21,22#,

DB521
1

21
e2

172

9261
e222

74 639222 680z~3!

4 084 101
e31O~e4!.

~G6!

We obtain

c0511
1

7
e1

313

12 348
e2

2
166 8231417 312z~3!

21 781 872
e31O~e4!. ~G7!
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