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Pair contact process with diffusion: A new type of nonequilibrium critical behavior?
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In the preceding article Carloet al. investigate the critical behavior of the pair contact process with
diffusion. Using density matrix renormalization group methods, they estimate the critical exponents, raising the
possibility that the transition might belong to the same universality class as branching annihilating random
walks with even numbers of offspring. This is surprising since the model does not have an explicit parity-
conserving symmetry. In order to understand this contradiction, we estimate the critical exponents by Monte
Carlo simulations. The results suggest that the transition might belong to a different universality class that has
not been investigated before.
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Symmetries and conservation laws are known to play amontact process with diffusioPCPD, however, is charac-
important role in the theory of nonequilibrium critical phe- terized by a different type of critical behavior. In the inactive
nomena[1]. As in equilibrium statistical mechanics, most phase, for example, the order parameter no longer decays
phase transitions far from equilibrium are characterized byexponentially; instead it is governed by an annihilating ran-
certain universal properties. The number of possible univeredom walk with an algebraic decay. Moreover, the PCPD has
sality classes, especially in+11l dimensions, is believed to only two absorbing states, namely, the empty lattice and the
be finite. Typically each of these universality classes is asscstate with a single diffusing particle. For these reasons the
ciated with certain symmetry properties. transition is expected to cross over to a different universality

One of the most prominent universality classes of non<class. The PCPD, also called the annihilation/fission process,
equilibrium phase transitions is directed percolati@P)  was first proposed by Howard and dizer[16] as a model
[2,3]. According to a conjecture by Janssen and Grassbergenterpolating between “real” and “imaginary” noise. Based
any phase transition from a fluctuating phase intsirjle  on a field-theoretic renormalization group study, they pre-
absorbing state in a homogeneous system with short-rangficted non-DP critical behavior at the transition.
interactions should belong to the DP universality class, pro- In the preceding article, Carlon, Henkel, and Schotlivo
vided that there are no special attributes such as quenchét7] investigate a lattice model of the PCPD with random-
disorder, additional conservation laws, or unconventionakequential updates. In contrast to Rdf6], each site of the
symmetried4,5]. Roughly speaking, the DP class covers alllattice can be occupied by at most one particle, leading to a
models following the reaction-diffusion scherde-2A, A  well-defined particle density in the active phase. Performing
—0. Regarding systems with a single absorbing state the DB careful density matrix renormalization groypMRG)
conjecture is well established nowadays. However, varioustudy[18,19, Carlonet al. estimate two of four independent
systems with infinitely many absorbing states have beewritical exponents. Depending on the diffusion ratetheir
found to belong to the DP class as widH§|. estimates ford=z vary in the range 1.66)—1.813) while

Exceptions from DP are usually observed if one of theg/v, is found to be close to 0.5. Since these values are close
conditions listed in the DP conjecture is violated. This hap-to the PC exponents=1.749(5) and3/v, =0.4992), they
pens, for instance, in models with additional symmetries. Arsuggest that the transition might belong to the PC universal-
important example is the so-called parity-conserviiRg) ity class.
universality class, which is represented most prominently by The conjectured PC transition poses a puzzle. In all cases
branching annihilating random walks with two offspridg  investigated so far, the PC class requiresaactsymmetry
—3A, 2A—0[9-11. In 1+ 1 dimensions this process can on the level of microscopic rules. In41 dimensions this
be interpreted as &,-symmetric spreading process with symmetry may be realized either as a parity conservation law
branching-annihilating kinks between oppositely oriented aber as an expliciZ, symmetry relating two absorbing states.
sorbing domains. Examples include certain kinetic Isingin the PCPD, however, the dynamic rules are neither parity
models [12], interacting monomer-dimer mode[43], as  conserving nor invariant under an obvious symmetry trans-
well as generalized versions of the Domany-Kinzel modelformation. Yet how can the critical properties of the transi-
and the contact process with two symmetric absorbing state®n change without introducing or breaking a symmetry? As
[14]. a possible way out, there could be a hidden symmetry in the

A very interesting model, which is studied in the presentmodel, but we have good reasons to believe that there is no
work, is the (1+1)-dimensional pair contact proced3CP such hidden symmetry or conservation law in the PCPD.
2A—3A, 2A—0 [15]. Depending on the rate for offspring This would imply that the PC class is not characterized by a
production, this model displays a nonequilibrium transition“hard” Z, symmetry on the microscopic level; rather, it may
from an active into an inactive phase. Without diffusion thebe sufficient to have a “soft” equivalence of two different
PCP has infinitely many absorbing states and the transition iabsorbing states in the sense that they are reached by the
found to belong to the universality class of DP. The pairdynamics with the same probability.

1063-651X/2001/6(8)/0361023)/$15.00 63 036102-1 ©2001 The American Physical Society



HAYE HINRICHSEN PHYSICAL REVIEW E 63 036102

p= 0.1111
0.1112
0.4t 0.1113 .

FIG. 2. The density of particleg;(t) and the density of pairs
p,(1) timest®?® as a function of time measured in Monte Carlo
steps. Upwarddownward curvature indicates deviations from the

FIG. 1. Typical space-time trajectories of four different critical ~ . . : .
_— . . . . critical point. The dashed line represents the slope corresponding to
nonequilibrium processes starting with a fully occupied lattice. The

four panels show directed percolatiofDP), a branching- the PC exponend=0.285.
annihilating random walk with two offsprin@AW?2), and the pair
contact process withoyPCPB and with (PCPD diffusion.

sults obtained by Monte Carlo simulations. It is important to

note that there are two possible order parameters, namely,
In this paper | suggest that the transition in the PCPDthe particle density

might belong to a different, yet unknown, universality class.

The reasoning is based on the conservative point of view that

a “soft” equivalence between two absorbing states is not

sufficient to obtain PC critical behavior. As described in Ref.

[14], the essence of the PC class is a competition betweeand the density opairs of particles

two types of absorbing domain that are related byeaact .

Z, symmetry. Close to criticality these growing domains are _

separated byocalizedregions of activity. In 1 dimen- pa(D)=T Z Si(DSi+a(V), @

sions, these active regions may be interpreted as kinks be-

tween oppositely oriented domains, which, by their very nawherelL is the system size argl(t)=0,1 denotes the state of

ture, perform an unbiased parity-conserving branchingsitei at timet. Performing high-precision simulations it turns

annihilating random walk. In the PCPD, however, it is out that the critical behavior at the transition is characterized

impossible to give an exact definition of “absorbing do- by unusually strong corrections to scaliif]. These scaling

mains.” We can, of course, consider empty intervals withoutcorrections are demonstrated in Fig. 2, where the temporal

particles as absorbing domains. Yet, what is the meaning adecay of the two order parameters fb=0.1 is shown as a

a domain with only one diffusing particle? And even if such function of time running up to almost $Gime steps. The

a definition were meaningful, what would be the boundarypronounced curvature of the data in the double-logarithmic

between an empty and a “single-particle” domain? More-plot demonstrates the presence of strong corrections to scal-

over, in PC models there are two separate sectors of th@g. Interestingly, the two curves bend in opposite directions

dynamics (namely, with even and odd particle numbers and tend toward the same slope. Thus, in contrast to the

whereas there are no such sectors in the PCPD. In fact, evenean-field predictiory,(t) andp,(t) seem to scale with the

when looking at typical space-time trajectories, the PCPDsame exponent. Discriminating between the negative curva-

differs significantly from a standard branching-annihilatingture ofp,(t) and the positive curvature p(t), we estimate

random walk with two offspringsee Fig. 1 In particular, the critical point and the exponedt= B/ v as

offspring production in the PCPD occurs spontaneously in

the bulk when two diffusing particles meet, whereas a p.=0.11121), o=p/v=0.252). (3

branching-annihilating random walk generates offspring all

along the particle trajectories. Therefore, it is reasonable to While this estimate deviates only slightly from the known

expect that the two critical phenomena are not fully equivaPC value 0.28@), other exponents deviate more signifi-

lent. cantly. Performing dynamic simulations starting with a
In order to investigate this question in more detail, it issingle pair of particle$21], we measure the survival prob-

useful to compare the DMRG estimates with numerical re-ability P(t) that the system has not yet reached one of the

1
pr(D=1 2 si(D) &)

036102-2



PAIR CONTACT PROCESS WITH DIFFUSION: A NEW. .. PHYSICAL REVIEW &3 036102

two absorbing stateg23], the average number of particles £<0.67. (5)

N4 (t) and pairsN,(t), and the mean square spreading from

the origin R%(t) averaged over the surviving runs. At criti-

cality, these quantities should obey asymptotic power lawsgyen more recently, @or studied a slightly different version
P(t)~t~%, Ni(t)~Ny(t)~t”, and R?(t)~t?? with cer- of the PCPD on a parallel computer, reporting the estimate
tain dynamical exponent8’ and 5. Notice that in non-DP  8=0.58(1) [22], which is incompatible with the PC expo-
spreading processes the two exponeatsp/v and &’ nent3=0.922).

=pB'/v| may be different. Going up to2 10° time steps we In summary, the critical behavior of the PCPD is affected
obtain the estimates by strong corrections to scaling, so that it is extremely diffi-
cult to estimate the critical exponents. Although DMRG es-

6'=0.132), #»=0.133), z=1.835). (4 timates presented ifL7] are very accurate, they have to be

taken with care since they are affected by scaling corrections
as well. Thus, the apparent coincidence with the exponents
of the PC class may be accidental. Comparing other expo-
nents, in particular the density exponeditand the cluster
exponentss’ and 7, the PC hypothesis can be ruled out.

Although the precision of these simulations is only moderate
the estimates differ significantly from the PC exponefits
=0.286, »=0 in the even sector and’ =0, »=0.285 in
the odd sector. The exponenton the other hand, seems to
be close to the PC value 1.75.

The most striking deviation is observed in the exponent | would like to thank J. Cardy, E. Carlon, P. Grassberger,
B, which is not accessible in DMRG studies. Here the esti-M. Henkel, M. Howard, J. F. F. Mendes, Gd@r, U. Scholl-
mates seem to decrease with increasing numerical effort. Asock, U. Tauber, and F. van Wijland for stimulating discus-
an upper bound we find sions.
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