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Critical properties of the reaction-diffusion model 2A\3A, 2A\0
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The steady-state phase diagram of the one-dimensional reaction-diffusion model 2A→3A, 2A→0 is studied
through the non-Hermitian density matrix renormalization group. In the absence of single-particle diffusion the
model reduces to the pair-contact process, which has a phase transition in the universality class of directed
percolation~DP! and an infinite number of absorbing steady states. When single-particle diffusion is added, the
number of absorbing steady states is reduced to 2 and the model no longer shows DP critical behavior. The
exponentsu5n i /n' andb/n' are calculated numerically. The value ofb/n' is close to the value of the parity
conserving universality class, in spite of the absence of local conservation laws.
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I. INTRODUCTION

Reaction-diffusion systems have attracted considera
interest in the past few years@1–3#. While at sufficiently
high spatial dimensions their critical behavior is correc
described by mean field rate equations, at dimensions be
the upper critical dimension, where the effect of fluctuatio
becomes important, this approach is no longer valid. In
case one has to resort to other methods, such as, for inst
field theory@4#, exact calculations via the Bethe ansatz@5#,
Monte Carlo and cellular automaton simulations~see@2,6#
and references therein!, or exact diagonalization technique
@7,8#. Recently other types of approach have been propo
such as the density matrix renormalization group@9# and the
standard real-space renormalization group@10#.

In this paper we study the critical properties of a on
dimensional reaction-diffusion model where the local d
namics is given by the following rules. Consider a sing
species of particle (A) on a one-dimensional lattice. Eac
lattice site can be either occupied by a single particle
empty. A single particle may hop to an empty neighbori
site ~diffusion!. Two particles on neighboring sites can eith
annihilate (2A→0) or create a new particle (2A→3A) in
the case that one of the sites next to the couple is empty.
reaction rates for these processes are defined in Eqs.~1!–~3!
below.

Recently, Howard and Ta¨uber @11# discussed a genera
ized version of the above model wheren particles may be
created through the reaction 2A→(n12)A, and with an ar-
bitrary number of particles per site. They employed a fie
theoretical approach and found that the theory is not ren
malizable. They argued, however, that for alln the model
should not be in the directed percolation~DP! universality
class. Their conjecture is based on the analysis of the a
ciated master equation and on the massless nature o
corresponding field theory which is at odds with a pha
transition of DP type. However, the critical behavior of t
system, i.e., its universality class, remained unknown. In
absence of diffusion, with at most one particle per site,
n51 case is the pair-contact process~PCP!, where the
1063-651X/2001/63~3!/036101~10!/$15.00 63 0361
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steady-state phase transition belongs to the DP univers
class@12,13#.

Here we present a nonperturbative study of the mo
corresponding to then51 case of@11#: the PCP model with
additional single-particle diffusion, as obtained from dens
matrix renormalization group~DMRG! calculations. The
DMRG algorithm was introduced by White@14# in 1992 to
investigate ground state properties of quantum spin ch
numerically. Because of its great accuracy, reliability, a
the possibility of treating large systems with a limited com
putational effort, the DMRG has since been applied to
ever increasing set of problems, as reviewed in@15#. In par-
ticular, some recent studies were devoted to the applica
of the DMRG to non-Hermitian problems@9,16–20#, which
appear frequently in many domains of physics, for examp
in low-temperature thermodynamics of spin chains and l
ders, for models of the noninteger quantum Hall effect, a
in one-dimensional nonequilibrium systems. Reactio
diffusion systems belong to the latter class of models. So
insight should be expected from the application of t
DMRG to them@9#.

The paper is organized as follows. In Sec. II we define
model and recall some facts about reaction-diffusion s
tems. In Sec. III we introduce a shift strategy to project ou
trivial ground state from the quantum Hamiltonian. This im
proves the convergence of the DMRG. The method work
an exact expression for the eigenstate is available. In Sec
we discuss the calculation of the critical points and exp
nents for the model and show that the model does not be
to the DP universality class. Section V concludes the pa

II. MODEL

We consider a one-dimensional lattice of lengthL with
open boundary conditions, as usual in DMRG calculatio
@15#. The reactions occur with the following rates:

AA0→AAA

0AA→AAAJ with rate
~12p!~12d!

2
, ~1!
©2001 The American Physical Society01-1
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ENRICO CARLON, MALTE HENKEL, AND ULRICH SCHOLLWÖCK PHYSICAL REVIEW E 63 036101
AA→00 with rate p~12d!, ~2!

A0↔0A with rate d, ~3!

and are parametrized by the diffusion constantd and the pair
annihilation ratep. This defines the pair-contact process w
diffusion ~PCPD! model.

For a first qualitative overview, we consider the me
field kinetic equations. To discuss the effects of diffusion
need the kinetic equations in thepair approximation; see,
e.g., @2#. If n5n(t) is the spatially averaged single-partic
density andc5c(t) the spatially averaged pair density, w
find

ṅ522~12d!pc1~12d!~12p!~n2c!c/n, ~4!

ċ52~12d!pc
2c1n

n
22d

~n2c!~c2n2!

n~12n!

1~12d!~12p!~n2c!~12c!c/@n~12n!#. ~5!

In the d→1 limit, nontrivial steady states occur only fo
c(t)→n(t)2 and one recovers the single-site kinetic equat
@rescaling time by a factor (12d)#

ṅ5~12p!n2~12n!22pn2, ~6!

which expresses the fact that particles may be created
on empty sites. The time dependence ofn(t) for large t is

n~ t !.H n`1a exp~2t/t! if p,pc,MF~1!

A3/4t21/2 if p5pc,MF~1!

1/~3p21!t21 if p.pc,MF~1!,

~7!

where n`5(123p)/(12p), t5(12p)/(123p)2,
pc,MF(1)51/3, anda is a constant that depends on the init
conditions. At smallp, where the creation process~1! domi-
nates, the system is in theactivephase with a nonvanishin
particle density in the steady state. On the other hand, fp
large, the pair annihilation process~2! dominates, the steady
state particle density is zero, and the system is in theinactive
phase. In the entire inactive phase, and not only at the cri
point, the approach toward the steady state is algeb
rather than exponential as found in most systems.

The same kind of result also holds in the pair approxim
tion with dÞ1. In the steady state, we havec(`)5n(`)(1
23p)/(12p). The particle density vanishes along the cur

pc,MF~d!5H 1
5 ~113d!/~12d!, 0<d,1/7

1
3 , 1/7,d<1.

~8!

Close to criticality, the particle densityn(`);pc,MF(d)2p,
which is the same as found fromn` in thed→1 limit above.
However, the pair density

c~`!;H pc,MF~d!2p, d,1/7

@pc,MF~d!2p#2, d.1/7.
~9!
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There should thus be different universality classes on b
sides of the meeting~‘‘tricritical’’ ! point pt51/3, dt51/7,
wheren(`);(pt2p)2 andc(`);(pt2p)3 imply modified
critical exponents.

The leading long-time behavior along the critical linep
5pc(d) is

H n~ t !;t21/2, c~ t !;t21 if d.dt

n~ t !;t21, c~ t !;t23/2 if d5dt51/7

n~ t !;t21, c~ t !;t21 if d,dt

~10!

while n(t);t21 and c(t);t22 in the entire inactive phase
p.pc(d). In the active phase, the steady state is approac
exponentially.

Although generally believed to be qualitatively correct
sufficiently high dimensions@1–3#, kinetic equations canno
provide correct values of the exponents~and often not even
the order of the transition! in low dimensions. In one dimen
sion, the exact decay in the inactive phase isn(t);t21/2

@11#, where the exponent 1/2 is that of the model 2A→0
@21#, which is recovered by taking the limitp→1 in the rates
~1! and ~2!. However, the pair approximation suggests t
presence of distinct universality classes ford large andd
small. In addition, the exponent of the time dependence
n(t) for large d equals 1/2 as found exactly for one
dimensional diffusion. This suggests that the upper criti
dimensiond* for that transition should be unity~see@22#!
but the value ofd* in the PCPD model is not yet known. T
what extent are the predictions of the pair approximation
particular the existence of several distinct universa
classes along the transition line, borne out?

An active state with a finite density of particles can
maintained only in the limitL→`. On a finite lattice any
configuration of particles will decay toward an absorbi
configuration in a finite time. There aretwo possible absorb-
ing configurations that the system cannot leave:~i! the empty
lattice and~ii ! a lattice occupied by one single diffusing pa
ticle. If we taked50, we recover the pair-contact proce
introduced by Jensen@12#. In that case, any particle configu
ration without nearest-neighbor pairs is absorbing. The nu
ber of absorbing states grows exponentially with the ch
length L and it is given by the Fibonacci number~see Ap-
pendix A!. The steady-state properties of thed50 phase
transition between the active and inactive phases are
scribed by the directed percolation universality class@12#.
However, the dynamical properties of this transition a
more subtle and still under active investigation@23,24#. As
we shall see, the presence of single-particle diffus
changes the universality class of the transition between
active and inactive phases: for any finite values ofd it no
longer falls in the DP universality class.

Long ago, Janssen and Grassberger@25# conjectured that
a model with a continuous phase transition from a fluctuat
active phase into a phase with a single absorbing state
without additional symmetries is in the DP universality cla
While it is widely believed that in the presence of local sym
metries in the reaction rates there should be a different
versality class~normally the PC if the particle number i
1-2
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CRITICAL PROPERTIES OF THE REACTION- . . . PHYSICAL REVIEW E 63 036101
locally conserved modulo 2!, Park and Park@26# provided a
counterexample which shows that even in the presenc
local symmetries the steady-state transition can be in the
universality class. This already indicates that the universa
classification might be more subtle than previously thoug
The exponents we want to compare with are~see@1,2#!

u5n i /n'.1.5806 . . . , b/n'.0.2520 . . . , DP,

u5n i /n'.1.749 . . . , b/n'.0.499 . . . , PC,

~11!
and are defined as usual from the densityn(p);(p2pc)

b

and the spatial and temporal correlation lengthsj',i;(p
2pc)

2n',i ~see also Sec. IV!.
The stochastic time evolution of the system is determin

by the master equation, cast into the form

]uP~ t !&
]t

52HuP~ t !&, ~12!

where uP(t)& is a state vector andH is referred to as the
‘‘quantum’’ Hamiltonian. For a chain withL sites,H is a
stochastic 2L32L matrix with elements

^suHut&52w~t→s!, ^suHus&5 (
tÞs

w~s→t!,

whereus&, ut& are the state vectors of the particle config
rationss,t andw are the transition rates.

Since H is non-Hermitian, it has distinct left and righ
eigenvectors. We will use the notationu0r&,u1r&, . . . unr&
(^0l u,^1l u, . . . ,̂ nl u) for the right ~left! eigenvectors ofH
corresponding to energy levelsE0 ,E1, . . . ,En ordered ac-
cording to ReE0<ReE1<•••ReEn , where Re denotes th
real part. One haŝnl umr&50 if EnÞEm and we normalize
the states in such a way that^nl unr&51.

Steady states are right eigenvectors ofH with zero eigen-
value. The two absorbing configurations mentioned ab
are steady states and given by

u0r&ªu000•••0&, ~13!

u1r&ªuA00•••0&1u0A0•••0&1•••1u000•••A&.
~14!

Thus, H has two zero eigenvaluesE05E150, while
GªReE2 is the inverse relaxation time toward the stea
state. Furthermore, sinceH is stochastic,

^0l uª(
s

^su ~15!

is a left eigenvector ofH with zero eigenvalue.
The calculation of the eigenvalues and eigenvectors of

stochastic HamiltonianH, from which we will derive the
critical properties of the model, is performed by the DMR
algorithm @14,15# adapted to non-Hermitian matrices, as d
scribed in detail in Ref.@9#. In the next section we present
further improvement to deal with systems with degener
ground states.
03610
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III. SHIFT OF THE TRIVIAL GROUND STATE

A severe numerical problem is generated by the fact t
the physically relevant eigenstate, the first excited state
only the third state in the spectrum due to the double deg
eracy of the ground state. Asymmetric diagonalization al
rithms for large sparse matrices are much less robust
their counterparts for symmetric matrices, making a prec
determination of eigenvalues not at the extreme ends of
spectrum much more demanding. In particular, the precis
of the eigenstates suffers. This in turn leads to a low
quality truncation of the state space in the DMRG algorith
and subsequently to further deterioration of the results
longer chains. In the present case, the DMRG becomes
stable for rather short chain lengths (L'20).

We alleviate this problem successfully by projecting o
one of the two ground states, for which both the left and rig
eigenstate are known, as given in Eqs.~15! and ~13!. All
nondegenerateeigenstates of the asymmetric HamiltonianH
obey a biorthogonality condition. This leaves us with tw
options to eliminate one ground state.~i! Each diagonaliza-
tion algorithm for large matrices~Arnoldi or Lanczós! gen-
erates a sequence of~bi!orthogonal trial vectors, such that th
requested eigenstate can be written as a linear combina
of those. During the generation, one may enforce ortho
nality of all these trial vectors with respect to the grou
state. This option does not exist if one uses a black b
routine. ~ii ! One may directly modify the Hamiltonian b
shifting the ground state to an arbitrarily high energy, i.
working with

H8~D!ªH1Du0r&^0l u, ~16!

whereD is a positive number larger than the energy gap
H. This new Hamiltonian is not stochastic; however, it h
the same spectrum asH apart from one of the ground state
which is shifted to an energy levelD. The gap can now be
obtained from the first excited state ofH8(D). This proce-
dure can also be implemented for a stochastic Hamilton
with a single ground state. The gap is then obtained from
ground state energy ofH8(D). This option can always be
used independently of the diagonalization method emplo
~see@8# in relation to the power method!.

To implement both options, one has to write down the l
and right ground states in the transformed block bases g
erated by the DMRG. Let us denote for a block of lengthL
by u0L& the state with no particles and by^tLu[(sL

^sLu the
sum over all states of a block~i.e., in the complete, unre
duced Hilbert space of the block!. In the reduced block basi
$umL&% produced by the DMRG we have approximate
u0L&5(mL

^mLu0L&umL& and ^tLu5(mL
^tLumL&^mLu. The

right and left ground eigenstates then read

u0r&2L125u0L& ^ u0& ^ u0& ^ u0L&

5 (
mL ,mL8

^mLu0L&^mL8 u0L&~ umL&

^ u0& ^ u0& ^ umL8&), ~17!
1-3



ix

er

-

a
hi
hi
th
ia
go
as

o

t o
un
of

e
te

fo

ys

or

ery

es

vior
2,

ate,
it,

est

-

-

s-

d
f
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^0l u2L125(
s,s8

^tLu ^ ^su ^ ^s8u ^ ^tLu

5 (
mL ,mL8 ,s,s8

^tLumL&^tLumL8&~^mLu

^ ^su ^ ^s8u ^ ^mL8 u!, ~18!

wheres ands8 run over single-site states.
At the beginning of the DMRG application, the matr

elementŝ mLu0L& and^tLumL& are trivially constructed for a
sufficiently smallL such that the Hilbert space has few
thenm states, the number of states kept.

Using ^tL11u5(s^t l u ^ ^su and u0L11&5u0L& ^ u0& and
inserting one in ^tL11u5(mL11

^tL11umL11&^mL11u and

u0L11&5(mL11
^mL11u0L11&umL11& one finds as the recur

sive relation

^mL11u0L11&5(
mL

^mL11umL0&^mLu0L&, ~19!

^tL11umL11&5 (
mL ,s

^mLsumL11&^tLumL&. ~20!

The matrix elementŝmL11umLs& are from the incomplete
basis transformationumL& ^ us&→umL11&.

Numerical implementation of both approaches reve
that the second approach is numerically very stable, w
the first one is not, at least not if one carries out an unsop
ticated Gram-Schmidt orthogonalization. We suppose
this is due to the fact that global orthogonality of the tr
vectors is numerically not exactly conserved by the dia
nalization algorithms, while the Gram-Schmidt method
sumes this when a new trial vector is added and made
thogonal to the ground state. To findG5ReE2, we have
chosen as density matrix

r5
1

4
tr̂$u0r&^0r u1u0l&^0l u1u2r&^2r u1u2l&^2l u%, ~21!

where tr̂denotes the partial trace on the states of the lef
right side of the chain. It is essential to target also the gro
stateu0r&,^0l u projected out to maintain a good description
the ground state via Eqs.~17! and ~18! after some DMRG
steps. Otherwise, the Hamiltonian still contains a small p
turbing contribution from the zero-energy ground sta
which might destroy the stability of the procedure.

IV. NUMERICAL RESULTS

A. Analysis of the gap

1. Finite-size scaling method

We are interested in the lowest-energy gap

G5G~p,d;L !5E2 ~22!

whose finite-size scaling behavior contains the desired in
mation about the critical properties of the PCPD model~1!–
03610
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~3!. While in principle the eigenvalues of the~nonsymmetric!
matrix H may have a nonzero imaginary part, we alwa
found thatE2 is real.

Generically, we expect the following finite-size behavi
of G:

G;H exp~2L/j'! if p,pc~d!

L2u if p5pc~d!

L22 if p.pc~d!

~23!

with u5n i /n' and j' the spatial correlation length. At a
continuous transition this diverges asj';up2pc(d)u2n',
while in the time directionj i;up2pc(d)u2n i.

The first line in Eq.~23! indicates that on a finite lattice
the relaxation toward the absorbing configurations is v
slow. Indeed, forL→` the relaxation timet5G21 becomes
infinite and a state with a finite density of particles becom
a steady state of the system. From the third line in Eq.~23!
we see that in the entire inactive phase the scaling beha
of the energy gap is algebraic, with an exponent equal to
as for the pair annihilation model 2A→0. Therefore, in ad-
dition to the obvious double degeneracy of the ground st
we find that our model is gapless in the large-system lim
limL→`G(p,d;L)50, for all values ofp andd ~in most sys-
tems the gap is finite in the inactive phase!.

The different phases and the critical point can be b
identified from analysis of the quantity

YL~p,d!ª
ln@G~p,d;L11!/G~p,d;L21!#

ln@~L11!/~L21!#
. ~24!

While usually the critical point is found by looking for inter
sections of two curvesYL and YL8 for two different lattice
sizesL,L8, it turns out that, because of the scaling~23!, the
critical point is found from the maximum of YL as a function
of p for fixed d and L. From ~23! one then has for the large
L behavior ofYL(p,d)

YL~p,d!.H 2L/j' if p,pc~d!

2u if p5pc~d!

22 if p.pc~d!.

~25!

Therefore, the location of the maximum value ofYL(p,d)
yields a sequence of estimatespc(d;L) and the critical point
can be found from extrapolating these sequences toL→`.
We point out, however, that the value ofYL at its maximum
cannotbe used to infer the value of the exponentu. Only
after pc(d) is determined for theL→` lattice can we use
Eq. ~25! to find u. The technicalities of the method are di
cussed in Appendix B.

2. Inactive phase

Figure 1 shows a plot ofYL(p,d) as function of the pa-
rameterp and ford50.5 forL59, 11, 13, 15, and 17~in the
inset we showYL for d50.2). Calculations were performe
up to L530, but for the largest sizes only in the vicinity o
the critical point.
1-4
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In the active phase~small p) the quantityYL(p,d) scales
linearly with L as predicted in Eq.~25!. For largerp the
reaction 2A→0 dominates and the system is in the inact
phase, for which we should have asymptoticallyYL(p,d).
22. As the system sizeL is increased, the curves approa
the expected value22 in the whole inactive phase. Table
shows the values of2YL(p,d) calculated for three differen
diffusion constants and in the inactive phase. We extra
lated the finite-lattice data, using theBST algorithm@27# and
found excellent agreement with the expected value ofu52
@see Eq.~25!#. The convergence is similar to the exampl
studied in@9#, although the raw data can be quite far fro
their L→` limit value. This check also confirms that th
numerical values for the energy gap, as obtained from
DMRG calculation, are very accurate.

3. Active-inactive transition line

Table II collects our results for the critical pointpc(d)

FIG. 1. Plot ofYL(p,d) as a function ofp for various lattice
sizes andd50.5. The inset shows the same quantity ford50.2.

TABLE I. Finite-size estimates2YL of the dynamical exponen
u and theirL→` extrapolation, obtained by theBST method, in the
inactive phase.

L d50.1, p50.6 d50.5, p50.6 d50.8, p50.5

9 1.979223431 1.7110633 1.226133000
11 1.986196898 1.7567773 1.267952170
13 1.990160149 1.7893116 1.306670859
15 1.992629239 1.8139503 1.342357293
17 1.994271913 1.8333674 1.375169517
19 1.995420176 1.8491053 1.405319671
21 1.996254444 1.8621348 1.433037552
23 1.996879687 1.8731052 1.458550029
25 1.997360512 1.8905590 1.482070754
27 1.995400349 1.8976147 1.503795737
29 1.523902146
` 2.0000~1! 2.000~1! 1.99~2!
03610
o-

e

and the exponentsu andb/n' , for several values ofd. First,
estimates forpc(d) in the L→` limit were obtained from a
linear fit in 1/L of the finite-size datapc(L), i.e., the abscis-
sas of the maxima ofYL(p,d). For comparison, we recal
that pc(0)50.077 090(5)@13#.

Next, we estimate the value of the exponentu from the
extrapolation ofuL52YL„pc(d),d… to the thermodynamic
limit L→`. Figure 2 shows a plot ofuL as a function of 1/L
for various values ofd. We notice a different finite-size sca
ing behavior of uL for d<0.20 and ford50.50. In the
former caseuL varies quite strongly withL, starting from a
value above 2 and going toward values below 2. Ford
'0.5, uL shows littleL dependence. The extrapolated valu
of u ~coming from a cubic fit in 1/L) are shown in Table II.
Error bars are due to the uncertainty in the determination
the critical point location. The final estimates foru appear to
vary with d. It is not yet clear whether this variation is real o
the consequence of an unresolved finite-size correction te
However, the results are clearly inconsistent with a transit
of DP type, for whichu'1.58.

B. Steady-state particle density

For a finite lattice and for all values ofp and d the sta-
tionary states, given in Eq.~13! and~14!, contain either no or
just one particle. Therefore the steady-state particle den
vanishes in the large-L limit.

TABLE II. Critical parameterspc(d), u, and b/n' along the
active-inactive transition line for several values ofd.

d 0.10 0.15 0.20 0.35 0.50 0.80

pc 0.111~2! 0.116~2! 0.121~3! 0.138~1! 0.154~1! 0.205~3!

u 1.87~3! 1.84~3! 1.83~3! 1.72~3! 1.70~3! 1.60~5!

b/n' 0.50~3! 0.49~3! 0.49~3! 0.47~3! 0.48~3! 0.51~3!

FIG. 2. Plot ofuL as a function of 1/L for various values ofd.
The two horizontal arrows point to the values ofu expected for the
DP (u'1.58) and PC (u'1.75) universality classes.
1-5
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To obtain a steady state with a finite density of partic
we added a particle creation process at the two bound
sites@9#,

0→A with rate p8. ~26!

We are interested in the~steady-state! density profile, for a
chain of lengthL,

nL~ l !5^0l un̂~ l !u0r&, ~27!

wherel 51,2, . . . ,L labels the position along the chain,n̂( l )
is the particle number operator at sitel, andu0r& and^0l u are
the left and right ground states of the nonsymmetric oper
H, with the terms coming from Eq.~26! added.

The boundary reaction term removes the ground state
generacy ofH encountered earlier. Therefore, DMRG calc
lations are easier to perform whenp8Þ0. In this case it is
not necessary to follow the shift strategy introduced in S
III. In fact the DMRG calculations are stable up to chains
lengthL'50–60, i.e., almost double the size of the leng
we could reach in the study of the energy gap.

In general, the time-dependent particle densityn
5n(t,p; l ,L) at sitel for a lattice of sizeL and in the vicinity
of the critical point should satisfy the scaling form

n~ t,p; l ,L !5t2b/n iF~ t/j i ,L/j' ,l /L !

;j
'

2b/n'G~ t/j'
u ,L/j' ,l /L !, ~28!

where for simplicity the dependence ond and p8 is sup-
pressed andF and G are scaling functions. The exponen
have their usual meaning@2#. In particular, the steady-stat
density profile, at the critical point, should satisfy

nL~ l !ªn~`,pc ; l ,L !5L2b/n' f ~ l /L ! ~29!

with some scaling functionf (z).
First, we consider the inactive phase. For our model,

average particle density decays algebraically for large tim
asn(t);t21/2. From Eq.~28!, we identify b/n i51/2. Thus
b/n'5ub/n i51 since the anisotropy exponentu5n i /n'

52 in the inactive phase~see Table I!.
The scaling~29! is confirmed in Fig. 3, obtained fo

chains up toL548, which shows the scaled particle dens
LnL( l ) as a function ofl /L. The ratiob/n'51 for the whole
inactive phase has also been confirmed with good accu
from BST extrapolations.

From now on we focus on the transition between the
tive and inactive phases. We concentrate on thecentral par-
ticle density

n~L !ªnL~L/2!. ~30!

For this quantity we expect that for largeL, n(L).n0
1O(e2L/j').0 in the active phase where at the critic
point

n~L !;L2b/n', ~31!
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while, as shown above,n(L);L21 in the entire inactive
phase.

Again, in analogy with Eq.~24! we form the logarithmic
derivative

r~L !52
ln@n~L11!/n~L21!#

ln@~L11!/~L21!#
. ~32!

According to Eq.~31!, r(L) is expected to converge to th
ratio b/n' for L→` at the critical pointp5pc(d) as listed
in Table II. A plot ofr(L) for various values of the diffusion
constant is shown in Fig. 4. We notice that at smallL andd
the effective exponentr(L) starts from values close to tha
for DP, while it clearly deviates from it for increasingL. A
cubic fit in 1/L yields the extrapolated exponent ratiob/n'

as a function ofd ~see Table II!. This ratio appears to be
rather constant withd. As in the case of the calculation ofu,
we notice that the exponents are clearly inconsistent wit
DP transition. However, the extrapolated values are clos
the exponent value expected for a transition in the PC cl

V. DISCUSSION

We collect the results of this study of the pair-conta
process with diffusion. In Fig. 5~a! we show the steady-stat
phase diagram of the PCPD model. For small enoughp,
there is an active phase with a nonvanishing steady-state
ticle density and which goes over into an inactive state
some critical pointpc(d). The critical line separating the
active from the inactive phase terminates ford→0 at the DP
point pc(0)50.077 090(5)@13#. For d→1 the critical line
terminates at the MF pointp51/3, as predicted from the
mean field equations. This should have been expected, s
it is well known that when diffusion dominates over all oth
reactions the critical behavior becomes of mean field ty
even in one dimension@2,3,5#.

FIG. 3. Scaled particle densityLnL( l ) as function of the scaled
variablel /L in the inactive phase ford50.5, p50.8, and injection
ratep850.3. Data for different system sizes (L520,24,28, . . . ,48)
collapse nicely onto a single curve.
1-6



ca
n

in

ue
lit
a
n
he
-

ity
eld

t is

ith

ose
ly

f

a
rent

he-

nd-
l
as
s.

tinu-
er

e

val
tes
n-

the

n in

cu-
l is

al-
ither
m-
-
ch
lass.
tion
tion

the
gle-

se

lin
a
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In the PCPD model, the entire inactive phase is criti
and is expected to be in the universality class of diffusio
annihilation @11#. We have found the exponentsu52 and
b/n'51, confirming this expectation.

We have investigated the properties of the transition l
between the active and inactive phases. Figures 5~b! and 5~c!
show the numerical estimates of the exponentsu andb/n' ,
respectively; see also Table II. For comparison, the val
~11! of these exponents for the DP and PC universa
classes are shown as horizontal lines. Clearly, our results
incompatible with a transition in the DP class. That mea
that single-particle diffusion is a relevant perturbation of t
pair-contact process. Whileb/n' is quite constant and con
sistent with the PC value within error bars,u seems to vary
continuously withd.

FIG. 4. The effective exponentr(L) as a function of 1/L for
various values ofd and for up toL551. The horizontal arrows
point to the values expected for DP and for PC universality clas

FIG. 5. ~a! Steady-state phase diagram of the model 2A→3A,
2A→0 as determined by DMRG techniques. The continuous
separates the active from the inactive phase. Extrapolated estim
of the exponentu are shown in~b! and of the exponentb/n' in ~c!
as a function ofd.
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There is no clear evidence for two distinct universal
classes along the critical line, as predicted by pair mean fi
theory~see Sec. II!, but our information on the transition line
for d close to unity remains incomplete~see also below!. At
present, neither of the two possibilities can be ruled out. I
an open question whether the two-dimensional~2D! PCPD
model phase diagram will be in qualitative agreement w
pair mean field theory.

Turning to the apparent variation ofu with d, note thatu
decreases systematically withd, starting fromu'2 in the
d→0 limit. To explain this, consider the case whend is
small and the particle density is low, i.e., the system is cl
to criticality. Then the particles will diffuse independent
until they meet and react. The lower the diffusion rated, the
larger the time intervaltdiff for which free diffusion can be
observed. Associated with this is a length scaleRdiff , viz.,
tdiff;Rdiff

2 . For times short compared totdiff , the system is
governed by diffusion only. Therefore, for system sizesL
!Rdiff , the critical exponents will be effectively those o
free diffusion andu.udiff52. The true value foru will be
seen only ifL@Rdiff . These two regimes are separated by
crossover region and it appears plausible that the appa
variation of our estimates ofu with d might be the conse-
quence of such a crossover. However, this crossover p
nomenon does not show up in the calculation ofb/n' . That
is to be expected since by injecting particles at the bou
aries we induce afinite density of particles at the critica
point also;tdiff will no longer increase beyond any bounds
d→0, and the above heuristic argument no longer applie

While the exponentb/n' is not far from that of the PC
class it is difficult to extract reliable information fromu. We
have no reason to believe that exponents should be con
ously varying as functions of the diffusion constant. A clos
inspection of the finite-size behavior~see Fig. 2! reveals that
the L→` asymptotic value ofu is approached from abov
for d<0.35, while it is approached from below ford>0.5.
As finite-size effects are seen to be weak in the inter
0.35<d<0.5, we presume that the most reliable estima
for u might be those obtained in this range of diffusion co
stants. Therefore most likelyu'1.7, which is not far from
the PC value either. We also recall that the relaxation in
inactive phase is algebraic: All known models@26,28–31# in
the PC class are characterized by an algebraic relaxatio
the inactive phase with exponentsu52 andb/n'51, as for
the PCPD model. Therefore, it might be tempting to spe
late that the active-inactive transition of the PCPD mode
in the PC universality class.

On the other hand all known models in the PC univers
ity class are characterized by some conservation laws e
on the parity of the number of particles or by an exact sy
metry between the absorbing states@3#. Such local conseva
tion laws are, however, lacking for the PCPD model, whi
suggests that the PCPD model should not be in the PC c
It should also be stressed that the unambiguous identifica
of a steady-state universality class requires the determina
of four independent exponents~see @2,3#!, while our tech-
niques provided values for only two.

In summary, we have used the DMRG method to find
steady-state phase diagram of the PCPD model. Sin

s.

e
tes
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particle diffusion is a relevant perturbation for the syste
since the model does not show a DP behavior as in the l
of vanishing diffusion constant.

Some exponent values along the active-inactive transi
line are surprisingly close to those of the PC universa
class. However, it is conceivable that the near coincidenc
the exponents with those of the PC class might be accide
In that case the transition~s! would belong to a universality
class distinct from both DP and PC. It is not yet cle
whether in the 1D PCPD model there are two distinct tr
sitions, as suggested by pair mean field theory, or mere
single one. All in all, complementary studies would
needed to fully understand the remarkably subtle behavio
this so simple-looking model.

After this work was done Hinrichsen@32# performed a
Monte Carlo study of the PCPD model ford50.1. The time-
dependent densityn(t);t2d is characterized by the expo
nent d5b/(n'u). He finds d50.25(2) andu51.83(5).
This agrees with our Table II. After this work was accepte
we received a paper by O´ dor @33# which studies the PCPD
model through Monte Carlo simulations and the coher
anomaly method. In particular, for 0.05<d<0.2, Ódor finds
d'0.27, and ford50.5 andd50.9, d'0.2. The first result
compares well with our results from Table II, which gived
'0.27, and agrees with the result of Hinrichsen@32#. How-
ever, Ódor also findsb'0.58 for 0.05<d<0.2, consistent
with the upper boundb,0.67 reported in@32#. That is far
away from the PC valuebPC.0.93 @2,31#.
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APPENDIX A: NUMBER OF ABSORBING
CONFIGURATIONS IN THE PCP

For d50, the model reduces to the pair contact proc
@12#. In this case, all configurations of the typ
u . . . 0A0 . . . 0A0 . . . & without nearest-neighbor particle
are absorbing and stationary states. We find the num
N(L) of absorbing states in the PCP for a chain of lengthL
with free ~periodic! boundary conditions.

For free boundary conditions, one has the recursion

N~L !5N~L21!1N~L22!. ~A1!
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To see this, concentrate on the leftmost site. If it is occupi
its neighbor must be empty for the state to be absorbing
there remains an open chain ofL22 sites to be considered
If it is empty, one considers the open chain of the remain
L21 sites. The initial conditions for the problem areN(1)
52 andN(2)53. ThereforeN(L)5FL11 is the (L11)th
Fibonacci number.

This can also be seen from the generating function

Ñ~s!5 (
k50

1`

N~k!sk ~A2!

which satisfies, because of Eq.~A1!,

Ñ~s!5
N~0!~12s!1N~1!s

12s2s2
5

11s

12s2s2
. ~A3!

For the inverse transformation one can use

N~L !5
1

2p i R dsÑ~s!s2L21, ~A4!

where the integral is taken in a closed circle centered at
origin of the complexs plane and with radius smaller tha
the radius of convergence of the series~A2!, so as to exclude
contributions of other poles than that ins50. The transfor-
mationz51/s yields

N~L !5
1

2p i R dz
11z

z22z21
zL5

z1
L122z2

L12

z12z2
, ~A5!

wherez65(16A5)/2; z1 is the golden mean.
For periodic boundary conditions, the numberNper(L) of

absorbing states for a chain ofL sites is

Nper~L !5N~L21!1N~L23!5z1
L 1z2

L . ~A6!

For largeL the asymptotic behavior isN(L);Nper(L);z1
L .

Another example of a kinetic model with exponential
many absorbing states is an adsorption-desorption mode
k-mers (k>3) on a 1D lattice where the number of absor
ing states is described by generalized Fibonacci numb
@34#.

APPENDIX B: FINITE-SIZE SCALING IN SYSTEMS
WITH A CRITICAL PHASE

We discuss the finite-size scaling of the lowest gapG
5GL(p) and how to localize the critical point. For simplic
ity, we suppress the dependence ond and write the scaling
form

GL~p!5L2u f @~p2pc!L
1/n'#, ~B1!

wheref is assumed to be continuously differentiable. For t
gap, one expects the behavior
1-8
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GL~p!;H e2sL if p,pc

L22 if p.pc, caseC

G` if p.pc, caseN,

~B2!

where s,G` are constants independent ofL. Here, caseN
refers to the ‘‘normal’’ case of noncritical phases on bo
sides of the transition atp5pc and caseC alludes to the case
of a critical phase on one side, and we have already se
exponent equal to 2 in view of Eq.~23!, valid for our model.
This implies for the scaling functionf (z)

f ~z!;H exp~2Auzun'!, z→2`

z(u22)n', z→1`, caseC

zun', z→1`, caseN,

~B3!

whereA is a positive constant. Sincef (z) is positive, it fol-
lows that in the caseC with u,2 f (z) must have a maxi-
mum at some finite valuezmax. For the caseN, however,
f (z) should increase monotonically withz.

The estimatorYL as defined in Eq.~24! then becomes

YL52u1
ln@ f ~z1!/ f ~z2!#

ln@~L11!/~L21!#
, ~B4!

where z65(p2pc)(L61)1/n'. Furthermore, writingg(z)
5 ln f(z), a straightforward calculation gives
e,

s
e,

.

,
,

-
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dYL

dp
5

L1/n'

n'

@g8~z!2zg9~z!#

.H L1/n'A~22n'!~2z!n'21, z→2`

L1/n'~u22!z21, z→`
~B5!

in the finite-size scaling limitp→pc and L→` simulta-
neously such thatz5(p2pc)L

1/n' is kept fixed. For the case
C with u,2 andn',2, there is some finitez* such that
dYL /dpuz5z* 50. Then

YL~z* !52u1
1

n'

z* g8~z* !. ~B6!

If we choosez5z* , we have a sequence of values ofpL
converging towardpc according topL.pc1z* L21/n'. On
the other hand,pL can be found by determining the maximu
of YL as a function of p, since limdYL /dpuz* 50. This is the
desired result. However, because of Eq.~B6! YL(z* ) does
not readily yield an estimate for the exponentu, since there
is no guarantee thatg8(z* ) should vanish~or in other words
that z* 5zmax). The generalization to other observables w
scaling analogous to~B2! is immediate. For the caseN, how-
ever, this technique does not apply, since in generalf 8(z)
.0 for all values ofz.

Finally, we recall that the leading finite-size correctio
terms determine whether or not the curvesYL(p) andYL8(p)
will intersect. Consider the extended scaling formGL(p)
5L2u f (z)@11L2vA(z)#, wherev.0 is the leading correc-
tion exponent. Ifv,2, we find

YL52u1
zg8~z!

n'

1L2vA~z!S 2v1
1

n'

zA8~z!

A~z! D
~B7!

up to terms of orderO(L22,L212v). Now, the curvesYL
and YL8 intersect if there is somezint such that the scaling
function of the leading correction term in Eq.~B7! vanishes.
But that term dependsonly on the correction amplitudeA(z)
and is independent off (z).
e,
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