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The steady-state phase diagram of the one-dimensional reaction-diffusion Med@A”, 2A— 0 is studied
through the non-Hermitian density matrix renormalization group. In the absence of single-particle diffusion the
model reduces to the pair-contact process, which has a phase transition in the universality class of directed
percolation(DP) and an infinite number of absorbing steady states. When single-particle diffusion is added, the
number of absorbing steady states is reduced to 2 and the model no longer shows DP critical behavior. The
exponents)= v /v, andp/v, are calculated numerically. The value@fv, is close to the value of the parity
conserving universality class, in spite of the absence of local conservation laws.
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[. INTRODUCTION steady-state phase transition belongs to the DP universality
class[12,13.

Reaction-diffusion systems have attracted considerable Here we present a nonperturbative study of the model
interest in the past few yeafd—3]. While at sufficiently ~ corresponding to tha=1 case of11]: the PCP model with
high spatial dimensions their critical behavior is correctlyadditional single-particle diffusion, as obtained from density
described by mean field rate equations, at dimensions beloWatrix renormalization grougdDMRG) calculations. The
the upper critical dimension, where the effect of fluctuationsDMRG algorithm was introduced by Whife 4] in 1992 to
becomes important, this approach is no longer valid. In thignvestigate ground state properties of quantum spin chains
case one has to resort to other methods, such as, for instanég/merically. Because of its great accuracy, reliability, and
field theory[4], exact calculations via the Bethe ansfi, the possibility of treating large systems with a limited com-
Monte Carlo and cellular automaton simulatiofsee[2,6]  putational effort, the DMRG has since been applied to an
and references thergjnor exact diagonalization techniques ever increasing set of problems, as reviewefllis]. In par-
[7,8]. Recently other types of approach have been proposeiicular, some recent studies were devoted to the application
such as the density matrix renormalization gr¢@pand the  of the DMRG to non-Hermitian problen{®,16—20, which
standard real-space renormalization grou@). appear frequently in many domains of physics, for example,

In this paper we study the critical properties of a one-in low-temperature thermodynamics of spin chains and lad-
dimensional reaction-diffusion model where the local dy-ders, for models of the noninteger quantum Hall effect, and
namics is given by the following rules. Consider a singlein one-dimensional nonequilibrium systems. Reaction-
species of particleA) on a one-dimensional lattice. Each diffusion systems belong to the latter class of models. Some
lattice site can be either occupied by a single particle oinsight should be expected from the application of the
empty. A single particle may hop to an empty neighboringDMRG to them[9].
site (diffusion). Two particles on neighboring sites can either ~ The paper is organized as follows. In Sec. Il we define the
annihilate (A—0) or create a new particle £2-3A) in  model and recall some facts about reaction-diffusion sys-
the case that one of the sites next to the couple is empty. THemS. In Sec. Ill we introduce a shift strategy to project out a
reaction rates for these processes are defined in(Egg3)  trivial ground state from the quantum Hamiltonian. This im-
below. proves the convergence of the DMRG. The method works if

Recently, Howard and “Tdber[11] discussed a general- an exact expression for the eigenstate is available. In Sec. IV
ized version of the above model wheneparticles may be We discuss the calculation of the critical points and expo-
created through the reactiolA2>(n+2)A, and with an ar- nents for the model and show that the model does not belong
bitrary number of particles per site. They employed a field-to the DP universality class. Section V concludes the paper.
theoretical approach and found that the theory is not renor-
malizable. They argued, however, that for althe model
should not be in the directed percolatiDP) universality
class. Their conjecture is based on the analysis of the asso- We consider a one-dimensional lattice of lengttwith
ciated master equation and on the massless nature of then boundary conditions, as usual in DMRG calculations
corresponding field theory which is at odds with a phasg15]. The reactions occur with the following rates:
transition of DP type. However, the critical behavior of the
system, i.e., its universality class, remained unknown. In the
absence of diffusion, with at most one particle per site, the AAD—AAA with rate (1-p)(1-d)
n=1 case is the pair-contact proce§8CPB, where the OAA—AAA 2 ’
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AA—00 with rate p(1—d), 2 There should thus be different universality classes on both
sides of the meeting“tricritical” ) point p,=1/3, d;=1/7,
A0—0A with rate d, (3  wheren(s)~(p;—p)* andc()~(p;— p)* imply modified
critical exponents.
and are parametrized by the diffusion constand the pair The leading long-time behavior along the critical lipe

annihilation ratep. This defines the pair-contact process with = p.(d) is
diffusion (PCPD model.
For a first qualitative overview, we consider the mean nit)~t=2  c(t)~t~1! if d>d,
field kinetic equations. To discuss the effects of diffusion we 1 32 e g
need the kinetic equations in thgair approximation see, N~ e~ ifd=d=1/7" (10

e.g.,[2]. If n=n(t) is the spatially averaged single-particle nt~t* ct)~t! if d<d,
density andc=c(t) the spatially averaged pair density, we
find while n(t)~t~! andc(t)~t~2 in the entire inactive phase

_ p>p.(d). In the active phase, the steady state is approached
n=-2(1-d)pc+(1—-d)(1—-p)(n—c)c/n, (4) exponentially.
Although generally believed to be qualitatively correct in
2c+n (n—c)(c—n?) sufficiently high dimensiongl—3], kinetic equations cannot
n__ n(1—n) provide correct values of the exponei@@nd often not even
the order of the transitiorin low dimensions. In one dimen-
+(1-d)(1-p)(n—c)(1—c)c/[n(1—n)]. (5) sion, the exact decay in the inactive phasen{s)~t *?
[11], where the exponent 1/2 is that of the mod&l-20
In thed—1 limit, nontrivial steady states occur only for [21], which is recovered by taking the limit— 1 in the rates
c(t)—n(t)? and one recovers the single-site kinetic equation(1) and (2). However, the pair approximation suggests the

c=—(1-d)pc

[rescaling time by a factor (2d)] presence of distinct universality classes ftblarge andd
small. In addition, the exponent of the time dependence of
n=(1-p)n®(1—n)—2pn?, (6) n(t) for large d equals 1/2 as found exactly for one-

dimensional diffusion. This suggests that the upper critical
which expresses the fact that particles may be created onlgimensiond* for that transition should be unitisee[22])

on empty sites. The time dependencenff) for larget is but the value ofi* in the PCPD model is not yet known. To
what extent are the predictions of the pair approximation, in
Ne.+aexp—t/7) if p<pcme(l) particular the existence of several distinct universality
! a1 if p= 1 classes a_long the transition I_|ne, borr_1e out?
n(t) 34 . _ P=Pemr(1) @ An active state with a finite density of particles can be
1U(3p—1)t if p>pe,me(1), maintained only in the limil.—o. On a finite lattice any

configuration of particles will decay toward an absorbing
where  n.=(1-3p)/(1-p), 7=(1-p)/(1-3p)>,  configuration in a finite time. There ateo possible absorb-
Pc,mr(1)=1/3, anda is a constant that depends on the initial ing configurations that the system cannot ledithe empty
conditions. At smalp, where the creation proce€b) domi-  |attice and(ii) a lattice occupied by one single diffusing par-
nates, the system is in theetive phase with a nonvanishing ticle. If we taked=0, we recover the pair-contact process
particle density in the steady state. On the other handp for jntroduced by Jensdi2]. In that case, any particle configu-
large, the pair annihilation proce€® dominates, the steady- ration without nearest-neighbor pairs is absorbing. The num-
state particle density is zero, and the system is inrhetive  per of absorbing states grows exponentially with the chain
phase. In the entire inactive phase, and not only at the criticqéngth L and it is given by the Fibonacci numbésee Ap-
point, the approach'toward the 'steady state is algebrai(bendix A. The steady-state properties of tde=0 phase
rather than exponential as found in most systems. ~ transition between the active and inactive phases are de-
~ The same kind of result also holds in the pair approximascribed by the directed percolation universality clésg].
tion with d#1. In the steady state, we haué>)=n(=)(1  However, the dynamical properties of this transition are
—3p)/(1—p). The particle density vanishes along the curvemore subtle and still under active investigati@8,24). As

we shall see, the presence of single-particle diffusion

$(1+3d)/(1-d), O0=d<l/7 changes the universality class of the transition between the
Pe,me(d)=1 | rede1 (8)  active and inactive phases: for any finite valuesddf no
31 - longer falls in the DP universality class.

Long ago, Janssen and Grassbhef@®&] conjectured that
a model with a continuous phase transition from a fluctuating
active phase into a phase with a single absorbing state and

Close to criticality, the particle density(°) ~p. ye(d) —p,
which is the same as found from, in thed—1 limit above.

However, the pair density without additional symmetries is in the DP universality class.
While it is widely believed that in the presence of local sym-
(o0 N[ Pe.me(d) =P, L 9) metries in the reaction rates there should be a different uni-
[pC,MF(d)—p]Z, d>1/7. versality class(normally the PC if the particle number is

036101-2



CRITICAL PROPERTIES OF THE REACTION .. PHYSICAL REVIEW E 63 036101

locally conserved modulo)2Park and Park26] provided a lll. SHIFT OF THE TRIVIAL GROUND STATE
counterexample which shows that even in the presence of

local symmetries the steady-state transition can be in the D he physically relevant eigenstate, the first excited state, is

universality class. This already indicates that the universalit ; :
classification might be more subtle than previously thought.Only the third state in the spectrum due to the double degen-

The exponents we want to compare with ésee[1,2) eracy of the ground state. As_ymmetrlc diagonalization algo-
rithms for large sparse matrices are much less robust than

A severe numerical problem is generated by the fact that

6=vj/v,=1586 ..., Blv,=0.25D..., DP, their counterparts for symmetric matrices, making a precise
determination of eigenvalues not at the extreme ends of the
O=v /v, =1.78..., plv,=04®..., PC, spectrum much more demanding. In particular, the precision

(11  of the eigenstates suffers. This in turn leads to a lower-

and are defined as usual from the densifp)~(p— pe)? quality truncation of the state space in the DMRG algorithm
C

: : d subsequently to further deterioration of the results for
and the spatial and temporal correlation lengéhs~ (p an .
—po) "l (see also Sec. IV longer chains. In the present case, the DMRG becomes un-

The stochastic time evolution of the system is determinedftaple fo"r ra}ther ﬁ_hort cglain IengtHs%fZ(l)l). b L
by the master equation, cast into the form We alleviate this problem successfully by projecting out
one of the two ground states, for which both the left and right

3|P(t)) eigenstate are known, as given in E@$5 and (13). All
o - H |P(1)), (12 nondegenerateigenstates of the asymmetric Hamiltonidn
obey a biorthogonality condition. This leaves us with two
where |P(t)) is a state vector an#i is referred to as the ©OPtions to eliminate one ground staf®. Each diagonaliza-
“quantum” Hamiltonian. For a chain with_ sites,H is a  tion algorithm for large matricefArnoldi or Lancze) gen-
stochastic ¥x 2L matrix with elements erates a sequence (tfi)orthogonal trial vectors, such that the
requested eigenstate can be written as a linear combination
of those. During the generation, one may enforce orthogo-
(olH|[1)=—w(r—0), (o|H[o)= ; w(o— 1), nality of all these trial vectors with respect to the ground
e state. This option does not exist if one uses a black box

where|q), |7) are the state vectors of the particle configu-Foutine. (i) One may directly modify the Hamiltonian by

rationso, 7 andw are the transition rates. shifting the ground state to an arbitrarily high energy, i.e.,
Since H is non-Hermitian, it has distinct left and right Working with

eigenvectors. We will use the notatid®,),|1,), .. .|n,) )

(0, (L], ... {my]) for the right (left) eigenvectors ofH H'(A)=H+A|0,)0|], (16)

corresponding to energy levelsy,E4, ... E, ordered ac-

cording to RE,<ReE,=<- - -ReE,,, where Re denotes the WhereA is a positive number larger than the energy gap of
real part. One haén|m,)=0 if E,#E,, and we normalize H- This new Hamiltonian is not stochastic; however, it has

the states in such a way théat|n,)=1. the same spectrum &$ apart from one of the ground states

Steady states are right eigenvectordiofvith zero eigen-  Which is shifted to an energy leval. The gap can now be
value. The two absorbing configurations mentioned abov@btained from the first excited state Hf'(A). This proce-

are steady states and given by dure can also be implemented for a stochastic Hamiltonian
with a single ground state. The gap is then obtained from the
|0,):=|000- - -0), (13 ground state energy dfi’(A). This option can always be
used independently of the diagonalization method employed
|1,):=|A00- - -0)+|0AQ- - -0)+ - - - +|000- - - A). (see[8] in relation to the power method
(14) To implement both options, one has to write down the left

, , and right ground states in the transformed block bases gen-
Thus, H has two zero eigenvalue€,=E;=0, while  grated by the DMRG. Let us denote for a block of length
I':=ReE; is the inverse relaxation time toward the steadypy |0, ) the state with no particles and By, |==, (o | the
state. Furthermore, sind¢ is stochastic, . . L
sum over all states of a blodke., in the complete, unre-
duced Hilbert space of the blockn the reduced block basis

(0]:=> (o] (15  {|m.)} produced by the DMRG we have approximately
7 00) == (M |0)|my) and (7 [=Zp, (ri[m)(m|. The
is a left eigenvector oH with zero eigenvalue. right and left ground eigenstates then read
The calculation of the eigenvalues and eigenvectors of the
stochastic HamiltoniarH, from which we will derive the 0r)21+2=[01)®@[0)@[0)®[0, )
critical properties of the model, is performed by the DMRG
algorithm[14,15] adapted to non-Hermitian matrices, as de- = > (m0o.{m{[0.)(|m.)
scribed in detail in Ref[9]. In the next section we present a mp.m,
further improvement to deal with systems with degenerate ,
ground states. ®|0)®|0)®|m{)), 17
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(3). While in principle the eigenvalues of tlieonsymmetri¢
(Ol 12= 2 (1]®(s|®(s'|@(n] matrix H may have a nonzero imaginary part, we always
s’ found thatE, is real.
Generically, we expect the following finite-size behavior

= 2 (mlm)(rm)(m| of I':
m_.m, s’
®(sle(s’|e(m()), (18 efpj—l-/é) ff p<pc(d)
I'~qL if p=pc(d) (23
wheres ands’ run over single-site states. L-2 f p=pu(d)
C

At the beginning of the DMRG application, the matrix
elementg§m |0, ) and{r |m_) are trivially constructed for a
sufficiently smallL such that the Hilbert space has fewer
thenm states, the number of states kept.

with #=v /v, and §, the spatial correlation length. At a

continuous transition this diverges @s~|p—p.(d)| ™"+,

. while in the time directiorg~|p—pc(d)| "I

~ Using (7 14|=2«n|®(s| and [0_,,)=[0.)®|0) and The first line in Eq.(23) |ilnd|icates th:llt on a finite lattice

inserting one in (7. q[=2m  (mLealMir)(Misa| and  ypo relavation toward the absorbing configurations is very

10L+1)=Zm , ,(ML+1|0+1)|m 1) one finds as the recur- slow. Indeed, fol.— = the relaxation timer=T""* becomes

sive relation infinite and a state with a finite density of particles becomes

a steady state of the system. From the third line in 8)

we see that in the entire inactive phase the scaling behavior

of the energy gap is algebraic, with an exponent equal to 2,

as for the pair annihilation model®2-0. Therefore, in ad-

dition to the obvious double degeneracy of the ground state,
<TL+1|mL+1>:mES (musimig)(fmy). (200 we find that our model is gapless in the large-system limit,

v lim__..I'(p,d;L)=0, for all values ofp andd (in most sys-
The matrix element¢m, ,,|m.s) are from the incomplete tems the gap is finite in the inactive phase
basis transformatiofm, ) ®|s)—|m_ . 1). The different phases and the critical point can be best
Numerical implementation of both approaches revealddentified from analysis of the quantity

that the second approach is numerically very stable, while

the first one is not, at least not if one carries out an unsophis- v (o.d _In[l(p,d;L+1)/T'(p,d;L—1)]

ticated Gram-Schmidt orthogonalization. We suppose that L(p.d)== In[(L+1)/(L-1)]

this is due to the fact that global orthogonality of the trial

vectors is numerically not exactly conserved by the diagoWhile usually the critical point is found by looking for inter-

nalization algorithms, while the Gram-Schmidt method as-sections of two curve¥, andY,, for two different lattice

sumes this when a new trial vector is added and made osizesL,L’, it turns out that, because of the scali{@$), the

thogonal to the ground state. To fild=ReE,, we have critical point is found from the maximum of ¥as a function

chosen as density matrix of p for fixed d and LFrom(23) one then has for the large-

L behavior ofY (p,d)

<mL+1|0L+1>:; (M4 1/m 0)(m.|0L), (19

(24)

1.
P= 2 tr{|0r><0r|+|0I><0I|+|2r><2r|+|zl><zl|}x (22) —L/g, if p<pe(d)

where trdenotes the partial trace on the states of the left or Yulp.d)= o |.f P=p(d) 29
right side of the chain. It is essential to target also the ground -2 if p>pc(d).
state|0,),{0,| projected out to maintain a good description of ] ]

the ground state via Eq$17) and (18) after some DMRG T-herefore, the location Qf the maximum valug b{(p,d)
steps. Otherwise, the Hamiltonian still contains a small perYields a sequence of estimateg(d; L) and the critical point
turbing contribution from the zero-energy ground statecan be found from extrapolating these sequences—to=.

which might destroy the stability of the procedure. We point out, however, that the value ¥f at its maximum
cannotbe used to infer the value of the exponehtOnly
IV. NUMERICAL RESULTS after p.(d) is determined for thd.—oo lattice can we use
Eq. (25) to find 6. The technicalities of the method are dis-
A. Analysis of the gap cussed in Appendix B.

1. Finite-size scaling method .
2. Inactive phase

We are interested in the lowest-ener a
gy gap Figure 1 shows a plot oY (p,d) as function of the pa-

I'=T(p,d;L)=E, (220  rametepand ford=0.5 forL=9, 11, 13, 15, and 1@n the
inset we showy, for d=0.2). Calculations were performed
whose finite-size scaling behavior contains the desired inforup to L= 230, but for the largest sizes only in the vicinity of
mation about the critical properties of the PCPD mdde+  the critical point.
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-1.2 T

TABLE II. Critical parametersp(d), #, and B/v, along the

o— L= 18 [ L A e

—m L1 . d=02 active-inactive transition line for several valuesdf

- L=13 j}ﬁ&wm%%%%c

—— L=15 M . d 0.10 0.15 0.20 0.35 0.50 0.80
14 |—-—L=17 :

Pc 0.11%2) 0.1162) 0.1213) 0.1381) 0.1541) 0.2053)
0 1.8713) 1.843) 1.833) 1.723) 1.703) 1.605)
Blv, 0503) 0.493) 0493 0473 0.483) 0.513

and the exponentg¢ andB/v, , for several values dai. First,
estimates fop¢(d) in the L— limit were obtained from a
linear fit in 1L of the finite-size data (L), i.e., the abscis-
sas of the maxima oY (p,d). For comparison, we recall
d=05 Tnactive that p.(0)=0.077 090(5)[13].
) : : . : Next, we estimate the value of the exponénfrom the
0 0.2 0.4 0.6 0.8 1 extrapolation ofg, =—Y_ (p.(d),d) to the thermodynamic
p limit L—o. Figure 2 shows a plot of, as a function of 1/
FIG. 1. Plot of Y, (p,d) as a function ofp for various lattice  1OF various values ofl. We notice a different finite-size scal-

sizes andi=0.5. The inset shows the same quantity der0.2. ing behavior of 6 for d<0.20 and ford=0.50. In the
former casef, varies quite strongly with., starting from a

In the active phasémall p) the quantityY, (p,d) scales value above 2 gnd going toward values below 2. Hor
linearly with L as predicted in Eq(25). For largerp the ~0.5, 6, shows littleL dependence. The extrapolated values

reaction 2—0 dominates and the system is in the inactive®f ¢ (coming from a cubic fit in 1/) are shown in Table II.
phase, for which we should have asymptoticafly(p,d)= Error .b'ars are due to' the unce.rtamty in the determination of
—2. As the system sizk is increased, the curves approach the critical point location. The final estimates f@appear to

the expected value- 2 in the whole inactive phase. Table | Y&y Withd. Itis not yet clear whether this variation is real or
shows the values of Y| (p,d) calculated for three different the consequence of an unresolvgd f|n|t_e-3|ze correction term.
diffusion constants and in the inactive phase. We eXtrapol_-lowever, the resullts are clearly inconsistent with a transition
lated the finite-lattice data, using teeT algorithm[27] and ~ Of DP type, for which¢~1.58.

found excellent agreement with the expected valugol
[see Eq.(25)]. The convergence is similar to the examples
studied in[9], although the raw data can be quite far from For a finite lattice and for all values @f andd the sta-
their L—o limit value. This check also confirms that the tionary states, given in Eq13) and(14), contain either no or
numerical values for the energy gap, as obtained from th@ust one particle. Therefore the steady-state particle density

Active

B. Steady-state particle density

DMRG calculation, are very accurate. vanishes in the large-limit.
3. Active-inactive transition line G—© d=0.10,p=0.111
- _ B W d=0.15p=0116
Table Il collects our results for the critical poipt.(d) &— d=0.20,p=0.121 .

¥—V¥ d=035,p=0.138

S . . A—A d=0.50,p=0.154 i
TABLE I. Finite-size estimates- Y of the dynamical exponent o—© d-030 g=0_205

6 and theirL — oo extrapolation, obtained by ttesT method, in the

inactive phase. 2f W ]

L d=0.1,p=0.6 d=0.5p=0.6 d=08,p=05

9 1.979223431 17110633 1226133000 '18 | SR S

11 1.986196898 1.7567773 1.267952170 < PC
- PEAIE DD ——A ]

13 1.990160149 1.7893116 1.306670859
15 1.992629239 1.8139503 1.342357293 . i

1.6 ¢
17 1994271913 1.8333674 1.375169517 DP
19 1.995420176 1.8491053 1.405319671 - m“—.—‘.—.ﬂ\. _
21 1.996254444 1.8621348 1.433037552

1.4 I I I 1 I
23 1.996879687 1.8731052 1.458550029 0 0.02 0.04 0.06 0.08 01 0.12
25 1.997360512 1.8905590 1.482070754 1L
27 1.995400349 1.8976147 1.503795737
29 1.523902146 FIG. 2. Plot of#, as a function of 1/ for various values ofl.
o 2.000Q1) 2.00Q1) 1.992) The two horizontal arrows point to the valuesééxpected for the

DP (#~1.58) and PC §~1.75) universality classes.
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To obtain a steady state with a finite density of particles 30 . . . .
we added a particle creation process at the two boundan
sites[9],

0—A withrate p’. (26) . .

20 [ > >
We are interested in thesteady-statedensity profile, for a v v

chain of lengthL,

Ln, (1)

n.()=(0,In(D]0;), 27 :
N 10 D: g
wherel=1,2, ... L labels the position along the cham(|) 3 2
is the particle number operator at sitend|0,) and(0,| are *-’% @?’;
the left and right ground states of the nonsymmetric operatol %
H, with the terms coming from Ed26) added.

The boundary reaction term removes the ground state de ¢ ! ! ' !
generacy oH encountered earlier. Therefore, DMRG calcu- 0 0.2 04 0.6 0.8 1
lations are easier to perform wheri#0. In this case it is /L
not necessary to follow the shift strategy introduced in Sec. ) ) )

I1l. In fact the DMRG calculations are stable up to chains of FIG- 3. Scaled particle densityn, (1) as function of the scaled
lengthL~50—60, i.e., almost double the size of the lengths/2"1ablel/L in the inactive phase fai=0.5, p=0.8, and injection
we could reach in the study of the energy gap. ratep =0.3. Data for dlff_erent system sizels€20,24,28, . . ., 48)

In general, the time-dependent particle density collapse nicely onto a single curve.
=n(t,p;l,L) at sitel for a lattice of sizd_ and in the vicinity
of the critical point should satisfy the scaling form

while, as shown abovep(L)~L~?! in the entire inactive
phase.
Again, in analogy with Eq(24) we form the logarithmic

n(t,p;l,L) =t~ AIF(t/g,LIE L) derivative

Néiﬁ/ViG(tlgf,ngi,”L), (28) |ﬂ[n(L+1)/n(L_1)]

P(L) == D=1

(32)
where for simplicity the dependence a@hand p’ is sup-

pressed _andF and G are scaling fu_nctlons. The exponents According to Eq.(31), p(L) is expected to converge to the

have_thelr u_sual meamr_{g_ji]. In part|cular, the _steady-state ratio B/ v, for L— at the critical pointp=p.(d) as listed

density profile, at the critical point, should satisfy in Table I1. A plot of p(L) for various values of the diffusion

constant is shown in Fig. 4. We notice that at snhatindd

the effective exponeng(L) starts from values close to that

_ . ) for DP, while it clearly deviates from it for increasing A

with some scaling functior(z). cubic fit in 1L yields the extrapolated exponent rafidv,
First, we gon5|der t_he inactive phase.. For our modelz theis a function ofd (see Table Ii. This ratio appears to be

average p_alr/t2|cle density decays algebraically for large timegyiher constant with. As in the case of the calculation 6f

asn(t)~t *% From Eq.(28), we identify 8/»=1/2. ThuS  \ye notice that the exponents are clearly inconsistent with a

Blv, =6plvj=1 since the anisotropy exponefi=v|/v.  pp transition. However, the extrapolated values are close to

=2 in the inactive p_hasése_e Table_)l _ _ the exponent value expected for a transition in the PC class.
The scaling(29) is confirmed in Fig. 3, obtained for

chains up td_=48, which shows the scaled particle density
Ln,(I) as a function of/L. The ratiog/v, =1 for the whole
inactive phase has also been confirmed with good accuracy We collect the results of this study of the pair-contact
from BST extrapolations. process with diffusion. In Fig.(®) we show the steady-state
From now on we focus on the transition between the acphase diagram of the PCPD model. For small enopgh
tive and inactive phases. We concentrate oncéitral par-  there is an active phase with a nonvanishing steady-state par-
ticle density ticle density and which goes over into an inactive state at
some critical pointp;(d). The critical line separating the
n(L):=n_(L/2). (30 active from the inactive phase terminatesder 0 at the DP
point p.(0)=0.077 090(5)[13]. For d—1 the critical line
For this quantity we expect that for large, n(L)=ng  terminates at the MF poinp=1/3, as predicted from the
+0(e Yé)>0 in the active phase where at the critical mean field equations. This should have been expected, since
point it is well known that when diffusion dominates over all other
reactions the critical behavior becomes of mean field type,
n(L)~L A", (31 even in one dimensio[2,3,5.

nu(1)=n(e,pe;l,L)y=L A f(1/L) (29

V. DISCUSSION
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' < d=0.10,p=0.111 There is no clear evidence for two distinct universality
*—e d=015,p=0.116 classes along the critical line, as predicted by pair mean field
05 «—PC —d=020,p=0121 - theory(see Sec. )| but our information on the transition line

— d=0.50,p=0.154

d=0.80, p= 0.204 for d close to unity remains incompletsee also beloy At

] present, neither of the two possibilities can be ruled out. It is
an open question whether the two-dimensiofzi)) PCPD
1 model phase diagram will be in qualitative agreement with
pair mean field theory.
. Turning to the apparent variation éfwith d, note that
decreases systematically with starting fromé~2 in the
. d—0 limit. To explain this, consider the case whdnis
small and the particle density is low, i.e., the system is close
e« DP _ to criticality. Then the particles will diffuse independently
until they meet and react. The lower the diffusion rdt¢he
. larger the time intervalyy for which free diffusion can be
0 0.05 0.1 0.15 observed. Associated with this is a length sdalg;, viz.,
1/L tqir~ R3¢ . For times short compared tgy, the system is
governed by diffusion only. Therefore, for system sites
<Ry, the critical exponents will be effectively those of
Jree diffusion andf= 64ix=2. The true value fo® will be
seen only ifL> Ry . These two regimes are separated by a
In the PCPD model, the entire inactive phase is criticalcrossover region and it appears plausible that the apparent
and is expected to be in the universality class of diffusion-variation of our estimates of with d might be the conse-
annihilation[11]. We have found the exponents=2 and quence of such a crossover. However, this crossover phe-
Blv, =1, confirming this expectation. nomenon does not show up in the calculatiorB6f, . That
We have investigated the properties of the transition lindS to be expected since by injecting particles at the bound-
between the active and inactive phases. Figufesdnd 5c) aries we induce dinite density of particles at the critical
show the numerical estimates of the exponehgnd /v, ,  point alsoitys will no longer increase beyond any bounds as
respectively; see also Table IIl. For comparison, the value§—0, and the above heuristic argument no longer applies.
(11) of these exponents for the DP and PC universality While the exponeng/v, is not far from that of the PC
classes are shown as horizontal lines. Clearly, our results agass it is difficult to extract reliable information from We
incompatible with a transition in the DP class. That meandave no reason to believe that exponents should be continu-
that single-particle diffusion is a relevant perturbation of theously varying as functions of the diffusion constant. A closer
pair-contact process. Whilg/v, is quite constant and con- inspection of the finite-size behaviee Fig. 2 reveals that
sistent with the PC value within error baseems to vary the L—o asymptotic value o® is approached from above
continuously withd. for d=0.35, while it is approached from below fde0.5.
As finite-size effects are seen to be weak in the interval
0.35=d=0.5, we presume that the most reliable estimates
for & might be those obtained in this range of diffusion con-
stants. Therefore most likel§~1.7, which is not far from
the PC value either. We also recall that the relaxation in the
inactive phase is algebraic: All known modé®6,28—-31 in
the PC class are characterized by an algebraic relaxation in
the inactive phase with exponerts-2 andB/v, =1, as for
. . . ‘ the PCPD model. Therefore, it might be tempting to specu-
04 | 1 o5 L3 —_ —pc late that the active-inactive transition of the PCPD model is
) in the PC universality class.
On the other hand all known models in the PC universal-
02 { 047r i ity class are characterized by some conservation laws either
DP © on the parity of the numbe_r of particles or by an exact sym-
o e 03 p N 1DP metrly betweenhthe absolrblrllg st?[éﬁshSuI;:gIl(S:al cgnlseVE- )
AP P — tion laws are, however, lacking for the model, whic
002 0'4p0'6 08 1 0 02 04 do'6 08 1 suggests that the PCPD model should not be in the PC class.
It should also be stressed that the unambiguous identification
FIG. 5. () Steady-state phase diagram of the mod&l-23A, of a steady-state universality class requires the determination
2A—0 as determined by DMRG techniques. The continuous lineof four independent exponentsee[2,3]), while our tech-
separates the active from the inactive phase. Extrapolated estimatgigjues provided values for only two.
of the exponent are shown in(b) and of the exponens/v, in (c) In summary, we have used the DMRG method to find the
as a function ofl. steady-state phase diagram of the PCPD model. Single-

04 r

p(L)

03 r

0.2

FIG. 4. The effective exponent(L) as a function of 1/ for
various values ofd and for up toL=>51. The horizontal arrows
point to the values expected for DP and for PC universality classe

1 97 T

\ (Ia)
08 MF R

0.6 1
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particle diffusion is a relevant perturbation for the systemTo see this, concentrate on the leftmost site. If it is occupied,
since the model does not show a DP behavior as in the limits neighbor must be empty for the state to be absorbing and
of vanishing diffusion constant. there remains an open chain lof-2 sites to be considered.

Some exponent values along the active-inactive transitiofif it is empty, one considers the open chain of the remaining
line are surprisingly close to those of the PC universalityL —1 sites. The initial conditions for the problem axg1)
class. However, it is conceivable that the near coincidence o£2 andN(2)=3. ThereforeN(L)=F, ., is the L+ 1)th
the exponents with those of the PC class might be accidentafibonacci number.

In that case the transiti¢s) would belong to a universality This can also be seen from the generating function
class distinct from both DP and PC. It is not yet clear

whether in the 1D PCPD model there are two distinct tran- 5 e

sitions, as suggested by pair mean field theory, or merely a N(s)= 2 N(k)s (A2)
single one. All in all, complementary studies would be k=0

needed to fully understand the remarkably subtle behavior of o

this so simple-looking model. which satisfies, because of Ha\1),

After this work was done Hinrichsef82] performed a
Monte Carlo study of the PCPD model fd=0.1. The time-
dependent densitp(t)~t~? is characterized by the expo-
nent §=p/(v, 0). He finds §=0.25(2) and 6=1.835).
This agrees with our Table Il. After this work was accepted
we received a paper bydor [33] which studies the PCPD
model through Monte Carlo simulations and the coherent 1
anomaly method. In particular, for 0.851=<0.2, Gdor finds N(L)= =— Eﬁ dsN(s)s™ 71, (A4)
6~0.27, and fod=0.5 andd=0.9, §~0.2. The first result 2mi
compares well with our results from Table I, which give
~0.27, and agrees with the result of Hinrichg&a]. How- where the integral is taken in a closed circle centered at the
ever, @lor also findsB~0.58 for 0.05<d<0.2, consistent Origin of the complexs plane and with radius smaller than

with the upper boung8<0.67 reported i{32]. That is far  the radius of convergence of the serié), so as to exclude
away from the PC valu@pc=0.93[2,31]. contributions of other poles than that$s0. The transfor-

mationz=1/s yields

N(O)(l—s)+N(1)s_ 1+s

N(s)= .
(s) 1-s—¢? 1-s—¢?

(A3)

'For the inverse transformation one can use
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APPENDIX A: NUMBER OF ABSORBING APPENDIX B: FINITE-SIZE SCALING IN SYSTEMS
CONFIGURATIONS IN THE PCP WITH A CRITICAL PHASE

For d=0, the model reduces to the pair contact process \ya discuss the finite-size scaling of the lowest dap

[12]. In this case, all configurations of the type _p and how to localize the critical point. For simplic-
| ...0AO...0AO...) without nearest-neighbor particles it L(p) pownt. b

, We suppress the dependencedand write the scalin
are absorbing and stationary states. We find the numbqg PP P g

rm
N(L) of absorbing states in the PCP for a chain of lerigth
with free (periodig boundary conditions. -0 _ v
For free boundary conditions, one has the recursion PP =LA p=pol 7], BD

wheref is assumed to be continuously differentiable. For the
N(L)=N(L—1)+N(L—-2). (A1) gap, one expects the behavior

036101-8



CRITICAL PROPERTIES OF THE REACTION .. PHYSICAL REVIEW E 63 036101

e "t ifp<p, _dyg L :
EP lim an [9'(2)-2z9"(2)]
I'(p)~{ L if p>p., caseC (B2) p vy
I, if p>p., caseN, LY AR2-v ) (—2) 7Y, z—-—
= Ll/VL(a_z)zfl, 7 o0 (BS)

in the finite-size scaling limitp—p. and L—o simulta-
where o,T"., are constants independent lof Here, caseN  neously such that= (p—p.)L*"* is kept fixed. For the case
refers to the “normal” case of noncritical phases on bothC with §<2 and v, <2, there is some finite* such that
sides of the transition gt= p, and case alludes to the case dY, /dp|,—,~=0. Then
of a critical phase on one side, and we have already set the 1
exponent equal to 2 in view of E¢RJ), valid for our model. Y (Z¥)=—6+—2z*g'(z*). (B6)
This implies for the scaling functiof(z) it

If we choosez=z*, we have a sequence of values mf
converging towardp, according top, =p.+z*L~ ¥+, On
the other handp, can be found by determining the maximum
exp(—Alz[™), z——w of Y, as a function of psince limdY, /dp|,«=0. This is the
f(z2)~{ 2072, z—+o,caseC (B3 desired result. However, because of EB6) Y\ (z*) does
not readily yield an estimate for the exponehtsince there
is no guarantee that’ (z*) should vanishor in other words
that z* = z,,,,) . The generalization to other observables with
scaling analogous tB2) is immediate. For the cas¢ how-

) - ) . o ever, this technique does not apply, since in genétét)
whereA is a positive constant. Sind€z) is positive, it fol- < for all values ofz.

bdn z— +o, caseN,

lows that in the cas€ with <2 f(z) must have a maxi- Finally, we recall that the leading finite-size correction
mum at some finite valugn,,. For the caseN, however,  terms determine whether or not the cur¥egp) andY/ (p)
f(z) should increase monotonically with will intersect. Consider the extended scaling foif(p)
The estimatory, as defined in Eq(24) then becomes =L % (2)[1+L " “A(2)], wherew>0 is the leading correc-
tion exponent. lfo<2, we find
zg9'(2) ( 1 zA’(z))
Y =6+ +L A2 0+ —
UL UCRTICS) o L= @D~ A
Lo In[(L+1)/(L—1)]" (B4) (B7)

up to terms of orde©(L2,L~1"“). Now, the curvesy,

and Y| intersect if there is some,; such that the scaling

function of the leading correction term in E@7) vanishes.
where z. =(p—p.) (L= 1)Y":. Furthermore, writingg(z) But that term dependsnly on the correction amplitud&(z)

=Inf(2), a straightforward calculation gives and is independent df(z).
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