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Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow
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We investigate probability density functions of velocity differences at different distancesr measured in a
Couette-Taylor flow for a range of Reynolds numbers Re. There is good agreement with the predictions of a
theoretical model based on nonextensive statistical mechanics~where the entropies are nonadditive for inde-
pendent subsystems!. We extract the scale-dependent nonextensitivity parameterq(r ,Re) from the laboratory
data.
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I. INTRODUCTION

Recently a generalization of the ordinary formalism
statistical mechanics, so-called nonextensive statistical
chanics, has gained a lot of interest@1–3#. While in ordinary
statistical mechanics the Boltzmann-Gibbs entropy is
tremized~subject to constraints!, in the generalized formal
ism the more general Tsallis entropiesSq are extremized.
Given probabilitiespi of the microstates of the physical sy
tem under consideration, the Tsallis entropies are define

Sq5
1

q21 S 12(
i

pi
qD , ~1!

where the parameterq is the nonextensitivity parameter. Th
Tsallis entropies are convex, take on their extremum for
uniform distribution, and preserve the Legendre transfo
structure of thermodynamics. However, in contrast to
Boltzmann-Gibbs entropy, they are nonextensive~non-
additive for independent subsystems! providedqÞ1.

Ordinary statistical mechanics is contained as a spe
case in the generalized formalism, since in the limitq→1 the
Tsallis entropies reduce to the Boltzmann-Gibbs entro
S152( i pi ln pi . Recent work indicates that the nonexte
sive formalism withqÞ1 describes many systems, includin
those exhibiting Levy-type anomalous diffusion@4#, particles
produced in collider experiments near the Hagedorn ph
transition@5–7#, and various turbulent systems@8–11#. A list
of references on nonextensive statistical mechanics an
applications is given in@12#. Generally, it is not known how
the parameterq depends on the internal properties of t
system under consideration.

In this Rapid Communication we will apply the nonexte
sive formalism to turbulence. In Ref.@11#, fully developed
turbulent states were distinguished from spatiotemporal c
otic states that extremize the Tsallis entropies, and form
were obtained for probability densities of longitudinal velo
ity differences measured at a distancer. Here we test the
theoretical predictions by comparing them with experimen
1063-651X/2001/63~3!/035303~4!/$15.00 63 0353
f
e-

-

as

e

e

al

y,
-

se

its

a-
as

l

data obtained for turbulent Couette-Taylor flow for differe
Reynolds numbers Re and spatial scalesr. For details on the
experiment, see Ref.@13#.

We will provide evidence that a slightly generalized ve
sion of the theory described in Ref.@11# yields a good fit to
the experimentally measured probability densities. These
were achieved by varying only one quantity, the nonexten
tivity parameterq. We will also present systematic exper
mental results showing howq depends on Re andr.

The probability densities obtained from nonextensive s
tistical mechanics asymptotically decay with a power la
with a rather large exponentw. In our modelw is related to
q by w5(422q)/(12q). We will provide experimental
evidence that there is a simple scaling law for the funct
w(r ,Re).

This paper is organized as follows. Section II describ
the experiment. Section III summarizes the theory presen
in Ref. @11#, and the formalism is slightly generalized. Se
tion IV compares the experimentally measured probabi
densities with the theoretical predictions. Section V exa
ines the dependence of the nonextensitivity parameterq and
the exponentw on Reynolds number and the spatial scale

II. EXPERIMENT

The experiments were conducted on a concentric cylin
system with the inner cylinder rotating and the outer cylind
at rest@13#. This Couette-Taylor system had a radius ratio
0.724. Measurements were made for Reynolds numbers
up to 540 000, where Re5Va(b2a)/n (V is the inner cyl-
inder rotation rate,a andb are the inner and outer cylinde
radii, andn is the kinematic viscosity!. With Re50 initially,
the flow exhibits a sequence of bifurcations with increas
Re. The last transition that has been observed occurs a
513 000@13#. Here we consider data for Re>69 000, where
the flow is strongly turbulent.

Velocity measurements were made with a hot film pro
located midway between the two cylinders. The rms veloc
fluctuations were typically only 6% of the mean velocit
©2001 The American Physical Society03-1
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hence, the data satisfy Taylor’s frozen turbulence hypothe
that is, temporal fluctuations recorded by the fixed veloc
probe should accurately reflect the streamwise spatial fl
tuations@13#.

III. THEORETICAL MODEL FOR PROBABILITY
DENSITIES OF LONGITUDINAL VELOCITY

DIFFERENCES

In Ref. @11# a perturbative approach to probability den
ties in fully developed turbulent flows was suggested, ba
on a small parameterAgt, wheret is a typical time scale of
the chaotic force driving the local velocity differences a
g21 is the relaxation time to the stationary state. From
experimentally observed skewness of turbulent distributi
one can estimate the order of magnitude of the param
Agt to be about 0.1; hence, a perturbative approach ma
sense. Assuming that longitudinal velocity differences,u(r )
[v(x1r )2v(x), in fully developed turbulence extremiz
the Tsallis entropies, and that large classes of chaotic re
ation processes approach the Gaussian limit in a unive
way ~see Ref.@14#!, one can obtain the following formula
@11#:

p~u!5
1

Zq
@11b~q21!e~u!#21/~q21), ~2!

e~u!5 1
2 u22cAgt~u2 1

3 u3!1O~gt!, ~3!

b5
2

523q
, ~4!

wherep(u) is the stationary probability density of velocit
differences, ande(u) is a ~formal! effective energy associ
ated with the velocity differenceu. b is a variance paramete
that describes a~formal! inverse temperature in the none
tensive statistical mechanics.Zq is a normalization constant
c is a nonuniversal constant, i.e., a constant that may
different for different experiments and that can also dep
on q. However, the functional formu2 1

3 u3 of the term of
order Agt is expected to be universal~see @11,14#!. The
parameterq depends on the distancer in an ~a priori! un-
known way.

For c50 andb52/(523q), the density in Eq.~2! has
average value 0 and variance 1. However, ifcÞ0 andb is
still 2/(523q), then the average ofu is of ordergt and the
variances5(^u2&2^u&2)1/2 is slightly different from 1. An
average precisely zero and a variance of unity are achie
with the rescaled~renormalized! distribution given by

p̃~u!5sp„s~u2^u&!…. ~5!

The terme(u) in Eq. ~3! stands for an effective energy i
the formalism of nonextensive statistical mechanics. Inde
for q→1, the Boltzmann factorp(u);e2be(u) is recovered.
Let us here slightly generalize the approach of Ref.@11# by
considering more general effective energy levels given b

e~u!5 1
2 uuu2a2cAgt sgn~u!~ uuua2 1

3 uuu3a!. ~6!
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For a51, Eq. ~3! is recovered, but we will allow for more
general exponentsa as well. The physical idea behind this

FIG. 1. Experimentally measured probability density functio
of the velocity differences for the Couette-Taylor experiment

Re5540 000 are compared with the theoretical curvesp̃(u) ~for
a522q): ~a! Logarithmic plot, ~b! Linear plot. The logarithmic
plot is sensitive to the tails, while the linear plot is sensitive to t
vicinity of the maximum. For the experimental curves, the distan
r /h ~where h is the Kolmogorov length scale! are, from top to
bottom: 11.6, 23.1, 46.2, 92.5, 208, 399, 830, and 14 400. For
theoretical curves, the values of the nonextensivity parameterq are,
from top to bottom: 1.168, 1.150, 1.124, 1.105, 1.084, 1.065, 1.0
and 1.038. For better visibility, each distribution in~a! is shifted by
21 unit along they axis, and each distribution in~b! is shifted by
20.1 unit along they axis.
3-2
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similar to that of theb-model of turbulence@15#, where only
a certain fractionb of the physical volume is considered
contain active eddies. In theb-model one essentially re
places the structure functions^uuum& by structure functions
^uuuam& with aÞ1 related to the intermittency paramete
Similarly, in our dynamical model we replaceuuu by uuua.
An exponenta slightly smaller than 1 may be interpreted
describing a fractal phase space and eddies that are
space-filling. The formalism of nonextensive statistical m
chanics is designed to include such systems.

In the following we will see that while the choicea51
yields reasonably good fits of the experimental data, an
ponenta slightly smaller than 1 yields the best fits to th
data.

FIG. 2. Relative differenced(u)[@pth(u)2pexpt(u)#/pth(u)
between theoretical and experimental probability densities atr /h
511. The difference decreases with increasing Reynolds num
Re569 000 (1), 133 000 (3), 266 000 (*), and 540 000 (h).
For each Reynolds number the best possible fit is used (q51.148,
1.159, 1.167, and 1.168, respectively!.

FIG. 3. The fitness parameterq(r ,Re) deduced from a leas
square fit of the velocity data to the theoretical probability dens
The Reynolds numbers are 69 000 (1), 133 000 (3), 266 000 (*),
and 540 000 (h).
03530
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IV. COMPARISON WITH THE EXPERIMENTAL
MEASUREMENTS

We compare the probability density functions determin
from the Couette-Taylor velocity measurements with the t
oretical densitiesp̃(u) obtained from nonextensive statistic
mechanics. The result is shown in Fig. 1 for Reynolds nu
ber Re5540 000, equivalent to a Taylor scale Reynol
numberRl5262 @13#. The best fits were obtained by choo
ing a according to the empirical formulaa512(q21)
522q. For the strength of the skewness term we have c
sen, cAgt50.124(q21). Then only one independent pa
rameterq is left, which is fitted for each experimentally mea
sured distribution in such a way that the relative mean squ
deviation integrated overu takes a minimum. Although we
only vary a single parameterq, the agreement with the ex
perimentally measured densities is excellent. Ifa is chosen
as 1~as originally suggested in@11#!, the agreement is stil
reasonable but not as good as fora522q.

Other theoretical approaches to turbulent densities@16–
22#, based, for example, on stretched exponentials or o
functional forms, usually fit only certain parts of the distr
bution ~e.g., the tails!, leaving other parts~e.g., the vicinity
of the maximum! unaccounted for. Our formula yields goo
fits of the experimental data for the entire range ofu values.
To demonstrate the good fit for allr we present both a loga
rithmic plot, which emphasizes the tails@Fig. 1~a!#, and a
linear plot, which emphasizes the maximum and its vicin
@Fig. 1~b!#. To the best of our knowledge, there is no oth
theoretical model that yields fits of similar quality. Figure
shows that the residual difference between theory and exp
ments for the same spatial scale,r /h'11 ~whereh is Kol-
mogorov scale@13#!, decreases with increasing Re.

The functionq(r ,Re), deduced from the experiment, w
be examined in the next section. All relevant information
the densities appears to be encoded in this function, whic
similar to an equation of state in ordinary thermodynamic

er

.

FIG. 4. The exponentw5(422q)/(q21) describing the decay
rate of the probability density for largeuuu. Scaling behavior of
w(r ) is observed for a large range of distancesr. The Reynolds
numbers are 69 000 (1), 133 000 (3), 266 000 (*), and 540 000
(h). The straight lines correspond to the power laww(r )
54(r /h)d with d50.440, 0.395, 0.360, and 0.326, respectively.
3-3
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V. MEASURING q„r ,Re…

We have determined the functionq(r ,Re) for different
spatial scalesr and Reynolds numbers Re by minimizing th
integrated relative quadratic deviation between measu
distributions and theoretical distributions. For each Reyno
number, 38 different spatial scales were evaluated and
results are shown in Fig. 3. The nonextensitivity parameteq
varies with both the spatial scaler /h and with the Reynolds
number. There is a tendency to smallerq for smaller Re. For
small r, q approaches the valueq0'1.185. For larger, q
does not approach 1 but saturates at a slightly larger va
q`'1.03, the precise value being Reynolds number dep
dent. Hence, small deviations from the Gaussian distribu
remain at the largest scales. This may be a finite-system
effect.

The predicted probability densities for largeuuu exhibit
power law decay, as can be deduced from Eqs.~2! and ~6!,
where we neglect the termO(Agt) ~our formula for this
term represents a perturbative result valid only foruuu
,1/Agt'10):

p~u!;uuu2w, ~7!

with exponentw given by

w5
2a

q21
5

422q

q21
. ~8!

The exponentw has the meaning that only momen
^uuum& of the density withm,(w21) exist. This sounds like
a severe restriction on the existence of structure functio
but sincew is rather large (9,w,60 for the Couette-Taylor
data!, this effect does not contradict the experimental m
surements of structure functions. Figure 4 shows the func
w(r ,Re) determined from the experimental data. We obse
that w exhibits simple scaling behavior for medium spat
scales,
ys

C
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w~r !54S r

h D d

, ~9!

where the exponentd depends weakly on the Reynolds num
ber Re. We findd50.440, 0.395, 0.360, and 0.326 for R
569 000, 133 000, 266 000, and 540 000, respectively.
r /h,10, the experimental data saturate atw'9. For w
.60, fluctuations become large.

The constant in front of the experimentally determin
power law is found to be 4.060.1, independent of the Rey
nolds number. A simple argument for the value 4 could be
follows. Suppose we could measure the probability distrib
tion of ideal turbulence in an unperturbed way down to t
Kolmogorov scaleh for infinite Reynolds number. Assum
ing that the scaling law~9! remains valid for Re→` and r
→h we obtain atr 5h the valuew(h)54, no matter whatd
is. But for turbulence to make sense at least the third mom
^uuu3& should exist, since this is the most fundamental o
servable related to energy dissipation. Existence of the t
moment atr 5h is guaranteed ifw541e, wheree is an
arbitrarily small positive number. This argument sugge
that the constant should be 4.

For Re→` the idealized small-scale turbulence atr 5h is
characterized by the smallest possiblew where it makes
sense to speak about energy dissipation~the third moment!.
Sincew54, the flatness factorF5^u4&/^u2&2 as well as all
higher moments at this scale would then diverge for
→`. This is compatible with experimental observation@23#.
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