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Noise-induced transport of two coupled particles
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We study the motion of two harmonically coupled particles in a sawtooth potential. The particles are subject
to temporally correlated multiplicative noise. The stationary current is calculated in an expansion about the
limit of rigid coupling. For two coupled particles a driving mechanism occurs which is different from the one
occurring in the case of a single particle. In particular this mechanism does not need diffusion. Depending on
the equilibrium distance of the particles and the coupling constant, a current reversal occurs. Possible relevance
as a model for motor proteins is discussed.
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I. INTRODUCTION AND MAIN RESULTS structural properties of motor proteins. Processive motor pro-

teins usually consist of two spherical heads, joined by a neck

For some years the problem of noise-induced transportegion, and a tail, at which the cargo is attached. Each head
has attracted much interest in theoretitfar a review, see ¢an couple to the filaments of the cytosceleton and hydrolyze

Refs.[1,2] and references thergims well as experimental
hysics[3,4]. From a physical point of view the motivation . .
physics{3,4] prysica’ pol View val icles modeling the two heads of a motor prot¢id—13.

to study models for noise-induced transport is to study th ) e
y b y oth types of ratchet models have been studied: Ajdari con-

conditions under which noise out of equilibrium can induce™, N . . .
directed motion, even if the average force is zero. In generaﬁ'dered the case of multiplicative potential fluctuations in the

to obtain directed motion two conditions must be fulfilled: @S¢ of weak coupling10], whereas Demyi and Vicsek

P . . . discussed the case of stochastic forces. The models of
(1) The periodic potential must have no inversion symmetry. ) .
(2) Detailed balance has to be broken. In the Brownian reX €SKin and Ostef12] and Duke and Leiblef13] rely on a

gime, the second condition can be satisfied by the use Cgiﬁ‘erent mechanism based on transition times depending on

colored noise, i.e., noise correlated in tifig. Mainly two str:laun ﬂf the heads. its f del with
types of models are studied: A particle in a periodic potential n this paper we present results for a model with two
subject to a stochastic fordadditive colored noise, rocking Particles moving in a fluctuating periodic potential and cou-

ratchet[5]) and a particle in a fluctuating periodic potential _[I)_Iri]ng indepen_dlently to htherma! aﬂd colorlecé nlo(ﬁiag. .
(multiplicative colored noise, flashing ratcHé,7]). e two particles are harmonically coupled. In contrast to

Besides this purely physical motivation, the theoreticaIRef' [10] we consider the case of strong coupling.

study of noise-induced transport has been stimulated by ex-h Thedpa}per (Ijs' orgg\nlzedhastokl:fwsF:)lln Skec. . we pIreSSent
periments on motor proteins such as kinesin or dynein. Mot€ Model, and introduce the Fokker-Planck equation. In Sec.

tor proteins move cell organelles along the cytosceletonl.” the general method of solution is explained: We solve the

Their motion is random, but directed on averdged]. En- stationary Fokker-Planck equation in an expansion about the

: ; : : f rigid coupling, and derive a set of equations of the
ergy is provided by adenosine triphosphéd’P) hydroly- ~ ¢3S€ O _ : !
sis. ATP coupling to a motor protein induces a series ofype of a Fokker-Planck equation for a single particle. These
itiorlJe solved using methods described in R&f] for the case

between different states, in which the protein is subject tdf & Piecewise linear potentigbec. IV). Some mathematical

different potentials. Alternatively one can consider a proteind€t@ils aré presented in the Appendixes. In Sec. V we present

moving in a fluctuating potential. The potential models thenumerical results for specigl stochastic Processes, and dis-
interaction of the motor protein with the filaments of the cuss the current as a function of the correlation time of the

cytosceleton. It is periodic and has no inversion symmetryno'se and the equilibrium distance of the two particles. There

because of the polar structure of the filament. As ATP hy_are current reversals not only of the current as a function of

drolysis drives the motor system out of detailed baIancthe correlation time, but also as a function of the equilibrium

distance. In addition, for two coupled particles there is a

conditions for transport are satisfied. Models for noise-7 > hani hat d d diffusion- If th ;
induced transport can qualitatively explain some propertie riving mechanism that does not need diftusion: If the equi-
Ibrium distance of the particles is larger than the short sec-

of motor proteins. . : ;
In this paper we discuss a model that is inspired by thdion of the sawtooth potential, one particle can be pushed or

Several authors studied the motion of two coupled par-
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pulled forward by the other. In Appendix B we compare thewhere we have assumed thatare Markov processes with
results with those for a model with additive stochastic forceggeneratorsM,. As we are only interested in the stationary
instead of multiplicative potential fluctuations. In this case, ap
the model with two rigidly coupled particles can be reducedsolution, we Iet —0 By averaging the left hand side of
to a one-particle model. Finally we summarize the result
and discuss possible relevance of the model for motor pro
teins(Sec. V).

Open questions concern the current as a function of the

Ihe Fokker- Planck equation ovei, z,, andy, we obtain
the stationary current

coupling constant. In the case of weak coupling there is a

slightly different driving mechanisfiL0]. To study the tran- f dyf dzlf d22 X+ >y

sition from strong to weak coupling, other methods have to

be used, especially computer simulations. We show some Z_f _|__ T 6)
results of the simulations in Sec. V. These results indicate X Y72 ox|Pr

that the order of magnitude of the current does not change

when the coupling constant is varied. But in some cases, IIl. EXPANSION ABOUT RIGID COUPLING

depending on the other parameters of the model, we observe

a current reversal. On the other hand, simulations allow to We solve the stationary Fokker-Planck equation in an ex-
study refined models for motor proteins. The present modgbansion about the limit of rigid coupling. We introduce a

imitates only somébut perhaps importapaspects of motor new coordinatey= vy and expand the force terms in Eq.

proteins. (5) in powers of 4/«x. With the ansatz
Il. MODEL WITH TWO COUPLED PARTICLES 1 1 1
We consider two harmonically coupled particles moving pP=pot ﬁplfﬁ Pt KT/2”3/2Jr T @)

in a periodic potential/. The particles are subject to thermal
noise¢; at temperaturd, and multiplicative nonwhite poten- we obtain a set of equations for the powers\b_f From

tial ﬂuctuaticf;r:sz, (i_lt and 2. le tagd Z% are sttr(])chastlict these equations we can calculate thedependence of
processes of the same type correlated in time with correlation .3 4y "\unich is given in Appendix AL and by

time 7, but independent of each other: - ) )
averaging ovey we obtain equations for the averaged func-
tions

(&(1)=0, (&(VE(L))=6 ;o(t—t"), @

(#0271~ O ) =1 0,e I @ Ptz | dnixyaz. ®

In the overdamped regime we have the Langevin equationshat have a structure similar to the Fokker-Planck equation
for one particle and thus can be solved using similar meth-

: ods:
X1=f(x)23() = 3 = Xp= )+ \2Téy, (3
d 1 I sz | T d|—
Xo=F(X2)Zp(t) + 3 k(X3 —Xp— ) +2T&y, (4) x| 2 '\ X T XT3 T 2 ax|Po
wheref(x;) = — dV/dx; . « is the coupling constant, ards = M21;()+ MZZE), 9
the equilibrium distance of the particles. Here we have set
the friction constant to one by rescaling the time variable. | |
We introduce center of mass and relative coordinates 7 ﬂf(x+ _)Jrﬁf X— _)_I J ;1/2
= (X, +X,)/2 andy = (x; —X,—1)/2. The Langevin equations x| 2 2) 2 2] 2%
are equivalent to a Fokker-Planck equation for the joint prob- — —
ability densityp(X,y,z;,25,t), =Mz, p1pt Mz p1p, (10
d|zy I z, I T _dlz Iz Iy Tal—
“ax|2 XY sy T e 0= 3|2 f”z*z” 2] 2 ax|P
Jlzy I z, I z Iz I) —
-l = ——flx—%- +2T —f” X+ 5|+ —flx—5
ay[zfX“Lz’Ly) 2f(x 2 Y ox 2| T3\ X" 2] P
oM, piM, p= 2P 5 L2 Zlf o x +Z§f U xe )
Y3 gy Pt Map T Mep= G ® x| 2\ xr gty fix— 3]l x3
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| | I
f(X'f'E)f (X—E)'i—f X—§>f
—(Mg + Mzg);l' (1))  and consider the intervalg=(xx_1,Xy), k=1,...K, where
both f(*) andf(~) are constantk can be 2, 3, or 4, depend-
The contributions to the current, in the corresponding ordeing on the equilibrium distanckeof the particles.

J; (s=0,3,1), are obtained analogously to E&). In addi-

217,

I
2 X+ 5

2

I “)_ |
X+§ , f =f X—E (18)

};0 fH=f

tign to these_equations we have periodic boundary conditions A. Order «°
[ps(x+L)=ps(x)] and conditions for the normalization of Expandingp, in the eigenfunctions of the generatdfs,
the probability density: andM,
"
L J—
f dxf dzlf dz, po(x+L)=1, (12) Po(X,21,Z5) = Po,d X)A(21)0(2Z,),
0

+2 (=1)Ip! () di(21) bi(2),
L _ - 1 b
L dxj dzlf dz, ps(x+L)=0, S_E and 1. (13 (19

and using relatior{16), from Eg.(9), we obtain a recursion
_ relation for the coefficientsp; ;(x). As it is somewhat
properties: lengthy, it is given in the Appendix. It is solved analogously
to the case of a single particle. The method is described in
M, é(Z)=—Nnbn(Z)), (14) detail in Ref.[14]. As for a piecewise linear potential the
' recursion relation is a set of linear differential equations with
constant coefficients for each intervigl, solutions can be
0=0(z), X\o=0, \,>0(n>0), (150  found forxely,. Then a linear combination of these solu-
tions is determined by the periodic boundary conditions, nor-
malization, and continuity op,.

For M, and M, we take a class of processes with the

Zin(Z)=Yn-10®n-1F Ynne1®ne1t Yandn,  (16) For the sawtooth potential the solution is foe I,
where q(z) is the stationary distribution of; [M,q(z)
=0] andy =, The parametersy, are rlelated 20 11
- n—-1n—" /nn—-1- - - . nf_l,n _ (r) (r) (r)
to the moments of the stationary distributiph4]. We ex- Po,dX) Zl Cr k@0,0xk ~ €XAl i 'X) + Do o,
pandps (s=0,3,1) in the eigenfunctions of the generators (20
M, andMZz. Using Eq.(16), we obtain recursion relations,
that we solve for the case of a sawtooth potential. 2(N+1)2-1

pi,j(x)= > Cr,kai(,rj),k exﬂas)x)+bi,j,k1 (21)

IV. SOLUTION FOR A PIECEWISE LINEAR POTENTIAL r=1

In this section we solve Eq$9)—(11) for the case of a where the second equation holds farj=1. a, and Qi jk
sawtooth potential. The method of solution is similar to theare the solutions of a generalized eigenvalue problem of the
one used in Refl14]. We consider the case of a sawtooth following type:
potential with the following properties of the fordéx):

T
fi:  0<xsL, Aak=akBkak+§a§ak. (22)
Fo0=15 . 17
2.

L,<x=L,
In contrast to Ref[14] the matricesA and B here are not
with f;L,;+f,L,=0 andL,=(L—L;). We assume that, tridiagonal. The constants, ; , are zero except
<0 andf,>0. We define length and energy units by 1
and AV=L,|f;|=1. The only remaining parameter for the
o I s Jo
potential is the asymmetrg=L,/L,, which we assume to bo,ox= (23
be >1. For the results presented in Sec. V, we have chosen ' M(f(+))+(f(’))
a=4, corresponding th.,=0.8, f;=—1.25, andf,=5. In 2 kK K
these units a current of 1 corresponds to the velocity of a

particle subject to the forc, in the case of maximal asym-
metry. 0,1 Yo,1

brok=5"F"boox, boix=oF 'bgox. (24
We define effective forces*) andf(™) by LOKTTQN, Tk TO0ke FOLKTg) Tk 00K 9
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The coefficient, , and the currend, are calculated using 0.05
conditions for the continuity ofp;; (i,j=0) and pi’,j (i
+j>0), and the normalization qf o. 0.00 gmecmmzrorm -
B. Order x~ ! Rl N Q\ B o
In the orderx™ %2 we have the same recursion relation, -0.10 | \‘32
but the normalization conditiofEq. (12)] is replaced by Eq. d \ b\\ )
(13). This leads to the result that boph,, and J,;, vanish. -0.15 | [
For the orderc ! the method has to be extended because \
of the terms whergg andp4, occur in Eq.(11). This some- -0.20 | )
what technical procedure is explained in the Appendixes. As \ /
in the orderx? this leads to a generalized eigenvalue prob- -0.25 | ~e
lem for each interval,, and a set of conditions of how to
combine the solutions in these intervals. -0.30 , - , : -
-4 -3 -2 -1 0 1 2
log,gt

V. RESULTS

. . . . FIG. 2. Currently as a function ofr for dichotomous processes:
The results presented in this section have been obtained_ 82,=1.21=0 (solid line) andz,=0,z,=2 for [=0 ,0.3
- ) ) =0, ,0.3,

by numerically solving the eigenvalue probleftsy. (22)] 504 0.5(dashed lines The other parameters affe=0.2 anda=4.

and the system of linear equations obtained from conditionfyere and in the following figures the symbols are results from
combining these solutions. The advantage of this method afimyiations of the Langevin equation.

solution is that numerical calculations can be performed

qwckly, and curves like the ones shown here are ObtalneEig 4(b), respectively is not able to move to a minimum. If
within a few seconds. The results have been checked by = ’ :

. : . . e potential changes to zero for the particle in the minimum,
computer simulations of the dynamlc_s given by the Langevm[he other particle can move to the next minimum and push or
equations(3) and (4). These simulations are also used to pull the first particle to the left. If the potential changes to

géﬂg};&:}tge the range of validity of the expansion about rlgldzero for particleB or B’, respectively, nothing happens, if

the other particle is bound in the potential minimum. If the
potential is zero for both particles, this driving mechanism
stops working, but there is the possibility of diffusion as in
the case of a single particle. This driving mechanism is simi-
lar to the one discussed in REL0], which occurs in the case

We first consider the case of symmetric dichotomous proof weak coupling of two particles. In this case, when the

A. Results for the case of rigid coupling(order «°)

1. Dichotomous processes

cessesz; andz, vary only between two values, andz,,
Y11= Y0,0=(Zat+2p)/2 and yy1=(z,—2,)/2. In the casd
=0 the effective potential i§(z;+z,)/2]V(x); thus the re-

potential changes to zero for one particle, it is pushed for-
ward by the relaxation of the spring between the particles. In
the case of a single particle similar driving occurs if there are

sults are the same as in the case of one particle in a fluctiaiso fluctuations of the position of the potential minimum
ating potential, where the stochastic process is a sum of twpL7]. In all these cases diffusion is not necessary for motion.

dichotomous processes. In particular we obtain a current re-
versal for large correlation time, if z,<0 andz,+2z,>0
(the solid line in Fig. 2 For small positivel the current
reversal vanishes. This is shown in Fig. 3. Thus there is a

reversal of the direction of motion as a function of the equi- 0.00
librium distancel.
In the casez,=0 andz,>0, there is no current reversal, -0.02 -

but Fig. 2 shows that the maximal current is very sensitive

0.02

onl. Forl=0.5 the current is about four times larger than for g, _go4 | . ;
[=0. If we plot the current as a function bfwe can see that R /®
the current is nearly constant, as long @&s smaller than the S o
short sectiorlL, of the sawtooth potential. If>L,, the cur- 008 \ /
rent grows rapidly. s, o

The reason for this behavior is that forL, there is -0.08 1 e
another driving mechanism, which is fundamentally different
from the one occurring in the case of a single particle. This 010 ‘ ‘ ‘ ‘

0.0 0.2 04 06 08 1.0

driving mechanism is shown in Fig. 4 for the cdse0.5.
When z,=2z,=2,>0 there are two equilibrium positions.

One particle(A) is bound in a potential minimum, and be-
cause of the rigid coupling the othleB in Fig. 4(@) andB’ in

FIG. 3. Currentl, as a function of for dichotomous processes.
The parameters are the same as in Figr21.
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B’

FIG. 4. Driving mechanism for
rigidly coupled particles withl
=L/2.

This driving mechanism can only work if the particle, for tively similar. Slightly different results are obtained for
which the potential has switched off, can escape from itasymmetric dichotomous processes.

initial minimum, when it is pushed to the left. This is the = Sums ofN dichotomous processes are interesting because

case ifl >L,.

This driving mechanism also works 2, andz, fluctuate
between two positive valueg, andz, (z,<z,), as long as

Z,| o[ <zy|f4].

in the case of one particle a current reversal for large
occurs only ifN is an even number. For two particles the
effective stochastic process in the cdse0 is always an
even sum of dichotomous processes. Thus there is a current
reversal for allN, providedz,<0 andz,+z,>0. As in the
case of a single particle the maximal positive current is
smaller for largeN. Here the current reversal remains for a

Indeed this effect can be seen for very small temperaturgarger interval ofl. This seems to be due to the current re-

Fig. 5 shows the current as a function of, whenz, is
constant. For the chosen parameters condit&® holds for
72,<0.5. For small temperature the current vanishes,if
>0.5. For higher temperature there is also a currentzfor
>0.5, because there is still driving by diffusion.

2. Other stochastic processes

versal occurring in the one-particle case fr 1. Conver-
gence against the Ornstein-Uhlenbeck process can be seen
for N>3. Similar results can be obtained for kangaroo pro-
cesses with the same stationary probability densities.

We have also studied the case of asymmetric dichotomous
processes as an example for a process with different transi-
tion times for the transitions,— z, andz,—z, . In this case

We have done the same calculations for some other stg¥0.0# Y1,1- In contrast to the symmetric dichotomous pro-

chastic processes of the class defined by E#g)—(16),

cess, for asymmetric dichotomous processes there is a cur-

namely, for sums of dichotomous processes and discrete kaFeNt reversal in the one-particle cd4d]. For the case of two
garoo processes. In all these cases the results are qua"fg@rtlcles Fig. 6 shows the current as a function of the corre-

lation time for different values of. Here a current reversal
occurs for all values of. (For =0 the negative current

0.0 ‘ ——e—® - . {
N :,-’//@‘ which occurs for larger is very small, and cannot be seen in
01 ) & Fig. 6) Only the length of the interval of positive current as
h \_g /55 well as the maximal positive current decrease with increasing
X J I
-02 ¢ A ;
A
b A\ / 1
N _
03 s ;{ B. Order «
NN o T-02 1. Dichotomous processes
e A - T-004 . . .
-04 Yoo | Lo For dichotomous processes varying between two positive
values the correctiold; to the current is always positive.
-05 - 5 : Thus the current decreases with small oscillations of the par-

ticles. If one of the values of the dichotomous process is
negative, there is also a change of the signlpf(Fig. 7).

FIG. 5. Driving against a potential well: The current as a func- This change of sign does not occur at the same valueasf
tion of z, for constantz,. For small temperature the current van- the current reversal in the case of rigid coupling. Thus in a

ishes forz,>z,|f,|/|f,]. (z,=2, 1=0.5, a=4, and 7=0.1).

small region ofr (between the changes of sign&fandJ,)
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0.08 . ' 3.0 ' ' " '
1=001
=0
ooda bt /N ] e =03 |
=05
0.02 | ]
J 5
0 u\\ PR
\ e i . e
N A e e N
Y e ™
-0.02 | "‘-..}\\ﬂ/ P ] 00 [ :
0 ' // \\
05 . . , .
-0.04 : :
_4 5 0 > 0.0 0.2 0.4 0.6 0.8 1.0

log,,T

FIG. 8. J; for dichotomous processes as a functionl.oThe

FIG. 6. Jo for asymmetric dichotomous processes with= parameters are the same as in Fig. 7

—0.5,z,=1.5, and a probability?,= 0.9 for z, for different values

of | (a=4 andT=0.2).
( ) C. Results for finite values ofre

the current increases with small oscillations. The behavior of From the results presented so far it is difficult to deter-

the current as a function of the equilibrium distance is quitgMine the range of validity of the expansion about the case of
complicated. It is shown in Fig. 8. rigid coupling. The absolute value @ is in most cases

larger by one order of magnitude than thatJgf This is an

indication that the expansion may be valid only for very

large . However, using the expansion, we can obtain the
As in the orderx®, we obtain qualitatively similar results relative sign of), andJ;. This leads to the interesting quali-

for other stochastic processes. An interesting observation caative result that small oscillations can increase or decrease

be made in the case of asymmetric dichotomous processetsie current, depending on the parameters. It may even be

In contrast to the ordek®, where we have found a current possible to reverse the current by changing

reversal for all values of, the sign ofJ, changes only for Since the absolute value df is large compared td,,

smalll. Thus we can distinguish two different regimes: If the one may expect that the series fbin powers of 1k is an

sign ofJ; changegthe case of small), there is only a small asymptotic series. To obtain results for finiteve performed

interval of correlation times in which the current increasessimulations of the Langevin equatiof® and(4). The simu-

with small oscillations of the particles. For largeinstead, lations yield the stationary current as a functionkoResults

the current increases with small oscillations for all correla-for two different values of are shown in Figs. 10 and 11.

2. Other stochastic processes

tion times which are smaller than some critical vally. The figures show that, depending on the other parameters
9). of the system, the current may change the sign as a function
of x. The linear dependence onxléxpected from the ex-
3.0 : : : pansion can be seen for values 0£4710 2 in our units. For
oo smaller values ok, the expansion is certainly not valid. On
15 : ;
2.0 1
10 |
J; 1.0 R
i 05
0.0
0.0
-1.0 ' ‘ s ‘ - -0.5 : ‘ , ‘ ,
~4.0 -3.0 -20 -1.0 0.0 1.0 2.0 ~4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0
log,, log,, T
FIG. 7. J, for dichotomous processes witty=—0.8 andz, FIG. 9. J, for asymmetric dichotomous processes. The param-
=1.2 as a function of- (T=0.2 anda=4). eters are the same as in Fig. 6.
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0.02 ‘ ‘ ‘ . 0.00 v
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01=0010 . £
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J J
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2
-0.06 r - 1 -0.08 "QAAA B At pef A
e . o
» e R ©0g.0.00-0
-0.08 : ‘ ‘ ‘ -0.10 : ‘ !
-4 -2 0 2 -4 -2 0 2
—log,, x -log,, k
FIG. 10. Simulations for the current as a function offor | FIG. 11. Simulations for the current as a function offor |

=0.01,a=4, andT=0.2. z(t) is a symmetric dichotomous process =0.3. The other parameters are the same as in Fig. 10.

with z,= — 0.8 andz,= 1.2. Here and in Fig. 11, the results for rigid ) ) )
coupling are inserted ak=10° (filled symbols: the solid lines ON average, and one obtains a velocity which has the same

indicate the results of the expansion. order of magnitude as the experimentally observed [Gie
As in some cases there is a current reversal in these models,

the other hand, the order of magnitude of the current remaindifferent directions of motion of motor proteins, which have
the same for all values of. The results of the expansion and similar structures, can be explained by small differences of
the simulations agree very well for not too small correlationthe parameters, especially of the friction constant.
times. Minor agreement for small correlation times is sup- It should be emphasized that such a model cannot de-
posed to be due to minor numeric precision in this case. scribe the motion of a motor protein accurately. But it pro-

The current reversal in Fig. 10 can be understood by convides a phenomenological description of general aspects
sidering the cases of rigidly coupled particles={«) and based on a rather simple mechanism. The mechanisms oc-
uncoupled particles {(=0). For smalll the case of rigid curing in real motor proteins are more complex, and there is
coupling is essentially equivalent to the one-particle cas@ wide diversity of mechanisms adapted to different func-
with a sum of two dichotomous processes. In this case th#ons of different motor proteingL5).
current is positive for large,, but negative for smalr. On In most ratchet models the structure of the motor protein
the other hand if the particles are not coupled at all, thds completely neglected; the protein is treated as a point par-
model reduces to two independent simple dichotomous prdicle without internal degrees of freedom. Directed motion is
cesses and the current remains negative for all values of tHéue to broken symmetry and broken detailed balance, and
correlation time. As the reduction to the single-particle casestructural properties of the motor protein are not essential.
with a sum of two dichotomous processes is not possible folnterestingly the driving mechanism changes if two heads are
larger| because of mutual driving, the situation is different in coupled: motion of a single head, modeled by a single par-

Fig. 11, where no positive current occurs. ticle in a fluctuating potential, is driven by rectified diffusion.
In contrast, the results presented in the previous sections, as
VI. SUMMARY AND DISCUSSION well as those of Ref[10], show that coupling two heads

leads to a nondiffusive driving mechanism, which provides
In Sec. V we have presented results for different stochasmore efficient driving, as backward steps are less probable.
tic processes, and discussed how the current depends on titgleed, similar behavior is found in experiments with one-
correlation timer of the noise, the equilibrium distant®f  and two-headed kinesins: the velocity of a single-headed ki-
the particles, and the coupling constantAlthough the de- nesin is smaller by a factor 5, and diffusion stronger by a
tails of the results are rather complex, there are some genergictor 20, compared to a two-headed kine$i6]. But
features that are common to all the cases studied here.  though our model has transport properties similar to those
(1) There is a current reversal if the stochastic parametersbserved in kinesin motion, the driving mechanism of a two-
fluctuate between positive and negative values, and the sigfeaded kinesin is certainly more complex. For example, in
of the current depends not only enbut also onl and «. contrast to our simple model the kinesin heads are supposed
(2) There is mutual driving of the particles. This driving to work in a “hand-over-hand” fashiofil5].
mechanism does not need diffusion. In this paper we have studied a class of models in which
(3) Small oscillations of the particles can increase or de-only the amplitude of the potential fluctuates. If the transi-
crease the current, depending on the parameters. tions also shift the minimum of the potential, there is a driv-
As already mentioned in Sec. I, models for noise-inducedng mechanism that is similar to the one described here, and
transport can qualitatively explain some properties of motoloes not need diffusion even in the case of one paifticlg
proteins: Motion in these models is stochastic, but directed Further refinement of the model would be necessary to
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describe motor proteins more realistically. For example the 2. Recursion relation for the order «°

transitions have to occur only at discrete points, the active ity ansatz(19), the following recursion relation for the
sites, to obtain qualitatively correct results for the velocity ascoefficientsp- (x) is obtained:

a function of ATP concentratiofi7]. If we introduce local- b
ized transitions in the present model, the stochastic param-

etersz; andz, will no longer be uncorrelated. Though cor- Jo= 7’010f(+) + yo'of(_) _ I /
. . 0 k 'Poo Po,o™ 5 Poo
relations between the two heads of a real motor protein may 2 2 2
depend on particular structural properties of the protein, it
should be interesting to study how these correlations depend — ﬂif(+)p' _ yi'lf(—)p' (A5)
. . . 2 k 1,0 2 k 0,1
on the parameters in this simple model.

At the end let us mention that the model discussed here
may also be realized in an artificial ratchet: The problem,
that the potential has_, to fluctua}te mdependently for each par- Mf(ﬂ B ﬂlf(ﬂ ) Mf(*) )
ticle, can be solved if the particles move on different tracks 5 Tk Po,c=A1P10t 2 'k P10t 2 'k P1o
that are fluctuating independently.

T " Y124y, Yoi,.—y ,
ACKNOWLEDGMENT 2FL0 o Tk F200 5 Tk FLL
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motor proteins.
APPENDIX A: SOME TECHNICAL ASPECTS Y01, (— Yo,0 Y11, (-
OF THE METHOD OF SOLUTION 5 'k P00~ MPo1T 5Tk "Poa™ 57 Tk TPos
1. Dependence ory
~ P Y ~ ngl_ Mf(k+)pil_ Ef(ki)p(')za
The dependence oy of the functionspg(X,Y,z;,25), S 2750 2 T2 ’
=0, 3, and 1, required to average E@®), is given by the (A7)
expressions,
- 1 -y?\— Yi-1i , Yi-1j .-y,
po(XayyZ]_,Zz): \/:TEX[<?> pO(X,Zl,Zz), (Al) 2 f(k+)pi—l|j+ 2 f(k )pi,j—lz()\i+)\j)pi,j
a
Vil R L
L)) 3 Rl R 5P
P1/2:\/—exl{ _)[Pllz(X,Zl,Zz)
aT T Yii+1 , Yii+1 .-y,
I I _%f(kﬂpwl,j_ Jé i )pi,j+1- (A8)
1 —
+ T z,f| x+ > —zzf(x— EHypO], (A2)
This recursion relation is not tridiagonal as in the case of a
_ single particlg 14], but the same methods of solution can be
1 exp(_yz) (X.21.2,) applied.
P1 \/ﬁ T P1X, 21,42
2T 5 - 72 3. Method for the order ™!
t—7 fo dy'F EXP(7 In this section and in Appendix A4, we explain the
method of solution for the ordet™ !, which involves some
= (5 ~ 2 more technical considerations. Using the same ansatz as for
—f dyf dy'Fexp = |, (A3)  the orderx®,
0 0 T
with p1(X,21,25) =ho o(X)0(21)q(Z,)
2l oz 20 (C1TN 00 ¢i(20) 64(22),
F= —f(x+—) —f| x— —”pm '
2 2 2 2 (A9)
v ] (WA P 27 . A4
Yt X T2t X2 |po (Ad) we obtain a recursion relation of the following type:
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(v ah+ B 00n + BLO0gn <y - T2 p0ny - D2 000y, 2 00ny,
Y+t T (x) , ) ) TH)"(x) ) )
” =t xh{ ;= — g (VP Yi-niPio 1 YieaiPii )~ (¥1,iPi T YipiPii-1
’ f(+)(X)f(+),(X) 2 2 2 ’ ’ '
+7j+1,jpi,j+1)_f Yot Ve T Ve )P T Yic1iYi-2i-1Pi—2; = Yi-1i(Vii T Yi-1j-1)Pi—1j

—Yii+(viit 7i+1,i+1)pi'+1,j + 7i,i+17i+1,i+2pi,+2,j]_

+Yj-1Y-2j-1P—2j~

Yi—1i (¥t Yic1j-0)Pi—1—

f(*)(x)f(*)’(x)
f[(yjz,j + 3’]2—1,1 + 7]2,j+1)pi,,j

')’j,j+l(7j,j + 'Yj+1,j+1)pi/+1,j+ 7j,j+l'yj+1,j+2pi,+2|j]

1
+ Z[f(+)(x)f(7),(x)+f(i)(x)f(ﬂr(x)](')’i,i')’j,jpi,,j_ Vi1 Y),iPi-1j = Yii+1YiiPi+1y~ YiiYi-1iPi -1

F Vi1 Y-1Pi— 11T Vi1 Y0Pl -1~ Yii i+ 1Pl 1T Vi1 Y+ aPi 11T Yiie 1Y+ 1Pi v 1)

The difference to the ordet? is that here we have additional
inhomogeneities. But in the case of a piecewise linear poten-
tial the derivatives of the forces areand 8’ functions; thus

the inhomogeneities are zero in the intervgls so that in
these intervals we have a recursion relation of the same type

as in the ordex®. The solution forhg o(x) and hi’,j(x) thus
consists of a piecewise continuous part and a su@ fohc-
tions:

K
ho,o<x>=hé%(x>+k§l Ugokd(x—x)  (AlD)
K
ho,o(X) = h('),o(s)(x)"”kgl Vo,0k0(X—Xy)
K
+k21 Uo,o0x8” (X—X) (A12)
hi j00=h®(x), i+j>0 (A13)
K
hi,,j(x): hi”(jS)(X)+|;1 Ui j k0(X—Xy) (A14)
K
h;jj(x):hgfgs)(x)+gl Vi j k(X=X
K
+k21 Uj j k0" (X—Xy). (A15)

(A10)

2(N+1)2-1
hg%(x)= 21 cr kag%kak)exqa )x)+b0,0k,
(A16)
2(N+1)2-1

Cpa) cexpalPx)+Db;j (i+]>0).
(A17)

h9x= >
1

We obtain the coefficienty; ,, i=0 andU; , i>0 by dif-
ferentiating the incontinuities of the piecewise continuous
functionsh{(x), h/®(x) andh{®(x). Thus we have

Vo 0x= &YX, +0) — i (x,— 0), (A18)
Vi x=h P xe+0)—h/ P (x.—0), (A19)
Ui jk=h(x+0)—h{F(x—0), i+j>0. (A20)

The coefficients?:,‘k and the currentl; are calculated by
solving a system of conditions for th& and &’ functions,
and the normalization condition fdry (x).

4. Conditions for 6 and &’ functions

To calculate the coefficienfs,,k and the curreni; we use
a system of conditions for thé and 6’ functions. In this
section we show how to derive these conditions from the
recursion relatior{A10).

We introduce the variable=x—x, wherex, is the bor-
der of a potential section, and multiply a continuous test
functiont(e) to equation(A10). The width oft(e) aboutx,
is small, so we consider only one poixt. Then we inte-
grate the equation over an interval aboyt Terms of the

The piecewise continuous parts are calculated the same wayder of the width of the test function are neglected. After a
as in the ordei®. The only difference is that here we have partial integration of the terms in which’ occurs, we have

constantsb,,,,k containingJ; instead ofb; ;

to consider two cases. If the test function is od@)=0 and
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thus only terms witht’(0) remain. We obtain the following APPENDIX B: MODEL WITH STOCHASTIC FORCES

condition: We have done the same calculations for a model, in which

Ui = LD — £y, P+ Vi 1P (%) the multiplicative potential fluctuations are replaced by addi-
o U ‘ ' tive stochastic forces. In this model the Langevin equations
+ Yir1iPie1y (X0 1+ H- f(ki))[yj,jpi’,j(xk) are
Y- 1P -1, (X + ¥+ 1P+ 1 (%) - (A21)

S . _ X1=F(X1) +Z() = 3 k(%1 —Xp— D) +\2T&4(), (BY)
For an even test function things are a bit more compli-

cated, because there are terms wh&rfenctions are multi-

plied with incontinuities. Terms like Xo=f(X) +Zo(t) + k(X — Xo— 1)+ 2T Ex(1). (B2)
J' de {9 (x+e) 8(e)t(e) (A22)  As opposed to the model with multiplicative fluctuations,

here we take only processes wiliz;)=q(—z), so that on
are defined as the limits that we obtain if we replace éhe average there is no directed force. The calculations described
function by an even function with a finite width, integrate, above can be done analogously for this model. In addition,
and then let the width go to zero. Thus for the integral not tohere we can define an effective stochastic fareez; + z,.
be zero,f(*) must be an even function, so we replace The Fokker-Planck equation in the case of rigid coupling is
f()(x,+ €) by then equivalent to a Fokker-Planck equation for a particle
Lre(d) (+) moving in a potentiaVW(x—1/2)+V(x+1/2) under the influ-
(et e) + 1 (x—€)]. (A23)  ence of the effective stochastic forzeSo the results for two
rigidly coupled particles are equivalent to results for one par-
ticle. If z; and z, are dichotomous processes or sums of
dichotomous processes, the effective stochastic force is al-
ways an even sum of dichotomous processes, thus there is
J de fH(x+ €)8(e)t(e) always a current reversal.
In the model with multiplicative fluctuations an effective
=[x, +0)+f(F)(x,—0)]t(0). (A24) stochastic process=z;+z, can only be defined in the case
=0, so that we obtain a Fokker-Planck equation for a par-
For an even test function terms containirig0) vanish, and  ticle moving in a fluctuating potentiaf(x)z(t). The casd
we obtain a lengthy condition. Using EqA18)—(A20) a >0 cannot be reduced to such a one-particle model. As we
system of equations results, which together with the normalhave shown above, far>0 a driving mechanism occurs,
ization condition allows us to calculate the coefficieE;;; which is different from the one occurring in the one-particle

Proceeding in this way we obtain integrals that are all well
defined:

and the currend;. case.
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