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Adaptive learning by extremal dynamics and negative feedback
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We describe a mechanism for biological learning and adaptation based on two simple priridiplesi-
ronal activity propagates only through the network’s strongest synaptic conne@idresmal dynamigs and
(i) the strengths of active synapses are reduced if mistakes are made, otherwise no chandesgeative
feedback The balancing of those two tendencies typically shapes a synaptic landscape with configurations
which are barely stable, and therefore highly flexible. This allows for swift adaptation to new situations.
Recollection of past successes is achieved by punishing synapses which have once participated in activity
associated with successful outputs much less than neurons that have never been successful. Despite its sim-
plicity, the model can readily learn to solve complicated nonlinear tasks, even in the presence of noise. In
particular, the learning time for the benchmark parity problem scales algebraically with the probleN) size
with an exponenk~1.4.
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[. INTRODUCTION negative feedback process employed here stops as soon as
the correct response is reached. The successful synaptic con-

In his seminal essayfhe Science of the Artificidll] the  nections are only barely stronger than unsuccessful ones.
economist Herbert Simon suggested that biological system§his makes it easy for the system to forget, at least tempo-
including those involving humans, are “satisficing” rather rarily, its response and adjust to a new situation when need
than optimizing. The process of adaptation stops as soon 4.
the result is deemed good enough, irrespective of the possi- The synaptic landscapes are quite different in the two
bility that a better solution might be achieved by further caseq20]. Positive reinforcement leads to a few strong syn-
research. In reality, there is no way to find global optima inapses in a background of weak synapses. Negative feedback
complex environments, so there is no alternative to acceptingads to many connections of similar strength, and thus a
less than perfect solutions that happen to be within reach, agery volatile structure. Any positive feedback will limit the
Ashby sustained in hiBesign for a Brain[2]. flexibility and hence the adaptability of the system. Of

We shall present results on a schematic “brain” model ofcourse, there may be instances where positive reinforcement
self-organized learning and adaptation that operates using thiakes place, in situations where hard-wired connections have
principle of satisficing. The individual parts of the system,to be constructed once and for all, without concern for later
called synaptic connections, are modified by a negative feedzdaptation to new situations.
back process until the output is deemed satisfactory; then the The process is self-organized in the sense that no external
process stops. There is no further reward to the system on@®mputation is needed. All components in the model can be
an adequate result has been achieved: this is learning bythought of as representing known biological processes,
stick, not a carrot. The process starts up again as soon as tthere the updating of the states of synapses takes place only
situation is deemed unsatisfactory, which could happen, fothrough local interactions, either with other neighboring neu-
instance, when the external conditions change. The negativens, or with extracellular signals transmitted simultaneously
signal may represent hunger, physical pain, itching, sexto all neurons. The process of suppressing synapses has ac-
drive, or some other unsatisfied physiological demand. tually been observed in the real brain and is known as long

Formally, our scheme is a reinforcement-learning algoterm depression, or LTD, but its role for actual brain func-
rithm (or rather deinforcement learning since there is nation has been uncledf]. We submit that depression of syn-
positive feedback[3], where the strengths of the elementsaptic efficacy is the fundamental dynamic mechanism in
are updated on the bases of the signal from an external crititearning and adaptation, with the long term potentiation
with the added twist that the elemeriteuronal connections (LTP) of synapses usually associated with Hebbian learning,
do not respond to positive signals. playing a secondary role.

Superficially, one might think that punishing unsuccessful  Although we did have the real brain in mind when setting
neurons is the mirror equivalent to the usual Hebbian learnup the model, it is certainly not a realistic representation of
ing where successful connections are strengthéAkdrhis  the overwhelming intricacies of the human brain. Its sole
is not the case. The Hebbian process, like any other positiveurpose is to demonstrate a general principle that is likely to
feedback, continuead infinitum in the absence of soma  be at work, and which could perhaps lead to the construction
hoc limitation. This will render the successful synapseof better artificial learning systems. The model presented
strong, and all other synapses relatively weak, whereas theere is a “paper airplane,” which indeed can fly but is com-
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pletely inadequate to explain the complexity of real air-lem, the system has to decide whether the number of binary
planes. 1s amongN binary inputs is even or odd. In those problems,
Most neural network modeling so far has been concernethe system does not have to adapt to new situations, so the
with the artificial construction of memories, in the shape ofsuccess is due to the volatility of the active responses, allow-
robust input-output connections. The strengths of those coring for efficient search of state space without locking-in at
nections are usually calculated by the use of mathematicalpurious, incorrect, solutions. In the same section we show
algorithms, with no concern for the dynamical biological how the model can readily learn multistep tasks, adapt to
processes that could possibly lead to their formation in @ew multistep tasks, and store old ones for later use, exactly
realistic “in vivo” situation. In the Hopfield model, memo- as for the simple single step problems. Finally Sec. VI con-
ries are represented by energy minima in a spin-glass liké&ins a few succinct remarks about the most relevant points
model, where the couplings between Ising spins represe@ this work. The simple programs that we have constructed
synaptic strengths. If a new situation arises, the connectior@n be downloaded from our web sig4. For an in-depth
have to be recalculated from scratch. Similarly, the backdiscussion of the biological justification, we refer the readers
propagation algorithm underlying most commercial neuralto a recent articlg6].
networks is a Newtonian optimization process that tunes the
synaptic connections to maximize the overlap between the
outputs produced by the network and the desired outputs, Il. THE PROBLEM
based on examples presented to the network. All of this may
be good enough when dealing with engineering type prob-
lems where biological reality is irrelevant, but we believe Schematically, we envision intelligent brain function as
that this modeling gives no insight into how real brainlike follows: The brain is essentially a network of neurons con-
function might come about. nected with synapses. Some of these neurons are connected
Intelligent brain function requires not only the ability to to inputs from which they receive information from the out-
store information, such as correct input-output connectionsside world[8]. The input neurons are connected with other
It is also mandatory for the system to be able to adapt to neweurons. If those neurons receive a sufficiently strong signal,
situations, and yet later to recall past experiences, in an orthey fire, thereby affecting more neurons, and so on. Even-
going dynamical process. The information stored in the brairiually, an output signal acting on the outside world is gener-
reflects the entire history that it has experienced, and thated. All the neurons that fired in the entire process are
brain can take advantage of that experience. Our model il‘tagged” with some chemical for later identificatiofB].
lustrates explicitly how this might take place. The action on the outside is deemed either g¢satisfac-
We shall see that the use of extremal dynamics allows ontory) or bad(not satisfactoryby the organism. If the output
to define an “active” level, representing the strength of syn-signal is satisfactory, no further action takes place.
apses connecting currently firing neurons. The negative re- If, on the other hand, the signal is deemed unsatisfactory,
sponse assures that synapses that have been associated witjlobal feedback signal, a hormone, for instance, is fed to
good responses in the past have strengths that are barely ledsneurons simultaneously. Although the signal is broadcast
than the active ones, and can readily be activated again byemocratically to all neurons, only the synapses that were
suppressing the currently active synapses. previously tagged because they connected firing neurons re-
The paper is organized as follows. The next section deact to the global signal. They will be suppressed, whether or
fines the general problem in the context of our ideas. Thaot they were actually responsible for the bad result. Later,
model to be studied can be defined for many different geomthis may lead to a different routing of the signals, so that a
etries. In Sec. Il we review the layered version of the modeldifferent output signal may be generated. The process is re-
[6], with a single hidden layer. It will be shown how the peated until a satisfactory outcome is achieved, or, alterna-
correct connections between inputs are generated, and hdwely, until the negative feedback mechanism is turned off,
new connections are formed when some of the output assigme., the system gives up. In any case, after a while the tag-
ments change. In Sec. IV we introduce selective punishmerging disappears.
of neurons, such that synapses that have never been associ-The time scale for tagging is not related to the time scale
ated with correct outputs are punished much more severelgf transmitting signals in the brain but must be related to a
than synapses that have once participated in the generationtifne scale of events in the real outside world, such as a
a good output. It will be demonstrated how this allows forrealistic time interval between starting to look for food
speedy recovery, and hierarchical storage, of old, good patopening the refrigeratprand actually finding food and eat-
terns. In multilayered networks, and in random networks,ng it. It is measured in minutes and hours rather than in
recovery of old patterns takes place in terms of self-milliseconds.
organized switches that direct the signal to the correct out- All of this allows the brain to discover useful responses to
put. Also, the robustness of the circuit towards noise will beinputs, to modify swiftly the synaptic connection when the
demonstrated. external situation changes, since the active synapses are usu-
Section V shows that the network can easily performally only barely stronger than some of the inactive ones. It is
more complicated operations, such as the exclusive-amportant to invoke a mechanism for low activity in order to
(XOR) process. It can even solve the much more compliselectively punish the synapses that are responsible for bad
cated parity problem in an efficient way. In the parity prob-results.

A. What is it that we wish to model?
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However, in order for the system to be able to recall pastonstruct a specific model that works exactly as described
successes, which may become relevant again at a later poirthove, so the scenario is at least feasible.
it is important to store some memory in the neurons. In ac-
cordance with our general philosophy, we do not envision B. So how do we actually model all of this?

any strengthening of successful synapses. In order to achieve - s
. . o . . . Superficially, one would expect that the severe limitations
this, we invoke the principle of selective punishment: neu- . - .

. ) . imposed by the requirements of self-organization will put us

rons which have once been associated with successful out- o .
. In a straitjacket and make the performance poor. Surpris-

puts are punished much less than neurons that have NEViRGly, it turns out that the resulting process is actually ver
been involved in good decisions. This yields some robust- gy, gp y very

ness for successful patterns with respect to noise, and al efficient compared with non-self-organized processes such as

0 C o " :
helps in constructing a toolbox of neuronal patterns store}ale p_ropagauon,_m addition to the fact that it executes a
immediately below the active level, i.e., their inputs aredynamical adaptation and memory process not performed by

slightly insufficient to cause firing. This “forgiveness” also th0se networks at all. _

makes the system stable with respect to random noise, a 1h€ amount of activity has to be sparse in order to solve
good synapse that fires inadvertently because of occasionfi]e “credit (or rather blameassignment” problem of iden-
noise is not severely punished. Also, the extra feature ofifying the neurons that were responsible for the poor result.
forgiveness allows for simple and efficient learning of se-If the activity is high, say 50% of all neurons are firing, then
quential patterns, i.e., patterns where several specific cor significant fraction of synapses are punished at each time
secutive steps have to be taken in order for the output tetep, precluding any meaningful amount of organization and
become successful, and thus avoid punishment. The correstemory. One could accomplish this by having a variable
last steps will not be forgotten when the system is in thethreshold, as in the work by Alstno and Stassinopould40]
process of learning early steps. and Stassinopoulos and BEKL]. Here, we use instead “ex-

In the beginning of the life of the brain, all searches musttremal dynamics,” as was introduced by Bak and Sneppen
necessarily be arbitrary, and the selective, Darwinian, nonin(BS) [12] in a simple model of evolution, where it resulted in
structional nature of the process is evident. Later, however highly adaptive self-organized critical state. At each point
when the toolbox of useful connections has been built-upin time, only a single neuron, namely the neuron with the
and most of the activity is associated with previously sucdargest input, fires.
cessful structures, the process appears to be more and moreThe basic idea is that at a critical state the susceptibility is
directional, since fewer and fewer mistakes are committed. maximized, which translates into high adaptability. In our

Roughly speaking, the sole function of the brain is to getmodel, the specific state of the brain depends on the task to
rid of irritating negative feedback signals by suppressing firbe learned, so perhaps it does not generally evolve to a strict
ing neurons, in the hope that better results may be achievetfitical state with power law avalanches, etc. as in the BS
that way. A state of inactivity, or nirvana, is the goal. A model. Nevertheless, it always operate at a very sensitive
gloomy view of life, indeed. The process is Darwinian, in thestate which adapts rapidly to changes in the demands im-
sense that unsuitable synapses are killed, or at least temppesed by the environment.
rarily suppressed, until perhaps in a different situation they This “winner take all” dynamics has support in well-
may play a bigger role. There is no direct “Lamarckian” documented facts in neurophysiology. The mechanism of lat-
learning by instruction, but only learning by negative selec-eral inhibition could be the biological mechanism imple-
tion. menting extremal dynamics. The neuron with the highest

It is important to distinguish sharply between features thainput firing rate will first reach its threshold firing potential
must be hardwired, i.e., genetically generated by the Darwinsending an inhibitory signal to the surrounding, competing
ian evolutionary process, and features that have to be selfieurons, for instance in the same layer, preventing them
organized, i.e., generated by the intrinsic dynamics of thdrom firing. At the same time it sends an excitatory signal to
model when subjected to external signals. Biology has t@ther neurons downstream. In any case, there is no need to
provide a set of more or less randomly connected neurongvoke a global search procedure, not allowed by the ground
and a mechanism by which an output is deemed unsatisfactles of self-organization, in order to implement the extremal
tory, a “Darwinian good selector,” transmitting a signal to dynamics. The extremal dynamics, in conjunction with the
all neuronglor at least to all neurons in a sector of the byain negative feedback, allows for efficient credit assignment.

It is absurd to speak of meaningful brain processes if the One way of visualizing the process is as follows. Imagine
purpose is not defined in advance. The brain cannot learn ta pile of sandor a river network, if you wish Sand is added
define what is good and what is bad. This must be given aat designated input sites, for instance at the top row. Tilt the
the outset. Biology also must provide the chemical or mo-ile until one grain of sandextremal dynamigsis toppling,
lecular mechanisms by which the individual neurons react tahereby affecting one or more neighbors in a chain reaction.
this signal. From there on, the brain is on its own. There isThen tilt the pile again until another site topples, and so on.
no room for furtherad hoctinkering by “model builders.”  Eventually, a grain is falling off the bottom row. If this is the
We are allowed to play God, not Man. site that was deemed the correct site for the given input, there

Of course, this is not necessarily a correct, and certainhare no modifications to the pile. However, if the output is
not a complete, description of the process of self-organizeihcorrect, then a lot of sand is added along the path of falling
intelligent behavior in the brain. However, we are able tograins, thereby tending to prevent a repeat of the disastrous
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The entire dynamical process goes as follows:

(i) A random input neurom is chosen to be active.

(ii) The neuronj, in the middle layer which is connected
with the input neuron with the largest(ji) is firing.

(i) Next, the output neurork,, with the maximum
B C w(kjn) is firing.

¢ (iv) If the outputk happens to be the desired one, nothing

\ is done,
(v) Otherwise, that is if the output is not correat(Kq,j )
LN andw(j i) are both depressed by an amodntvhich could
! k4 either be a fixed amount, say 1, or a random value between 0

and 1.

FIG. 1. Topology and notation for the three geometries of the : . . .
model. (A) The simplest layered model with input layer con- (vi) Go t0(|). Another random input neuron is chosen and
the process is repeated.

nected via synapses(ji) to all nodeg in the middle layer, which, . .
in turn, are connected to all output neurdaby synapsesv(kj). That is all. The constané is the only parameter of the

(B) The lattice version is similar to the layered case except that eac10del, but since only relative values of synaptic strengths
node connects forward only with a fethree in this caseof the ~ @re important, its absolute value plays no role. In the simu-
neurons in the adjacent layét) The random network had neu-  lations, we generally choose the depression to be a random
rons, i, each connected witm, other neurons, with synaptic ~ value between 0 and 1. Learning times were slightly longer,
strengthsw(ji) (only a couple are showynSome of them, 1), are  about 10%, if a constant value was chosen. If one finds it
preselected as input and somg) as output neurons. A maximum unaesthetic that the values of the connections are always de-
number €;) of firing is allowed in order to reach the output. creasing and never increasing, one could raise the values of
all connections such that the value of the largest output syn-

external condiions change, so that another output s correciPi Sength for each neuron is 1. This, of course, has o
g€, P fect on the dynamics.

the sand, of course, will trickle down as before, but the old We imaaine that th n i ndw(i i N
output is now deemed inappropriate. Since the path had just e imagine that the synapsegkpjm) al (jmi) con-

been successful, only a tiny amount of sand is added alon egting all firing neurons are “tagged” bY the activity, ide’?'
the trail, preserving the path for possible later use. As thd!ying them for possible subsequent punishment. In real life,

process continues, a complex landscape representing the p&4 t2gging must last long enough to ensure that the result of

experiences, and thus representing the memory of the syf1€ process is available, the time scale must match typical
tem, will be carved out. processes of the environment rather than firing rates in the

brain. If a negative feedback is received all the synapses
which were involved and therefore tagged are punished,
whether or not they were responsible for the bad result. This
A. The simplest layered model is democratic but, of course, not fair. We cannot imagine a

In the simplest layered version, treated in detail in Ref.Piologically reasonable mechanism that permits perfect iden-
[6], the setup is as follow$Fig. 1). There is a number of tification of synapses for selective punishménhich could
input cells, an intermediate layer of “hidden” neurons, and aof course be more efficientas is assumed in most neural
layer of output neurons. Each of the input neurofis con-  network models. The use of extremal dynamics is crucial for
nected with each neuron in the middle layjemvith synaptic ~ solving the crucial credit assignment problem, which has
strengthw(ji). Each hidden neuron, in turn, is connectedbeen a stumbling block in previous attempts to model self
with each output neurok with synaptic strengtiiv(kj). Ini-  organized learning, by keeping the activity low and thereby
tially, all the connection strengths are chosen to be randonteducing the number of synapses eligible for punishment.
say with uniform distribution between 0 and 1. Each input Eventually, the system learns to wire each input to its
signal consistgfor the time being of a single input neuron correct output counterpart. The time that it takes is roughly
firing. For each input signal, a single output neuron repreequal to the time that a random search for each input would
sents the preassigned correct output signal, representing tteke. Of course, no general search process could in principle
state of the external world. The network must learn to conbe faster[13] in the absence of any preknowledge of the
nect each input with the proper output for any arbitrary set ofassignment of output neurons. It is important to have a large
assignments, called a map. The map could for instance asumber of neurons in the middle layer in order to prevent the
sign each input neuronto the output neuron with the same different paths from interfering, and thus destroying connec-
label. (In a realistic situation, the brain could receive a signaltions that have already been correctly learned.
that there is some itching at some part of the body, and an Figure 2 shows the results from a simulation of a layered
output causing the fingers to scratch at the proper place musystem with seven input and seven output nodes, and a vari-
be generated for the signal to sjopt each time step, we able number of intermediate nodes. The task was simply to
invoke “extremal dynamics” equivalent with a “winner connect each input with one output nogiedoes not matter
take all” strategy: only the neuron connected with the largestwhich ong. In each step we check if all seven preestablished
synaptic strength to the currently firing neurowill fire at  input—output pairs were learned. If so, the learning process
the next time step. stops, and the learning time is recorded. By repeating this for

Ill. MODEL

031912-4



ADAPTIVE LEARNING BY EXTREMAL DYNAMICS AND . .. PHYSICAL REVIEW E 63 031912

2000 T T T T T T
30001
15001
[
2 £ 2000}
= 2
£ 10001 g
g 5
e 3
1000+
500
0 ) ) ) of AT S DAL e, (LI H“ Jh.“\l‘.d u‘li A L P (ol URATR AN ‘ Ul‘
0 50 100 150 200 0 200 400 600
Middle layer size Number of adaptations

FIG. 2. The time to learn a given task decreases when the num- FIG. 3. Adaptation times for a sequence of 700 input—output
ber of neurons in the middle layer is increased. Data points argnaps. The number of unsuccessful attempts to generate the correct
averages from 1024 realizations. input—output connections is showA random network geometry

was chosen, but the result is similar for the other geometries con-

many realizations of the network, the average time to learidered\
all input—output connections is computed. The figure shows

how the average learning time decreases with the number ggjearning time will be longer because of “path interfer-

hidden neurons. More is k_)etter_. Biologically, creating a |argeence” between the connections. In a real world, one could
number of more or less identical neurons does not requirgyagine that the relative amount of changes that would occur
more genetic information than creating a few, so it is cheapfrom day to day is small and decreasing, so that the relearn-

On the other hand, the setup will definitely loose in aing time becomes progressively lower.

storage-capacity beauty contest with orthodox neural net- Suppose now that after a few new maps, we return to the

works, that is the price to pay for self-organization. We a€original input—output assignment. Since the original success-
not allowed to engineer noninterfering paths, the system hafs Ig P h pb 9 K ’ d t% has to b
to find them by itself. ul synapses have been weakened, a new pathway has to be

At this point all that we have created is a biologically found from scratch. There is no memory of connections that

motivated robot that can perform a random search procedut&€re 90od in the past. The network can learn and adapt, but

that stops as soon as the correct result has been found. Whifgc@nnot remember responses that were good in the past. In

this may not sound like much, we believe that it is a solidS€cs- IV and VI we shall introduce a simple remedy for that

starting point for more advanced modeling. fundamental problem, which does not violate our basic phi-
We now go one step further by subjecting the model to dosophy of having no positive feedback.

new input—output map once the original map has been

learned. This reflects that the external realities of the organ- B. Lattice geometry

ism have changed, so that what was good yesterday is not

good any more. Food is to be found elsewhere today, and the The setup gllscusseq above can tivially be gene_rallzed 10
include more intermediate layers. The case of multilayers of

system has to adapt. Some input—output connections ma ons that are not fullv connected with the neurons in the
still be good, and the synapses connecting them are basical urons that are not fully Wi yeurons 1
next layer is depicted in Fig.(B). Each neuron in the layer

left alone. However, some outputs which were deemed co .
rect yesterday are deemed wrong today, so the synapses tfggnnects forward to three_ ot.hers in the .n.ext layer. T.he net-
connected those will immediately be punished. A search proOrk operates in a very similar way: a firing neuron in one
cess takes place as before in order to find the new correé@yer causes firing of the neuron with the largest connection
connections. to that neuron in the subsequent layer and so on, starting
Figure 3 shows the time sequence of the number 0W|th the input neuron at the bottom. OnIy when the signal
“wrong” input—output connections produced by the model reaches the top output layer will all synapses in the firing
before learning each map, which is a measure of the relearghain be punished, by decreasing their strength by an amount
ing time, when the system is subjected to a sequence of as before, if need be. Interestingly, the learning time does
different input—output assignments. For each remappingpot increase as the number of layers increases. This is due to
each input neuron has a new random output neuron assignélte “extremal dynamics” causing the speedy formation of
to it. In general, the relearning time is roughly proportionalrobust “wires.” In contrast, the learning time for back-
to the number of new input—output assignments that haveropagation networks grows exponentially with the number
changed, in the limit of a very large number of intermediateof layers; this is one reason that one rarely sees backprop
neurons. If the number of intermediate neurons is small, theetworks with more than one hidden layer.
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C. Random geometry ence of “danger’[14]. This is the equivalent of our learning

In addition to layered networks, one can study the procesz mistakes. In fact, Matzinger realizes that the identification

in a random network, which may represent an actual biologi®f danger has to be preprogrammed in the innate immune

cal system better. Imagine that the virgin brain simply con-SYStém, and must have evolved on a biological time scale,
is is the equivalent of our “Darwinian good{or rather

sists of a number of neurons, which are connected randomIS}1 oo . LT .
to a number of other neurons via their synapses, some of?@d” or “danger”) selector” indicating if the organism is

which are randomly assigned as input and output neurond @ satisfactory state. _ -
requiring no specific blueprint whatsoever. It turns out[6] that one single modification to the rules

Consider an architecture where eagcheuron is arbi- described above allows for some fundamental improvements
trarily connected to a number, of other neurons with syn- of the system’s ability to recognize old patterns:
aptic strengthsv(ji). A number of neuronsr( andn,) are (iii-a) When the output is wrong, a firing synapse that has
arbitrarily selected as input and output neurons, respectivelyat least once been successful is punished much less than a
Again, output neurons are arbitrarily assigned to each inpusynapse that has never been successful.
neuron. Initially, a single input neuron is firing. Using ex-  For instance, the punishment of the “good” synapse
tremal dynamics, the neuron that is connected with the inputould be of the order of 1%, compared with a random
neuron with the largest strength is then firing, and so on. Iidepression of order unity for a “bad” synapse. The neuron
after a maximum number of firing evertisthe correct out-  has earned some forgiveness due to its past good perfor-
put neuron has not been reached, all the synapses in thgance. Biologically, we envision that a neuron that does not
string of firing neurons are punished as before. Summarizingeceive a global feedback signal after firing relaxes its sus-
the entire dynamical process is as follows: ceptibility to a subsequent negative feedback signal by some

(i) A single input neuron is chosen. chemical mechanism. It is important to realize that the syn-

(ii) This neuron i$ co_nnected rando_mly with several Oth'_apse “knows” that it has been successful by the fact that it
ers, and the one which is connected with the largest Synapligas not punished, so no nonlocal information is invoked.

strength fires. The procedure is repeated a prescribed MaXiote that we have not and will not. include any positive

g;]l;?] E?E?% r?:;utlrrgr?:f’ thereby creating and labeling a Hebbian enforcement in order to implement memory in the
(i) If, during that process, the correct output has not beeﬁys\;c\(/amr,] only redlgcgc:hpumsgn"ntent. h o both the | d
reached, each synapse in the entire chain of firings is de- € have applied this update scheme 1o bo e layere
pressed a random amount@<1. and the random version of the model. For the random model,
(iv) If the correct output is achieved, there is no plasticVe choose 200 intermediate neurons, plus five designated
modification of the neurons that fired. Go (0. input neurons and five output neurons. Each neuron was con-

A system withn=200, n,=n,=5, n.= 10 behaves like Nected randomly with ten other neurons. First, we arbitrarily

the layered structure presented abcared is actually the one assigned a correct output to each input and ran the algorithm
shown in the figure This illustrates the striking develop- aPove until the map had been learned. After unsuccessful
ment of an organized network structure even in the caséngs, punishment was applied; an amount of 0.001 to pre-
where all initial connections are absolutely uncorrelated. The/iously successful neurons, and a random number between 0
model creates wires connecting the correct outputs with th@nd 1 for those that had never been successful. Then we

inputs, using the intermediate neurons as stepping stones. arbitrarily changed one input-output assignment and repeated
the learning scheme. Yet another new random reassignment

of a single input-output pair was introduced, and so on.
In the beginning, the learning time is large, corresponding
roughly to the time for a random search for each connection.
We observed that there was not much memory left theNew connections have to be discovered at each input-output
second time around, when an old assignment map was reerassignment. However, after several switches, the time for
ployed, and the task had to be relearned from scratch. Thigdaptation becomes much shorter, of the order of a few time
turns out to be much more than a nuisance, in particulasteps. Figure 4 shows the time for adaptation for hundreds of
when the task was complicated, like in the case of a randomonsecutive input-output reassignments. The process be-
network with many intermediate neurons, where the searchomes extremely fast compared with the initial learning time.
became slow. Typically, the learning time is only 0-10 steps, compared
We would like for there to be some memory left from with hundreds or thousands of steps in the initial learning
previous successful experiences, so that the earlier efforgghase. This is because any “new” input-output assignment
would not be completely wasted. is not really new, but has been imposed on the system before.
There is an analogous situation in the immune systemJhe entire process, in one particular run with 1000 adapta-
where the lymphocytes can recognize an invader faster th&#ons, involved a total of only 38 neurons out of 200 inter-
second time around. The location and activation of memorynediate neurons to create all possible input-output connec-
in biological systems is an important, but largely unresolvedions, and thus all possible maps.
problem. Speaking about the immune system, it has in fact In order to understand this, it is useful to introduce the
been suggested in a series of remarkable papers by Matzencept of the “active level,” which is simply the strength
inger that the immune system is only activated in the presef the strongest synaptic output connection from the neuron

IV. SELECTIVE PUNISHMENT AND REMEMBERING
OLD SUCCESSES
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work with reduced punishment for successiul synapses. Both plots FIG. 5. Strengths of the synapses for a small system with ran-
I‘TE Z\;\;attheetﬁzn;aes?ita?é:r%tir:n thTehlnset the scale IS ma gnlfled_to bett%%m connections, with three inputs, three outputs, and 20 interme-
. ing. 1he network has five |nput§, five OUt'diate neurons, each connected with five neurons. There are seven
puts, and 200 intermediate neurons, each connected with ten Othgtr:tive synapses with strength 1, and several synapses with strengths
neurons. just below the active level. Those synapses represent memories of
past successdsuch as the broken lines in Fig).6
which has just been selected by the extreme dynamics. For
simplicity, and without changing the firing pattern whatso-and it is likely that an old successful connection reappear at
ever, we can normalize this strength to unity. The strengththe active level. Perhaps that connection is also unsuccessful
of the other output synapses are thus below the active leveand will be suppressed, and another previously successful
Whenever a previously successful input—output connectiogonnection may appear at the active level. The system sifts
is deemed unsuccessful, the synapses are punished slighttiirough old successful connections in order to look for new
according to rulg(ii-a), only until the point where a single ones.
synapse in the firing chain is suppressed slightly below the Every now and then, there is some path interference, and
active level defined by the extremal dynamics, thus barelyelearning takes more time, indicated by the rare glitches of
breaking the input—output connection. Thus connections thdbng adaptation times in Fig. 4. Also, now and then previ-
have been good in the past are located very close to theusly unused synapses interfere, since the strength of the
active level, and can readily be brought back to life again, bysuccessful synapses slowly becomes lower and lower. Thus
suppression of firing neurons at the active level if need beeven when successful patterns between all possible input—
The dynamics allows for automatic storing of old patterns,output pairs have been established, the process of adaptation
thereby creating a toolbox of potentially useful patterns thanhow and then changes the paths of the connections.
can swiftly be brought back to life at a later stage. This might Perhaps this mimics the process of thinking: “Thinking”
be our most striking result. is the process where unsuccessful neuronal patterns are sup-
Figure 5 shows the synaptic landscape after several rggressed by some “hormonal” feedback mechanism, allow-
learning events for a small system with three inputs, threéng old successful patterns to emerge. The brain sifts through
outputs, and 20 neurons, each connected with five neuroneld solutions until, perhaps, a good pattern emerges, and the
The arrow indicates a synapse at the active level, i.e., a symprocess stops. If no successful pattern emerges, the brain
apse that would lead to firing if its input neuron were firing. panics: it has to search more or less randomly in order to
Altogether, there are seven active synapses for that particulastablish a new, correct input—output connection.
simulation, representing the correct learning of the current The input patterns do not change during the thinking pro-
map. Note that there are many synaptic strengths just belowess: one can think with closed eyes.
the active level. The memory of past successes is located in Figure Ga) shows the entire part of the network which is
those synapses. involved with a single input neuron, allowing it to connect
The single synapse that broke the input—output conneowith all possible outputs. The full line indicates synapses at
tion serves as a self-organized switch, redirecting the firinghe active level, connecting the input with the correct output.
pattern from one neuron chain to another, and consequentljhe broken lines indicate synapses that connect the input
from one output to another. The adaptation process takesith other outputs. They are located just below the active
place by employing these self-organized switches, playindevel. The neurons marked by an asterisk are switches, and
the roles of “hub neurons,” assuring that the correct outputare responsible for redirecting the flow.
is reached. Similarly, Fig. §b) shows all the synapses connecting a
Thus when an input—output connection turns unsuccessingle output with all possible inputs. The neurons with the
ful, all the neurons in the firing chain are suppressed slightlyasterisks are “hub neurons,” directing several inputs to a
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FIG. 6. (a) Part of the network connecting a single output with
the five possible inputs. The full line represents the active correct FIG. 7. Learning with noise. The diagram shows all the synaptic
connection, and the broken lines represent synapses connectiggnnections allowing a single input neuron to connect with all pos-
with the other inputs. The strengths of those synapses are bare$jble output neurons. The full lines show the currently active path,
below the active level(b) Network connecting a single input with and the numbers are the synaptic strengths as explained in text.
all possible outputs. The synapses marked with an asterisk act like

switches, connecting the input with the correct output. least 0.02, the level of the noise, below the correct ones.

Note also that some of the incorrect synapses not connected
common output. Once such a neuron is firing, the output isvith switches are much less suppressed. They are cutoff by
recognized, correctly or incorrectly. A total of only five in- switches elsewhere and need not be suppressed in order to
termediate neurons are involved in connecting the outpuhave the signal directed to the correct output.
with all possible inputs. The price to be paid in order to have perfect learning with

Note that short-term and long-term memories are not lonoise is that adaptation to new patterns takes longer, because
cated at, or ever relocated to, different locations. They arghe active synapses have to be suppressed further to give way
represented by synapses that are more or less suppresdgednew synapses. Figure 8 shows the learning time for 700
relative to the currently active level selected by the processuccessive remappings, as in Fig. 4, but with noise added.
of extremal dynamics, and can be reactivated through selfNote that indeed adaptation is slower.
organized switches as described above.

The system exhibits aging at a large time scale: eventually v, BEYOND SIMPLE WIRING: XOR AND SEQUENCES
all or most of the neurons will have been successful at one
point or another, and the ability to selectively memorize a So far we have considered only simple input—output map-
good pattern disappears. The process is not stationary. If orfdngs where only a single input neuron was activated. How-
does not like that, one can let the neurons die, and replac@ver, it is quite straightforward to consider more complicated
them at a small rate by fresh neurons with random conned?atterns where several input neurons are firing at the same
tions. The death of neurons causes longer adaptation timééne. In the case of the layered network, we simply modify
now and then since new synaptic connections may have to &€ rule(ii) above for the selection of the firing neuron in the
formed. second layer as follows:

(i-b) The neurorj, in the middle layer for which the sum
of the synaptic connections(ji) with the active input neu-
Perfect learning with noise ronsi is maximum is firing.

It is also interesting to consider the effect of noise. Sup-
pose that a small noisg randomly distributed in the interval 3000 . . - ' ' .
0<n<g, is added to the signal sent to the neurons. This may
cause an occasional wrong output signal, triggered by syn
apses with strengtha/(k,,j) that were close to that of the
correct one, i.e., the one that would be at the active level in
the absence of noise. However, those synapses will now bi 2000
suppressed, since they lead to an incorrect result. After ¢

©

while, there will be no incorrect synapsegk,,j) left such g
that the addition of the noise can cause it to exceed theZ
strength of the correct synapa€k,j ), S0 no further modi- . 1000

fications will take place, and the input—output connections
will be perfect from then on.

Thus the system deals automatically with noise. Figure 7
shows all the input—output connections for one input neuron
in a simulation with three input neurons, three output neu- H. LB bbb il Al i Mot b AL LL
rons, and a total of 50 neurons each connected with five 0 100 200 ~ 300 ~ 400 500 600 700

. . K Number of adaptations
neurons. The noise level is 0.02, and the punishment of pre-
viously successful neurons is 0.002. The numbers are the FIG. 8. Learning times. As in Fig. 4, but with uniform random
strengths of the synapses. Note that the incorrect synaps@sise of amplitude 0.02 added to the synaptic strengths. Note the
connected with the switches are suppressed by a gap of wicrease in the adaptation times.
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FIG. 10. Learning nonlinear problems beyond XOR. Curves in
panel A show the time dependence of average errors for increas-

FIG. 9. Learning the XOR problem. The top panel shows thejngly harder parity functions, from order @2e., the XOR caseto
distributions of learning times for networks with a middle layer order 6. For each curve, the numbers indicate the dize2l') of
having 3,10, or 20 nodes. The bottom panel shows the mean learfhe problem. In panel B the curves shown in A are replotted with
ing time (averages from TOrealization$ for various sizes of the the time axis rescaled with the size of the problehﬂF,t/Ik. Good
middle layer. data collapse is achieved wit-1.4.

Middle layer size

For the random network one would modify the rule for number of intermediate neurofihree for this problemare
the firing of the first intermediate neuron similarly. able to solve the task. Systems with such a small number of
intermediate neurons are poor. Networks with larger middle
layers learn significantly faster, up to an asymptotic limit

. . which for this problem is reached for about 20 nodes. Again,
Since the heydays of Minsky and Papkt6] who dem- more is better. We also performed simulations with the se-

onstrated that only linearly separable functions can be reprgg (e nunishment algorithm where successful neurons were

sented by simp!e, one layer, percgptrons, the ability' to perﬁ)unished less, reducing the learning times by a factor of 2 or
form the exclusive-ofXOR) operation has been considered so for the small systems.

a litmus test for the performance of any neural network. How Even in the presence of noise, the tolerant version of the
does our network measure up to the test? Following Klemn?nodel presented above, and in Ol:ll’ previous péfeallows

et al. [16] we choose to include three input neurons, two Oy hoitect but slightly slower learning. Klemeet al. [16]

them representing th(_a input bits fgr V.Vh'Ch we wish 10 pPerinioduced forgiveness in a slightly different, but much more
form the X.OR operation, and a third input neuron Wh'Ch_ 'S elaborate way, by allowing the synapses a small number of
always active. This bias assures that there is a nonzero inpilisiaies hefore punishment. We do not see the advantage of
even.when the response to the 00 b|t§ IS con5|de_red, The Mgis scheme over our simpler original version with selective
possible outputs for the XOR operation determine that th%unishment, which also appears to be more feasible from a
network has two output neurons. biological point of view.

The inputs are represented by a stringl dfinary units Indeed, much harder problems of the same class as the
X1, -+« X1, X €{0,1}. As explained in Sec. Ill, neurons are yop can be learned by our network without any modifica-
connected by weight from each input) to each hidden jon xOR belongs to the “parity” class of problem, where
() unit and frqm each hidden un!t to e.ach outggt unit. . for a string of arbitrary lengttN there are ? realizations

The dynamics of the network is defined by the following ;o h65ed of all different combinations of 0's and 1's. In
steps. One stimulus is randomly selected out of the four poss;er 1o earn to solve the parity problem the system must be
sible (|.§., 001,101,_011,and 11_]and applle_d t0X1,X2.X3. aple to selectively respond to all the strings with an ¢aid
Eaclh hidden nodg then receives a weighted inplt;  oyey number of 1's(or zero3. The XOR function is the
=3{_;W;iX; . The state is chosen according to the winner-simplest case withN=2.
take-all rule, i.e., thé,, neuron with the Iargeshj fifes(i.e., We used the same network as for the XOR problem, but
Xj,,=1). Since there is only one active intermediate neuronnoy with increasingN up to string lengths of 6. For all cases
the output neuron is chosen as before to be the one connecte@ chose a relatively large intermediate layer with 3000 neu-
with that neuron by the largest strength; . rons, using a random value<0s5<<1. Figure 10 shows the

Adaptation to changing tasks is not of interest here, so weesults of these simulations. In panel A the mean eftal-
choose first to simulate the simplest algorithm in Sec. lliculated as in Klemnet al. [16] for consistencyis the ratio
without any selective punishment, using a random value etween those realizations which have learned the complete
<6<1. As shown in Fig. 9, networks with the minimum task and those that have not, as a function of time. For each

A. XOR operation
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A B necting input 1 to 1 and input 3 to neuron 2 through differ-
1,2 2 112 2 ent intermediate neurons, while ignoring input 2. The brain
¢ identifies features in the input that are different. The irrel-
evant feature 2 is not even “seen” by our brain, since it has
no internal representation in the form of firing intermediate
neurons. In the case where the assigned outputs for the two
inputs are the same, say 1, the problem is solved by connect-
o ing the common input neuron 1 with the output neuron with
1 2 12 . . : : . }
a single string of synaptic connections. The network identi-
FIG. 11. Two inputs, each representing two firing input cells, fies a feature that is the same for the two inputs, while ig-
are considered. The two inputs have the input cell in the center imoring the irrelevant outputs 1 and 3, that are simply not
common.(A) If the outputs should be the same, the common neutegistering in the brain. In a simulation, it was imposed that
ron is connected with the correct output neurt®) If the outputs  \when inputs 1 or 3 were active without 2 being active, suc-
should bg different, the input neurons that are different are congegs was achieved only if the output was not 1: the frog
nected with the two different outputs. should not try to eat nonflying objects. This mechanism can
supposedly be generalized to more complicated situations:
N, a total of 1024 realizations was simulated, each one initidepending on the task at hand, the brain identifies useful
ated from a different random configuration of weights. No-features that allows it to distinguish, or not to distinguish
tice that the time axigfor presentation purposess in loga-  (generalizg between inputs.
rithmic scale. At least for the sizes explored here, the Suppose the system is subsequently presented to a pattern
network solves larger problems following the not very explo-that in addition to the input neurons above includes more
sive power law scaling relationship. Panel B of Fig. 10firing neurons. In case the additional neurons are irrelevant
shows that learning time scales with problem size with arfor the outcome, the system will take advantage of the con-
exponentk~1.4. In conclusion, the nonlinearity does not nections that have already been created and ignore the addi-
appear to introduce additional fundamental problems into outional inputs. If some of the new inputs are relevant, in the
scheme. sense that a different output is required, further learning in-
volving the new inputs will take place in order to allow the
B. Generalization and feature detection system to discriminate between outputs. We envision that
The general focus of most neural network studies haé,rl]IS procelfs of ]flnet; and flnzrbdlscrlmlnatloT_ be_tweer; _mput
been on the ability of the network to generalize, i.e., to dis-'asses alows for etter and better generalization of inputs

tinguish between classes of inputs requiring the same out| urtequiring identical outputs.
9 P q g PUL The important observation to keep in mind is that the

In general, the task of assigning an output to an input which oncept of generalization is intimately connected with the

has not been seen before is mathematically ill-defined, sinc esired function, and cannot be predesigned. We feel that,

in principle any arbitrary collection of inputs might be as- for instance, with respect to theories of vision, there is an

signed to the same output. Practically, one would like to map . . .
A . ey undue emphasis on constructing general pattern detection de-
similar” inputs to the same output; again “similar” isill- . o
; : P ' : vices that are not based on the nature of the specific problem
defined. We believe that similarity is best defined in the €O~ hand. Whether edaes. anales. contrasts. or whatever are
text of (biological) utility: similar inputs are by definition i ges, angies, '

inputs requiring the same reactidoutpuy in order to be the important features must be learned, not hardwired.

successfulthis is circular, of course For a frog, things that ) )
fly requires it to stick its tongue out in the direction of the C. Learning multistep sequences
flying object, so all things that fly might be considered simi-  In general, the brain has to perform several successive
lar; there is not much need for the frog to bother with thingstasks in order to achieve a successful result. For instance, in
that do not fly. Actually, a frog can only react to things thata game of chess or backgammon, the rewargunishment
move as demonstrated in the classical paper by Letétial.  only takes place after the completion of several steps. The
[17] almost half a century ago. Roughly, the generalizatiorsystem cannot “benefit” from immediate punishment fol-
problem can be reduced to the problem of identifying usefulowing trivial intermediate steps, no matter how much the
(or dangerousfeatures in the input that have consequencedad decisions contributed to the final poor result.
for the action that should be taken. Consider for simplicity a setup where the system has to
So how does our network learn to identify useful featuredearn to present four successive outputs, 1, 2, 3, and 4, fol-
in the input? Supposgrig. 11) that we present two different lowing a single firing input neuron, 1. In general, the output
inputs to, for instance, the random network, one where inputlecision at any intermediate step will affect the input at the
neurons 1 and 2 are firing, and another one where inputs gext step. Suppose, for instance, that in order to get from one
and 3 are firing. Consider the two ca$@3 where the output place to another in a city starting at point 1, one first has to
neuron for the two inputs should be the same, @jdwhere  choose road 1 to get to point 2, and then road 2 to go to point
the assigned outputs are different. 3, and so on. Thus the output represents the point reached by
In the case where the outputs should be different, say, lthe action, which is then seen by the system and represents
and 2, respectively, the algorithm solves the problem by conthe following input. We represent this by feeding the output

—
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signal to the input at the next step. If output number 5 fires atontexts these ideas do apply and in which they do not. The
an intermediate step, input neuror-2=6 will fire at the  model discussed is supposed to represent a mechanism for
next step: this is the outer worlds reaction to our action.  biological learning, that a hypothetical organism could use in
We will facilitate the learning process by presenting theorder to solve some of the tasks that must be carried out in
system not only with the final problem, but also with simplerorder to secure its survival. On the other hand the model is
intermediate problems: we randomly select an input neuromot supposed to solve optimally any problem, real brains are
from 1 to 4. If neuron 4 is selected, output neuron 4 musthot very good at that either. It seems illogical to seek to
respond. Otherwise the firing neurons are punished. If inpuinodel brain function by constructing contraptions that can
neuron 3 is selected, output neuron 3 must first fire. Thigperform tasks that real brains, such as ours, are quite poor at,
creates an input signal at input neuron 4. Then the outpuguch as solving the Travelling Salesman Problem. The
neuron 4 must fire. For any other combination, all the synimechanism that we described is not intended to be optimal,
apses participating in the two step operation are punished. ljust sufficient for survival.
case input 2 is presented, output neuron 2 must first fire, then Extremal dynamics in the activity followed eventually by
output neuron 3, and finally output neuron 4 must fire, oth-depression of only the active synapses results in preserving
erwise all synapses connecting firing neurons in the thregood synapses for a given job. In contrast to other learning
step process are punished. When input 1 is presented, tlsehemes, the efficiency also scales as one should expect from
four output neurons must fire in the correct sequence. Obiology: bigger networks solve a given problem more effi-
course, we never evaluate or punish intermediate successeasently than smaller networks. And all of this is obtained
For this to work properly, it is essential to employ the without having to specify the network’s structure, the same
selective punishment scheme where neurons that have onpenciple works well in randomly connected, lattices or lay-
participated in correct sequences are punished less than neered networks.
rons that have never been successful, in order for the system In summary, the simple action of choosing the strongest
to remember partially correct end games learned in the pasand depressing the inadequate synapses leads to a permanent
In one typical run, we choose a layered geometry with tercounterbalancing which can be analogous to a critical state in
inputs, ten outputs, and 20 intermediate neurons. After 4he sense that all states in the system are barely stable, or
time steps, the last step input+4 output 4 was learned for “minimally” stable using the jargon of Refl18]. This pe-
the first time. After 35 time steps, the sequence input 3 culiar metastability prevents the system from stagnating by
output 3(=input 4 —4 was also learned, after 57 steps thelocking into a single(addictive configuration from which it
sequence input 2 input 3— input 4— output 4 was can be difficult to escape when novel conditions arise. This
learned, and finally, after 67 steps the entire sequence hdedature provides for flexible learning and unlearning, without
been learned. These results are typical. The brain learned ti@ving to specifically include aad-hocforgetting mecha-
steps backwards, which, after all, is the only logical way ofnism, it is already embedded as an integrated dynamical
doing it. In chess, one has to learn that capturing the king igroperty of the system. When combined with selective pun-
essential before the intermediate steps acquire any meaninghment, the system can build up a history-dependent toolbox
In order to imitate a changing environment, we may reasof responses that can be employed again in the future.
sign one or more of the outputs to fire in the sequence. As in Unlearning and flexible learning are ubiquitous features
the previous problems, the system will keep the parts thaef animal learning as discussed recently by Wise and Murray
were correct, and learn the new segments. Older sequencik9]. We are not aware of any other simple learning scheme
can be swiftly recalled. Finally we added uniform randommastering this crucial ability.
noise of order 10 to the outputs; this extended the learning
time in the run above to 193 time steps. ACKNOWLEDGMENTS
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