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Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model

Pu-Lin Gong and Jian-Xue Xu
School of Civil Engineering and Mechanics, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China

~Received 28 September 1999; revised manuscript received 28 November 2000; published 26 February 2001!

We have analyzed the responses of an excitable FitzHugh-Nagumo neuron model to a weak periodic signal
with and without noise. In contrast to previous studies which have dealt with stochastic resonance in the
excitable model when the model with periodic input has only one stable attractor, we have focused our
attention on the relationship between the global dynamics of the forced excitable neuron model and stochastic
resonance. Our results show that for some parameters the forced FitzHugh-Nagumo neuron model has two
attractors: the small-amplitude subthreshold periodic oscillation and the large-amplitude suprathreshold pe-
riodic oscillation. Random transitions between these two periodic oscillations are the essential mechanism
underlying stochastic resonance in this model. Differences of such stochastic resonance to that in a classical
bistable system and the excitable system are discussed. We also report that the state of the basin of attraction
has a significant effect on the stability of neuronal firings, in the sense that the fractal basin boundary of the
system enhances the noise-induced transitions.
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I. INTRODUCTION

Excitable dynamics underlie the behavior of many s
tems ranging from Josephson junction to chemical react
to cardiac and nerve cells. In these systems a large pertu
tion can elicit a large amplitude spike or ‘‘firing,’’ followed
by a quick return to a globally attracting fixed point. Th
dynamical response of these systems to the periodic d
ministic forcing has been extensively described in both
perimental and model studies@1,2#. As a simple but repre-
sentative example of excitable systems, the Fitzhu
Nagumo~FHN! neuron model was originally suggested f
the description of firing behaviors of sensory neurons@3#; it
was also widely used for the modeling of a spiral wave in
two-dimensional excitable medium. The detailed pha
locking dynamics of the periodically stimulated FHN equ
tion has been investigated@4#. Recently, the forced FHN
neuron model with noise input has been studied to rev
how information is encoded and transmitted in a neuron s
tem under noisy circumstance@5–10#. It was found that, in
this typical excitable neuron model, noise can enhance
detection of weak subthreshold signals using the mechan
of stochastic resonance. Coherence resonance was also
in the noisy neuron model@11#. In the classical stochasti
resonance theory, stochastic resonance is related to ran
transitions from one stable equilibrium state to the other.
for the previous studies about stochastic resonance in
excitable FHN model, although the forced excitable mo
has only one attractor, it has been found that the histogram
the interspike intervals has a multimodel structure with
peaks located at integer multiples of the driving period, a
stochastic resonance still occurs in the excitable neuro
model. But for the excitable FHN neuron model it still r
mains unclear whether stochastic resonance is related t
stability. Moreover, the coexistent attractors have been
served experimentally in real excitable neurons@12–14#.
Therefore to understand stochastic resonance in these
ronal systems, it is necessary to study whether stocha
resonance in the excitable neuron model is related to b
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bility. In this paper we present a global view of the period
solutions of the FHN neuron model with weak period
stimulation in the two-parameter space. Then we pay at
tion to the parameter regions associated with the bistab
in the periodically forced FHN neuron model and study ho
noise-induced random transitions between the bistability
related to stochastic resonance in the excitable neuron mo
In the previous studies about the stability of firing activity
some neuron models@15#, little attention has been paid to th
global dynamics of these systems. Furthermore, it has b
regarded that the information concerning the neuron’s in
may be encoded in the interspike intervals of neuron firin
@16,17#. A precondition of the code manner is that the firin
of the response to an input signal be stable in the presenc
noise @18#. So, when multiple steady states coexist in t
excitable neuron model, we should discuss whether the
bal dynamics of the typical neuron model have effects on
stability of neuronal firings under noise perturbations.

With these aims in the view, the paper is organized in
following manner. The bistability and stochastic resonan
are the subjects of Sec. II. In Sec. III we study the relatio
ship between the state of basin and the stability of the fir
state. At the end of the paper some conclusions are draw

II. BISTABILITY OF THE FORCED FHN NEURON
MODEL AND STOCHASTIC RESONANCE

A. The global dynamics of the forced FHN neuron model

We consider the periodically forced FitzHugh-Nagum
neuron model in the following form:

«
dv
dt

5v~v2a!~12v !2w,

~1!
dw

dt
5v2dw2b1r sin~bt !.

The variablev is the fast voltagelike variable andw is the
slow recovery variable. Throughout the paper we fix the v
©2001 The American Physical Society06-1
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ues of the constants to«50.005, d51.0, andb57.5. A
firing or a spike is considered to occur if the variablev has a
positive-going crossing of the firing thresholdv th , chosen as
v th50.5. Here the slow variable of the neuronal model
driven by the external weak signal, the reason for this is
allow comparison with the results obtained by other scho
@4–6#, in their studies the slow variable was also driven
the external periodic signal. For the unforced FHN equati
i.e., in Eq. ~1! r 50, the system has equilibrium (v0 ,w0),
wherev0 is real-valued root ofv0(v02a)(12v0)5v02b,
andw05v02b. The stability of the equilibrium point is de
termined by the Jacobian matrix

D5S ~23v0
212(11a)v02a)/« 2/«

1 21
D .

In the a-b parameter space, from the condition for the ex
tence of a Hopf bifurcation@19#, we obtain that the unforced
system has Hopf bifurcation when parametersa andb satisfy
the following algebraic equation:

b5
11a

3
2

c

60
2S 11a

3
2

c

60D S 122a

3
2

c

60D S 22a

3
1

c

60D ,

~2!

wherec5A3942400a1400a2. The Hopf bifurcation points
satisfying Eq.~2! are shown in Fig. 1. In the following stud
ies the value of parametera is fixed toa50.5. For this case
the stability check of the equilibrium shows that whenb
,0.2623 the unforced FHN neuron model has only o
stable equilibrium, and atb50.2623 a supercritical Hopf bi
furcation occurs. Forb.0.2623, the unforced model has
stable limit cycle.

In the present studies we consider the case ofb
,0.2623, the unforced neuron model has only one sta
equilibrium, it is excitable and related to the physiologic
situation of some excitable neurons. When a very weak

FIG. 1. The Hopf bifurcation points in parameter spacea-b. The
units of a andb are arbitrary.
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riodic stimulation is forced on the excitable system@in Eq.
~1! r .0#, the global dynamic characteristics of the syste
within the parameter regionb1,b,b2,r1,r ,r2 will be
studied, whereb150.245, b250.26, r150.015, andr2
50.03. For this purpose we first integrate Eq.~1! by setting
b to a certain value and increasingr from r1 to r2, and then
decreasing fromr2 to r1 in a step of 0.0002. In this proces
the final point of the last computed stable solution is alwa
used as an initial point for the new computation. After th
process, the characteristics of the stable solution on a stra
line in the ~b,r! plane withb5constant may be determined
We then increaseb with a step of 0.0002, and repeat th
above procedure to find the characteristics of solutions of
~1! on another straight line withb5constant. In this way, the
diagram in the parameter space that summarizes the re
of the calculation can be drawn and shown in Fig. 2. In F
2 the region marked byP-k represents that, when the param
etersb and r fall into this region, the system has a stab
periodic orbit with the period ofT5kT0 , T052p/b
50.837. In the present studies we only focus our attention
the low-order periodic solutionsP-k, k51,2,3,4. As shown
in Fig. 2, there exist the crossing regions which are sh
owed by the solid lines, in these regions different perio
orbits coexist at the same parameter values. We also il
trated the simultaneous existence of the attractors by ch
ing some different initial points. In@20,21#, the Borhoeffer
Van der Pol system, which is a FHN-type model, has be
studied. The quasiperiodic, chaotic motion were found
some parameters. Other nonlinear phenomena such as c
intermittency, and bistability were also found in the forc
Borhoeffer Van der Pol system. In this paper we presen
global view of the periodic solutions of the periodical
forced FHN neuron model in the two-dimensional parame
space.

FIG. 2. The periodic solutions of the forced FHN neuron mod
in the parameter planer-b. The dominant mode-locking regions ar
marked byP-k, k51,2,3,4. In the crossing regions shaded by t
solid lines, the forced neuronal model has coexistent attractors.
units of ther andb are arbitrary.
6-2
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As shown in Fig. 2, the coexistent attractors are very co
mon in the chosen parameter region. In the crossing reg
shadowed by the solid lines, we choose the parameteb
50.2466,r 50.0292. We checked that for some paramet
in the shadowed regions of Fig. 2, similar results could
obtained as those shown below for the case ofb50.2466,
r 50.0292. Whenb50.2466,r 50.0292, the forced neuro
model has two globally stable attractors, one is the s
threshold small-amplitude periodic oscillation with perio
T15T0 , the other is the suprathreshold large-amplitude
riodic oscillation with periodT252T0 . The coexistent peri-
odic oscillations are shown in Fig. 3. Next let us consider
basin of attraction of the coexistent attractors. In the reg

FIG. 3. The subthreshold small-amplitude periodic solution w
periodT15T0 and the suprathreshold large-amplitude periodic
lution with periodT252T0 : ~a! the coexistent attractors in the sta
spacev-w, the dashed line is for the suprathreshold oscillation a
the solid line is for the subthreshold oscillation;~b! Membrane po-
tential v versus timet for the two attractors, the dashed line is f
the subthreshold oscillation and the solid line is for the suprathre
old oscillation. The units of thev, w, andt are arbitrary.
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of phase space20.1,v,0.7,20.1,w,0.1,4003200 ini-
tial conditions are uniformly chosen in the form of grids a
each of them is integrated to decide which attractors it ev
tually resides on. From the calculations, the basin of attr
tion in the chosen region of phase space can be obtai
which is shown in Fig. 4. If the initial state of the neuro
model starts from the basin of attraction of the subthresh
periodic oscillation, the final state of the neuron model is
subthreshold oscillation, the neuron does not fire. On
other hand if the neuron model starts from the basin of
traction of the suprathreshold oscillation, the neuron mo
has the stable periodic firings pattern. The result shows
initial states also play an important role in the discharg
behaviors of neurons. From the point of view of neuron fi
ings, the external signal that can induce firings is regarde
a suprathreshold stimulation, otherwise it is a subthresh
stimulation. In the previous studies about stochastic re
nance in some simple bistable systems and excitable ne
models, the external stimulation forced on these systems
subthreshold input signal. However, for the case studied
us, when a weak periodic signal is forced on the FHN neu
which is in the excitable region, both the subthreshold os
lation and the suprathreshold oscillation can be genera
simultaneously by the weak stimulation, thus the perio
signal can be regarded as a suprathreshold stimulatio
well as a subthreshold stimulation.

B. Stochastic resonance related to the dynamic bistability

In the classical stochastic resonance theory, stocha
resonance~SR! phenomenon occurs in a bistable syste
which has two static fixed points@22–24#. For the previous
studies about stochastic resonance in the excitable FHN
ronal model@5,25# we can verify that in their consideratio

-

d

h-

FIG. 4. Basin of attraction for the forced FHN neuronal mod
whenb50.2466,r 50.0292. The black dots represent the basin
attraction of the subthreshold oscillation, the other region is
basin of attraction of the suprathreshold oscillation. The units ov
andw are arbitrary.
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PU-LIN GONG AND JIAN-XUE XU PHYSICAL REVIEW E63 031906
the forced excitable FHN neuron model has only one attr
tor. However, as shown in the present study, the dyna
bistabilities~one is subthreshold oscillation and the other
the suprathreshold oscillation! are very common for the
forced FHN neuronal model in some parameter regio
Therefore whether stochastic resonance occurs in thes
gions and is related to the coexistence of two attractors ar
naturally in this context.

To address the question, white Gaussian noisej(t) with
the mean ^j(t)&50 and the autocorrelation functio
^j(t)j(s)&52Dd(t2s) is added on Eq.~1!:

« v̇5v~v20.5!~12v !2w,
~3!

ẇ5v2dw2b1r sin~bt !1j~ t !,

where «50.005, d51.0, b57.5, and b50.2466, r
50.0292. We integrate Eq.~3! using the forth-order Runge
Kutta method with the time step of 0.001. For a fixed no
intensity, such asD5431027, an initial point from the ba-
sin of attraction of the subthreshold oscillation is chos
After discarding a long-time transient state, the histogram
interspike intervals is obtained and shown in Fig. 5. It ha
multipeaked structure and the interval between these pea
close to the period of the weak signal. In addition, the de
of the envelope of the interspike intervals histogram is ind
tinguishable from an exponential function, i.e.,Amax
}exp(2l1T) with the decay constantl150.255. The same
histogram of the interspike intervals can be obtained by
tiating the system within the basin of the suprathreshold
cillation. This signifies that the statistical characteristic of t
interspike intervals is independent of initial conditions.

In the present studies the interspike interval histogram
a multipeaked structure and the interval between these p
is close to the period of the weak signal, we wonder whet
stochastic resonance occurs. First, we use the measure
duced in@26# to study whether stochastic resonance occu

FIG. 5. The interspike intervals histogram when noise inten
D5431027. The units of the axes are arbitrary.
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i.e., the difference of the interspike interval histogram in t
presence of periodic force and the interspike interval his
gram in the absence of periodic force. During the proces
varying noise intensity, the behavior of the peak heights
the difference as a function of noise intensityD is shown in
Fig. 6. It shows that the first peak and the second peak re
maximum values individually. This result indicates that s
chastic resonance occurs in this case studies by us. Then
signal-to-noise ratio is calculated by us. The power spec
density is calculated from the spike train through Four
transform as in Ref.@10#. The signal-to-noise ratio is ob
tained from the power spectrum as RSN
510 log10@S(w)/N(w)#, whereRSN is the signal-to-noise ra
tio, the signal powers(w) is the height of the signal pea
located at the signal frequency, and the noise powerN(w) is
the amplitude of the background noise measured at the
of the signal peak. The signal-to-noise ratio as a function
noise intensityD is shown in Fig. 7. It increases with nois
intensity D, reaches a maximum, and decreases again,
playing the typical feature of stochastic resonance.

y

FIG. 6. Heights of the first~dots! and second~triangles! peaks of
the difference of the interspike intervals histogram in the prese
of periodic force and the interspike intervals histogram in the
sence of periodic force versus noise intensityD. The units of the
axes are arbitrary.

FIG. 7. Signal-to-noise ratios versus noise intensityD. The units
of the axes are arbitrary.
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GLOBAL DYNAMICS AND STOCHASTIC RESONANCE OF . . . PHYSICAL REVIEW E 63 031906
To interpret the basic mechanism underlying stocha
resonance of the present study and show some differe
between our case and the previous studies in a typ
bistable system and the excitable system, we need to ana
the statistics of random jumps between these two coexis
attractors. However, as shown in Fig. 3~a!, even in the ab-
sence of noise, the orbits of the two dynamic oscillations
very close to each other in phase space. Thus when in
presence of noise, it is very difficult to discern the detai
switching behaviors between the two attractors in ph
space. To overcome this problem, we consider the switch
behaviors induced by noise in the Poincare´ section. In gen-
eral, for a periodically forced nonlinear systemẋ5 f (x,t)
5 f (x,t1T), xPRn, whereT is the period of an externa
force. If time is included as a explicit state variable:

ẋ5 f ~x,u!

u̇51
~x,u!5Rn3S1,

the Poincare´ section ( can be chosen as(5$(x,u)PRn

3S1u5p%, the Poincare´ map is given byP:(→( @19#. By
this method we construct a Poincare´ map for Eq.~1! with
parametersb50.2466,r 50.0292. Two coexistent periodi
orbits for the Poincare´ map can be obtained. One is th
period-1 orbit that is shown in Fig. 8 as pointA, the other is
the period-2 orbit consisting of two points which are sho
in Fig. 8 as pointsB1 and B2 . The period-1 orbit and the
period-2 orbit in the Poincare´ section correspond to the sub
threshold oscillation and the suprathreshold oscillation of
original continuous system, respectively. When noise
forced on the system@i.e., Eq.~3!#, after discarding a long-
time transient state, in the Poincare´ section each point of the
two periodic orbits is smeared and broadened around it
due to the random transitions induced by noise. For this
son, to study the random switching behaviors between

FIG. 8. The periodic orbits in Poincare´ section, the paramete
a50.2466,b50.0292. The units of the axes are arbitrary.
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coexistent attractors in the Poincare´ section, we divide the
region around them into three subregions as shown in Fig
which are marked by I, II, and III, respectively. As for eac
subregion, it is in the basin of attraction of its correspond
attractor. For period-1 orbitA, it is smeared and extende
around itself by noise, but the extension of the point is co
fined to the subregion I aroundA. Therefore if a noisy orbit
is mapped into the subregion I aroundA, we regard that it is
switched to the period-1 orbitA. The same things occur fo
the pointB1 in subregion II andB2 in subregion III as those
for point A in subregion I.

Through studying the long-time random switching beha
iors in the Poincare´ section with the division mentioned
above, we find that two features of these transitions are
table. First, if a point starts from subregion III aroundB2 ,
the following point is necessarily in subregion II aroundB1 .
Second, there only exist two switching routes between th
two coexistent attractors, that is, transition from subregion
aroundB1 to subregion I aroundA and transition from sub-
region I aroundA to subregion III aroundB2 . In all cases we
observe that a trajectory eventually settles into the reg
around one of the attractors known to exist in the absenc
noise, no new stable state appears in this system as a co
quence of noise. Noise only induces transitions between
two-coexisting attractors. Thus stochastic resonance stu
here is related to random transitions between these two
tractors.

We consider the return-time distribution forB2 which is
one branch of the period-2 orbit, e.g., the distribution of t
time intervalT it takes for the system to be first kicked from
subregion III aroundB2 to other subregions and back agai
The histogram of the return time is shown in Fig. 9. Th
histogram is similar to the one shown in Fig. 5 for the orig
nal continuous noisy model. Further calculation shows t
the decay of the envelope of the interspike interval histogr
also satisfiesAmax}exp(2l2T), with l250.2542 which is
close to the decay constantl1 of the interspike intervals

FIG. 9. The return-time distribution of theB2 in Poicarésection
when noise intensityD5431027. The units of the axes are arb
trary.
6-5



e

te
tio
oi
ng

he
to
i

h

a
o
s
a
e
st
e
he
d
s
o
st
t
s,
lity
it
at
ic
in
n
io
ra
th
m

tim
m

tial
the
the

ar-

are

a
ting
u-
ys
the
from
the

astic
-to-
for
N
ion.
e

f
at-

PU-LIN GONG AND JIAN-XUE XU PHYSICAL REVIEW E63 031906
histogram shown in Fig. 5. The reason for this is that wh
an orbit is mapped into subregion III aroundB2 , it corre-
sponds to the case that the original continuous noisy sys
can generate a spike. This also demonstrates that transi
induced by noise between these periodic orbits in the P
carésection provide a good approximation of the switchi
behaviors of the original continuous noisy model@Eq. ~3!#.

The return time of the periodic pointA is calculated by
studying the long-time random switching behaviors in t
Poincare´ section. The mean of the return time of the attrac
is calculated for different noise intensity and the result
shown in Fig. 10. As shown in the figure, the mean of t
return time decreases with noise intensityD, reaches a mini-
mum, and increases again. The mean of the return time h
minimum value at an optimal value of noise intensity. T
compare with stochastic resonance in a classical bistable
tem, we consider a simple double-well system with we
periodic signal and noise input, this model has been wid
studied to account for the basic mechanism of stocha
resonance@24,27#. The return time of one equilibrium stat
of the model is calculated. As shown in Fig. 11, for t
classical bistable system, the mean of the return time
creases monotonically with noise intensity increasing. Thi
different from our case, which is one aspect that makes
case different from the previous studies about stocha
resonance in the typical bistable system. Here we wan
comment about this difference. For the case studied by u
view of the continuous dynamics of the model, the bistabi
is dynamic. If a noisy orbit is switched into an attractor,
will move along the attractor for at least a full period of th
atractor. The time scale of the motion within the dynam
attractor is comparable to that of the random transitions
duced by noise, thus the motion within the attractors can
be neglected. Moreover, the attractors have different per
and there exists the cooperation of the two dynamic att
tors due to noise. For the typical double-well system,
bistability is due to the coexistence of two stable equilibriu
points. There is a clear-cut separation of time scales, the
scale of the interwell hopping is much larger than the ti

FIG. 10. Mean of the return time versus noise intensityD. The
units of axes are arbitrary.
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scale that characterizes local relaxation within the poten
wells. In the approximate theory of stochastic resonance,
intrawell behaviors can be neglected and the mean of
return time decreases as noise intensity increases@28#.

The pulse-number distributionP(n,T), which is the prob-
ability of the occurrence ofn spikes in a fixed time intervalT
~counting time!, can also be used to describe statistical ch
acteristics of neuronal spikes trains@29#. The count mean
and the count variance of the pulse-number distribution
calculated from the standard formulas:

n̄~T!5 (
n50

nmax

np~n,T!, ~4!

s2~T!5 (
n50

nmax

n2p~n,T!2@ n̄~T!#2. ~5!

The mean-to-variance ratioR(T) is defined as

R~T!5n̄~T!/s2~T!. ~6!

For our case@Eq. ~3!#, the pulse-number distribution has
bell-shaped structure as shown in Fig. 12. Here the coun
time T512 is used to calculate the pulse-number distrib
tion. Since the forced FHN model studied by us displa
both monostable and bistable regimes, we will study how
mean-to-variance ratio changes when the system moves
one regime to the other and show the difference between
case studied here and the previous studies about stoch
resonance in the excitable neuron model. First, the mean
variance ratios for different noise intensity are calculated
the case ofb50.23,r 50.0292, in this case the forced FH
neuron model has only one stable subthreshold oscillat
The mean-to-variance ratiosR(T) versus noise intensity ar
shown in Fig. 13~a!. As shown in the figure,R(T) decreases
monotonically with noise intensityD increasing. Then the
mean-to-variance ratios are calculated for the case ob
50.245,r 50.0292, which is close to the boundary separ

FIG. 11. Mean of the return time versus noise intensityD for the
classical double-well system, the equation isẋ5x2x31a sin(wt)
1j(t), where a50.2, w50.0314, ^j(t)&50, and ^j(t)j(s)&
52Dd(t2s). The units of the axes are arbitrary.
6-6
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GLOBAL DYNAMICS AND STOCHASTIC RESONANCE OF . . . PHYSICAL REVIEW E 63 031906
ing the monostable and the bistable regimes. The results
shown in Fig. 13~b!. We can see thatR(T) decreases with
noise intensityD, reaches a minimum, and increases aga
Finally, for the case studied here,b50.2466,r 50.0292, the
forced excitable system has both subthreshold and sup
reshold oscillations. The results about mean-to-variance
tios versus noise intensity for the case are calculated
shown in Fig. 13~c!. As shown in the figure,R(T) increases
monotonically with noise intensityD increasing. We can
verify that stochastic resonance can occur for the excita
FHN neuron model withb50.23,r 50.0292, and this case i
similar to the previous study about stochastic resonanc
the excitable model@5,25#. In their consideration, the force
FHN excitable model also has one stable subthreshold o
lation. From the above calculations, we can see that
mean-to-variance ratios versus noise intensity have diffe
forms for the model in the monostable and the bistable
gimes, and in the process of the change from the monost
to the bistable regimes, the mean-to-variance ratios ve
noise intensity undergo an intermediate process show
Fig. 13~b!. Thus the values of the mean-to-variance ratios
the pulse-number distribution can serve to show the dif
ence between the case studied by us and the previous st
about stochastic resonance in the excitable neuron mod

Besides the differences pointed out in the above stud
for our case the amplitude of the external input periodic s
nal is much weaker than that of the previous case@5#. For the
purpose of detecting the weak external signal in the nerv
system, our studied case could be of interest for real sen
neurons. Here we should note that, in our studies, beca
the subthreshold oscillation and the suprathreshold osc
tion can be generated simultaneously by the external sti
lation, the external signal can be regarded as a suprathres
stimulation as well as a subthreshold stimulation. Our stud
extend the classical stochastic resonance which is use
detect a subthreshold signal to a new range that can be
to detect a suprathreshold signal for neurons.

FIG. 12. The pulse-number distribution for Eq.~3!, parameter
a50.2466,b50.0292, when the noise intensityD5431027. The
units of the axes are arbitrary.
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III. THE FRACTAL BASIN BOUNDARY AND THE
STABILITY OF NEURONAL FIRINGS

In the shadowed regions of Fig. 2, which show the co
istence of stable periodic oscillations, we choose the par

FIG. 13. Mean-to-variance ratios versus noise intensity for
cases:~a! b50.23, r 50.0292; ~b! b50.245,r 50.0292; and~c! b
50.2466,r 50.0292. The counting timeT512. The units of the
axes are arbitrary.
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PU-LIN GONG AND JIAN-XUE XU PHYSICAL REVIEW E63 031906
eter b50.259 92,r 50.0163. For this case, Eq.~1! has the
small-amplitude subthreshold periodic oscillation with p
riod T5T0 and the large-amplitude suprathreshold osci
tion with periodT53T0 . They are shown in Fig. 14. Th
basin of attraction for the case can be obtained by the s
method as the one used in the above section. Figure
shows the basin of attraction in the phase space. The fi
exhibits that the basin boundary between the two coexis
attractors has a fractal structure, and this is verified by

FIG. 14. The subthreshold small-amplitude periodic solut
with periodT15T0 and the suprathreshold large-amplitude perio
solution with periodT253T0 , when parameterb50.259 92, r
50.0163. The dashed line is for the suprathreshold oscillation
the solid line is for the subthreshold oscillation. The units of t
axes are arbitrary.

FIG. 15. Basin of attraction for the forced FHN neuronal mod
whenb50.259 92,r 50.0163. The black dots represent the basin
attraction of the subthreshold oscillation, the other region is
basin of attraction of the suprathreshold oscillation. The units of
v andw are arbitrary.
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further calculation about the dimension of the basin bou
ary. The dimension of the basin boundary is calculated
the method presented in@30#. In the phase space we choo
4003200 uniform distribution initial conditions over the re
gion of 20.1,v,0.7, 20.1,w,0.1 and integrate each
one to determine its final state. Each initial conditio
(v0 ,w0) is then perturbed in the horizontal direction by6«
to produce two perturbed initial conditions (v06«,w0), all
160 000 perturbed initial conditions are iterated to determ
their basins, if either of the two perturbed initial condition
associated with a particular unperturbed initial condition is
a basin different from the unperturbed one, we say that
initial condition is uncertain under the error«, and the frac-
tion of the uncertain initial conditionsf («) is recorded. The
uncertain fractionf («) satisfiesf («);«a. The uncertainty
exponenta is related to the basin boundary capacity dime
sion d, d5D02a, whereD0 is the dimension of the phas
space,D052. By the above method, we can obtain that t
capacity dimension of the basin boundary isd51.32.

It is generally regarded that fractal basin boundary is g
erated by the homoclinic intersection of the stable and
stable manifold of a saddle orbit@30–32#. For the case stud
ied by us we first study the main global bifurcation near t
parameterb50.259 96. We fixedr 50.0163 and letb vary.
When b50.2595 the periodically forced FHN neuron
model has only one stable subthreshold periodic oscilla
with period T0 . As b is increased tob50.2596, a stable
periodic oscillation withT0 and a saddle periodic oscillatio
with periodT53T0 begin to appear. Here the unstable pe
odic solution is detected by the Newton-Raphson method
saddle-node bifurcation occurs atb50.2596. When b
.0.2596, the system has the two coexistent stable attrac
one is the subthreshold oscillation with periodT0 , the other
is the stable suprathreshold oscillation generated by
saddle-node bifurcation. This type of saddle-node bifurcat
occurring at b50.2596 is referred to as a supercritic
saddle-node bifurcation@33#. The saddle orbit generated b
the saddle-node bifurcation still exists atb50.259 96, and
the homoclinic tangles of the stable and the unstable m
fold of the saddle orbit result in the appearance of the fra
basin boundary. The homoclinic tangles of the stable and
unstable manifold of the saddle orbit can be obtained
calculating the stable and unstable manifold of the sad
orbit using the methods presented in@34#.

In the nervous system, since information may be enco
by the interspike intervals of neuronal firings, the state
neuronal firings has great meaning for neurons. When n
rons are in a nonfiring state, the neurons do not gene
firings. But for the firing state, neurons can generate sp
trains which are accepted by other neurons, and informa
encoded in the intervals between these spikes is transm
to other neurons. The firing states can be periodic or irre
lar. For the periodic firing state, the intervals between
firings of neurons have an equivalent value. For chaotic
random firing states, the intervals of the neurons firings
irregular. A precondition of the interspike intervals code
that the firings in response to an input signal be stable in
presence of noise. It is necessary to study the stability
neuronal firings under noise perturbations. For a given int
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e
e
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GLOBAL DYNAMICS AND STOCHASTIC RESONANCE OF . . . PHYSICAL REVIEW E 63 031906
sity of noise, if neuron firings do not transit from a firin
state to a subthreshold nonfiring state or to another fir
state, then it is regarded to be stable. Otherwise, it is
garded to be unstable.

In the present study when external noise perturbatio
also forced on the neuron model we discuss whether
stability of the firing state is related to the global dynamics
the neuron model. We study the above two cases, one
parametera50.2466, r 50.0292, as shown in Fig. 4, th
basin boundary is smooth. The other with parametea
50.259 96,r 50.0163, as shown in Fig. 15, the basin boun
ary is fractal. Because the magnitude of Gaussian distribu
perturbation is unbounded, transitions from one state to
other will always be possible. For practical purposes,
effect of noise on the stability of the neuron firings is co
sidered in a given time. In the present study, the given t
interval is chosen ast5100 000. For the two cases, as stu
ied in the above section, in the region20.1,v,0.7, 20.1
,w,0.1, 4003200 initial points are uniformly chosen t
study their basin of attraction. Each one of the initial poin
that start from the basin of attraction of the firing state~the
suprathreshold oscillation! is perturbed by noise@Eq. ~3!#. In
the given time intervalt5100 000, if the point does not tran
sit from the firing state to the subthreshold nonfiring sta
the firing state of the initial point is regarded to be sta
under external noise perturbation, otherwise it is regarde
be unstable. The valuer 05Nu /N0 is used to quantify the
sensitivity of firing state to noise, whereN0 is the number of
initial points in the basin of the suprathreshold oscillati
which can generate firings andNu is the number of the initial
points which are unstable under noise perturbation. For
two cases, the relative quantityr 0 versus noise intensity ar
calculated and shown in Fig. 16. Comparing the two ca
shown in Fig. 16, we can obtain that, for the neuron mo
with fractal basin boundary, noise perturbation can indu
many more initial points to change from the firing state to
nonfiring state than that with smooth basin boundary, and
the case with the fractal basin boundary the stability of
firing state can be changed easily. This phenomenon ca
understood in terms of the state of the basin of attraction.

FIG. 16. r 0 versus the noise intensity for the cases:~a! b
50.259 92, r 50.0163 ~triangles! and ~b! b50.2466, r 50.0292
~dots!. The units of the axes are arbitrary.
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the systems with basin boundary separating the basin
coexisting attractors, the uncertain fractionf («) of initial
conditions which are sensitive to small perturbation« obey
f ;«a @30#, wherea is the uncertain exponent. For the ca
of a50.259 96,r 50.0163, the basin boundary is fractal an
the fractal dimension of the basin boundaryd51.32, and the
uncertain exponenta5D2d50.68. The uncertainty expo
nent is significantly less than one. But for the casea
50.2466,r 50.0292, the basin boundary is smooth, and
uncertain exponenta51. We can obtain that the uncertain
fraction f of the case with fractal basin boundary is mu
more than that of the case with smooth basin boundary.
the case with fractal basin boundary noise can induce m
more points to transit from the firing state to the subthresh
nonfiring state, and noise can change the stability of the
ing state easily. Whena50.259 96,r 50.0163 the system
has the fractal basin boundary, we also can observe that
trajectory is perturbed into boundary it will undergo transie
chaotic motion before setting on one of the periodic attr
tors as in Refs.@35#, @36#. This phenomenon will increase th
complexity of the system@36#, and the complexity that arise
in this typical neuron model with noise perturbations mig
provide insight for interpreting some complex behaviors
neurons.

IV. CONCLUSION

In summary, we show that the small-amplitude subthre
old periodic oscillation and the large-amplitude suprathre
old periodic oscillation coexist commonly in some parame
regions of the forced excitable FHN neuron model. We a
find that the random transitions induced by noise between
subthreshold oscillation and the suprathreshold oscilla
are the essential mechanism underlying stochastic reson
studied by us. This kind of bistability was also found in th
Hodgkin-Huxley neuron model with time-dependent sin
soidal stimulation@37#, but stochastic resonance was d
cussed only in the region where the periodically forc
Hodgkin-Huxley neuron model has one attractor, a sta
nonfiring state. It is no doubt that the appearance of s
dynamic bistability should exist in other forced excitab
neuronal models such as the Morris-Lecar neuron model
the Chay neuron model. Moreover, such bistability has b
observed experimentally in neurons. Therefore our res
may help us to understand stochastic resonance in these
ron systems.

In comparison with the previous studies about stocha
resonance, our work shows that stochastic resonance o
excitable neuronal model is related to the dynamic bista
ity. Furthermore, the transitions induced by noise betwe
the two dynamic oscillation are studied by us. The mean
the return time and the mean-to-variance ratio of the pu
number distributions are calculated in our works, the res
suggest that these values can serve to distinguish our
from the previous studies about stochastic resonance in
typical bistable nonlinear system and the excitable neuro
model. Moreover, it is interesting to note that for our case
external signal can be regarded not only as a subthres
stimulation but also a suprathreshold stimulation, thus
6-9
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studies also extend the classical stochastic resonance w
is used to detect a subthreshold signal to a new range
can be used to detect suprathreshold signal for neurons

Through comparing the stability of the firings of the FH
neuron model with smooth basin boundary and that w
fractal basin boundary, we can draw the conclusion that
stability of firings of the forced FHN neuron with fracta
basin boundary can be changed easily under the small n
perturbation. This result suggests that in order to main
the stability of firing state subjected to random perturbatio
the neuron model should be operated in the region where
ol.
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basin of attraction is smooth. The result also suggests
when we study the dynamic behaviors of some typical n
ronal models, much attention should be paid to the glo
dynamics of these systems. As shown in the present stu
the global characteristics may have significant effects
some issues we are interested in.
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