PHYSICAL REVIEW E, VOLUME 63, 031906

Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model
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We have analyzed the responses of an excitable FitzHugh-Nagumo neuron model to a weak periodic signal
with and without noise. In contrast to previous studies which have dealt with stochastic resonance in the
excitable model when the model with periodic input has only one stable attractor, we have focused our
attention on the relationship between the global dynamics of the forced excitable neuron model and stochastic
resonance. Our results show that for some parameters the forced FitzHugh-Nagumo neuron model has two
attractors: the small-amplitude subthreshold periodic oscillation and the large-amplitude suprathreshold pe-
riodic oscillation. Random transitions between these two periodic oscillations are the essential mechanism
underlying stochastic resonance in this model. Differences of such stochastic resonance to that in a classical
bistable system and the excitable system are discussed. We also report that the state of the basin of attraction
has a significant effect on the stability of neuronal firings, in the sense that the fractal basin boundary of the
system enhances the noise-induced transitions.
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[. INTRODUCTION bility. In this paper we present a global view of the periodic
solutions of the FHN neuron model with weak periodic
Excitable dynamics underlie the behavior of many sys-stimulation in the two-parameter space. Then we pay atten-
tems ranging from Josephson junction to chemical reactionon to the parameter regions associated with the bistability
to cardiac and nerve cells. In these systems a large perturbii the periodically forced FHN neuron model and study how
tion can elicit a large amplitude spike or “firing,” followed Noise-induced random transitions between the bistability are
by a quick return to a globally attracting fixed point. The related to stochastic resonance in the excitable neuron model.

dynamical response of these systems to the periodic deteld the previous studies about the stability of firing activity in
ministic forcing has been extensively described in both exSome neuron mode[45], little attention has been paid to the
perimental and model studi¢s,2]. As a simple but repre- global dynamics of these systems. Furthermore, it has been
sentative example of excitable systems, the Fitzhughtegarded that the information concerning the neuron’s input
Nagumo(FHN) neuron model was origina”y Suggested for may be encoded in the interspike intervals of neuron ﬁringS
the description of firing behaviors of sensory neurf8isit ~ [16,17. A precondition of the code manner is that the firings
was also widely used for the modeling of a spiral wave in a0f the response to an input signal be stable in the presence of
two-dimensional excitable medium. The detailed phasenoise[18]. So, when multiple steady states coexist in the
locking dynamics of the periodically stimulated FHN equa-€Xcitable neuron model, we should discuss whether the glo-
tion has been investigatedl]. Recently, the forced FHN bal dynamics of the typical neuron model have effects on the
neuron model with noise input has been studied to reveadtability of neuronal firings under noise perturbations.

how information is encoded and transmitted in a neuron sys- With these aims in the view, the paper is organized in the
tem under noisy circumstan¢g—10]. It was found that, in following manner. The bistability and stochastic resonance
this typical excitable neuron model, noise can enhance tha'e the subjects of Sec. II. In Sec. Il we study the relation-
detection of weak subthreshold signals using the mechanis§hip between the state of basin and the stability of the firing
of stochastic resonance. Coherence resonance was also fout@ate. At the end of the paper some conclusions are drawn.
in the noisy neuron moddMl1]. In the classical stochastic

resonance theory, stochastic resonance is related to random Il. BISTABILITY OF THE FORCED FHN NEURON

transitions from one stable equilibrium state to the other. As MODEL AND STOCHASTIC RESONANCE

for the previous studies about stochastic resonance in the
excitable FHN model, although the forced excitable model
has only one attractor, it has been found that the histogram of We consider the periodically forced FitzHugh-Nagumo
the interspike intervals has a multimodel structure with theheuron model in the following form:

peaks located at integer multiples of the driving period, and
stochastic resonance still occurs in the excitable neuronal

A. The global dynamics of the forced FHN neuron model

1%
model. But for the excitable FHN neuron model it still re- T a)(1-o)~w,
mains unclear whether stochastic resonance is related to bi- (1)
stability. Moreover, the coexistent attractors have been ob- dw .
served experimentally in real excitable neurdif-14. sz—dw—bJrrsm(,Bt).

Therefore to understand stochastic resonance in these neu-
ronal systems, it is necessary to study whether stochastic The variablev is the fast voltagelike variable andis the
resonance in the excitable neuron model is related to bisteslow recovery variable. Throughout the paper we fix the val-
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FIG. 1. The Hopf bifurcation points in parameter spaee The
units ofa andb are arbitrary. FIG. 2. The periodic solutions of the forced FHN neuron model
in the parameter planeb. The dominant mode-locking regions are
ues of the constants te=0.005,d=1.0, and3=7.5. A marked byP-k, k=1,2,3,4. In the crossing regic_:ns shaded by the
firing or a spike is considered to occur if the variableas a sol_id lines, the forced neur_onal model has coexistent attractors. The
positive-going crossing of the firing threshalg,, chosen as UMNits of ther andb are arbitrary.

v;p=0.5. Here the slow variable of the neuronal model isyiodic stimulation is forced on the excitable systéim Eq.
driven by the external weak signal, the reason for this is Q1) r>0], the global dynamic characteristics of the system
allow comparison with the results obtained by other scholargithin the parameter regiohl<b<b2rl<r<r2 will be
[4—6€], in their studies the slow variable was also driven bystudied, whereb1=0.245, b2=0.26, r1=0.015, andr2
the external periodic signal. For the unforced FHN equation._ g 3. For this purpose we first integrate E&). by setting
e, in Eq.(1) r=0, the system has equilibriumu{,wo),  p 1o a certain value and increasingrom r1 tor2, and then
wherev, is real-valued root obo(vo—a)(1-vo)=vo—b,  gecreasing from2 tor1 in a step of 0.0002. In this process,
andwo=vo—b. The stability of the equilibrium point is de- {he final point of the last computed stable solution is always
termined by the Jacobian matrix used as an initial point for the new computation. After this
process, the characteristics of the stable solution on a straight
) line in the (b,r) plane withb=constant may be determined.
' We then increas® with a step of 0.0002, and repeat the
above procedure to find the characteristics of solutions of Eq.
In the a-b parameter space, from the condition for the exis-(1) on another straight line with= constant. In this way, the
tence of a Hopf bifurcatiof19], we obtain that the unforced diagram in the parameter space that summarizes the results
system has Hopf bifurcation when paramet@endb satisfy  of the calculation can be drawn and shown in Fig. 2. In Fig.

5 ((—3v3+2(1+ a)vg—a)le —le
B 1 -1

the following algebraic equation: 2 the region marked bR-k represents that, when the param-
etersb andr fall into this region, the system has a stable
_l+a c¢ (l+a ¢ (1—2a_ c 2—a+ c periodic orbit with the period ofT=kT,, To=27/8
-3 60 3 60 3 60/\ 3 60/’ =0.837. In the present studies we only focus our attention on

(2)  the low-order periodic solutionB-k, k=1,2,3,4. As shown
in Fig. 2, there exist the crossing regions which are shad-

wherec = /394 400a+400a°. The Hopf bifurcation points owed by the solid lines, in these regions different periodic
satisfying Eq.(2) are shown in Fig. 1. In the following stud- orhits coexist at the same parameter values. We also illus-
ies the value of parameteris fixed toa=0.5. For this case, trated the simultaneous existence of the attractors by choos-
the stability check of the equilibrium shows that when ing some different initial points. 1f120,21], the Borhoeffer
<0.2623 the unforced FHN neuron model has only onevan der Pol system, which is a FHN-type model, has been
stable equilibrium, and &= 0.2623 a supercritical Hopf bi- studied. The quasiperiodic, chaotic motion were found for
furcation occurs. Fob>0.2623, the unforced model has a some parameters. Other nonlinear phenomena such as crisis,
stable limit cycle. intermittency, and bistability were also found in the forced

In the present studies we consider the case bof Borhoeffer Van der Pol system. In this paper we present a
<0.2623, the unforced neuron model has only one stablglobal view of the periodic solutions of the periodically
equilibrium, it is excitable and related to the physiologicalforced FHN neuron model in the two-dimensional parameter
situation of some excitable neurons. When a very weak pespace.
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FIG. 4. Basin of attraction for the forced FHN neuronal model
whenb=0.2466,r =0.0292. The black dots represent the basin of
attraction of the subthreshold oscillation, the other region is the

basin of attraction of the suprathreshold oscillation. The units of
andw are arbitrary.
0.6 |

of phase space-0.1<v<0.7,—0.1<w<0.1,400< 200 ini-

tial conditions are uniformly chosen in the form of grids and
each of them is integrated to decide which attractors it even-
tually resides on. From the calculations, the basin of attrac-
tion in the chosen region of phase space can be obtained,
which is shown in Fig. 4. If the initial state of the neuron
model starts from the basin of attraction of the subthreshold
periodic oscillation, the final state of the neuron model is the
subthreshold oscillation, the neuron does not fire. On the
other hand if the neuron model starts from the basin of at-
traction of the suprathreshold oscillation, the neuron model
) . i __has the stable periodic firings pattern. The result shows that
FIG. 3. The subthreshold small-amplitude periodic solution with;,iio| gtates also play an important role in the discharging
pe_rlod T.1:T° _and the suprathreshold !arge-amplltude _penodlc S9ehaviors of neurons. From the point of view of neuron fir-
lution with periodT,=2T,: (a) the coexistent attractors in the state . . - . -

spacev-w, the dashed line is for the suprathreshold oscillation anomgs’ the external Slgnal th.at can mdu_ce f'.”’.‘gs Is regarded as
the solid line is for the subthreshold oscillatidb) Membrane po- a .supra.threshold stlmulatlon, othng|se itis a subth_reshold
tentialv versus timet for the two attractors, the dashed line is for stlmulgtlon. In the previous studies about stochastlc reso-
the subthreshold oscillation and the solid line is for the suprathreshr-"ance in some simple bistable systems and excitable neuron
old oscillation. The units of the, w, andt are arbitrary.

models, the external stimulation forced on these systems is a
subthreshold input signal. However, for the case studied by
- . us, when a weak periodic signal is forced on the FHN neuron
AS_ShOW” in Fig. 2, the coexistent attractors are Very Comy,piqp, s in the excitable region, both the subthreshold oscil-

Qgég\',vteh; ggotsheens%&;iﬁlrnﬁ;ir rv?/glOcr;{c:gst?[hcems;lrg?ngglrgqgﬂon and the suprathreshold oscillation can be generated
~0.2466, = 0.0292. We checked that for some parametersmultaneously by the weak stimulation, thus the periodic
in the shadowed regions of Fig. 2, similar results could b

;\:,Ajgnal can be regarded as a suprathreshold stimulation as
obtained as those shown below for the casdef0.2466, ell as a subthreshold stimulation.
r=0.0292. Wherb=0.2466,r =0.0292, the forced neuron

0.2

-0.2 ‘
205 22.5

24.5 26.5
t

28.5

model has two globally stable attractors, one is the sub- B. Stochastic resonance related to the dynamic bistability
threshold small-amplitude periodic oscillation with period In the classical stochastic resonance theory, stochastic
T,1=Ty, the other is the suprathreshold large-amplitude peresonance(SR) phenomenon occurs in a bistable system
riodic oscillation with periodl,=2T,. The coexistent peri- which has two static fixed poinf22-24. For the previous
odic oscillations are shown in Fig. 3. Next let us consider thestudies about stochastic resonance in the excitable FHN neu-
basin of attraction of the coexistent attractors. In the regiorronal model[5,25] we can verify that in their consideration
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sence of periodic force versus noise intendityThe units of the
FIG. 5. The interspike intervals histogram when noise intensityaxes are arbitrary.
D=4x10". The units of the axes are arbitrary.

i.e., the difference of the interspike interval histogram in the
the forced excitable FHN neuron model has only one attracpresence of periodic force and the interspike interval histo-
tor. However, as shown in the present study, the dynamigram in the absence of periodic force. During the process of
bistabilities (one is subthreshold oscillation and the other isvarying noise intensity, the behavior of the peak heights of
the suprathreshold oscillatiprare very common for the the difference as a function of noise intendyis shown in
forced FHN neuronal model in some parameter regionsFig. 6. It shows that the first peak and the second peak reach
Therefore whether stochastic resonance occurs in these rgraximum values individually. This result indicates that sto-
gions and is related to the coexistence of two attractors ariseshastic resonance occurs in this case studies by us. Then, the
naturally in this context. signal-to-noise ratio is calculated by us. The power spectral

To address the question, white Gaussian ng{d¢ with  density is calculated from the spike train through Fourier
the mean (¢(t))=0 and the autocorrelation function transform as in Ref[10]. The signal-to-noise ratio is ob-

(&(t)é(s))=2DS(t—s) is added on Eq(l): tained from the power spectrum  as Rgy
. =10logd S(w)/N(w)], whereRgy is the signal-to-noise ra-
ev=v(v=0.9(1-v)~w, tio, the signal powes(w) is the height of the signal peak
3 located at the signal frequency, and the noise pdwev) is
w=v—dw—b+r sin(gt) + &(1), the amplitude of the background noise measured at the base

of the signal peak. The signal-to-noise ratio as a function of
where £=0.005, d=1.0, =75, and b=0.2466, r  noise intensityD is shown in Fig. 7. It increases with noise
=0.0292. We integrate E@3) using the forth-order Runge- intensity D, reaches a maximum, and decreases again, dis-
Kutta method with the time step of 0.001. For a fixed noiseplaying the typical feature of stochastic resonance.
intensity, such a®=4x10"’, an initial point from the ba-
sin of attraction of the subthreshold oscillation is chosen. 30
After discarding a long-time transient state, the histogram of
interspike intervals is obtained and shown in Fig. 5. It has a
multipeaked structure and the interval between these peaks it
close to the period of the weak signal. In addition, the decay

of the envelope of the interspike intervals histogram is indis- 18
tinguishable from an exponential function, i.€Amax % i
xexp(—\,T) with the decay constart,=0.255. The same 12 H

histogram of the interspike intervals can be obtained by ini-
tiating the system within the basin of the suprathreshold os-
cillation. This signifies that the statistical characteristic of the
interspike intervals is independent of initial conditions.

In the present studies the interspike interval histogram has (R

. ) 0 2 4 6 8 10 12

a multipeaked structure and the interval between these peak: ;
. . . 10'D
is close to the period of the weak signal, we wonder whether
stochastic resonance occurs. First, we use the measure intro- FIG. 7. Signal-to-noise ratios versus noise intenBityThe units
duced in[26] to study whether stochastic resonance occursef the axes are arbitrary.
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FIG. 9. The return-time distribution of th&, in Poicaresection
when noise intensitYp =4x 10" 7. The units of the axes are arbi-
FIG. 8. The periodic orbits in Poincasection, the parameter trary.

a=0.2466,b=0.0292. The units of the axes are arbitrary. . . .. . .
coexistent attractors in the Poincasection, we divide the

. . : . .region around them into three subregions as shown in Fig. 8,
To interpret the basic mechanism underlying stochasti¢ hich are marked by I, II, and IIl, respectively. As for each

resonance of the present study and show some differencgVﬁbre ion, it is in the basin of attraction of its correspondin
between our case and the previous studies in a typicasi trac'?or i:or eriod-1 orbid, it is smeared and extli)andedg
bistable system and the excitable system, we need to analy?é : P '

the statistics of random jumps between these two coexistin :gén% ':ﬁglfszﬁrgo'%i’ lb;ﬁgsfme)_}tﬁgrs;?grgftgeng?;mc:f‘bicton'
attractors. However, as shown in FigaB even in the ab- 9 y

sence of noise, the orbits of the two dynamic oscillations ar&® mapped into the subregion | arouAdwe regard that it is

very close to each other in phase space. Thus when in ﬂ}swnched to the period-1 orbA. The same things occur for

presence of noise, it is very difficult to discern the detailed%e pointB, in subregion Il andB, in subregion Il as those

o : . or point A in subregion I.
switching behaviors bgtween the two attractors in .pha}sé 'IPhrough studying the long-time random switching behav-
space. To overcome this problem, we cpn5|der the SWltChm%rs in the Poincaresection with the division mentioned
behaviors induced by noise in the Poincasztion. In gen-

eral, for a periodically forced nonlinear systes f(x,t) above, we find that two features of these transitions are no-

—f(x,t+T), xeR", whereT is the period of an external table. First, if a point starts from subregion Il arouBd,

force. If time is included as a explicit state variable: the following point is n_ecessarlly n _subreglon Il arougl.
Second, there only exist two switching routes between these

=f(x, ) two coexistent attractors, that is, transition _fr_om subregion Il
o (x,0)=R"X S, aroundB; to subregion | around and transition from sub-
=1 region | aroundA to subregion Il around,. In all cases we

observe that a trajectory eventually settles into the region
the Poincaresection> can be chosen a&={(x,0)eR"  around one of the attractors known to exist in the absence of

x Stg= 1}, the Poincarenap is given byP:=—3= [19]. By  noise, no new stable state appears in this system as a conse-

this method we construct a Poincareap for Eq.(1) with  quence of noise. Noise only induces transitions between the

parameterd=0.2466,r =0.0292. Two coexistent periodic two-coexisting attractors. Thus stochastic resonance studied
orbits for the Poincarenap can be obtained. One is the here is related to random transitions between these two at-
period-1 orbit that is shown in Fig. 8 as poist the other is  tractors.

the period-2 orbit consisting of two points which are shown We consider the return-time distribution f8, which is

in Fig. 8 as pointsB; andB,. The period-1 orbit and the one branch of the period-2 orbit, e.g., the distribution of the

period-2 orbit in the Poincarsection correspond to the sub- time intervalT it takes for the system to be first kicked from

threshold oscillation and the suprathreshold oscillation of thesubregion 11l around, to other subregions and back again.
original continuous system, respectively. When noise isThe histogram of the return time is shown in Fig. 9. This
forced on the systerfi.e., Eq.(3)], after discarding a long- histogram is similar to the one shown in Fig. 5 for the origi-
time transient state, in the Poincaection each point of the nal continuous noisy model. Further calculation shows that
two periodic orbits is smeared and broadened around itsethe decay of the envelope of the interspike interval histogram
due to the random transitions induced by noise. For this reaalso satisfiesAaeXp(—A,T), with A,=0.2542 which is
son, to study the random switching behaviors between thelose to the decay constant of the interspike intervals
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) o ! classical double-well system, the equationkis x— x>+ a sin(wt)

FIG. 10. Mean of the return time versus noise intenBityThe +&(t), where a=0.2, w=0.0314, (£(t))=0, and (£(t)&(s))
units of axes are arbitrary. =2D§(t—s). The units of the axes are arbitrary.

histogram shown in Fig. 5. The reason for this is that whe

o . . . "Scale that characterizes local relaxation within the potential
an orbit is mapped into subregion Il arou}, it corre-

wells. In the approximate theory of stochastic resonance, the

sponds o the case that the original continuous noisy SYSteiflawell behaviors can be neglected and the mean of the
can generate a spike. This also demonstrates that transitiong . time decreases as noise intensity incref2&ls

induced by noise between these periodic orbits in the Poin- The pulse-number distributio®(n, T), which is the prob-
caresection provide a good approximation of the SWitChingabiIity of the occurrence afi spikes ir’1 a’fixed time interval

behaviors of the original continuous noisy mo{Eq. (3)]. (counting time, can also be used to describe statistical char-

" Lh?‘ re;c;lrnltlmet_of the pngOdIC F')tOIr:A IS garl]culgted_byth acteristics of neuronal spikes traih29]. The count mean
studying the fong-time random switching benaviors In e,y e count variance of the pulse-number distribution are

Pomcaresectmn. The mean of the_ return time of the attractor.. - \iated from the standard formulas:
is calculated for different noise intensity and the result is

shown in Fig. 10. As shown in the figure, the mean of the Nmax
return time decreases with noise intendityreaches a mini- n(T)=2, np(n,T), (4)
mum, and increases again. The mean of the return time has a n=0

minimum value at an optimal value of noise intensity. To
compare with stochastic resonance in a classical bistable sys- 2 2 12
tem, we consider a simple double-well system with weak o (T)_nzo n“p(n,T)—[n(T)]" ®)
periodic signal and noise input, this model has been widely

studied to account for the basic mechanism of stochastithe mean-to-variance rati(T) is defined as
resonanc¢24,27. The return time of one equilibrium state

of the model is calculated. As shown in Fig. 11, for the R(T)=n(T)/o?(T). (6)
classical bistable system, the mean of the return time de-

creases monotonically with noise intensity increasing. This igor our casgEq. (3)], the pulse-number distribution has a
different from our case, which is one aspect that makes oupell-shaped structure as shown in Fig. 12. Here the counting
case different from the previous studies about stochastiime T=12 is used to calculate the pulse-number distribu-
resonance in the typical bistable system. Here we want tgon. Since the forced FHN model studied by us displays
comment about this difference. For the case studied by us, ihoth monostable and bistable regimes, we will study how the
view of the continuous dynamics of the model, the bistabilitymean-to-variance ratio changes when the system moves from
is dynamic. If a noisy orbit is switched into an attractor, it one regime to the other and show the difference between the
will move along the attractor for at least a full period of that case studied here and the previous studies about stochastic
atractor. The time scale of the motion within the dynamicresonance in the excitable neuron model. First, the mean-to-
attractor is comparable to that of the random transitions invariance ratios for different noise intensity are calculated for
duced by noise, thus the motion within the attractors cannothe case ob=0.23,r =0.0292, in this case the forced FHN
be neglected. Moreover, the attractors have different periodgeuron model has only one stable subthreshold oscillation.
and there exists the cooperation of the two dynamic attracthe mean-to-variance rati¢¥(T) versus noise intensity are
tors due to noise. For the typical double-well system, theshown in Fig. 183). As shown in the figureR(T) decreases
bistability is due to the coexistence of two stable equilibriummonotonically with noise intensityp increasing. Then the
points. There is a clear-cut separation of time scales, the timeean-to-variance ratios are calculated for the case of
scale of the interwell hopping is much larger than the time=0.245,r=0.0292, which is close to the boundary separat-

nmax
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FIG. 12. The pulse-number distribution for E@), parameter ° :
a=0.2466,b=0.0292, when the noise intensify=4x10"". The '§ a6 |
units of the axes are arbitrary. g 7
E
= -
ing the monostable and the bistable regimes. The results ar$ 24
shown in Fig. 180). We can see thaR(T) decreases with &£ i
noise intensityD, reaches a minimum, and increases again. § 22
Finally, for the case studied hettes=0.2466,r =0.0292, the = i
forced excitable system has both subthreshold and suprath 2k
reshold oscillations. The results about mean-to-variance ra- i
tios versus noise intensity for the case are calculated anc

shown in Fig. 18). As shown in the figureR(T) increases 18 é ; g é ‘ 1.0 ‘ 1|2 14

monotonically with noise intensityp increasing. We can  (b)
verify that stochastic resonance can occur for the excitable
FHN neuron model withb=0.23,r =0.0292, and this case is
similar to the previous study about stochastic resonance ir 34 |-
the excitable modd]l5,25]. In their consideration, the forced
FHN excitable model also has one stable subthreshold oscil-
lation. From the above calculations, we can see that theg 3 [
mean-to-variance ratios versus noise intensity have differeni
forms for the model in the monostable and the bistable re- g
gimes, and in the process of the change from the monostabltg
to the bistable regimes, the mean-to-variance ratios versu:%
noise intensity undergo an intermediate process shown irg 22 b
Fig. 13b). Thus the values of the mean-to-variance ratios of &
the pulse-number distribution can serve to show the differ-
ence between the case studied by us and the previous studi¢
about stochastic resonance in the excitable neuron model.
Besides the differences pointed out in the above studies 14
for our case the amplitude of the external input periodic sig- 0
nal is much weaker than that of the previous d&geFor the () 10’ D
purpose of detecting the weak external signal in the nervous _ _ o _
system, our studied case could be of interest for real sensor FIG. 13. Mean-to-varlan(?e ratios versus noise |n.ten5|ty for the
neurons. Here we should note that, in our studies, becaus‘.iéses(a) b=0.23,r=0.0292; (b) b=0.245,r =0.0292; andc) b
the subthreshold oscillation and the suprathreshold oscilla- 0-2466,7=0.0292. The counting tim@=12. The units of the

tion can be generated simultaneously by the external stim(f>*¢® a¢ arbitrary.

Iapon, the external signal can be regard_ed asa suprathresholq”. THE FRACTAL BASIN BOUNDARY AND THE
stimulation as We_II asa subthr_eshold stlmulatlor_L Ogr studies STABILITY OF NEURONAL FIRINGS

extend the classical stochastic resonance which is used to

detect a subthreshold signal to a new range that can be used In the shadowed regions of Fig. 2, which show the coex-
to detect a suprathreshold signal for neurons. istence of stable periodic oscillations, we choose the param-

26 -
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0.1 further calculation about the dimension of the basin bound-
R ary. The dimension of the basin boundary is calculated by
008 | e . the method presented [80]. In the phase space we choose
r 400% 200 uniform distribution initial conditions over the re-
0.06 3 gion of —0.1<v<0.7, —0.1<w<0.1 and integrate each
004 F one to determine its final state. Each initial condition
I S (vg,Wp) is then perturbed in the horizontal direction e
B 0.02 a to produce two perturbed initial conditions {* &,wg), all
. | 160 000 perturbed initial conditions are iterated to determine
ok | their basins, if either of the two perturbed initial conditions
f associated with a particular unperturbed initial condition is in
0.02 |- a basin different from the unperturbed one, we say that the
B \ initial condition is uncertain under the errey and the frac-
-0.04 | tion of the uncertain initial conditions(¢) is recorded. The
0.06 E | ‘» | | ‘ ‘ uncertain fractionf(g) satisfiesf(e)~¢e“. The uncertainty

exponentu is related to the basin boundary capacity dimen-
020 02 04 06 08 1 12 siond, d=Dy— a, whereD, is the dimension of the phase
v spaceD,=2. By the above method, we can obtain that the
FIG. 14. The subthreshold small-amplitude periodic solution(:&‘p"’l.Clty dimension of the basin boundar}dr-sl.SZ. .
with period T, =T, and the suprathreshold large-amplitude periodic Itis generally regarde_d ,that fraCt,aI basin boundary is gen-
solution with periodT,=3T,, when parameteb=0.25992,r  erated by the homoclinic intersection of the stable and un-
=0.0163. The dashed line is for the suprathreshold oscillation angt@Ple manifold of a saddle orji80—32. For the case stud-
the solid line is for the subthreshold oscillation. The units of thei€d by us we first study the main global bifurcation near the
axes are arbitrary. parametetb=0.259 96. We fixed =0.0163 and leb vary.
When b=0.2595 the periodically forced FHN neuronal
eterb=0.25992,r =0.0163. For this case, Eql) has the model has only one stable subthreshold periodic oscillation
small-amplitude subthreshold periodic oscillation with pe-With period To. As b is increased td=0.2596, a stable
riod T=T, and the large-amplitude suprathreshold oscilla-P€riodic oscillation withT, and a saddle periodic oscillation
tion with period T=3T,. They are shown in Fig. 14. The With periodT=3T, begin to appear. Here the unstable peri-
basin of attraction for the case can be obtained by the sanfdic solution is detected by the Newton-Raphson method. A
method as the one used in the above section. Figure 1%addle-node bifurcation occurs di=0.2596. Whenb
shows the basin of attraction in the phase space. The figure 0.2596, the system has the two coexistent stable attractors,
exhibits that the basin boundary between the two coexisterine is the subthreshold oscillation with perig, the other
attractors has a fractal structure, and this is verified by thés the stable suprathreshold oscillation generated by the

saddle-node bifurcation. This type of saddle-node bifurcation
occurring atb=0.2596 is referred to as a supercritical
saddle-node bifurcatiof83]. The saddle orbit generated by
the saddle-node bifurcation still exists lat0.259 96, and
the homoclinic tangles of the stable and the unstable mani-
fold of the saddle orbit result in the appearance of the fractal
basin boundary. The homoclinic tangles of the stable and the
unstable manifold of the saddle orbit can be obtained by
calculating the stable and unstable manifold of the saddle
orbit using the methods presented 8%].

In the nervous system, since information may be encoded
by the interspike intervals of neuronal firings, the state of
neuronal firings has great meaning for neurons. When neu-
rons are in a nonfiring state, the neurons do not generate
firings. But for the firing state, neurons can generate spike
trains which are accepted by other neurons, and information
01 I . ‘ ‘ \ ‘ ) encoded in the intervals between these spikes is transmitted

01 0.1 03 05 to other neurons. The firing states can be periodic or irregu-
v lar. For the periodic firing state, the intervals between the

firings of neurons have an equivalent value. For chaotic and
FIG. 15. Basin of attraction for the forced FHN neuronal model "andom firing states, the intervals of the neurons firings are

whenb=0.259 92y =0.0163. The black dots represent the basin ofifregular. A precondition of the interspike intervals code is
attraction of the subthreshold oscillation, the other region is théhat the firings in response to an input signal be stable in the
basin of attraction of the suprathreshold oscillation. The units of thepresence of noise. It is necessary to study the stability of

v andw are arbitrary. neuronal firings under noise perturbations. For a given inten-

0.1
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07 ¢ the systems with basin boundary separating the basins of

0.6 7 M coexisting attractors, the uncertain fractib(e) of initial

conditions which are sensitive to small perturbatioobey

os [ f~¢e® [30], wherew is the uncertain exponent. For the case

i of a=0.259 96,y =0.0163, the basin boundary is fractal and
04 [ the fractal dimension of the basin boundary 1.32, and the
= . uncertain exponenz=D —d=0.68. The uncertainty expo-
0.3 - nent is significantly less than one. But for the came

=0.2466,r =0.0292, the basin boundary is smooth, and the
uncertain exponent= 1. We can obtain that the uncertainty
o1 b fraction f of the case with fractal basin boundary is much
i more than that of the case with smooth basin boundary. So,
0 ' : : ' : ‘ the case with fractal basin boundary noise can induce many
0 005 01 015 0z 035 03 035 more points to transit from the firing state to the subthreshold
10°D nonfiring state, and noise can change the stability of the fir-
FIG. 16. r, versus the noise intensity for the caséay b  INg state easily. Whem=0.259 96,r=0.0163 the system
=0.25992,r=0.0163 (triangles and (b) b=0.2466,r=0.0292  has the fractal basin boundary, we also can observe that if a
(dots. The units of the axes are arbitrary. trajectory is perturbed into boundary it will undergo transient
chaotic motion before setting on one of the periodic attrac-
sity of noise, if neuron firings do not transit from a firing tors as in Refd.35], [36]. This phenomenon will increase the
state to a subthreshold nonfiring state or to another firingomplexity of the systerf36], and the complexity that arises
state, then it is regarded to be stable. Otherwise, it is rein this typical neuron model with noise perturbations might
garded to be unstable. provide insight for interpreting some complex behaviors of
In the present study when external noise perturbation igeurons.
also forced on the neuron model we discuss whether the
stability of the firing state is related to the global dynamics of
the neuron model. We study the above two cases, one with

parametera=0.2466,r =0.0292, as shown in Fig. 4, the  |n summary, we show that the small-amplitude subthresh-
basin boundary is smooth. The other with parameder old periodic oscillation and the large-amplitude suprathresh-
=0.25996y=0.0163, as shown in Fig. 15, the basin bound-old periodic oscillation coexist commonly in some parameter
ary is fractal. Because the magnitude of Gaussian distributegbgions of the forced excitable FHN neuron model. We also
perturbation is unbounded, transitions from one state to arfind that the random transitions induced by noise between the
other will always be possible. For practical purposes, theubthreshold oscillation and the suprathreshold oscillation
effect of noise on the stability of the neuron firings is con-are the essential mechanism underlying stochastic resonance
sidered in a given time. In the present study, the given timestudied by us. This kind of bistability was also found in the
interval is chosen as=100 000. For the two cases, as stud-Hodgkin-Huxley neuron model with time-dependent sinu-
ied in the above section, in the regien0.1<v<0.7, —0.1  soidal stimulation[37], but stochastic resonance was dis-
<w<0.1, 400< 200 initial points are uniformly chosen to cussed only in the region where the periodically forced
study their basin of attraction. Each one of the initial pointsHodgkin-Huxley neuron model has one attractor, a stable
that start from the basin of attraction of the firing stétee  nonfiring state. It is no doubt that the appearance of such
suprathreshold oscillatigris perturbed by noisgEq. (3)]. In dynamic bistability should exist in other forced excitable
the given time intervail=100 000, if the point does not tran- neuronal models such as the Morris-Lecar neuron model and
sit from the firing state to the subthreshold nonfiring statethe Chay neuron model. Moreover, such bistability has been
the firing state of the initial point is regarded to be stableobserved experimentally in neurons. Therefore our results
under external noise perturbation, otherwise it is regarded tmay help us to understand stochastic resonance in these neu-
be unstable. The value,=N_; /Ny is used to quantify the ron systems.

sensitivity of firing state to noise, wheMy, is the number of In comparison with the previous studies about stochastic
initial points in the basin of the suprathreshold oscillationresonance, our work shows that stochastic resonance of the
which can generate firings am¥, is the number of the initial  excitable neuronal model is related to the dynamic bistabil-
points which are unstable under noise perturbation. For th&gy. Furthermore, the transitions induced by noise between
two cases, the relative quantity versus noise intensity are the two dynamic oscillation are studied by us. The mean of
calculated and shown in Fig. 16. Comparing the two casethe return time and the mean-to-variance ratio of the pulse-
shown in Fig. 16, we can obtain that, for the neuron modehumber distributions are calculated in our works, the results
with fractal basin boundary, noise perturbation can inducesuggest that these values can serve to distinguish our case
many more initial points to change from the firing state to thefrom the previous studies about stochastic resonance in the
nonfiring state than that with smooth basin boundary, and fotypical bistable nonlinear system and the excitable neuronal
the case with the fractal basin boundary the stability of themodel. Moreover, it is interesting to note that for our case the
firing state can be changed easily. This phenomenon can lexternal signal can be regarded not only as a subthreshold
understood in terms of the state of the basin of attraction. Fostimulation but also a suprathreshold stimulation, thus our

02 |

IV. CONCLUSION
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studies also extend the classical stochastic resonance whibtlasin of attraction is smooth. The result also suggests that
is used to detect a subthreshold signal to a new range thathen we study the dynamic behaviors of some typical neu-
can be used to detect suprathreshold signal for neurons. ronal models, much attention should be paid to the global
Through comparing the stability of the firings of the FHN dynamics of these systems. As shown in the present studies,
neuron model with smooth basin boundary and that withthe global characteristics may have significant effects on
fractal basin boundary, we can draw the conclusion that theome issues we are interested in.
stability of firings of the forced FHN neuron with fractal
basin box_mdary can be changed easily gnder the smal! noise ACKNOWLEDGMENT
perturbation. This result suggests that in order to maintain
the stability of firing state subjected to random perturbations, This work was supported by NSFC Grant Nos. 19972051
the neuron model should be operated in the region where thend 39970242.

[1] M. C. Cross and P. C. Hobenberg, Rev. Mod. PI8&.851
(1993.

[2] L. Glass and M. C. MackeyFrom Clocks to Chaos: The
Rhythm of Life(Princeton University, Princeton, NJ, 1988

[20] B. Barnes and R. Grimshaw, J. Aust. Math. Soc. B, Appl.
Math. 38, 427 (1997.

[21] B. Barnes and R. Grimshaw, Int. J. Bifurcation Chaos Appl.
Sci. Eng.7, 2653(1997.

[3] R. FitzHugh, in Biological Engineering edited by H. P.

Schwann(McGraw-Hill, New York, 1962; J. Nagumo, S.

Arimoto, and S. Yoshizawa, Proc. |IRED, 2061(1962.

[4] J. C. Alexandeet al, SIAM (Soc. Ind. Appl. Math. J. Appl.
Math. 50, 1373(1990.

[5] A. Longtin, J. Stat. Physz0, 309(1993.

[6] K. Wiesenfeldet al, Phys. Rev. Lett72, 2125(1994).

[7] J. P. Baltanas and J. M. Casado, Physica22, 231(1998.

[22] R. Benzi, S. Sutera, and A. Vulpiani, J. Phys.14, L453
(1982).

[23] K. Wiesenfeld and F. Moss, Natufeondon 373 33 (1995.

[24] A. Longtin, S. Bulsara, and F. Moss, Phys. Rev. L&#. 656
(1991.

[25] S. R. Massanes and C. J. P. Vicente, Phys. Re§9E490
(1999.

[26] M. H. Choi, R. F. Fox, and P. Jung, Phys. Rev5E 6335

[8] J. J. Collins, C. C. Show, and T. T. Imhoff, Phys. RevbE (1998.

2988(1995. [27] T. Zhou and F. Moss, Phys. Rev. 42, 3161(1990.

[9] A. Longtin and D. R. Chialvo, Phys. Rev. Lei81, 4012 [28] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Rev.
(1998. Mod. Phys.70, 223(1998.

[10] X. Pei, K. Bachman, and F. Moss, Phys. Lett. 286, 61 [29] M. C. Teich and S. M. Khanna, J. Acoust. Soc. Ai7, 1110
(1996. (1985.

[11] A. S. Pikovsky and J. Kurths, Phys. Rev. Lét8 775(1997). [30] S. W. Mcdonald, C. Grebogi, E. Ott, and J. A. Yorke, Physica
[12] S. W. Hughes=t al,, J. Physiol.(London 517, 805(1999. D 17, 125(1985.
[13] D. A. Baxter, J. W. Clark, and J. H. Byrne, J. Neurophysiol. [31] F. C. Moon and G. X. Li, Phys. Rev. Let5, 1439(1985.

75, 957 (1996. [32] M. S. Soliman and J. M. T. Thompson, Phys. Rev43\ 3425

[14] K. Kopeczket al., Biol. Cybern.69, 463 (1993. (1992.
[15] S. Coombes, Phys. Lett. 255 49 (1999. [33] J. K. Hale,Dynamics and BifurcationéSpringer-Verlag, New
[16] F. Rieke, Spikes, Exploring the Neural Cod@MIT, Cam- York, 1991).

bridge, MA, 1997.
[17] G. Decon and B. Schurmann, Phys. Rev. Le%.4697(1997).
[18] W. Calvin and C. Stevens, J. Neurophysi®l, 574 (1968.
[19] J. Guckenheimer and P. Holmés¥onlinear Oscillations, Dy-
namical Systems and Bifurcation of Vector Fiel@pringer-
Verlag, Berlin, 1983

[34] T. S. Parker and L. O. Chu®ractical Numerical Algorithms
for Chaotic System&Springer-Verlag, Berlin, 1989

[35] M. lansiti, Q. Hu, R. M. Westervelt, and M. Tinkham, Phys.
Rev. Lett.55, 746 (1985.

[36] L. Poon and C. Grebogi, Phys. Rev. Léth, 4023(1995.

[37] S. G. Lee and S. Kim, Phys. Rev.@, 826 (1999.

031906-10



