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Exactness of the annealed and the replica symmetric approximations for random heteropolymers
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We study a heteropolymer model with random contact interactions introduced some time ago as a simplified
model for proteins. The model consists of self-avoiding walks on the simple cubic lattice, with contact
interactions between nearest-neighbor pairs. For each pair, the interaction energy is an independent Gaussian
variable with mean valuB and variance\?. For this model the annealed approximation is expected to become
exact for low disorder, at sufficiently high dimension and in the thermodynamic limit. We show that correc-
tions to the annealed approximation in the three-dimensional high-temperature phase are small, but do not
vanish in the thermodynamic limit, and are in good agreement with our replica symmetric calculations. Such
corrections derive from the fact that the overlap between two typical chains is nonzero. We explain why
previous authors had come to the opposite conclusion, and discuss consequences for the thermodynamics of the
model. Numerical results were obtained by simulating chains of leNgti1400 by means of the recepErM
algorithm, in the coil and molten globular phases, well above the freezing temperature.
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I. INTRODUCTION The energy of the model can then be written as
Apart from their extreme biological importance, proteins _
) . X Lo M E(C,{B})= i (OB, 2
are also very interesting objects from the point of view of (C{Bh .§<:, 7ij (OB 2

statistical mechanics. They possess a very well-defined na- .
tive structure, which they are able to find in a short timewith B;;=B’, Bizj—BiJ-z:A’z. For a given realization of
among a potentially huge number of competing ones, and ithe interaction energieB;; (representing a protein sequence
spite of many metastable states. How proteins reconcile thg the biological analogy the partition sunZy at tempera-
stability of the native structure with the requirement that thisture T can be formally computed 483]
structure is rapidly reached constitutes the essence of the
fascinating and still open protein folding probldd.

An interesting question is whether the property of folding ZniBij}= EC: exp—E(C.{B})/keT, &)
is a generic property of randomly assembled polypeptidic
chains, regardless of their biological function, or is a specialvhere the sum over configuratior® runs over all self-
property that has evolved through natural selection. ThisvoidingN-step walks. Obviously, the above expression de-
kind of question makes the protein folding problem a bridgepends only on the variableA=A'/kgT and B=B'/kgT,
between theoretical biology and the statistical mechanics dfe., we have a two-parameter phase diagram in the variables
disordered systems. Motivated by this, numerous authorB and A. The main advantage in using as one of the
have studied simple models of random heteropolymersndependent variables instead Bfor 8= 1/kgT is that we

[2—18], see Ref[19] for a review. can pass continuously from positiveepulsive, hydrophilic
In the following, we shall discuss only the “random bond to negative(hydrophobig B.
model” introduced independently by Garel and Orldix As usual with random models, we have to evaluate the

and by Shakhnovich and Gut{4]. More precisely, in our quenched average of the free energy. This is a very difficult
numerical simulations we will study a lattice version of this task, while it is rather easy to perform an annealed average
model. Preliminary results of this paper have already beegver the disorder. For several models of random spin sys-
presented in Ref20]. A “protein” with N+ 1 “amino ac-  tems it is well known that such an annealed approximation
ids” is represented as a self-avoiding wail] of N steps on  pbecomes exact in the high-temperature phase, in the thermo-
the simple cubic lattice. Each pair,{) of nonbonded mono- dynamic limit, and at sufficiently large dimension. The same
mers on nearest-neighbor lattice sites contributes to the tot@ thought to be true for the present model. It was indeed
energy an amount given by an independent and identicallpredicted in Ref[4] that the annealed approximation be-
distributed Gaussian variabBg; with meanB’ and variance comes exact in three dimensions when the chain length tends
A'2. Formally, one defines the contact map of configurationto infinity. For this to be true it is necessary that the overlap
C, o(C), as the matrix of binary variables;; € {0,1}, with between two randomly chosen replicas with the same real-
i,je{0,...N}, such that ization of disorder vanishes in the linfit— o,

. . ) Numerical tests of this prediction have been made in the
1, ifi andj arein contactand nonbonded 5t for chains of lengths36, mostly by means of exact
0, otherwise. enumerations of maximally compact chains of length 27

(1) [14,15. These authors found deviatiofieplica overlap is

aij(C)=
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nonzerg which seemed to decrease with A similar result ~ As for most random systems, this cannot be evaluated in

even ford=2 was found in Ref[18], where exact enumera- closed form. Much easier to evaluate is the annealed approxi-

tion of very short chains were usédp toN=22). Butitis mation

clear that tests with such short chains can hardly be signifi-

cant. In the present paper we shall present Monte Carlo

simulations for chains of length up %= 1400. These simu-

lations are made with theerm algorithm developed recently ) ) ) )

by one of us[25], and applied successfully to a number of obtained by taking _the _dlsorder average before Fa_kmg t.he

different polymer problemf26-29. log. Here the Gaussian integrals can be done explicitly, with
We study the corrections to the annealed approximatiofhe result

using two different approaches. First, we compute them us-

ing the replica method and assuming replica symmetry, 2_sz exp—

which is believed to hold for low disorder. Even if a full c

computation was not possible, the expected behavior was. o . ) _

well confirmed by numerical simulations. Second, we notice>I"C€ this is the partition sum for a homopolymer with pair

that corrections to the annealed approximation in the weak"€r9y

disorder limit can be related exactly to the average overlap

1 I
FN,anr(BrA)Z_N In Zy (5)

1
_ A2
BZA

> a;(C). (6)

i<j

= o 1a2
between pairs of homopolymetwithout any disorder We B=B—z4% @
give strong theoretical arguments that this overlap does not
vanish in the limitN—o. We also calculate it by means of we see thaf4]
Monte Carlo simulations. Unlike in the previous case, these _c (B
) ) ) . N F B,A)=F\(B,0). 8
simulations do not involve the averaging over the disorder N and )=Fn(B.O) ®
and thus can be applied to larger systems. Therefore, all thermodynamic variables can be expressed in

The two methods agree with each other and show that thghe annealed approximation in terms of an equivalent ho-

corrections to the annealed approximation are smaltlin - mopolymer with shifted interaction strength. This relation-
=3, but do not vanish in the thermodynamic limit. Devia- ship is easiest for those observables whose definition does
tions from the annealed approximation are larger in the coihot involve a derivative with respect to temperature, such as
(high-temperatune phase and very small in the collapsed the gyration and end-to-end radii, and the density of non-
(globulap phase. bonded nearest-neighbor contactsThe latter is defined as
The annealed approximation is presented in Sec. Il anghe average number ofn contacts between nonconsecutive

compared to results of Monte Carlo simulations. In order tomonomers divided by. For these observables, we have
explain the observed deviations, we study in Sec. Il a sce-

nario where the overlap is nonzero but replica symmetry is R, and B, A) = RN(E,O) (9)
unbroken. We again compare theoretical predictions with

simulation results. The relationship between the weak disorand

der limit and homopolymer overlap is discussed in Sec. IV. - -

Additional thermodynamic considerations are presented in Cand B,A)=c(B,0)=c, (10
Sec. V, and our final conclusions are drawn in Sec. VI. The

PERM algorithm used for the simulations is discussed in anPT€CiSely as in Eq(8). . .
appendix. For energyU and entropyS the relations are less simple,

since these involve derivatives of the free energy with re-
spect toT, which are changed into derivatives with respect to
Il. ANNEALED APPROXIMATION B and A by our convention of using=1. For the energy

. ) ) per monomer it holds
In thermodynamic systems with quenched disorder we

have to consider the average of the free-energy per monomer B—A2 ~ _
over individual realizations of disord¢B;;}, which formally Unand B,A)= 3 Un(B,0)=(B—A%c, (1D
is given by
where we used the fact that the energy for homopolymers is
T - Un(B,0)=cB. For the specific entropy Sy(B,A)
Fn(B,A)=— BN In[Z\{Bjj}1) =—(dldT)FN(B,AT)|[r-; we use Fy(B,A,T)

=TFy(B/T,A/T,1) together with Eq(8), and obtain

1
=7 BN I - AZ
= SN,anr(B:A):SN(Byo)_EUN(BD)- (12)
exp—(B;;—B)%/2A?
Xf dB; N IN(Z\{Bj;}). The number of configurations with fixexshould increase as

exdNf(c)] for largeN, i.e., f(c) is the entropy density in the
(4) fixed-N, fixed-c ensemble. For homopolymers, the ensemble
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with fixed B becomes equivalent to the fixedensemble in
the limit N—o. Thusc becomes a nonfluctuating function of
B, c=c(B)=Cc, and the above formula becomes simply
5 A2~ 10 + . 4
Sn,and B,A)=1(C)— ¢ for N—oo, (13 Swollen coil /
wherec(B) is the solution of the saddle-point equation
~_ df(c) - 0.0 - i
f'(c)= 7c =B. (149 |
Globule
The condition for thermodynamic stability is that the second
derivative off should be negative, correspondingRdeing .
minimal. This is equivalent to requiring that the specific heat ‘1'00_0 10 20
is positive. In fact, the specific heat for a homopolymer is A
given by FIG. 1. Collapse transition line. The solid line is the annealed
Jc 92f\ 1 prediction,B— A2%/2=B,= —0.269. Numerical data are obtained by
Cy= Bﬁ =— BZ(W) , (15 measuring the end-to-end distance A& 2.5 (not shown there are

significant deviations from the annealed approximation, that are

. . o . t likely due to a direct freezing from th [ hase.
which has been obtained by deriving both sides of @4) mostikely due fo a direct freezing from the swollen phase

with respect tor. t

Homopolymers with attraction between unbonded neare#\j
neighbors show a collapsgtheta”) transition where the
specific heat diverges in the liml—c. Thus we expect
that the second derivativi&f/Jc? vanishes at the theta point
c=cy (the precise value of the transition point depends onry,
the lattice considergd

The annealed approximation is supposed to be valid bot

above and below the theta transition. At very low tempera,, o+ lear whether they disappear fF—cc. Obviously, in

tures a_nd very large disorder, it has to br_eak down SINC%rder to proceed we need more refined theoretical predictions
otherwise the entropy would become negative, according t&

ese plots we used at least 300 realizations of disorder, and
e got at least 10independent configurations for each dis-
order realization. Similar plots were made also for several
other values oB andA.

In all these plots we see small but significant deviations.
ese deviations are present both in the collaggéabulap

nd in the opericoil) phase. They depend only weakly Bin
herefore, even with our long chains and high statistics it is

o " ith ffici he dis-
Eq. (12). This signals another phase transition, the so-calle o compare with, and/or a more efficient way to do the dis

: o . . >0 C T order average.
freezing transition. We shall not discuss this regime in this Before wge do this, we should point out that deviations
paper, but will treat it in a forthcoming publication. '

- o o ) : from the annealed approximation were also found recently in
Since the theta point is a tricritical poif21,25, its upper PP y

critical dimension isd= 3. Therefore, we expect that in three a different model by Trovatet al.[22].

dimensions the “swelling factor” is constant,
Ill. REPLICA SYMMETRIC APPROXIMATION

2 ~
(R%)/N~const (16) To go beyond the annealed approximation, we will use

at the theta point, up to logarithmic correctiof&0,25,31]. the replica trick

Here,R is any measure of the size of the polymer, such as

n
the end-to-end distance or the gyration radius. We expect InZy= lim Zn—1 (17)
that this is still true for heteropolymers, as long as we are not n—0
yet in the frozen regime. While E416) gives the most pre-
cise numerical estimate of the collapse transitiaith B,  Alternatively, we could try a Taylor expansion
= —0.2690* 0.0002 Ref[25]], estimates with similar preci-
sion can be obtained from the convexity of the free energy |n(ZN/Z_N)= — %(Z_ﬁl/z_N2_1)+ L (18
[28], and the volume dependence of the free energy in case
of periodic boundary condition26]. This expansion is most likely divergent. It is nevertheless

The collapse line in theH,A) plot obtained from simu-  yseful since its first term gives already a good indication of
lating chains of lengtiN<1000, is shown in Fig. 1. Here the the leading corrections. Also, it suggests the inequality
solid line is the annealed approximation. We see that on this

scale the annealed approximation seems perfect. But this is Fn(B,A)=Fy and B, A). (19
not quite true. Much more precise tests can be performed by

comparing directly both sides of Eq&) to (11). Typical  which can easily be derived exactly from convexity of the
plots obtained in this way are shown in Fig. 2. For each oflogarithm. The same inequality is expected to hold Uy .
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FIG. 2. Free energigsy per monomertop left), end-to-end swelling factokR?)/N (bottom lefy, density of contacts (top right, and

absolute values of energies per monordgr (bottom righj for four systems withA =0.5, and withB=0,—0.20,~0.269, and—0.345. In

the two top figure$§| increases from top to bottom, in the bottom figures it increases from bottom to top. Full lines are from Monte Carlo
simulations, dashed lines are predictions of the annealed approximation. In all panels, error bars are much smaller than the thickness of the

lines. The value®=0 and—0.20 are in the swollen phase,0.345 is in the collapsed phase, an®.269 is on the theta line.

This inequality is equivalent to the existence of a negative 1 1
corre_lation between the average energy and the partition C“:N E gfj“, Qup=—T7—— 2 o'ﬁg'ﬁ, (21
function. <] NvC,Cp i<

To use Eq.(17), we first have to evaluate disorder aver-

ages ofZy, for integern=2. These are performed similarly \yhich are, respectively, the density of contacts for the con-
tq the_ average oveZ!\,, exce_pt that the Gaussian integrals 5t mape and the overlap between two contact mapand
give rise formally to interactions between repli¢ds, B. The overlap is a measure of similarity, and it is equal to
one, if and only if the two contact maps coincide. Further-
more, we assume that, for largjg the number of configura-
tion n tuples withNcq, . ..Nc, contacts and mutual over-
laps{q,.z} grows as

> exp[—atﬁl(za;;

CCy i<i

AZ
+? ( ) Uﬁoﬁ) .
aF B \i<]j

(20)
n n
Here the Greek indicea and B refer to the different repli- exp{N( > flcy)— 2, Xk({ca},{qaﬁ})”. (22
cas,C, is a configuration of replica, ojj is its contact map, a=1 k=2

and B is given by Eq.(7). The annealed approximation is
equivalent to neglecting the two-replica term. In other words xy({C.}.1d.p}) is the entropy loss per mono-
To proceed, we define the variables mer when we impose that the replicg with density of
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contactsc, has overlapsy x- - - 0x—1x With thek—1 previ-  that the Hessian determinant of the free energy with respect
ous replicas. This quantity can be measured, for instance fdo the variablex andq, H(c,q), be nonpositive:
k=2.

We can then write y B per ) Py Py ( Py 1ay 2<0
n 5 CO=| 52" 52 9> \acoq caq)
2, [f(ca)~Be, 27

a=

7~ d{ca}d{qaﬁ}exp[w

" For A=0 we haveH(c,q) = (d%f/dc?)(9°x/ 99%)<0 as for
;B Vcacﬁqaﬁ_gz Xk({ca}’{qaﬁ})) } homopolymers. In fact, at that point the first derivatives of
x(c,q) vanish. The Hessian determinag(c,q) vanishes
~exd —NnF,({c*} {0aph) |- (23)  also, becausg(c,q) stays constant at the value zero along
] ) the line q=qg(c). Thus both conditions of thermodynamic
Here, F({c“},{qp}) is the free energy per monomer in a stapility are fulfilled atA small enough.
system withn replicas. To evaluate it, we approximate the  The energy and entropy per monomer are obtained in the

integrals overc, andq, by their saddle points. We assume sagme way as in the annealed approximation. We find
replica symmetry, which is expected to hold for low disor-

der: the saddle point is assumed to be givercpy: c for all

AZ
T

a andq,z=q for all pairsa# g. Un(B,A)=[B—A%(1-q)]c, (28)
Now, in order to obtain the correct free energy, we have
to take the limitn—0. We obtain 2

A
= 1 Su(B,A)=f(c)+x(c,q)—5c(l-q). (29
F(B,A)=—f(c)+Bc+ 3 A“cq— x(c,q), (24

where x(c,q) = —lim,_oZ¢_,xn(c,q)/n is the average en-  Ajthough this is obtained from the saddle-point method,
tropy gain per replica due to the condition that the overlapynich is exact only folN—c, we can use E¢28) to obtain
among all replicas is equal . Note that this quantity iS  effective overlapsq’(B,A,N), which tend to the saddle-
positive because, in the limit of vanishimg the number of  yoint valuegy(B,A) in the thermodynamic limit. Results are
terms in the sum is-1. Finally, we have to compute the shown in Fig. 8a). Since corrections to the saddle point
values ofc andq at whichF is evaluated by imposing two  55nroximation are expected to be of ordér?, while sur-

saddle-point conditions: face corrections in the compact phase are expected to be of
5(c)  ax(c.q) 1 orderN~*3, the N behavior ofq(B,A,N) for large systems
+ X A =B+ EAzq (25)  should be dominated by the surface dependence of the over-
ac ac '

lap. Indeed, we measured the average overlap also using the
definition Eq.(21), observing that its value and its finite-size
£A2c= dx(c,q) (26) behavior compare quite well with our numerical estimates
2 aq based on Eq28). These measurements have been performed
only atA=0, and will be reported in the next section. In the
For A=0 (homopolymer Eq. (26) just means that the present section we shall report the indirect measurement of
value of the overlap is the most probable one for a gieen the overlap through Eq28), which is much easier from the
go(c). Because of the normalization, it must ke€c,qo) point of view of simulations.
=0, thus the free energy of the homopolymer is just a spe- e observed thay’ (B,A,N) decreases with system size,
cial case of Eq(24). Moreover, sincey(c,do) =0 is an ab-  put its asymptotic value seems to be finite in the random coil
solute minimum, also the derivativéy/Jdc must vanish at  phase. This was confirmed by similar measurements at dif-
that point, thus the saddle-point equation éovalid for the  ferent values ofA. Thus the annealed approximation does
homopolymer is recovered fak=0. It also follows from  not hold in the random coil phase. The situation is more
this argument that the second derivativesygt,q) at the  difficult for collapsed chains. In this case it cannot be ex-
point[c,gq(c)] must be non-negative. cluded from Fig. &) that the overlap asymptotically van-
Notice that the free energy has to be maximized as ghes, and thus the annealed approximation becomes exact in
function of q because this variable refers to a space with ahe thermodynamic limit. However, simulations of systems
negative number of dimensions in the limit~0. We thus  of even larger size that will be presented in the next section
get a first condition of thermodynamic stabilit#’x/dq?>  show that this is not the case and that the corrections to the
>0, which, from the above consideration, is expected to bennealed approximation remain finite in the thermodynamic
fulfilled for A small enough. The situation is more compli- limit in both the coil and the collapsed phases, although in
cated for the variable. It enters both into the free energy of the latter phase they are rather small. As seen from Fiy, 3
the replica interactions, which has to be maximized rior q does not depend very much dnin the collapsed phase
—0, and into the free energy of the homopolymer, whichand for large systems.
has to be minimized, at least fd&r=0. We conjecture that To obtain numerical estimates gf we subtract from Eq.
the corresponding condition of thermodynamic stability is(24) the analogous equation for homopolymers, and obtain
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FIG. 3. Effective overlam’(B,A,N) measured from the energy and the contact densities, as a function of system size(dr and
four different values of=B (a) and forB= —0.345 and five different values df (b).

dx(c,q)
ac

F(B,A)—F(B,0)=(c—¢c)B—[f(c)—f(c)]

. .1
(c=0)f"(c)= 5A%q— ———+0[(c— ©)?]. (32

1
+ =AZ%cq-x(c,q). 30
2 a-x(e.q) (30 Combining this with Eq.(31) and neglecting term®J[ (c
~ _ —¢)?], we obtain finally
Expanding the differencé(c)—f(c) in the differencec—c

and usingf'(c) =B, we get F(B,A)—F(B,0)= C+—°A2q— Sl xEa)]

- 1 - -
F(B,A)—F(B,O)=—E(C—C)Zf”(c) +0[(c—¢)?]. (33

1 ~ As in the case of the overlap, we note that E3B) defines an
+ EAZCq—X(C,QHO[(C—C)Z]- effective entropyy(B,A,N), which should tend to the lead-
ing correction to the annealed approximati@tcording to
(31)  which, x(B,A)=0 holdg in the thermodynamic limit.
In Fig. 4 we show numerical values fdry(B,A,N)

This can be either evaluated dlreCtly, neglectlng the |aSt.|-X(BON)]/2 obtained in this way. We see thﬁ“s very
term. Alternatively, we can eliminate the term involving small but definitely not zero. Again we see that corrections to
f”(c) by subtracting from Eq(25) the analogous equation the annealed approximations are larger in the swollen phase

for homopolymers, which gives than in the collapsed phase. Indeed, this time it seems that
' ' 0.0010
0.0014 . — =02 A
B=-0345 ... A=0.3
| T A4 0.0008 1
M 'l ——- A=05
oot f T g . ‘
\ ‘ R ity o . 1
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FIG. 4. [x(B,A,N)+ x(B,0N)]/2 measured from Eq33) as a function of system size for the same valueB @ind A as in Fig. 3.
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the deviations have a finite limit fdl—oo in both phases. ' ' '
This conclusion is supported by measurements at other val \

ues of A (not shown herg Basically the same conclusions
are also drawn from Ed31), showing thaty(c,q) depends
weakly onc and that Eq(32) is very well satisfied.

IV. OVERLAP OF HOMOPOLYMERS

0

In this section we will discuss the overlap of contact ma- <
trices for homopolymer chains and their relation to correc-

- . . - . —— B'=-0.20 ;\\\ e
tions to the annealed approximation in the weak disorder e B'=0.269 (B,) NN

limit. Consider the derivative of the free energy of a random ---- B'=-0.35 N
heteropolymer with respect th?, atA=0. Using Eqs(18) ——- B'=-050 N
and(20) and the results of Sec. I, we obtain AN S~

1

2

10 100 1000
N

jhazﬁ

Z20A%

alnZy
JA?

alnZy
IA?

A=0 A=0 A=0

FIG. 5. Average overlap,=(cq)/(c) between homopolymer

dInZy 1 E , chains of lengthN for different values of the monomer-monomer
+§ O'i]' (Tij y
A=0 A=0

IA?

3 attractionB.

(34)

for B=—0.269. For the collapsed phase, the evidence is not
where the angular brackets denote Boltzmann average OVe[, |ear. The curves f@=—0.35 and folB= — 0.5 both are

the ensemble of two replicas. Thus we have much lower for largeN and continue to decrease. Superfi-

1 cially, one might therefore conclude that the overlap disap-
=—(CcQnr_q. (35) pears forN—. But both these curves show a distinct up-
2 < q>A 0 .. .
A=0 ward curvature for the largest valuesNfindicating that the
_ _ o decrease will level off and), tends to a finite constant for
This could have been obtained of course also within the repN— o0, To sustain this view, we show in Fig. 6 the plots of
lica symmetric approach, but the above derivation shows thatcq) as a function of chain lengti. In this case it is evident
it is indeed a rigorous result involving neither approxima-that the curves are going to a nonzero value. Since the frac-
tions nor unjustified assumptions. ~ tion of contacts is limitedit holdsc<2 on the cubic lattice
Notice tha'_[ this cannot be ge_nerallzed Ac~0, but in  glso do={(cq)/(c) should go to a nonzero value, and the
principle straightforward generalizations could be used tQjecrease observed in Fig. 5 is just a consequence of the fact
compute all higher derivatives that the average fraction of contacts is increasing, approach-
ing its stationary value.

J
[W(FN_FN,ann)

k
&Azk(FN_FNYWD , k=1,23.... (36 0.08 . .
A=0 .
— B'=-0.20
Numerically, the right-hand side of E(B5) can be estimated e g-j:g-ggg Y
by simulating pairs of chains simultaneously. For this we 006 L~ o B——050 |
used a variant of theerm algorithm where we add mono- Lo N —-— B'=-0.70
mers alternatively to the first and to the second cha#j. In I ‘v"\/\j\ Ny v
this way we guarantee that both chains have exactly the sam [ Y
length (after having added an even number of monomers @r 0.04 |l T e . .

and it is straightforward to estimate their overlap. lf

Results from such simulations with chains of length up to 25
1400 are shown in Fig. 5. These data agree nicely with ex- Ap—
trapolations of the overlaps fax>0 shown in the last sec- 0.02 ¥ 1
tion. They have much smaller statistical errors, since we da
not have to average over any disorder explicitly. This makes
the present method much faster and allows us to study large , ,
systems. 0 500 1000 1500

The curve forB=—0.2>B, in Fig. 5 shows clearly that N
the annealed approximation does not become exaciNfor FIG. 6. Average fraction of common contagsq) between

— in the open coil phase. The same is tfathough a bit  homopolymer chains of lengtiN for different values of the
less clear exactly at the® point, as indicated by the curve monomer-monomer attractid
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This conclusion is not, after all, very surprising. It can be parameter® andA we can compute the derivatives ofind
backed by an argument, which could presumably, with som%1 as

effort, be made rigorous. The density of contacts in a self-

avoiding walk (corresponding toB=0) is dominated by Jc Pyl aq?
short-range contacts, i.e., by contactsj) with small — =ms ,
li—j|. The contribution of such a loop with fixedand j 9B/ &

depends weakly on the configuration of the chain far away
from this monomer pair. Thus, if such a loop is present in (‘9_C) _ —A i(ca_X_ a_X) (37)
one replica, it has a high chance to be present also in the dAJz H(c,q) dq g '

other replica, even if the global structures of both replicas are

entirely different. ( aq>

d%xl9caq— (1/c)(dx!9q)
H(c,a) ’

In collapsed chains there are relatively more long-range
contacts, which explains why the annealed approximation is
better — but still not exact — in that regime. For random
heteropolymers with strong disorder, and even more so for (a_q) _ A
proteins, this argument suggests an increased overlap be- | dA/z H(c,q)
cause of secondary structure. For instance, an alpha helix
produces an array of contacts,i+4), (i+1i+5),..., whereH(c,q) is given by Eq.(27). From these, the specific
wherei labels the position of the amino acid along the pro-heat can be computed as
tein chain. This enhances the overlap. Moreover, there is a
finite probability that such contacts appear simultaneouslyC,=dU/dT
even in the structures of two unrelated proteins. Thus the
average overlap even in a large set of unrelated protein struc- —[B—A2%(1-q)]
ture appears to attain a finite limit when the length of the
chains increas€4].

&BA

(azf (92)() ( Px 1 ax>
Cloe2t 52/~ — ===
ac  dc Jacoq ¢ dq

B— A2 o +A o
( )aE A

aq aq
_ A2 _ — A2y — —
A%e| (1=a)+(B=A%)—=+A %

V. THERMODYNAMICS IN THE REPLICA SYMMETRIC

APPROXIMATION 1 [oF J°F
=R (9—02(A2C)2—2ac(7 (A%c)[B-A%(1-q)]
In this section we study the predictions of the replica sym- a q
metric approximation on the behavior of thermodynamic 92E , , .
variables with the external control parametBrandAZ?. We +a_(f[B_A (1-q)]7|+A%c(1-q), (38)

shall show the following. First, we shall justify that condition

of thermodynamic stability is that the Hessian determinant ofyhereF (c,q) is the free energy evaluated at the saddle point
the free energy with respect to the parameterand g,  andH(c,q) is its Hessian determinant. The three terms in the
H(c,q) given in Eq.(27), be nonpositive. Then we shall square brackets are a quadratic form whose determinant is
argue that, ifqe(c), the average overlap of homopolymers expressed by (c,q). Sinced?F/dq? is positive, they would
with density of contacts, is small, as it appears to be, also give a negative contribution to the specific heatlifc,q)

the corrections to the annealed approximation, givercby were positive. Thus, it is justified to require thd(c,q) is
—~¢(B) and byq, will remain small[of order go(c)] for ~ negative as a condition for thermodynamic stability.

finite A. On very general grounds, we shall show that the We now argue that the corrections to the annealed ap-
density of contacts is a decreasing function, while the over- proximation remain small if the average overlap of ho-

lap g is an increasing function, of the paramelerlf y(c,q) ~ Mopolymers,qo(c), is small. In fact, the functiory(c,q)
depends only on the producy, as assumed in previous attains its absolute minimum valygc,q) =0 along the line

works, therc is independent o at fixedB, and it is exactly g=0do(c). Thus, assuming thak(c,q) is an analytic func-
predicted by the annealed approximation. This is however atfon of g for g=0, it can be expressed in the form
odds with simulations. Better assumptions on the functional “ ac)
form of x(c,q) show thatc is a decreasing function argis x(c,q)= 2 k—[q—qo(c)]k
an increasing function oA, as observed in simulations. At k=2 k!
last, we discuss the possibility that the singularity in the spe- %
cific heat at the theta point of the homopolymer may be EE Ak(c)[Q_Q (o) (39)
smeared out by the disorder. k=2 k! 0 ’

The two saddle-point equations farand q cannot be
explicitly solved without an explicit expression for the func- with a,(c)>0. The typical overlamo(c) is small, and it is
tionsf(c) andx(c,q). Nevertheless, their qualitative behav- a decreasing function af, or qp(c) <0 (the prime indicates
ior can be studied in more detail. Taking the derivatives ofderivative with respect te). The coefficients,(c) are ex-
both Egs.(25) and (26) with respect to the thermodynamic pected to be quantities of ordggy(c)] “*%, as it will be
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argued later. We also introduce the notat@#s-cq, Qq(c) A better theory for the functiow(c,q) was developed by
=cqo(c), andA,(c)=ac(c)c k. We can now develop the Plotkin et al, [13]. They computed the entropy loss for two
saddle-point equations far close to the solution of the an- replicas with density of contacts being at overlapq,

nealed approximatiorg=c(B), given byf’(c)=B: x2(c,q), in the mean-field approximation and in the col-
lapsed phase. Although this can be different frgfe,q), it
9*f A? 9?Q, ~  [A%9Q, is a good point for understanding its qualitative behavior.
2Zt7 F) (e—o+ 7%) 3 Unfortunately, we cannot use the formula obtained in Ref.
c=c c=c [13] because of technical reasons and because it assumes that
“ Alc) the homopolymer overlapy(c) is zero in the thermody-
+ E ki [Q—Qo(c)]" =0, namic limit, while our calculations show that this is not the
k=2 & c=c case. We shall however use the fact that,q) is the sum of
. three contributions: the entropy loss due to imposing that
D Ax+1(C) L, Ncq contacts have to coincide, the loss due the fact that
& K [Q—Qo(0)] _EA ' (40) Nc(1—q) contacts have to be different, and a combinatoric

factor counting the number of different choicesNo€q con-
From these expressions one sees that #Q,(c) andc  tacts amongNc. The last term can be approximated by

—T are quantities of orde®,(c), thus corrections to the Xmix(C,Q)=c[qInq+(1-q)In(1—qg)], even if this is an over-
annealed approximation are finite but small for finke estimate, since not all of the combinations of different com-

We now compute the thermodynamic derivatives by de/Mon contacts can be realized. Putting everything together we
veloping Eq.(39) to the zeroth order isq=[q—go(c)] Nave
(this quantity must be positive for small): A
x(c,q)=x(c,cqtclging+(1-q)n(1-q)]. (44)

(ﬁ _ay(0) _ (a_c) _Aay(©) iQp
9B H(c,q)  \dA 5 H(c,q) dc’ In the computation by Plotkirt al., the mixed second de-
8 rivative of y(c,cq) with respect toQ=cq and ¢ vanishes.
&q) a,(c) ddq This simplifies considerably formulas, and it wiII_be assumed
—| ~—==_ ">y, to hold for the rest of the paper. We shall thus introduce the
gB), H(c.a) dc notationy’ (Q) to denote the derivative of(c,Q) with re-
spect toQ=cq at fixedc. Comparing Eq(44) to Eq. (39),
(‘9_‘1) __ A c0—2f+a (C)%a_Qo (a2 We see thafy”(Q) must be positive and thaty/dc=— (1
dA |5 H(c,q) ac® 2 gc e —20p)In(1—qgp). We also see thab,(c)=c/[qo(1—qp)]

_ +x"(Q) is likely to be a quantity of ordqul, as it has
H(c,q) must be computed at the first order dq, because been assumed above. For the higher-order coefficients one
the zeroth order term vanishes at the theta pOIFﬁtCH at finds = O(q6k+1), as anticipated_ We have now to com-

which #2f/9c? vanishes. The result reads pute the derivatives dDy(C) =cqy(C):
s Y , Qo )
H(C,Q)*W&_qz_[Q_Qo(C)]C[Az(C)] preat 9Qo _ 9°x19ciQ _ do -0
(43 de PxIIQ” 1+cdox"(co)(1—do)

(45
Thus we conclude that the density of contactdecreases
and the average overlapincreases wittB. To proceed fur- in gualitative agreement with Fig. 6. Inserting the above re-
ther, we first consider the simple case where the entropgult in the formulag42) we see that the density of contacts
x(c,q) depends only on the produ@=cq representing the decreases with at fixedB. This behavior is confirmed by
number of conditions that we have to impose in order to fixour numerical resultésee Fig. 7, which also show that the
an overlapy: x(c,q) =x(cq). This form was assumed in the decrease is maximal f@~B,=—0.27, as expected from
work of Shakhnovich and Guti]. In this caseQ doesDot the fact thatH[c,q,(c)] vanishes at=c,. The overlapq
depend onc, thus from Eqs.(42) it follows thatc=c(B) increases wit/B at fixedA, as expected from Eq42) (see
should not depend oA at fixedB and assumes the valee  Fig. g), and increases with at fixed B, as expected from
predicted by the annealed approximation. This result can alspq. (45) (see Fig. 8 again It can thus be understood why the
be obtained directly from EC(B?) However, our numerical over|ap decreases with system size: as the nunmbef
results contradict this prediction. The overigpshould be in monomers increases the importance of surface effects is re-
this case, an increasing functiondf and its derivative with  quced (as N"3) and c(N) increases, thus decreasing the
respect td should be proportional tosf/9c?) 1, whichis  value ofq.

expected to diverge at the theta po@tc,. This fact can We now examine the condition of thermodynamic stabil-
explain why the values off are much smaller in the col- ity, H(c,q)<0. As it was already observed, since at the
lapsed phase than in the coil phase. point [c,qo(c)] both the gradient ofy(c,q) and its
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FIG. 7. Left: overlapq as a function ofA2 for different values oB. Right: entropy] x(B,A)+ x(B,0)]/2 measured from E(3) as a
function of A2 for different values oB. In both cases, we use values fér=800, but other lengths give qualitatively the same behavior.

Hessian determinant vanish, we have[c,qq(c)]= radius. It is rather difficult, if not impossible, to test this
(6%F19c?)(9%x199?)<0. At the theta point this quantity scenario by means of simulations. Thitd(c,,q) can van-
vanishes, andi(c,,q) is given by the deviations from the ish identically atc=c,. It is easy to see that this condition,
annealed approximation. Three situations are possible: Firstombined with the assumption thg(c,q) is of the form
H(cy,q) can be positive at the leading order Bg=q  (44), is fulfilled if and only if y’(cq) is of the form
—do(Cy). In this case the thermodynamic stability would be

violated around the theta point, but our simulations do not .

show anything peculiar in this region. Second, the leading X’(cq)=|n(
order in 8q can be negative. In this case, the specific heat

would not diverge anymore at the theta point for finktebut

it would show a peak proportional to some negative power ofVhere 4=do(c), A<0, and 6<B<cq are two constants,
8q. Thus the disorder would smear out the thermodynami@_‘ndc is not _too small so thr_;tt the last inequality can be ful-
singularity atc=c,, leaving unchanged the geometric char-filléd. In this case, one findeqy(c)=B(c—A)/(B—A)

acterization of the collapsed chains in terms of the gyrationt [0:c], and it is easy to check that all previous results are
recovered, whiléd(c,q) —H[ c,qq(c)] vanishes for alf and

¢, including the theta point.

Summarizing the discussion, we find thatyifc,q) is of
the form (44), two possibilities are open: eithgr’ (cq) is
given by Eq.(46), in which caseH(c,q)=H[c,qq(c)]<0,
or x'(cq) has a different form, in which case the specific
heat is not anymore divergent at the theta paintc,. Un-
fortunately, we are not able to decide among these alterna-

1—cq/B)

cg/A (46)

1

0.98

J 06 \ | tives.
S O
G—oB=0.15 NN
G---0B=-0.25 \\ VI. DISCUSSION
& --©B=0.30 IR o
094 | A —AB=-035 \\\é ] We have shown that the annealed approximation is very
\\\8 good but not exact for a particular model of random het-
eropolymers, and we have given simple physical arguments
for it. We have also computed the thermodynamics of the
0.92 0 02 02 06 model using the replica symmetric approximation, and we
' A ' have shown that such an approach can explain very well, at

least qualitatively, the observed deviations from the annealed
FIG. 8. Corrections to the density of contacts predicted by theapproximation in the high-temperature phase. The replica
annealed approximation as a functionAaffor different values oB symmetric calculation also leaves open, surprisingly, the
and N=800. The deviations are negative, and they are maximapossibility that the disorder could cancel the thermodynamic
close to the theta poii~ —0.27. The same pattern is observed for singularity at the theta point. A numerical test of this possi-
other lengths. bility is very difficult, and it has been left out.
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In our present paper we have not addressed the most inveights that control pruning/enrichment are the product of
teresting aspect of the model — the freezing of the systenthe two.
in a finite number of mesoscopic states. This transition Both pruning and enrichment are done while the chains
should represent some features of the folding transitiogyrow, i.e., based on the actu@completé weight factors. In
taking place for protein structures. Instead, we have studiedome cases it is advantageous to use not the present weights
the model at higher temperatures and at smaller disordepyt (implicit) estimates of future weights to control the algo-
This should however be of interest also in the context of thgijihm [34], but this is not done in the present paper. Instead,

freezing, since it was conjecturgd] that freezing can be e yse some of the special tricks used for strongly collapsed
described in this model by the random energy model, forsystems in Ref[27].

which a prerequisite is that the annealed approximation is When the weight is too low, configurations are not simply

exact. . : : ! .
. . . . illed (this would imply systematic erroxsbut instead they
In the present simulations we have studied chains Ogre killed with probability 1/2, and those which are not killed
length up toN=1400. Deviations from the annealed ap- . . - . .
oot i . get their weights doubled. Similarly, in the case of cloning
proximation decrease fast for smal| which explains why . : : .
H[Qe weight is spread uniformly among all clones. Techni-

studying very short chains has mislead several authors to t o : .
conclusion that these deviations vanish Koo, But in the cally, cloning is performed by means of recursive subroutine
calls. A pseudocode of the basic algorithm is given in the

high-T (open coi) phase this decrease clearly stops, and de- )
viations are roughly independent b for N>100. This is aPPendix of Ref[25]. _
less clear in the collapsed phase. But also numerics, general 1he most important shortcoming of the Rosenbluth
arguments, and detailed calculations within a specific sceM€thod is that the distribution of weights can become ex-
nario with unbroken replica symmetry all indicate that theselfémely wide for large systems and at low temperatures. The
deviations will settle at a nonzero value for lartye This ~ only exception is for interacting homopolymers on the
casts doubts on the validity of the random energy picture fosimple cubic lattice at the theta point, where Rosenbluth and
protein folding. Boltzmann factors nearly cancel. In less favorable cases,
There are of course a number of questions which are lefeven a very large statistical sample can be dominated by
open by the present paper. First of all, we have deliberateljust a handful of high weight events, and statistical
left out all questions related to freezing. Secondly, our treaterrors grow out of bounds. Even worse, in extreme cases
ment of Sec. Ill assumed that the overlap distribution is althe events that would cariyn average) most of the weight
ways dominated by a single peak. This is most likely not trueare so rare that they are missed completely with high
in the frozen regime, and the distribution of overlaps is cerprobability, and the free energy is underestimated systemati-
tainly a most interesting object. We shall address these queggly.
tions in a forthcoming pap€85]. Finally, we have studied  pryning and enrichment guarantee that the weights of in-
only one particular model, where contact energies argjividual configurations stay within narrow bounds, and the
independent Gaussian variables. Several other models of raghove cannot happen. But in very difficult situaticierge
dom heteropolymers are studied in the recent literaturey |ow T, large disorderit may happen that due to cloning
[19], and several of them present very interesting open probthe configurations are strongly correlated, and the weights of
lems. clusters of such correlated configurations play essentially a
similar role as the weights of individual configurations in the
above discussion. In the following, we will call such a
ACKNOWLEDGMENTS cluster, which is composed of all configurations having
a common root, a “tour.” In order to check that the weights
of tours do not become too uneven, we have measured
"their distribution. Let us call the weight&/, and the distri-
bution P(W). We are on safe grounds if this distribution is
so narrow that P(W) and WP(W) have basically
the same support. In particular, we should require that
APPENDIX: THE PRUNED ENRICHED ROSENBLUTH the maximum of WR(W) occurs at such values where
METHOD P(W) is still appreuab_l(_a, and the_ d_lstrlbutlon is well
sampled. We have verified that this is the case for all
This method which was first described in detail in Ref.data shown in the present paper. Notice, however, that
[25] is a chain growth method. It is based on Rosenbluth’shis is a very stringent requirement. If it is not satisfied, this
idea of biased samplinf33], but it deviates from it by de- would not necessarily mean that the data are wrong, since
leting (“pruning” ) configurations with too low weight, and configurations within one tour are only partially correlated.
copying configurations with too large weight‘enrich- The generalization of this algorithm to pairs of chains
ment”). We remind the reader that the bias in the Rosenblutlyrowing simultaneously is straightforwaf82]. One just has
method requires each configuration to carry a nontriviato add monomers alternately. When the total number of
weight that builds up gradually as monomer by monomer isnonomers in both chains is even, the addition of the next
added. In addition to this “Rosenbluth factor,” there is also monomer is attempted at chain 1; when this number is odd,
a Boltzmann factor in the case of interacting polymers. Thehe next monomer is added to chain 2.

We are indebted to many colleagues for useful discus
sions, in particular to H. Frauenkron, W. Nadler, H. Orland
E. Shakhnovich, A. Trovato, and M. Vendruscolo.
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