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Exactness of the annealed and the replica symmetric approximations for random heteropolymer
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We study a heteropolymer model with random contact interactions introduced some time ago as a simplified
model for proteins. The model consists of self-avoiding walks on the simple cubic lattice, with contact
interactions between nearest-neighbor pairs. For each pair, the interaction energy is an independent Gaussian
variable with mean valueB and varianceD2. For this model the annealed approximation is expected to become
exact for low disorder, at sufficiently high dimension and in the thermodynamic limit. We show that correc-
tions to the annealed approximation in the three-dimensional high-temperature phase are small, but do not
vanish in the thermodynamic limit, and are in good agreement with our replica symmetric calculations. Such
corrections derive from the fact that the overlap between two typical chains is nonzero. We explain why
previous authors had come to the opposite conclusion, and discuss consequences for the thermodynamics of the
model. Numerical results were obtained by simulating chains of lengthN<1400 by means of the recentPERM

algorithm, in the coil and molten globular phases, well above the freezing temperature.
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I. INTRODUCTION

Apart from their extreme biological importance, protei
are also very interesting objects from the point of view
statistical mechanics. They possess a very well-defined
tive structure, which they are able to find in a short tim
among a potentially huge number of competing ones, an
spite of many metastable states. How proteins reconcile
stability of the native structure with the requirement that t
structure is rapidly reached constitutes the essence of
fascinating and still open protein folding problem@1#.

An interesting question is whether the property of foldi
is a generic property of randomly assembled polypept
chains, regardless of their biological function, or is a spe
property that has evolved through natural selection. T
kind of question makes the protein folding problem a brid
between theoretical biology and the statistical mechanic
disordered systems. Motivated by this, numerous auth
have studied simple models of random heteropolym
@2–18#, see Ref.@19# for a review.

In the following, we shall discuss only the ‘‘random bon
model’’ introduced independently by Garel and Orland@3#
and by Shakhnovich and Gutin@4#. More precisely, in our
numerical simulations we will study a lattice version of th
model. Preliminary results of this paper have already b
presented in Ref.@20#. A ‘‘protein’’ with N11 ‘‘amino ac-
ids’’ is represented as a self-avoiding walk@21# of N steps on
the simple cubic lattice. Each pair (i , j ) of nonbonded mono-
mers on nearest-neighbor lattice sites contributes to the
energy an amount given by an independent and identic
distributed Gaussian variableBi j with meanB8 and variance
D82. Formally, one defines the contact map of configurat
C, s(C), as the matrix of binary variabless i j P$0,1%, with
i , j P$0, . . .N%, such that

s i j ~C!5H 1, if i and j are in contact and nonbonded

0, otherwise.
~1!
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The energy of the model can then be written as

E~C,$B%!5(
i , j

s i j ~C!Bi j , ~2!

with Bi j 5B8, Bi j
2 2Bi j

25D82. For a given realization of
the interaction energiesBi j ~representing a protein sequen
in the biological analogy!, the partition sumZN at tempera-
ture T can be formally computed as@23#

ZN$Bi j %5(C
exp2E~C,$B%!/kBT, ~3!

where the sum over configurationsC runs over all self-
avoidingN-step walks. Obviously, the above expression d
pends only on the variablesD5D8/kBT and B5B8/kBT,
i.e., we have a two-parameter phase diagram in the varia
B and D. The main advantage in usingB as one of the
independent variables instead ofT or b51/kBT is that we
can pass continuously from positive~repulsive, hydrophilic!
to negative~hydrophobic! B.

As usual with random models, we have to evaluate
quenched average of the free energy. This is a very diffic
task, while it is rather easy to perform an annealed aver
over the disorder. For several models of random spin s
tems it is well known that such an annealed approximat
becomes exact in the high-temperature phase, in the the
dynamic limit, and at sufficiently large dimension. The sam
is thought to be true for the present model. It was inde
predicted in Ref.@4# that the annealed approximation b
comes exact in three dimensions when the chain length te
to infinity. For this to be true it is necessary that the over
between two randomly chosen replicas with the same r
ization of disorder vanishes in the limitN→`.

Numerical tests of this prediction have been made in
past for chains of length<36, mostly by means of exac
enumerations of maximally compact chains of length
@14,15#. These authors found deviations~replica overlap is
©2001 The American Physical Society01-1
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UGO BASTOLLA AND PETER GRASSBERGER PHYSICAL REVIEW E63 031901
nonzero! which seemed to decrease withN. A similar result
even ford52 was found in Ref.@18#, where exact enumera
tion of very short chains were used~up to N522). But it is
clear that tests with such short chains can hardly be sig
cant. In the present paper we shall present Monte C
simulations for chains of length up toN51400. These simu-
lations are made with thePERM algorithm developed recentl
by one of us@25#, and applied successfully to a number
different polymer problems@26–29#.

We study the corrections to the annealed approxima
using two different approaches. First, we compute them
ing the replica method and assuming replica symme
which is believed to hold for low disorder. Even if a fu
computation was not possible, the expected behavior
well confirmed by numerical simulations. Second, we not
that corrections to the annealed approximation in the w
disorder limit can be related exactly to the average ove
between pairs of homopolymers~without any disorder!. We
give strong theoretical arguments that this overlap does
vanish in the limitN→`. We also calculate it by means o
Monte Carlo simulations. Unlike in the previous case, th
simulations do not involve the averaging over the disor
and thus can be applied to larger systems.

The two methods agree with each other and show that
corrections to the annealed approximation are small ind
53, but do not vanish in the thermodynamic limit. Devi
tions from the annealed approximation are larger in the
~high-temperature! phase and very small in the collapse
~globular! phase.

The annealed approximation is presented in Sec. II
compared to results of Monte Carlo simulations. In order
explain the observed deviations, we study in Sec. III a s
nario where the overlap is nonzero but replica symmetry
unbroken. We again compare theoretical predictions w
simulation results. The relationship between the weak dis
der limit and homopolymer overlap is discussed in Sec.
Additional thermodynamic considerations are presented
Sec. V, and our final conclusions are drawn in Sec. VI. T
PERM algorithm used for the simulations is discussed in
appendix.

II. ANNEALED APPROXIMATION

In thermodynamic systems with quenched disorder
have to consider the average of the free-energy per mono
over individual realizations of disorder$Bi j %, which formally
is given by

FN~B,D!52
1

bN
ln@ZN$Bi j %#)

[2
1

bN )
i , j

3E dBi j

exp2~Bi j 2B!2/2D2

DA2p
ln~ZN$Bi j %!.

~4!
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As for most random systems, this cannot be evaluated
closed form. Much easier to evaluate is the annealed appr
mation

FN,ann~B,D!52
1

N
ln ZN ~5!

obtained by taking the disorder average before taking
log. Here the Gaussian integrals can be done explicitly, w
the result

ZN5(C
exp2S B2

1

2
D2D(

i , j
s i j ~C!. ~6!

Since this is the partition sum for a homopolymer with p
energy

B̃5B2 1
2 D2, ~7!

we see that@4#

FN,ann~B,D!5FN~B̃,0!. ~8!

Therefore, all thermodynamic variables can be expresse
the annealed approximation in terms of an equivalent
mopolymer with shifted interaction strength. This relatio
ship is easiest for those observables whose definition d
not involve a derivative with respect to temperature, such
the gyration and end-to-end radii, and the density of n
bonded nearest-neighbor contactsc. The latter is defined as
the average number ofnn contacts between nonconsecuti
monomers divided byN. For these observables, we have

RN,ann~B,D!5RN~B̃,0! ~9!

and

cann~B,D!5c~B̃,0![ c̃, ~10!

precisely as in Eq.~8!.
For energyU and entropyS the relations are less simple

since these involve derivatives of the free energy with
spect toT, which are changed into derivatives with respect
B and D by our convention of usingT51. For the energy
per monomer it holds

UN,ann~B,D!5
B2D2

B̃
UN~B̃,0!5~B2D2!c̃, ~11!

where we used the fact that the energy for homopolymer
UN(B̃,0)5 c̃B̃. For the specific entropy SN(B,D)
52(]/]T)FN(B,D,T)uT51 we use FN(B,D,T)
5TFN(B/T,D/T,1) together with Eq.~8!, and obtain

SN,ann~B,D!5SN~B̃,0!2
D2

2B̃
UN~B̃,0!. ~12!

The number of configurations with fixedc should increase as
exp@Nf(c)# for largeN, i.e., f (c) is the entropy density in the
fixed-N, fixed-c ensemble. For homopolymers, the ensem
1-2
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EXACTNESS OF THE ANNEALED AND THE REPLICA . . . PHYSICAL REVIEW E63 031901
with fixed B̃ becomes equivalent to the fixed-c ensemble in
the limit N→`. Thusc becomes a nonfluctuating function o
B̃, c5c(B̃)[ c̃, and the above formula becomes simply

SN,ann~B,D!5 f ~ c̃!2
D2

2
c̃ for N→`, ~13!

wherec(B̂) is the solution of the saddle-point equation

f 8~ c̃![
] f ~c!

]c U
c5 c̃

5B̃. ~14!

The condition for thermodynamic stability is that the seco
derivative off should be negative, corresponding toF being
minimal. This is equivalent to requiring that the specific he
is positive. In fact, the specific heat for a homopolymer
given by

CV5B
]c

]T
52B2S ]2f

]c2D 21

, ~15!

which has been obtained by deriving both sides of Eq.~14!
with respect toT.

Homopolymers with attraction between unbonded nea
neighbors show a collapse~‘‘theta’’ ! transition where the
specific heat diverges in the limitN→`. Thus we expect
that the second derivative]2f /]c2 vanishes at the theta poin
c5cu ~the precise value of the transition point depends
the lattice considered!.

The annealed approximation is supposed to be valid b
above and below the theta transition. At very low tempe
tures and very large disorder, it has to break down si
otherwise the entropy would become negative, accordin
Eq. ~12!. This signals another phase transition, the so-ca
freezing transition. We shall not discuss this regime in t
paper, but will treat it in a forthcoming publication.

Since the theta point is a tricritical point@21,25#, its upper
critical dimension isd53. Therefore, we expect that in thre
dimensions the ‘‘swelling factor’’ is constant,

^R2&/N'const ~16!

at the theta point, up to logarithmic corrections@30,25,31#.
Here,R is any measure of the size of the polymer, such
the end-to-end distance or the gyration radius. We exp
that this is still true for heteropolymers, as long as we are
yet in the frozen regime. While Eq.~16! gives the most pre-
cise numerical estimate of the collapse transition@with Bu
520.269060.0002 Ref.@25##, estimates with similar preci
sion can be obtained from the convexity of the free ene
@28#, and the volume dependence of the free energy in c
of periodic boundary conditions@26#.

The collapse line in the (B,D) plot obtained from simu-
lating chains of lengthN<1000, is shown in Fig. 1. Here th
solid line is the annealed approximation. We see that on
scale the annealed approximation seems perfect. But th
not quite true. Much more precise tests can be performed
comparing directly both sides of Eqs.~8! to ~11!. Typical
plots obtained in this way are shown in Fig. 2. For each
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these plots we used at least 300 realizations of disorder,
we got at least 103 independent configurations for each di
order realization. Similar plots were made also for seve
other values ofB andD.

In all these plots we see small but significant deviatio
These deviations are present both in the collapsed~globular!
and in the open~coil! phase. They depend only weakly onN.
Therefore, even with our long chains and high statistics i
not clear whether they disappear forN→`. Obviously, in
order to proceed we need more refined theoretical predict
to compare with, and/or a more efficient way to do the d
order average.

Before we do this, we should point out that deviatio
from the annealed approximation were also found recentl
a different model by Trovatoet al. @22#.

III. REPLICA SYMMETRIC APPROXIMATION

To go beyond the annealed approximation, we will u
the replica trick

ln ZN5 lim
n→0

ZN
n 21

n
. ~17!

Alternatively, we could try a Taylor expansion

ln~ZN /ZN!52 1
2 ~ZN

2 /ZN
221!1 . . . . ~18!

This expansion is most likely divergent. It is neverthele
useful since its first term gives already a good indication
the leading corrections. Also, it suggests the inequality

FN~B,D!>FN,ann~B,D!. ~19!

which can easily be derived exactly from convexity of t
logarithm. The same inequality is expected to hold forUN .

FIG. 1. Collapse transition line. The solid line is the annea
prediction,B2D2/25Bu520.269. Numerical data are obtained b
measuring the end-to-end distance. AtD>2.5 ~not shown! there are
significant deviations from the annealed approximation, that
most likely due to a direct freezing from the swollen phase.
1-3
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FIG. 2. Free energiesFN per monomer~top left!, end-to-end swelling factorŝR2&/N ~bottom left!, density of contactsc ~top right!, and

absolute values of energies per monomerUN ~bottom right! for four systems withD50.5, and withB̃50,20.20,20.269, and20.345. In

the two top figuresuB̃u increases from top to bottom, in the bottom figures it increases from bottom to top. Full lines are from Monte
simulations, dashed lines are predictions of the annealed approximation. In all panels, error bars are much smaller than the thickn

lines. The valuesB̃50 and20.20 are in the swollen phase,20.345 is in the collapsed phase, and20.269 is on the theta line.
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This inequality is equivalent to the existence of a negat
correlation between the average energy and the part
function.

To use Eq.~17!, we first have to evaluate disorder ave
ages ofZN

n for integern>2. These are performed similarl
to the average overZN , except that the Gaussian integra
give rise formally to interactions between replicas@4#,

Zn5 (C1•••Cn

expF2B̃ (
a51

n S (
i , j

s i j
a D 1

D2

2 (
aÞb

S (
i , j

s i j
a s i j

b D G .

~20!

Here the Greek indicesa andb refer to the different repli-
cas,Ca is a configuration of replicaa, s i j

a is its contact map,

and B̂ is given by Eq.~7!. The annealed approximation
equivalent to neglecting the two-replica term.

To proceed, we define the variables
03190
e
n ca5

1

N (
i , j

s i j
a , qab5

1

NAcacb
(
i , j

s i j
a s i j

b , ~21!

which are, respectively, the density of contacts for the c
tact mapa and the overlap between two contact mapsa and
b. The overlap is a measure of similarity, and it is equal
one, if and only if the two contact maps coincide. Furth
more, we assume that, for largeN, the number of configura-
tion n tuples withNc1 , . . .Ncn contacts and mutual over
laps$qab% grows as

expFNS (
a51

n

f ~ca!2 (
k52

n

xk~$ca%,$qab%!D G . ~22!

In other words,xk($ca%,$qab%) is the entropy loss per mono
mer when we impose that the replicaCk with density of
1-4
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EXACTNESS OF THE ANNEALED AND THE REPLICA . . . PHYSICAL REVIEW E63 031901
contactsca has overlapsq1,k•••qk21,k with the k21 previ-
ous replicas. This quantity can be measured, for instance
k52.

We can then write

Zn'E d$ca%d$qab%expH NF (
a51

n

@ f ~ca!2B̃ca#

1
D2

2 S (
aÞb

Acacbqab2 (
k52

n

xk~$c
a%,$qab%!D G J

'exp@2NnFn~$ca%,$qab%!#. ~23!

Here,Fn($ca%,$qab%) is the free energy per monomer in
system withn replicas. To evaluate it, we approximate t
integrals overca andqab by their saddle points. We assum
replica symmetry, which is expected to hold for low diso
der: the saddle point is assumed to be given byca5c for all
a andqab5q for all pairsaÞb.

Now, in order to obtain the correct free energy, we ha
to take the limitn→0. We obtain

F~B,D!52 f ~c!1B̃c1 1
2 D2cq2x~c,q!, ~24!

wherex(c,q)52 limn→0(k52
n xn(c,q)/n is the average en

tropy gain per replica due to the condition that the over
among all replicas is equal toq. Note that this quantity is
positive because, in the limit of vanishingn, the number of
terms in the sum is21. Finally, we have to compute th
values ofc andq at whichF is evaluated by imposing two
saddle-point conditions:

] f ~c!

]c
1

]x~c,q!

]c
5B̃1

1

2
D2q, ~25!

1

2
D2c5

]x~c,q!

]q
. ~26!

For D50 ~homopolymer! Eq. ~26! just means that the
value of the overlap is the most probable one for a givenc,
q0(c). Because of the normalization, it must bex(c,q0)
50, thus the free energy of the homopolymer is just a s
cial case of Eq.~24!. Moreover, sincex(c,q0)50 is an ab-
solute minimum, also the derivative]x/]c must vanish at
that point, thus the saddle-point equation forc valid for the
homopolymer is recovered forD50. It also follows from
this argument that the second derivatives ofx(c,q) at the
point @c,q0(c)# must be non-negative.

Notice that the free energy has to be maximized a
function of q because this variable refers to a space wit
negative number of dimensions in the limitn→0. We thus
get a first condition of thermodynamic stability]2x/]q2

.0, which, from the above consideration, is expected to
fulfilled for D small enough. The situation is more comp
cated for the variablec. It enters both into the free energy o
the replica interactions, which has to be maximized forn
→0, and into the free energy of the homopolymer, wh
has to be minimized, at least forD50. We conjecture tha
the corresponding condition of thermodynamic stability
03190
or

e

p

-

a
a

e

that the Hessian determinant of the free energy with resp
to the variablesc andq, H(c,q), be nonpositive:

H~c,q![S ]2f

]c2 1
]2x

]c2 D ]2x

]q2 2S ]2x

]c]q
2

1

c

]x

]qD 2

<0.

~27!

For D50 we haveH(c,q)5(]2f /]c2)(]2x/]q2)<0 as for
homopolymers. In fact, at that point the first derivatives
x(c,q) vanish. The Hessian determinantx(c,q) vanishes
also, becausex(c,q) stays constant at the value zero alo
the line q5q0(c). Thus both conditions of thermodynam
stability are fulfilled atD small enough.

The energy and entropy per monomer are obtained in
same way as in the annealed approximation. We find

UN~B,D!5@B2D2~12q!#c, ~28!

SN~B,D!5 f ~c!1x~c,q!2
D2

2
c~12q!. ~29!

Although this is obtained from the saddle-point metho
which is exact only forN→`, we can use Eq.~28! to obtain
effective overlapsq8(B,D,N), which tend to the saddle
point valuesq(B,D) in the thermodynamic limit. Results ar
shown in Fig. 3~a!. Since corrections to the saddle poi
approximation are expected to be of orderN21, while sur-
face corrections in the compact phase are expected to b
orderN21/3, the N behavior ofq(B,D,N) for large systems
should be dominated by the surface dependence of the o
lap. Indeed, we measured the average overlap also using
definition Eq.~21!, observing that its value and its finite-siz
behavior compare quite well with our numerical estima
based on Eq.~28!. These measurements have been perform
only atD50, and will be reported in the next section. In th
present section we shall report the indirect measuremen
the overlap through Eq.~28!, which is much easier from the
point of view of simulations.

We observed thatq8(B,D,N) decreases with system siz
but its asymptotic value seems to be finite in the random
phase. This was confirmed by similar measurements at
ferent values ofD. Thus the annealed approximation do
not hold in the random coil phase. The situation is mo
difficult for collapsed chains. In this case it cannot be e
cluded from Fig. 3~b! that the overlap asymptotically van
ishes, and thus the annealed approximation becomes exa
the thermodynamic limit. However, simulations of system
of even larger size that will be presented in the next sec
show that this is not the case and that the corrections to
annealed approximation remain finite in the thermodynam
limit in both the coil and the collapsed phases, although
the latter phase they are rather small. As seen from Fig. 3~b!,
q does not depend very much onD in the collapsed phase
and for large systems.

To obtain numerical estimates ofx, we subtract from Eq.
~24! the analogous equation for homopolymers, and obta
1-5
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FIG. 3. Effective overlapq8(B,D,N) measured from the energy and the contact densities, as a function of system size forD50.5 and

four different values of5B̃ ~a! and for B̃520.345 and five different values ofD ~b!.
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F~B,D!2F~B̃,0!5~c2 c̃!B̃2@ f ~c!2 f ~ c̃!#

1
1

2
D2cq2x~c,q!. ~30!

Expanding the differencef (c)2 f ( c̃) in the differencec2 c̃

and usingf 8( c̃)5B̃, we get

F~B,D!2F~B̃,0!52
1

2
~c2 c̃!2f 9~ c̃!

1
1

2
D2cq2x~c,q!1O@~c2 c̃!2#.

~31!

This can be either evaluated directly, neglecting the
term. Alternatively, we can eliminate the term involvin
f 9( c̃) by subtracting from Eq.~25! the analogous equatio
for homopolymers, which gives
03190
st

~c2 c̃! f 9~ c̃!5
1

2
D2q2

]x~c,q!

]c
1O@~c2 c̃!2#. ~32!

Combining this with Eq.~31! and neglecting termsO@(c
2 c̃)2#, we obtain finally

F~B,D!2F~B̃,0!5
c1 c̃

4
D2q2

1

2
@x~c,q!1x~ c̃,q!#

1O@~c2 c̃!2#. ~33!

As in the case of the overlap, we note that Eq.~33! defines an
effective entropyx(B,D,N), which should tend to the lead
ing correction to the annealed approximation@according to
which, x(B,D)50 holds# in the thermodynamic limit.

In Fig. 4 we show numerical values for@x(B,D,N)
1x(B̃,0,N)#/2 obtained in this way. We see thatx is very
small but definitely not zero. Again we see that corrections
the annealed approximations are larger in the swollen ph
than in the collapsed phase. Indeed, this time it seems
FIG. 4. @x(B,D,N)1x(B̃,0,N)#/2 measured from Eq.~33! as a function of system size for the same values ofB̃ andD as in Fig. 3.
1-6



va
s

a
ec
de
m

ov

e
th
a

t

we
-

am
rs

to
e
-
d

ke
rg

t
r

e

not

fi-
ap-
p-

r
of

rac-

e
fact
ch-

r

EXACTNESS OF THE ANNEALED AND THE REPLICA . . . PHYSICAL REVIEW E63 031901
the deviations have a finite limit forN→` in both phases.
This conclusion is supported by measurements at other
ues ofD ~not shown here!. Basically the same conclusion
are also drawn from Eq.~31!, showing thatx(c,q) depends
weakly onc and that Eq.~32! is very well satisfied.

IV. OVERLAP OF HOMOPOLYMERS

In this section we will discuss the overlap of contact m
trices for homopolymer chains and their relation to corr
tions to the annealed approximation in the weak disor
limit. Consider the derivative of the free energy of a rando
heteropolymer with respect toD2, at D50. Using Eqs.~18!
and ~20! and the results of Sec. II, we obtain

F ] ln ZN

]D2 G
D50

52F ] ln ZN

]D2 G
D50

2
1

2 F 1

ZN
2

]ZN
2

]D2G
D50

5F ] ln ZN

]D2 G
D50

1
1

2 K (
i , j

s i j s i j8 L
D50

,

~34!

where the angular brackets denote Boltzmann average
the ensemble of two replicas. Thus we have

F ]

]D2 ~FN2FN,ann!G
D50

5
1

2
^cq&D50 . ~35!

This could have been obtained of course also within the r
lica symmetric approach, but the above derivation shows
it is indeed a rigorous result involving neither approxim
tions nor unjustified assumptions.

Notice that this cannot be generalized toDÞ0, but in
principle straightforward generalizations could be used
compute all higher derivatives

F ]k

]D2k
~FN2FN,ann!G

D50

, k51,2,3, . . . . ~36!

Numerically, the right-hand side of Eq.~35! can be estimated
by simulating pairs of chains simultaneously. For this
used a variant of thePERM algorithm where we add mono
mers alternatively to the first and to the second chain@32#. In
this way we guarantee that both chains have exactly the s
length ~after having added an even number of monome!,
and it is straightforward to estimate their overlap.

Results from such simulations with chains of length up
1400 are shown in Fig. 5. These data agree nicely with
trapolations of the overlaps forD.0 shown in the last sec
tion. They have much smaller statistical errors, since we
not have to average over any disorder explicitly. This ma
the present method much faster and allows us to study la
systems.

The curve forB̃520.2.Bu in Fig. 5 shows clearly tha
the annealed approximation does not become exact foN
→` in the open coil phase. The same is true~although a bit
less clear! exactly at theQ point, as indicated by the curv
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for B̃520.269. For the collapsed phase, the evidence is
so clear. The curves forB̃520.35 and forB̃520.5 both are
much lower for largeN and continue to decrease. Super
cially, one might therefore conclude that the overlap dis
pears forN→`. But both these curves show a distinct u
ward curvature for the largest values ofN, indicating that the
decrease will level off andq0 tends to a finite constant fo
N→`. To sustain this view, we show in Fig. 6 the plots
^cq& as a function of chain lengthN. In this case it is evident
that the curves are going to a nonzero value. Since the f
tion of contacts is limited~it holdsc<2 on the cubic lattice!,
also q05^cq&/^c& should go to a nonzero value, and th
decrease observed in Fig. 5 is just a consequence of the
that the average fraction of contacts is increasing, approa
ing its stationary value.

FIG. 5. Average overlapq05^cq&/^c& between homopolymer
chains of lengthN for different values of the monomer-monome
attractionB.

FIG. 6. Average fraction of common contacts^cq& between
homopolymer chains of lengthN for different values of the
monomer-monomer attractionB.
1-7
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UGO BASTOLLA AND PETER GRASSBERGER PHYSICAL REVIEW E63 031901
This conclusion is not, after all, very surprising. It can
backed by an argument, which could presumably, with so
effort, be made rigorous. The density of contacts in a s
avoiding walk ~corresponding toB50) is dominated by
short-range contacts, i.e., by contacts (i , j ) with small
u i 2 j u. The contribution of such a loop with fixedi and j
depends weakly on the configuration of the chain far aw
from this monomer pair. Thus, if such a loop is present
one replica, it has a high chance to be present also in
other replica, even if the global structures of both replicas
entirely different.

In collapsed chains there are relatively more long-ran
contacts, which explains why the annealed approximatio
better — but still not exact — in that regime. For rando
heteropolymers with strong disorder, and even more so
proteins, this argument suggests an increased overlap
cause of secondary structure. For instance, an alpha h
produces an array of contacts (i ,i 14), (i 11,i 15), . . . ,
wherei labels the position of the amino acid along the p
tein chain. This enhances the overlap. Moreover, there
finite probability that such contacts appear simultaneou
even in the structures of two unrelated proteins. Thus
average overlap even in a large set of unrelated protein s
ture appears to attain a finite limit when the length of t
chains increases@24#.

V. THERMODYNAMICS IN THE REPLICA SYMMETRIC
APPROXIMATION

In this section we study the predictions of the replica sy
metric approximation on the behavior of thermodynam
variables with the external control parametersB̃ andD2. We
shall show the following. First, we shall justify that conditio
of thermodynamic stability is that the Hessian determinan
the free energy with respect to the parametersc and q,
H(c,q) given in Eq. ~27!, be nonpositive. Then we sha
argue that, ifq0(c), the average overlap of homopolyme
with density of contactsc, is small, as it appears to be, als
the corrections to the annealed approximation, given bc

2 c̃(B̃) and by q, will remain small @of order q0(c)] for
finite D. On very general grounds, we shall show that
density of contactsc is a decreasing function, while the ove
lap q is an increasing function, of the parameterB̃. If x(c,q)
depends only on the productcq, as assumed in previou
works, thenc is independent ofD at fixedB̃, and it is exactly
predicted by the annealed approximation. This is howeve
odds with simulations. Better assumptions on the functio
form of x(c,q) show thatc is a decreasing function andq is
an increasing function ofD, as observed in simulations. A
last, we discuss the possibility that the singularity in the s
cific heat at the theta point of the homopolymer may
smeared out by the disorder.

The two saddle-point equations forc and q cannot be
explicitly solved without an explicit expression for the fun
tions f (c) andx(c,q). Nevertheless, their qualitative beha
ior can be studied in more detail. Taking the derivatives
both Eqs.~25! and ~26! with respect to the thermodynam
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parametersB̃ andD we can compute the derivatives ofc and
q as

S ]c

]B̃
D

D

5
]2x/]q2

H~c,q!
<0,

S ]c

]D D
B̃

5
2D

H~c,q!

]

]qS c
]x

]c
2q

]x

]qD , ~37!

S ]q

]B̃
D

D

52
]2x/]c]q2~1/c!~]x/]q!

H~c,q!
,

S ]q

]D D
B̃

5
D

H~c,q!FcS ]2f

]c2 1
]2x

]c2 D2qS ]2x

]c]q
2

1

c

]x

]qD G ,
whereH(c,q) is given by Eq.~27!. From these, the specifi
heat can be computed as

Cv5]U/]T

5@B2D2~12q!#F ~B2D2!
]c

]B̃
1D

]c

]DG
2D2cF ~12q!1~B2D2!

]q

]B̃
1D

]q

]DG
52

1

H~c,q! F]2F

]c2 ~D2c!222
]2F

]c]q
~D2c!@B2D2~12q!#

1
]2F

]q2 @B2D2~12q!#2G1D2c~12q!, ~38!

whereF(c,q) is the free energy evaluated at the saddle po
andH(c,q) is its Hessian determinant. The three terms in
square brackets are a quadratic form whose determina
expressed byH(c,q). Since]2F/]q2 is positive, they would
give a negative contribution to the specific heat ifH(c,q)
were positive. Thus, it is justified to require thatH(c,q) is
negative as a condition for thermodynamic stability.

We now argue that the corrections to the annealed
proximation remain small if the average overlap of h
mopolymers,q0(c), is small. In fact, the functionx(c,q)
attains its absolute minimum valuex(c,q)50 along the line
q5q0(c). Thus, assuming thatx(c,q) is an analytic func-
tion of q for q.0, it can be expressed in the form

x~c,q!5 (
k52

`
ak~c!

k!
@q2q0~c!#k

[(
k52

`
Ak~c!

k!
@Q2Q0~c!#k, ~39!

with a2(c).0. The typical overlapq0(c) is small, and it is
a decreasing function ofc, or q08(c),0 ~the prime indicates
derivative with respect toc). The coefficientsak(c) are ex-
pected to be quantities of order@q0(c)#2k11, as it will be
1-8
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EXACTNESS OF THE ANNEALED AND THE REPLICA . . . PHYSICAL REVIEW E63 031901
argued later. We also introduce the notationQ5cq, Q0(c)
5cq0(c), andAk(c)5ak(c)c2k. We can now develop the
saddle-point equations forc close to the solution of the an
nealed approximation,c5 c̃(B̃), given by f 8( c̃)5B̃:

S ]2f

c2 1
D2

2

]2Q0

]c2 D
c5 c̃

~c2 c̃!1S D2

2

]Q0

]c D
c5 c̃

1S (
k52

` Ak8~c!

k!
@Q2Q0~c!#kD

c5 c̃

50,

(
k51

`
Ak11~c!

k!
@Q2Q0~c!#k5

1

2
D2. ~40!

From these expressions one sees that bothQ2Q0(c) andc

2 c̃ are quantities of orderQ0(c), thus corrections to the
annealed approximation are finite but small for finiteD.

We now compute the thermodynamic derivatives by
veloping Eq. ~39! to the zeroth order indq5@q2q0(c)#
~this quantity must be positive for smallD):

S ]c

]B̃
D

D

'
a2~c!

H~c,q!
<0, S ]c

]D D
B̃

'
Da2~c!

H~c,q!

]Q0

]c
, ~41!

S ]q

]B̃
D

D

'
a2~c!

H~c,q!

]q0

]c
>0,

S ]q

]D D
B̃

'
D

H~c,q!Fc
]2f

]c2 1a2~c!
]q0

]c

]Q0

]c G ~42!

H(c,q) must be computed at the first order indq, because
the zeroth order term vanishes at the theta pointc5cu at
which ]2f /]c2 vanishes. The result reads

H~c,q!'
]2f

]c2

]2x

]q2 2@Q2Q0~c!#c@A2~c!#2
]2Q0

]c2 .

~43!

Thus we conclude that the density of contactsc decreases
and the average overlapq increases withB̃. To proceed fur-
ther, we first consider the simple case where the entr
x(c,q) depends only on the productQ5cq representing the
number of conditions that we have to impose in order to
an overlapq: x(c,q)5x̂(cq). This form was assumed in th
work of Shakhnovich and Gutin@4#. In this case,Q0 does not
depend onc, thus from Eqs.~42! it follows that c5c(B̃)
should not depend onD at fixed B̃ and assumes the valueĉ
predicted by the annealed approximation. This result can
be obtained directly from Eq.~37!. However, our numerica
results contradict this prediction. The overlapq, should be in
this case, an increasing function ofD, and its derivative with
respect toB̃ should be proportional to (]2f /]c2)21, which is
expected to diverge at the theta pointc5cu . This fact can
explain why the values ofq are much smaller in the col
lapsed phase than in the coil phase.
03190
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A better theory for the functionx(c,q) was developed by
Plotkin et al., @13#. They computed the entropy loss for tw
replicas with density of contactsc being at overlapq,
x2(c,q), in the mean-field approximation and in the co
lapsed phase. Although this can be different fromx(c,q), it
is a good point for understanding its qualitative behavi
Unfortunately, we cannot use the formula obtained in R
@13# because of technical reasons and because it assume
the homopolymer overlapq0(c) is zero in the thermody-
namic limit, while our calculations show that this is not th
case. We shall however use the fact thatx(c,q) is the sum of
three contributions: the entropy loss due to imposing t
Ncq contacts have to coincide, the loss due the fact t
Nc(12q) contacts have to be different, and a combinato
factor counting the number of different choices ofNcq con-
tacts amongNc. The last term can be approximated b
xmix(c,q)5c@q ln q1(12q)ln(12q)#, even if this is an over-
estimate, since not all of the combinations of different co
mon contacts can be realized. Putting everything together
have

x~c,q!5x̂~c,cq!1c@q ln q1~12q!ln~12q!#. ~44!

In the computation by Plotkinet al., the mixed second de
rivative of x̂(c,cq) with respect toQ5cq and c vanishes.
This simplifies considerably formulas, and it will be assum
to hold for the rest of the paper. We shall thus introduce
notationx̂8(Q) to denote the derivative ofx̂(c,Q) with re-
spect toQ5cq at fixedc. Comparing Eq.~44! to Eq. ~39!,
we see thatx̂9(Q) must be positive and that]x̂/]c52(1
22q0)ln(12q0). We also see thata2(c)5c/@q0(12q0)#

1x̂9(Q) is likely to be a quantity of orderq0
21, as it has

been assumed above. For the higher-order coefficients
finds ak5O(q0

2k11), as anticipated. We have now to com
pute the derivatives ofQ0(c)5cq0(c):

]Q0

]c
52

]2x/]c]Q

]2x/]Q2 5
q0

11cq0x̂9~cq0!~12q0!
>0,

~45!

in qualitative agreement with Fig. 6. Inserting the above
sult in the formulas~42! we see that the density of contac
decreases withD at fixed B̃. This behavior is confirmed by
our numerical results~see Fig. 7!, which also show that the
decrease is maximal forB̃'Bu520.27, as expected from
the fact thatH@c,q0(c)# vanishes atc5cu . The overlapq

increases withB̃ at fixedD, as expected from Eq.~42! ~see
Fig. 8!, and increases withD at fixed B̃, as expected from
Eq. ~45! ~see Fig. 8 again!. It can thus be understood why th
overlap decreases with system size: as the numberN of
monomers increases the importance of surface effects is
duced ~as N21/3) and c(N) increases, thus decreasing th
value ofq.

We now examine the condition of thermodynamic stab
ity, H(c,q)<0. As it was already observed, since at t
point @c,q0(c)# both the gradient ofx(c,q) and its
1-9
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FIG. 7. Left: overlapq as a function ofD2 for different values ofB̃. Right: entropy@x(B,D)1x(B̃,0)#/2 measured from Eq~33! as a

function of D2 for different values ofB̃. In both cases, we use values forN5800, but other lengths give qualitatively the same behav
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Hessian determinant vanish, we haveH@c,q0(c)#5
(]2f /]c2)(]2x/]q2)<0. At the theta point this quantity
vanishes, andH(cu ,q) is given by the deviations from th
annealed approximation. Three situations are possible: F
H(cu ,q) can be positive at the leading order indq5q
2q0(cu). In this case the thermodynamic stability would
violated around the theta point, but our simulations do
show anything peculiar in this region. Second, the lead
order in dq can be negative. In this case, the specific h
would not diverge anymore at the theta point for finiteD, but
it would show a peak proportional to some negative powe
dq. Thus the disorder would smear out the thermodyna
singularity atc5cu , leaving unchanged the geometric cha
acterization of the collapsed chains in terms of the gyrat

FIG. 8. Corrections to the density of contacts predicted by

annealed approximation as a function ofD, for different values ofB̃
and N5800. The deviations are negative, and they are maxi

close to the theta pointB̃'20.27. The same pattern is observed f
other lengths.
03190
st,

t
g
t

f
ic
-
n

radius. It is rather difficult, if not impossible, to test th
scenario by means of simulations. Third,H(cu ,q) can van-
ish identically atc5cu . It is easy to see that this condition
combined with the assumption thatx(c,q) is of the form
~44!, is fulfilled if and only if x̂8(cq) is of the form

x̂8~cq!5 lnS 12cq/B

cq/A D , ~46!

where q>q0(c), A,0, and 0,B,cq are two constants
andc is not too small so that the last inequality can be f
filled. In this case, one findscq0(c)5B(c2A)/(B2A)
P@0,c#, and it is easy to check that all previous results a
recovered, whileH(c,q)2H@c,q0(c)# vanishes for allq and
c, including the theta point.

Summarizing the discussion, we find that, ifx(c,q) is of
the form ~44!, two possibilities are open: eitherx̂8(cq) is
given by Eq.~46!, in which caseH(c,q)[H@c,q0(c)#<0,
or x̂8(cq) has a different form, in which case the speci
heat is not anymore divergent at the theta pointc5cu . Un-
fortunately, we are not able to decide among these alte
tives.

VI. DISCUSSION

We have shown that the annealed approximation is v
good but not exact for a particular model of random h
eropolymers, and we have given simple physical argume
for it. We have also computed the thermodynamics of
model using the replica symmetric approximation, and
have shown that such an approach can explain very wel
least qualitatively, the observed deviations from the annea
approximation in the high-temperature phase. The rep
symmetric calculation also leaves open, surprisingly,
possibility that the disorder could cancel the thermodynam
singularity at the theta point. A numerical test of this pos
bility is very difficult, and it has been left out.
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EXACTNESS OF THE ANNEALED AND THE REPLICA . . . PHYSICAL REVIEW E63 031901
In our present paper we have not addressed the mos
teresting aspect of the model — the freezing of the sys
in a finite number of mesoscopic states. This transit
should represent some features of the folding transi
taking place for protein structures. Instead, we have stud
the model at higher temperatures and at smaller disor
This should however be of interest also in the context of
freezing, since it was conjectured@4# that freezing can be
described in this model by the random energy model,
which a prerequisite is that the annealed approximation
exact.

In the present simulations we have studied chains
length up toN51400. Deviations from the annealed a
proximation decrease fast for smallN, which explains why
studying very short chains has mislead several authors to
conclusion that these deviations vanish forN→`. But in the
high-T ~open coil! phase this decrease clearly stops, and
viations are roughly independent ofN for N.100. This is
less clear in the collapsed phase. But also numerics, gen
arguments, and detailed calculations within a specific s
nario with unbroken replica symmetry all indicate that the
deviations will settle at a nonzero value for largeN. This
casts doubts on the validity of the random energy picture
protein folding.

There are of course a number of questions which are
open by the present paper. First of all, we have delibera
left out all questions related to freezing. Secondly, our tre
ment of Sec. III assumed that the overlap distribution is
ways dominated by a single peak. This is most likely not t
in the frozen regime, and the distribution of overlaps is c
tainly a most interesting object. We shall address these q
tions in a forthcoming paper@35#. Finally, we have studied
only one particular model, where contact energies
independent Gaussian variables. Several other models of
dom heteropolymers are studied in the recent literat
@19#, and several of them present very interesting open pr
lems.
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APPENDIX: THE PRUNED ENRICHED ROSENBLUTH
METHOD

This method which was first described in detail in R
@25# is a chain growth method. It is based on Rosenblut
idea of biased sampling@33#, but it deviates from it by de-
leting ~‘‘pruning’’ ! configurations with too low weight, and
copying configurations with too large weight~‘‘enrich-
ment’’!. We remind the reader that the bias in the Rosenb
method requires each configuration to carry a nontriv
weight that builds up gradually as monomer by monome
added. In addition to this ‘‘Rosenbluth factor,’’ there is al
a Boltzmann factor in the case of interacting polymers. T
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weights that control pruning/enrichment are the product
the two.

Both pruning and enrichment are done while the cha
grow, i.e., based on the actual~incomplete! weight factors. In
some cases it is advantageous to use not the present we
but ~implicit! estimates of future weights to control the alg
rithm @34#, but this is not done in the present paper. Inste
we use some of the special tricks used for strongly collap
systems in Ref.@27#.

When the weight is too low, configurations are not simp
killed ~this would imply systematic errors!, but instead they
are killed with probability 1/2, and those which are not kille
get their weights doubled. Similarly, in the case of cloni
the weight is spread uniformly among all clones. Tech
cally, cloning is performed by means of recursive subrout
calls. A pseudocode of the basic algorithm is given in t
appendix of Ref.@25#.

The most important shortcoming of the Rosenblu
method is that the distribution of weights can become
tremely wide for large systems and at low temperatures.
only exception is for interacting homopolymers on t
simple cubic lattice at the theta point, where Rosenbluth
Boltzmann factors nearly cancel. In less favorable cas
even a very large statistical sample can be dominated
just a handful of high weight events, and statistic
errors grow out of bounds. Even worse, in extreme ca
the events that would carry~in average!! most of the weight
are so rare that they are missed completely with h
probability, and the free energy is underestimated system
cally.

Pruning and enrichment guarantee that the weights of
dividual configurations stay within narrow bounds, and t
above cannot happen. But in very difficult situations~large
N, low T, large disorder! it may happen that due to clonin
the configurations are strongly correlated, and the weight
clusters of such correlated configurations play essential
similar role as the weights of individual configurations in t
above discussion. In the following, we will call such
cluster, which is composed of all configurations havi
a common root, a ‘‘tour.’’ In order to check that the weigh
of tours do not become too uneven, we have measu
their distribution. Let us call the weightsW, and the distri-
bution P(W). We are on safe grounds if this distribution
so narrow that P(W) and WP(W) have basically
the same support. In particular, we should require t
the maximum of WP(W) occurs at such values wher
P(W) is still appreciable, and the distribution is we
sampled. We have verified that this is the case for
data shown in the present paper. Notice, however,
this is a very stringent requirement. If it is not satisfied, th
would not necessarily mean that the data are wrong, s
configurations within one tour are only partially correlated

The generalization of this algorithm to pairs of chai
growing simultaneously is straightforward@32#. One just has
to add monomers alternately. When the total number
monomers in both chains is even, the addition of the n
monomer is attempted at chain 1; when this number is o
the next monomer is added to chain 2.
1-11
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