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Tube diameter in tightly entangled solutions of semiflexible polymers
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A statistical mechanical treatment is given of the confinement of a wormlike polymer in an entangled
solution to a tube, yielding quantitative predictions for the average tube diaBg#nd macroscopic plateau
modulusG, in the tightly entangled regime in whidD, is much less than the persistence length Three
approaches are pursued. A self-consistent binary collision approximation, which explicitly describes the topo-
logical constraints imposed by neighboring chains, yields predictions consistent with the scalin®dJaws
o p~ ¥ and G p”® proposed previously, whegeis the contour length per unit volume. An effective medium
approximation, which treats the network as a continuum with a modaJusstead yieldD <p =Y and G
o p*3 which is found to be the correct scaling in the Iimllf)>1. An elastic network approximation treats the
displacement of a test chain as the sum of a collective displacement of the network, which is treated as a
continuum, plus a local displacement, which is treated in a binary collision approximation. Predictions are
compared to measurements of b&@th andG in actin protein filamentE-actin) solutions.
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[. INTRODUCTION tightly entangled solutions, and thereby predict values for the
tube diameter and plateau modulus in such solutions. The
Several theoretical studies have discussed the dynamiggper is organized as follows. Section Il presents operational
[1-4] and viscoelasticityf5—14] of very highly entangled definitions of the tube diameter, the entanglement length, and
solutions of semiflexible polymers. Interest in this subjectthe effective confinement potential for a single tightly en-
has been motivated in part by experimental studies of solutangled polymer, and relates these microscopic quantities to
tions of actin protein filamentsH-actin). F-actin has simul-  the predictions of Refd.11,12,14 for the macroscopic pla-
taneously been of interest to biologists as a major constituerieau modulus. Section Il contains an overview of the basic
of the cellular cytoskeleton, and to physicists as a modeldeas and qualitative results of three different approximate
system of semiflexible polymers. Sufficiently concentratedcalculations of the tube diameter. Details of these calcula-
solutions ofF-actin and other similarly long, stiff polymers tions are presented in Secs. IV-VI. Section VIl contains a
can form an entangled state in which each polymer is effeccomparison of theoretical predictions to experimental results
tively confined to a tubdover periods of time less than a fc_)r F-actin solutions. Section VIl is a summary of conclu-
reptation time in which the tube diametdd, and entangle- SIOns.
ment length_ . are both much less than either the persistence
length L, or contour lengthL of the polymers. | have re- Il. DEFINITIONS
ferred t h solutiongl0-1 “tightly entangled” so- . e .
ILeJtioer?s of wormiike ()ch%i?]s, ?oazistiggu?/sﬁ them efcrlomsothe Consider a network of very long semifiexible chains, each
more familiar case of “loosely entangled” solutions typical of persistence length,, and contour_lengtlll, with a density
for solutions and melts of flexible polymers, in which the 2 Of Polymer contour length per unit volume. The conforma-

tube diameter and entanglement contour length are both si¢io" Of @ single chain may be described by a conts),
nificantly larger than the persistence length. heres is a contour distance measured from one end of the

The tube model developed ifL1,19 to describe the chain. The bending energy is given by the wormlike chain
tightly entangled regime requires as an input parameter 30d€l,
value for the tube diameter or the entanglement length, as
does the original Doi-Edwards tube model of flexible or _1 -
| . . Ubent{r] 2T|—p ds
oosely entangled chaingl5]. In both regimes, the value 0
provided forD, or L. directly determines the value predicted
for the plateau modulus by the appropriate tube model. Therklere and in what follows, temperatufés measured in units
is thus far no quantitative molecular theory for the absoluteof energy, so thakg=1. The chains are constrained to be
magnitude of the tube diameter or plateau modulus in looselinextensible by requiring tha#r(s)/ds|=1, and are treated
entangled solutions or melts of flexible chains, although scalthroughout this paper as uncrossable but infinitely thin
ing laws have been developed to describe the dependence thieads.
the plateau modulus upon polymer concentration in solutions | focus here on a tightly entangled concentration regime
of both good[16,17 and ¢ solvents[18,19, and upon geo- in which the geometrical mesh sitg,=p~ Y2 is much less
metrical properties of the chain in the mgRO]. thanL,, and in which the tube diameter and entanglement
In this paper, | attempt to give a quantitative theoreticallength are also expectédl] to be much less thah,. It is
treatment of the forces confining each polymer to a tube irassumed that each chain in a tightly entangled solution is

3°r(s)

2
5 .

@

Js

1063-651X/2001/6()/03150222)/$15.00 63 031502-1 ©2001 The American Physical Society



DAVID C. MORSE PHYSICAL REVIEW E 63 031502

effectively confined to a tubelike region over time scalesequilibrated solution of phantom chains and suddenly turned
much less than a reptation timge,. In the limit of very  on the constraint of uncrossability.
long chains, and correspondingly long reptation times, the The thermal averagg (s)) of the test chain contoui.e.,
topological structure of a network of uncrossable chains mayhe average over times much less than the reptation) time
be treated as if it were permanent for the purpose of describwill be referred to in what follows as the tube contour of the
ing averages of chain conformations over shorter times. Twaest chain, and the average contdufs)), obtained in the
different kinds of statistical average are used in what followsabsence of any external force as the unperturbed tube con-
to describe this situation. A thermal equilibrium average fortour. Transverse displacements of the actual test chain con-
a network of some specified topology, denoted(by-), is  tour r(s) from the unperturbed tube contour are character-
given by a Boltzmann-weighted average over all topologi-ized by a two-dimensional2D) tranverse displacement
cally accessible microscopic configurations of the networkvector
By “topologically accessible” configurations, | mean those
that can be deformed into one another without requiring h(s)=r(s)—(r(s))o, 2
chains to cut through each other, and also without requiring
the system to pass over any other large energy barriers, su¥ich is constructed perpendicular t(s))o, so that
as that associated with forcing a chain to double over into &(S)- d(r(s))o/ds=0. The potential energy associated with
hairpin. This topologically constrained ensemble averagéhe external forcé(s) may be written as an integral,
will be assumed to be equivalent to a time average over
times much less than the reptation timg, but much greater - )
than an entanglement time, which (i&lgjpghl)o the time re- Yex= J dsh(s)-1(s). ®
quired for local equilibration of transverse fluctuations of the
polymer within its tube. In addition, one may define an av-The total potential energy of the network in the presence of
erage over all possible network topologies, denoted by this external potential is given by the sum _of the t_)endmg
When calculating averages over periods of time less than thgn€rgies of the test chain and of all the medium chains, plus
reptation time, the average over network topologies may b ext-
treated as an average over a quenched random variable.

In what follows, | consider a hypothetical situation in A. Transverse fluctuations
which a physically entangled solution is first allowed 10 14 characterize transverse fluctuations of a polymer
come to an initial state of topologically unconstrained ther-iin its tube, one may focus attention on a section of tube
mal equilibrium, by relaxing over many reptation times, be-

f | d | fofdi q of some length much less thap but much greater thab,,
ore any averages are evaluated or external foftissussed \ithin which the tube tangend(r(s))/ds remains nearly

beIon are a}p_plled to the system. .T.h‘?rma' averages e\/""Iuc':onstant. Within such a segmehi{;s) may be decomposed
ated in the initial unperturbed equilibrium state will be de-

i o into two Cartesian componenigs) = (h4(s),h,(s)) associ-
noted by(- - -)o. The double average - -)o in this initial  4teq with the two directions perpendicular to the local tube

state must be rigorously equivalent, for chains with ”eQ“'tangent with corresponding Fourier amplitudes
gible excluded volume, to the thermal equilibrium average of

an ideal solution of completely noninteracting “phantom” iqs
chains: When the interactions between chains have an infini- ha(Q)Ef dsé%h,(s) (4)
tesimal range, they exclude only an infinitesimal fraction of

the configuration space of the solution, and so can have nfpr Cartesian indicest=1,2. The variance oh(q) in the
effect upon any equilibrium average, even though they drasabsence of any external force, averaged over both thermal

tically alter the solution’s dynamics. fluctuations and network topologies, may be expressed as a
To characterize the constrained fluctuations of a singlgynction of the form

polymer, | focus attention upon a single randomly chosen

“test” chain within a network of N+1 chains, which is

surrounded b\ other “medium” chains. The contour of the (ha(@hg(—aq))o= -

test chain is given by a vectas), wheres is a distance TLyq™+¥(q)

measured along its contour. | consider how the distribution , i , i

of contours for such a test chain would be affected by al '® denominator of the right hand sids) may be inter-

hypothetical external transverse fori{s) that acts only on Prétéd as a spring constant for transverse modes of wave

the test chain. | imagine that this force is applied only aftef?Umbera, in which TL,q" is a contribution arising from the

the system has reached its initial equilibrium state, and i9€nding energy of the test chain, andq) is an as-yet-

then held fixed over a period much less than a reptation timg!ndeterminedg-dependent effective spring constant that is

during which the topology remains fixed. The probability of mtroduce.d. to characterlze the confinement forces arising

finding any specified network topology is thus the same inff@m collisions with other polymers. , _

the presence of this external force as that in the initial equi- "€ Width of the tube may be characterized by the vari-

librium state. This probability is, in turn, equal to the prob- 81C€

ability that a network of the specified topology would be y

generated by a hypothetical process in which one took an Re=(h%(s))o (6)

®
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of either of the two Cartesian componentshgf) at a ran-  contour, which is given in Appendix B of the same paper,
domly chosen point on a randomly chosen chain, which isand (iii) the calculation of the average stress induced by an

given by the Fourier integral infinitesimal affine deformation of an initially equilibrium
distribution of tube contours, which is given in Appendixes

R? f dq T @ B and C of Ref[12]. The plateau modulus obtained in this
e= | oo Tqu4+y(q)' series of calculations was shown to arise physically from

deformation of the equilibrium distribution of tube contour
curvatures, and so is referred to here@g,,.. Subject to

the above assumptions, the calculation was carried out ex-
actly, and yields

In what follows, | refer to the standard deviati®y as the
tube radius. The tube diameteg, defined in Refs[11,12 is
just 2R,.

The entanglement contour length, may be defined 70T
roughly by requiring that the fluctuations of transverse cure= g
modes of wave number> Le‘1 are controlled primarily by €
the bending energy in Ed7), so thatL,q*>y(q) for le  \yhere the inverse entanglement length Jlis defined for
>1, while fluctuations of modes with<L . * are controlled  this purpose by a Fourier integral
primarily by confinement forces, so thatpq4< v(q) for
these longer wavelength modes. This length, which was re-
ferred to as a “deflection length” by Odijkl], may also be
interpreted heuristically as a distance between collisions of
the polymer with the “walls” of a confining tube. The tube
radius and entanglemefdr deflection length vary with an
approximate power law relationshiit],

C)

J dq y(q) (10

1

Le ) 27 TL,q"+ ()
This definition ofL will be retained throughout this paper.

In Ref.[14], the calculation of the plateau modulus was

extended by relaxing assumptidiii ), and thus allowing for

L ~R23 U3 (8) the possibility that the cross-sectional dimensions of the

e ep tube, as characterized by the elements of the tensor

In the concentration regime of interest here, whé&g (ha(q)hs(—0a)), may also change in response to a macro-

<L,, this yields a hierarchRe<L<L,. s_gopic deformation. It was shown there that if as§umption

(iii ) is abandoned, then the plateau modulus may in general

B. Plateau modulus be expressed as a sum

We will be interested in what follows in predicting values G=GcurveT Gdilate (11
for the macroscopic plateau modulus of the network as well
as the tube radius and related microscopic quantities. To cabf the “tube curvature” contributionG.,,e given above,
culate a modulus, one must complete two largely indepenwhich arises from affine deformation of the thermal average
dent steps. The first, which was attempted in Refschain contour, plus an additional “tube dilation” contribu-
[11,12,14, is to calculate the macroscopic plateau moduludion, which arises instead from disturbance of the equilib-
from a tube model in which the fluctuations of the polymerrium distribution of transverse fluctuations of the polymer
within the tube are characterized by an unspecified functiorcontour about its average. Both contributions originate in the
v(q), as above. The second, which is attempted here, is tmtramolecular curvature stress of the polyni@assumption
calculatey(q) by considering the statistical mechanics of a(i)], but arise from different kinds of tube deformation. To
network of uncrossable chains. estimate the maximum plausible magnitude of the tube dila-

The calculation of the modulus given in Reff$1,12 was  tion contribution,G was recalculated in Ref14] under the
based on the following physical assumptiotisThe plateau assumption that the cross-sectional dimensions of the tube
modulus of a tightly entangled solution, in the absence ofdefined in terms of the variance b)) as well as the tube
cross-links between chains, arises from the intramoleculagontour undergo strictly affine deformation. This was found
curvature stress defined in R¢f.1]. (i) The tube contour to yield a tube dilation contribution
(i.e., thermal average contgwf each chain deforms affinely
under infinitesimal macroscopic deformations of the net- G ~1£
work. (iii) The magnitude of the transverse fluctuations of dilate™ 5
the polymer about its tube contour is unchanged by such
deformations, i.e., the same functigfq) is used to charac- which must be added to the value @f,,,. given in Eq.(9).
terize transverse fluctuations in the equilibrium and infini- Upon comparing Eqs(12) and (9), we see that, while
tesimally deformed states. both contributions tds are of orderT per entanglement, the

The main elements in this calculation di¢ the deriva- numerical prefactor obtained f&;.:c happens to be seven
tion of an expression for the stress arising from a singlgimes smaller than that obtained fGr,,,.. If the deforma-
chain with a known distribution of chain contours, which is tion of the tube contour is at all close to affine, we thus
given in Appendix A of Ref[11], (ii) the calculation of the expect the modulus to be numerically dominated by the tube
thermal average of this stress for a chain that is confined tourvature contribution, whether or not there is also a signfi-
undergo small transverse fluctuations about a specified tubmant degree of anisotropic tube dilation. Conversely, if the

(12
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deformation of the tube contour is far from affine, refinement
of our treatment of the contribution of anisotropic tube dila-
tion is unlikely to save the theory from quantitative failure. \(
For simplicity, when comparing theoretical predictions @&r
to measurements dr-actin, | use Eq(9) alone for the pla-
teau modulus, thus ignoring any possible anisotropic tube %
dilation, while keeping in mind that the predicted modulus
could be raised by up to about 15% by assuming the exis-
tence of such an effect. | remain agnostic on the question of . o . .
whether a signficant deformation gf the tube croqss section "'C: 1. Schematic of a semiflexible test chain embedded in a
. . . X . . . network of uncrossable medium chains, each of which is itself con-
will ac.:tually. OCCW n .the. linear viscoelastic regime. Th.ls IaStfined to a tube as a result of constraints imposed by other medium
gquestion might in principle be answerable by extending the,, ..
present theory so as to describe the tranverse fluctuations o? '
a confined polymer in a macroscopically deformed network

(here, | attempt only to describe fluctuations in the unde-Where feanro(d) and h,(q) are Fourier components of

. f (s) andh,(s), respectively. In Appendix A, | intro-
formed statg but this has not been attempted. conf,a @ —
B but thi P duce an effective confinement potentlal,,{(h)] for this
situation, which is the functional Legendre transform of

medium
chains

C. Confinement potentials Acond h], and which may be defined by the requirement that
The forces that act to confine a polymer to a tube in equi-
librium may be characterized by introducing two closely re- — Ol ons
lated single-chain thermodynamic potentials, which are de- (feonta(d)=———=. (15
fined briefly below and more formally in Appendix A. (ha(q))

To characterize the forces acting upon a test chain with a
specified conformation in a network of specified topology,By differentiating both sides of Eql5) with respect to
one may define a potential of mean fog,,{ h] thatis a (h,(—q)) and comparing to Eq14), we see that
functional of the displacement field(s). This quantity is

given by the total free energy of the network, excluding the 8T cont
bending energy of the test chain, in a hypothetical situation y(a)= . (16)
in which the test chain is constrained to follow a specified 5(ho(@)) 8(ha(—a)) 175520

contourr(s). The potential of mean force is thus defined by
treating the test chain as an uncrossable, unmoveable threafi-self-consistent approximation foy(q) may thus be for-
like obstacle, and integrating over all topologically acces-mulated as an approximation for the effective confinement
sible states of the surrounding network of medium ChainSpotentiachonf[W].
The thermal average of the transverse confinement force

f.oni(S) exerted by the test chain upon surrounding chains

via collisions at point is given by the functional derivative lil. OVERVIEW

To calculatel’ 1, We must consider the situation shown
(13 schematically in Fig. 1, in which a randomly chosen test
chain is embedded in a network, and estimate the transverse
force f(s) required to displace the test chain by a specified
where(- - -) refers here to a thermal average over fluctua-average displacemefi(s)). The forces opposing displace-
tions of the surrounding network of medium chains, andment of the test chain are the result of collisions with a
wheref ¢ .(s) andh,(s) are Cartesian components of the relatively small number of nearby medium chains whose
transverse field§.,i(s) andh(s), respectively. tube contours happen to pass within a distance of drdef
To instead characterize the forces experienced by a flughe test chain. Any estimate of the average displacement of
tuating semiflexible chain within a network of unspecified the test chain in response to a specified force must rely upon
topology, | consider a situation in which the test chain isa corresponding estimate of the ease with which these nearby
allowed to fluctuate, but is subjected to a known transversenedium chains may be displaced by forces exerted upon
forcef(s) that yields a corresponding average transverse dighem by the test chain. To construct a self-consistent statis-
placementh(s)). It is shown in Appendix A that the quan- tical mechanical theory, one must require that the degree of
tity y(q), which is implicitly defined by Eq.(5) for ~ mechanical compliance assumed for the medium chains be
m, may also be expressed as a functional deconsistent with the mechanical compliance () calculated
rivative for the test chain. In Secs. IV-VI, | present three different
self-consistent calculations of(q), based upon different
simplifying approximations for the mechanical compliance

OAcont h]
(fconf,a(s)>:5|,]—(s),

(feont,a(Q)) of the network of surrounding medium chains. Before plung-
a)= ' 14 ing into details, an overview of the physical content and
&(ha(a)) (hy=0 qualitative results of each approximation is given below.
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A. Binary collision approximation —3/5 ~1/5
p i)

Re~p
The binary collision approximatiofBCA) of Sec. IV

gives a rather detailed description of the interaction of the L~p 2515 (18)

test chain with individual nearby medium chains, but ne- € P

glects any effects arising from the collective elastic relax- i ) ]

ation of the network. In the BCA, we imagine that the testBY settingG~pT/L. (i.e., T per entanglemehtone obtains

chain is embedded in a thicket of uncrossable but slightlya corresponding modulus

mobile medium chains. It is assumed that, in the absence of

the test chain, each of the medium chains would itself remain G~Tp7’5L,;1’5. (19

confined to a tube as a result of its interactions with other

medium chains, and that the net effect of these interactiong, scaling relations have been taken as a starting point in
between medium chains may be mimicked by a harmonic

potential thatin the absence of the test chaimould confine Several recent treatments of tightly entangled solutions by

each medium chain to fluctuate about a preferred tube corjfh's author{11-13 and several other5,6,31)
tour. The presence of the test chain then acts to further con-

strain the fluctuations of the medium chain within its tube, by B. Effective medium approximation
forcing the medium chain to remain trapped on one side or . . L
the ot%er of the test chain. This constraﬁﬁ may be expressed The effective med_lum apprQX|mat|o(rEMA) of Sep. v

as a constraint on the range of allowed values for the tranStarts from a very different pomt. of view, by tr eatmg_ the
verse displacement of the medium chain from its preferredﬂ?twork surrounding the test chain as an ela§t|c continuum
tube contour at the point where the test chain passes close‘@{th a shear modulus equal to the self-consistently deter-

to the tube contour of the medium chain. The free energ;?n'ned plateau modulus of the solution, and the test chain as

associated with the interaction of the test chain with a singlé"l thre_ad .embed_ded in this mgdlum. It is a straightforward
such medium chain is given by the increase in the fluctuatiofy <Srcise in continuum me?hfi”'@es.e”te‘?' beloo show .
free energy of the medium chain arising from this topologi—that the elastic force resisting a sinusoidal transverse dis-
cal constraint. An effective confinement potential for the tesl‘:’l"’m?’ment of the test chain with wave numigemvithin a
chain is obtained by calculating an appropriate average e_dlum of modulusG may be described by an effective
this binary interaction free energy over all possible orientaSPNg constant

tions and positions of the tube contours of nearby medium y(q)~ —G/In(gLe) (20)
chains. The calculation is made self-consistent by requiring

that the value ofy(q) thereby calculated for the test chain
(which, in this approximation, is actually independentqdf
equal that assumed for the surrounding medium chains.

The BCA is found to yield an expression for the tube because it has been introduced into the continuum mechani-
radiusR, with the same power law dependencespondL al calculation as a short-wavelength cutoff length, thus ef-

as those predicted by Semenov on the basis of a simple geg- .. : . .
metrical argumenit3]. Semenov’s argument amounted to the ect_lvely Smearing the forces applied to the cha|_n over a
assumption that of order one medium chain should pierce the 9'on with a radius of Ordd[e. around the test cham._lt IS
tube of the test chain per entanglement contour length. Thgtralghtforward to show that, if the force on the medium is

argument may be restated, using reasoning closer to that fotl"Elken 'to be Iocahz'ed along a rnathemat]cal line, then the
lowed in Sec. IV, as follows: To estimate, consider the compliance 1y(q) diverges logarithmicallylike the electro-

: ; ; atic potential for a line chargesignaling the breakdown of
frge energy required to displace the test chain by'an averafée co?ninuum approximatior?atgshort ?ength scales and the
dlstancc_a<h} OT _order the tube radluRe_. Such a d_|splace- need for a short-wavelength cutoff. It is argued that a cutoff
ment will S|gn|f|cantly alter th_e topological constraints expe-Iength of orderL, is appropriate because of the ability of
rlgtuged ZY ta" medf|umd cFr;amfs ﬂ\:vhose tL:beb cgr:tomir Ea.ssesﬁngle chains to directly transmit forces over distances of
Wi ntm ? A'\S ann(i?no o;re e ;’ ) € unpter]yr r?T fers c ﬁm order the distancé . between collisions, before effectively
contour. ASSUMING a iree energy cost of ordefor eac distributing them over the network. In Sec. V, | go somewhat
such nearby chain gives a free energy'ef,:/L ~TpR. per

unit length of test chain for a displacement of this ma nitudebeyond this qualitative argument and regularize the calcula-
gih P . '9 tion of y(q) using an approximate description for the distri-
wherepR, is the number of chains that pierce a cylinder of

diusR + lenath of th linder. If th tbu'[ion of forces exerted by the few “primary” medium
radiusie per unit iength of the cylinder. 1t oné assumes that, 5iqg - \hich pass close enough to the test chain to collide
I'.ont is approximately quadratic ih, one obtains a spring

directly with it, upon “secondary” medium chains, which

constant confine the primary chains, and then use the continuum ap-
y~TpIR,. (17) proximation only to describe the response of the surrounding

network of secondary chains. The results are similar to those
By requiring that this expression for yield y~Tqu4 for  obtained byad hocintroduction of a cutoff length of order
wave numberg~L_ !, and using Eq(8) to relateR, and L.
L., one obtains an estimated tube diameter and entangle- Self-consistent estimates Bf andG may be obtained in
ment length the EMA by requiring thaty(q)~G~qu4 for wave num-

that depends linearly o6 and, forqL.=1, logarithmically
on g, so thaty(q) vanishes in the limit of smalkj.
The lengthL. appears within the logarithm in E¢20)
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bers g~1/L,, and thatG~pT/L,. These conditions, to- ronment is treated in an effective medium approximation.

gether with Eq.(20) for y(gq) and Eg.(8) for L., yield This allows the different mechanisms of transverse displace-

power laws ment upon which the simpler BCA and EMA models are
based to act in parallel. The resulting model is made self-

Re~p Y2 consistent by requiring that the values®fandR, obtained
by using the calculated value ¢{q) in Eq.(7) for R, and in
Le~p‘1’3L,1J’3, Eqgs.(9) and(10) for G both be consistent with those used as
inputs to the calculation ofy(q). The ENA yields a tube
GNTP4/3|_F;1/3_ (21  radius that is always somewhat larger than that predicted by

either the BCA or EMA separately, with no simple power
In the more detailed calculation presented in Sec. V, | sublaw dependence on concentration. All predictions of the
stitute a value ofy(q) that is calculated from a continuum ENA converge to the corresponding predictions of the EMA
mechanical treatment of the medium into E(®. and (10)  in the limit pL>—c2, but remain significantly different at the
for G, and thereby obtain an integral equation for the moduvalues Opr,23~104 typical of recent experiments dfractin
lus G. The solutions of this integral equation are shown tosolutions.
exactly obey the scaling laws given in EQ1), with numeri-

cal prefactors that depend weakKlye., logarithmically upon IV. BINARY COLLISION APPROXIMATION
the cutoff length used to regularize the divergence of the ) . o .
network strain near the test chain. In the binary collision approximation, we focus primarily

Note that the EMA scaling exponents given in Eg1)  ©N describing the interaction of the test chain and a single
are different from those predicted by the BCA, which aren€arby medium chain. The contour of the medium chain of
given in Eq.(18), and so are different from those assumed tointerest is denoted bx(s), wheres is a contour length along
be correct in all of the recent theoretical work on the sourceghe medium chain.
of elasticity in these solutions. This raises the question of The central assumption of the BCA is that, in the absence
which theoretical approactiif either) gives the correct of the test chain, each medium chain of interest would re-
asymptotic scaling in the IimipL§>1 that both the BCA main confined to a tube as the result of constraints imposed
and EMA are intended to described. Because these two apoon it by other medium chains. To characterize these con-
proaches describe two essentially independent mechanisrifaints, it is useful to consider a hypothetical situation in
for displacement of the test chaine., displacement of the which the test chain and a single medium chain of interest
test chain relative to the average displacement of a partiallire noninteracting, and so may pass freely through one an-
frozen environment in the BCA and collective elastic dis-0ther, but in which every other pair of polymers remains
placement of that environment in the EMAhe tube diam- mutually uncrossable and retain the same topological rela-
eter is presumably controlled by whichever mechanism pretionships as in the physical situation of interest. This hypo-
dicts a larger tube diameter. In the |imﬂ_§ of interest, the thetical state will bg referreq to as the “transparent state” qf
EMA prediction for the tube radius is larger than the BCA the speqfled medium chain. The transparent state remains
prediction by a factor proportional th(_g)l’lo, suggesting well defined when an external fordés) is exerted on the

that it is actually the EMA that yields the correct asymptotic €St chain, in which case the force on the test chain must be
scaling in the limit of extremely tightly entangled chains. It transmitted to the network via collisions with medium chains
is important to note, however, that the values of the expopther than the one of immediate interest. In what follows,

nents obtained in these two approaches are numerically quiffemal averages evaluated in the transparent state are de-
close (e.g., Gxp*% vs Gocpld), so that the competing noted by(- - -);, and averages evaluated in the unperturbed

physical mechanisms assumed in these two approaches colf@nsparent state, with{s)=0, by (- --)o-
remain comparable in importance at all but truly enormous The thermal averagér(s)); of a medium chain in its
values oprﬁ. transparent state will be referred to in what follows as its
preferred tube contouKlt is “preferred” in the sense that
this is the tube contour that would be obtained if the medium
chain were allowed to cut through the test chaPeviations

In Sec. VI, | consider an elastic network approximation of the medium chain contour from its preferred tube contour
(ENA) that attempts to integrate the binary collision and ef-are characterized by a transverse displacement field
fective medium approaches. In this approximation, the aver-
age d!splacement of the test chain in response to an external h(3) E?(S)—(?(E))t (22)
force is expressed as a sum of two contributidinsa local
displacement of the test chain relative to its immediate envi-

) “'constructed perpendicular to the tube tangent vector
ronment, as defined by the tube contours of nearby medium perp g

chains, andii) a collective elastic displacement of the sur- o(r(s))i/9s. As discussed below, the presence of an un-

rounding network in response to the forces exerted upon Erossable test chain acts S|mplly~to constrain the range of
by the test chain. The local displacement of the test chaifoPologically accessible values bfs) at the point of closest
relative to its environment is treated using the binary colli-approach between the test chain and the preferred tube con-
sion approximation, and the elastic displacement of its envitour (r(s));.

C. Elastic network approximation
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The binary collision approximation is based upon the fol-physically relevant case in which both the test and the me-
lowing simplifying approximations for the distribution of dium chains are fluctuating semiflexible chains is given in
medium chain contours in the transparent state. Appendix B. The results of this refined calculation are dis-

(i) The distribution of values oR(s) in the transparent cussed in Sec. IVB.
state is approximated by a Gaussian functional with a vari-
ance given by Eq(5). This is equivalent to assuming that A. Confinement of a rigid test rod

each medium chain is confined by a harmonic potential To calculate the confinement potential for a rigid test rod,

dq one may consider a hypothetical process in which a thin,
Aconf[ﬁ]: j _y(q)|ﬁ(q)|2, (23 uncrossable rod of length<<L is first inserted into an en-
2 tangled solution, the solution is then allowed to equilibrate
) ) ) for many reptation times while the test rod remains station-
with a self-consistently determined value fpfq). ary, and the test rod is then subjected to a uniform trans-
(i) The preferred tube contourr(s)), of the medium verse displacemertt of magnitudeh=|h| from its initial
chain is taken to remain unchanged when an external forcgosition. The effective potential is given by the resulting
f(s) is exerted on the test chain, i.e., we take(s)), increase in the free energy of the surrounding network. In the
=(T(3))r0- limit L—<c, we need not distinguish between the potential of

Approximation (i) is equivalent to saying that the con- Mmean forceAqn(h) obtained for a rod subjected to a speci-
finement potential experienced by each medium chain in itfiéd uniform displacement and the effective potential
transparent state, which represents the forces exerted uporkjtoni(h) obtained for a rod subjected to a uniform force
by other medium chains, remains unchanged when the te§at is chosen so as to give the same average displacement
chain is displaced by an external force. It is this approximah=|(h)|, because the heterogeneities in the local environ-
tion that allows one to convert the many-chain problem intoment of the test rod become self-averaging for a sufficiently
a tractable two-chain problem, in which we imagine that thelong rod, and because the spontaneous thermal fluctuations
test chain is embedded in a thicket of noninteracting mediun®f the rod’s position vanish in this limit, allowing us to treat
chains, each of which fluctuates in a static harmonic potenh andA.,,(h) as macroscopic thermodynamic variables. No
tial. The same assumption also, however, prevents the BCRqually simple statement can be made about the relationship
from taking into account any collective elastic relaxation ofbetweenA.,,{h] andl".,,{(h)] for a fluctuating semiflex-
the surrounding network, whereby a force exerted by the tesble test chain.
chain on one medium chain may be transmitted through the Consider the interaction of a test ro¢s) with a nearby

nEt!vork and cause a shift in the preferred tube contoumedium chain with a tube contoyr(s)),. The test rod is
(r(s)), of another. The binary collision approximation thus assumed to have a constant unit tangent veatoand to
describes the fluctuations of a test chain in a partially frozerfollow the straight line
environment, in which the tube contours of the surrounding
medium chains remain frozen when the test chain is dis- r(s)=suth, (24)
I .

P aﬁﬁgther simplifying feature of the BCA is that the aver- yvhgr_e_h isa gr_ﬂform transverse displacement of.the rod .fro.m
age restoring forces are nearly local functionali(s), and  its initial position. The tube contour~of thg r~ned|uin chain is
so may be characterized bygandependent value fop(q).  assumed to have a unit tangent veaterd( r(s)),/ds at the
In. the BCA, the fprces on a test chain arise from collisionspoint where(?(§)>t passes its closest approach to the initial
with mefmum chains whose tube contours pass close to t,h@ontourr(s)zsu of the test rod. The orientations and
test chain at randomly located points along its length. Colli- ~ . o .
sions between the test chain and any single medium chain Y gre phy5|cally. |n~d|st|ngU|sh§bIS, and so by convention
are localized within a region of sizR, along either chain, We Will always defineu so as to giveu-u=0. The preferred
which is much smaller than the typical distaricebetween tupe contour of the medium chain may pe ap.proxmated near
collisions. Interactions between chains may thus be treated 48iS point of closest approach by a straight line
pointlike binary interactions occurring at uncorrelated points . o
along the test chain. Such interactions give rise to an average (r(s) )t=Spu+Coe  tS U. (25
restoring force at each point that depends only on transverse
displacement at that point, and, correspondingly, to alere,|co| is the distance of closest approach from the initial
g-independent value foy(q). We may thus calculate(q) test rod contour(s)zsﬁ,
in the BCA by considering only the response to a spatially
uniform forcef, to obtainy(q=0). . uxu

In Sec. IV A, we calculate the BCA effective potential by e=—— (26)
considering the free energy required to displace a very long luxul
rigid rod inserted at random into a solution of semiflexible
medium chains. The use of a long, rigid test chain simplifiedS & unit vector constructed perpendicular to bots) and
the calculation, by allowing us to ignore thermal fluctuations( r(s)), at their point of closest approach, asgu is the
of the test chain. A closely analogous calculation for theclosest point on the initial test chain contour. The distance of
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of the test rod and the single medium chain of interest, which
we refer to as thet and — states. The relative probabilities

of finding the network in either of these two topologies are
thus given by the relative probabilities of trapping the me-
dium chain in thet+ or — states by a hypothetical process in
which the network is first equilibrated in the transparent state
and the test chain is then suddenly made uncrossable, i.e.,
they are given by the thermal equilibrium probabilities of

findingh,>—c or h,<—c in the transparent state.

Let P(h;) denote the conditional probability that in the
transparent stafle; will take on a specified value at the point
of closest approach betweéﬁ(g))t andr(s), for a medium
chain with a known tube contoym (s)),. The correspond-
ing conditional probabilityp , that the chain will be trapped
in the + state is thus given by the probability thhg>
—Cg at this point in the transparent state, i.e.,

FIG. 2. Geometry for an uncrossable test rod with unit tangent
vectoru (vertical thick ling near its point of closest approach to the ©
preferreél tube contou(r’r‘(ef%»t with :1 local tangenti I?(Izlootted line p+(C°):f codhlp(hl)' (29)
along the axis of the cylindrical tubef a nearby medium chain.

Two possible contours for the fluctuating medium chain, inthe  The corresponding probability of finding the chain in the

and — topological states, are shown by curved solid lines. — state isp_(cg)=1—p.(cy). In what follows, we ap-
. proximate the probability distributioR(h) for either Carte-

closest approach betweén(s)), and the displaced test rod, sjan component di(s) in the tranparent state by a Gaussian

whenh#0, is given by|c|, where distribution
c=co—hy (27) 1 Y
5 P(h,)=——e M/®, (30
and whereh;=h-¢,. V27Re

In the physical situation of interest, the presence of an_l_h, iold gi babilit
uncrossable test rod constrains the allowed valudsf at IS YIelds corresponding probabiiities
the point of closest approach ofs) and (r(s)),. To de-

Co
scribe this, it is convenient to decompd¥@) into Cartesian p:(Co)=(1>( iﬁe) : (32)
components as

L where
h(s)=hi(s)e;+hy(s)e,, (28)
~ o~ o~ o = - ﬂ -y22 32
wheree,=uX e, is a second unit vector constructed perpen- (x)= x /_27.,e (32)

dicular tou. The presence of the test rod constrains the value

of component, at the point of closest approach to either of is @ normal distribution function. _

two possible ranges, corresponding to two different possible The increase in the single-chain fluctuation free energy of

topological states: Eithdr; > —c, in which case the chain is the .med'“”? chain due_ fo the presence of an uncro;sable test
din wh il b lled th T q chain, relative to that in the transparent state, is given for a

trapped in what will be called the state, orh, ¢, an chain trapped in either the or — configuration by a func-

the chain is trapped in the state(see Fig. 2 -

o . tion
We may calculate the conditional probability that a me-

dium chain with a known preferred tube contgui(s) ), will c

be found in thet+ or — topological states as follows. In the a.(c)=-TIn q;( iR—) (33
initial fully equilibrated state, witth=0, the network is re- ¢

stricted to a set of microstates consistent with a certain ranyf the separatiort=c,—h, given in Eq.(27). The magni-

domly chosen topology, but the relative probabilities of dif- t,de of the average force exerted between the test rod and the

ferent possible topologies are the same as those expected i¥ecified medium chain, in either possible topological state,
a solution of noninteracting chains. The presence of an uns given by the derivative

crossable test rod divides the set of microstates accessible to

the system in the transparent state of a given medium chain da.
into two subsets, corresponding to two different topologies (fo)= dh_
of the network that differ only in the topological relationship !

: (34

o
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where(- - -) is used here to indicate an average over thermal 1.0 T T T 7,
fluctuations of the medium chain in the presence of an un- — Fx)

crossable test rod. The average of this force over the twc ---- 036 " ’
——- exp(-x/2)/(2r) g

possible topological states may be expressed as the corr¢ 08 |
sponding derivative

Ja 0.6 F
(Fy=—— (35
dha £
0 o

of an average binary interaction free energy 04 r

a(c,co)=p-(Ccola_(c)+p(coa(c). (36)
0.2 f
Note that, because the topological state of the network can
not change as a result of the displacement of the test chair
the probabilitiesp..(cy) depend only upon the initial dis- 0.0
tance of closest approaaty between the test rod and the
preferred tube contour of the medium chain, while the free
energiesa. (c) depend upon the corresponding distarmce FIG. 3. The functionF(x) defined in Eq.(41) (solid line), the
obtained after displacement of the test chain. harmonic approximatiorF (x)=0.3&? of Eq. (42 (long-dashed
The total effective potential experienced by the test rod idine), and the Gaussian distributid®(h/R,) (short-dashed line
obtained in the BCA by averaging the binary interaction free
energya(c,cy) over all possible orientations and positions of in which y=yys—cos()x. In the above,x=h/Rg, Yq
the preferred tube contours of nearby medium chains. Thisscy/Re, Y=C/Re, and cos¢)=h,/h.
average may be expressed as the integral The functionF(x) has been calculated by numerically
evaluating the integrals in Eg41), and is shown in Fig. 3.
The function is well approximated over the physically rel-
evant range of displacmentss1 by a parabola

0.0 0.5 1.0 1.5 20 25

Leoni(h) =L f:dco f dup(u,co)a(c.co), (37

~ ~ 2

whereu is integrated over half of the unit circle, and where F(x)=ax (42)
p(u,co)dudc, is the average number of medium chains pefyith o~0.36. The harmonic approximation that we used for
unit length of the test chain with tube contour orlentatlons»[he effective potential of the medium chaiiwhich was
that lie within an infinitesimal range of solid anglds and  originally chosen for mathematical simplicitis thus found
values ofcy within an infinitesimal rangelc,. If the tube  to be surprisingly close to the shape predicted by the BCA.
contours of the medium chains are assumed to have random

positions and orientations, then B. Confinement of a semiflexible chain

_ 1 An analogous calculation is given in Appendix B for the
p(U,Co) = 5—psin(0), (38)  effective potential’((h)) experienced by a semiflexible test
chain subjected to a specified external force. The calculation
differs from that given above for a rigid test rod in that we
treat the test and medium chain on a more equal footing, by
allowing the test chain also to undergo thermal fluctuations
within a tube.
AT conf D) =T cont(h) =T cont(0) (39 It is found that the only effect of this change is to increase
the characteristic width of the potential found above by a
arising from a transverse displaceméntay be expressed factor of \2, without changing its form: The calculated ef-

where cos)=u-u, and where is the total density of con-
tour length per volume.
Using Eqgs.(37) and (38), the free energy difference

as a function of the form fective potential for a semiflexible test chain is
h h
AT cont(h)=LTpRF Ry’ (40) AT on(h)=LTpRF R (43)
where whereh=|(h)|, and whereF(x) is the function defined in
d(—y) Eq. (41). If F(x) is again approximated by E(12), then one
F(x)=— —f dyof d¢[ yo)ln( B(—y, )) obtains a confinement potential
( o(y) H AT gon(h)=3L(aTp/Ro)|()|? (44)
+&d In 41
(Yol D(yo) 4y and a corresponding approximation fefq) as
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Y(Q)=aTp/R,. (45) A. Continuum mechanics

o S The three-dimensional3D) displacement of the elastic
The net effect of taking into account the semiflexibility of adium is described by a vector fielt{r), wherer is a 3D

the test chain is thus to decrease thiadependent effective qition. We assume that the test chain is rigidly embedded
spring constanty by a factor of 2, relative to that obtained ; the medium along the ling(s) =su, so that the displace-

for a rigid test rod. _ _ . menth(s) of the chain is giver(in the linear response re-
This softening of the effective potential for a semiflexible gime by the value

chain is a result of the fact that in Appendix B the test chain

has been allowed to bend so as to avoid nearby medium h(s)=U(su) (50)
chains, as well as the reverse. The observation that the width

of the effective potential depends upon the flexibility of the of the 3D displacement field evaluated along this line. The
test chain, as well as that of the medium chains, is consisterilastic energy of the isotropic medium may be expressed in
with the observation that the tube diameter would shrink tahe standard form

zero in the case of an infinitely long rigid test rod in a net-

work of infinite rigid rods, but would remain nonzero for . 5 , 2

either a rigid test rod in a network of semiflexible chains or E= Ef dr{ZGZ (€i)“+( —éG)( > Eii) ] (51

a semiflexible test chain in a network of rigid rods. N '

where €;;=(dU;/dr;+dU;/dr;) is the strain tensor, anG

and B are the shear modulus and isotropic compression
A self-consistent approximation fd®, may be obtained modulus of the medium, respectively. In the present context,

by substituting Eq(45) for y(q) into Eq.(7) for R,. This G andB are given by the plateau values of the shear modulus

C. Self-consistent solution

yields an integral equation fd®, as and the osmotic compression modulus of the entangled solu-
tion, as measured when the solution is subjected to a defor-
5 dq 1 mation with a characteristic frequency lying within the pla-
Re= j r T A o (46)  teau regime of3'(w), where the stress is dominated by the
™ L,q"+ ap/R ;
P e curvature stress. In the molecular theory presented in Ref.

[11], it was found that the curvature stress is described by a
traceless tensor, implying that the curvature contributions to
B vanishes identically. In the limit of infinitely thin chains,
where excluded volume contributions B are also negli-
R.=L (4dapl2)-35 gible, we may th_us seB=0. _ _ _
e=Lp(4aplp) The 3D Fourier transform of the displacement field in-

By analytically completing the above integral, solving for
Re, and using the resulting value far(q) in Eq. (10) for
L., one obtains

o5 duced by an arbitrary force distributide(r) exerted on the
LeZLp(%PLS) , (47)  continuum is given, foB=0, by
giving U(k)=G|k|2{5—4i|2><|2}-F(k), (52)
Re=0.80p ¥°L ", (48)

whereU(k) and F(k) are 3D Fourier components &f(r)

G=0.40Tp"™L,;*® (49 andF(r), andk=k/|k|. The corresponding result for the 1D

) ] Fourier transformh(q) of the chain displacemenh(s)
for =0.36. As noted in Sec. Il, the exponents in the above=(su) is given by the 2D Fourier integral

are the same as those obtained by Semé¢8bby a simple
geometrical argument. Here, however, we have also obtained K
1

; d? 1 .
estimates of the prefactors. h =f o— Tkxk}-F(k), 53
@= ] G2 gt kiRl 69

V. EFFECTIVE MEDIUM APPROXIMATION R
. _ o in which k=uq+k, andk=k/|k|, wherek, -u=0.
In the effective medium approximation, we treat the net-

work surrounding the test chain as an elastic continuum with
a shear modulus equal to the plateau modulus of the solution,
and assume that the test chain rigidly follows any displac- In the above, we have calculated the displacement along
ment of this medium. To calculatg(q), we consider a situ- the axisr =us for an elastic continuum subjected to an arbi-
ation in which the test chain is subjected to an external forcerary force distributionF(r). The only choice for the force
f(s) that contains only a single nonzero Fourier amplitudedistribution F(r) that is consistent with our naive picture of
f(g), and use continuum mechanics to calculate the resultinthe test chain as an infinitely thin thread embedded in the
displacement amplitudie(q), settingf(q) =y(g)h(q) to de- medium is one in which the force is transmitted to the me-
fine y(q). dium at points lying exactly on line=su, giving

B. Force distribution
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secondary medium chains, and thus allowing the displace-
F(f)=J dso(r —us) Xfeoni(s), (54 ment of the test chain to differ from that of the continuum.

In Appendix B, | present an approximate calculation of
or, equivalently,F(k)=(27)%n{(k-u). It is straightfor- the distribution of forces exerted by the primary medium
ward to confirm, however, that the use of such a singular lin€hains upon secondary medium chains that confine them,
distribution in Eq.(53) would lead to a logarithmically di- based on the above ideas. | obtain an approximate force dis-
vergent value foh(q). In real space, the displacement field tribution of the form
U(r) induced by a line distribution of force that oscillates
with wave numberg along the test chain may be shown to _ _
vary logarithmically with the distance from the test chain F(r)—j dsy(r—su) Xfeon(s), 59
for qr=1 and to decay exponentially fayr=1, and thus ) _ o ) B
(like the electrostatic potential induced by a line charge  in which x(r) is a distribution functiorispecified belowthat
diverge along the axisr=su. To control this short- drops off rapidly forfr| =L, which serves to redistribute the
wavelength divergence, we are forced to introduce a cutofforce f(s) over a region of radiut around the test chain,
length, below which the continuum approximation is as-and which satisfies the normalization conditigmir x(r)
sumed to break down. By removing short-wavelength com=1. The approximation introduced in Appendix B yields a
ponents ofF(k)’ such a cutoff will effective|y smear the distribution function with a 3D Fourier transform
applied force over a region of nonzero radius around the test _
chain. du Ye

Physical considerations suggest that this cutoff length X(k)zjﬁm’ (56)
should be taken to be of order the entanglement lehgth P €
Forces exerted on a chain may be transmitted along its baclﬁﬁ

bone over distances of order the distahgebetween colli- ; . L

sions with other chains dequivalently the walls of its tube, gzlf (;f th_ienzzlt;?::rr]te, ?:rc])iesgnin ip_? rLOX'Zn at'\?v?]é?g(q)
indicating that the network cannot be treated as a continuurr;z,e,,zl?_ P Ye ple Ge
over length scales less than. A more detailed consider- e . . .
ation of how the external force exerted on the test chain is Any force Of. the_ form given in Eqi55), when substituted
distributed via binary collisions to the surrounding network'f Eq. (59, will yield a displacement of the form(q)
also suggests a possible reinterpretation of the continuurﬁf(q)/y(q)’ where

theory, which will be developed further in the elastic net- _

work model of Sec. VI: The forces exerted by a test chain n@=G/H(a) 7
upon its surroundings are first transmitted by binary collsions, 4 \where

to a relatively small set of chains, referred to here as “pri-

mary” medium chains, whose tube contours happen to pass a2k, x(K) IK|2— L[k, |2

within a distance of ordeR, of the test chain. The forces H(q):J L X o (58)
exerted on the primary medium chains by the test chain are (2m)? |k|? k|2

balanced by forces exerted upon the primary chains by “sec-

ondary” medium chains, which form the walls of the tubesis a dimensionless compliance, in whigt(k) is the 3D
that confine the primary chains. The net effect of collisionstransform ofy(r). A qualitative understanding of thg de-
between primary and secondary chains is mimicked in thggendence ofH(q) may be obtained by replacing(k) by a
binary collision approximation by the introduction of a con- sharp cutoff that suppresses all wave vectors with
finement potential for each of the primary medium chains>1/L.. This yields limiting behaviors

The forces exerted between primary and secondary medium

chains (or, equivalently, between primary medium chains —7/8| L L <1

and the walls of their tubgsre distributed along the contour H(q)= o n(qle), Qgle<
of each primary medium chain over distances of ordgr 0, qlL.>1

away from the point of interaction with the test chain. The ' e
diverge_nce in the effect_ive me_dium theory may thus be rey,, logarithmic divergence dfi(q) in the limit of smallq,
moved in a natural way if we reinterpret the forier) asan - which is generic, is a reflection of the fact that the displace-
ensemble average of the forces exerted between primary a’PﬁI;nt field induced by a force of wave numhgvaries loga-

secondary medium chains, rqther than as an average of tr|)|‘?nmically with distancer from the test chain for alL<r
force exerted by the test chain upon primary chains. In the

S . o =<q !, and thus extends to points far from the test chain.
EMA, this reinterpretation oF(r) is introduced merely as a Use of approximatior(56) for (k) in Eq. (58) results in a

way of regulgrizing the continuum mechanicgl c'al_culation, indimensionless compliance(q) that is well approximated
which | continue to assume that the test chain rigidly foIIows]cor all qL,=25 by the function

the calculated displacemehi(r) of the continuum. In the
elastic network approximation of of Sec. VI, | will take this 718
reinterpretation more seriously, by interpreting the con- H(g)=—In
tinuum displacemerit)(r) as an average displacement of the Am

which U is a medium chain orientation that varies over

(59

0.141
1+(qg/qe) ™2’

1+(a/de)?
(a/ge)?

(60)
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0.5 1 T cal prefactors depend weakly upon the exact form used for

H(qg). Using approximation(60) for H(q) and numerically
solving Eq.(62) yields

04t 8
Re=0.420 "2 (64)

03 ] Gzolgzrp4/3|_;1/3 65)
_Id)
= for the tube radius and modulus.
T oz i

VI. ELASTIC NETWORK APPROXIMATION
o4 | ] The elastic network model is an attempt to combine the

virtues and avoid the most obvious defects of the binary
collision and effective medium approaches. The BCA yields
00 bt | a rather detailed description of the motion of a test chain in a
0.0 1.0 20 3.0 40 50 6.0 7.0 80 9.0 10.011.0120 partially frozen local environment. The effective medium ap-
qL, proximation allows the environment of a test chain to deform
like an elastic continuum, but then unrealistically forces the
test chain to rigidly follow the surrounding continuum. A
better model should allow both for the elastic deformation of
the surrounding networkwhich is found to dominate the
displacement at sufficiently smaj) and for a local displace-
ment of the test chain relative to that of neighboring chains.
In the ENA, the average displacement of a test chain in
response to an external for€és expressed as the sum

(h(a))=(higcai(@)) +{heon(a)) (66)

of a collective elastic displacemeftt.,(q)) of the environ-

FIG. 4. FunctionH defined by Eqs(56) and (58) (solid line),
plotted as a function oflL.=2%%9/q., and the analytic approxi-
mation given in Eq(60) (dashed ling

as shown in Fig. 4, which has the low and highimiting
behaviors given in Eq59).

C. Self-consistent solution

The EMA, with any choice for the distribution function
X, may be made self-consistent by using Esj7) for y(q)
(which is the result of a continuum mechanical calculation : .
in Egs.(9) and(10) for G (which are the results of a molecu- ment of the te$t cham, plus a Iocal_ dlsplza_cenw(mngca|(q))
lar theory, and then requiring that the prediction of the mo- of the test chain relative to that of its environment. The col-
lecular theory forG agree with the value assumed for the !ective displacementhco(q)) is understood in the ENA to

surrounding medium. This yields an integral equation@or epPresent an average displacement of the preferred tube con-
tours of the primary medium chains. Correspondingly, the

as local displacement is understood to represent a displacement
7pT ( dq G/H(q) of the test chain relative to that of the preferred tube contours
=5 | s A (61  of the primary medium chains. This local displacement may
T TLyq"+G/H(q) be approximated using the results of the BCA, which de-

A scribes the displacement of the test chain in an environment
If H(q) may be expressed as a functibifq) =H(qL.) of  in which the preferred tube contours of the primary medium
x=qL,, then Eq.(61) may be nondimensionalized to obtain chains remain frozen when a force is exerted on the test

the integral equation chain. We thus set
dx|5 L. . -1 (hiocal(@)) =fcond(A)/ vacA(), (67)
1=J— S —ZAOX 1 (62)
2m |7 plLg wherevygca(q)=ap/R, is the BCA approximation for(q)

given in Eq.(45). Correspondingly, the collective displace-

The solution of Eq(62) yields a constant numerical value ment of the preferred tube contours of primary medium

for the dimensionless rat|hp/(p|_2), thus g|V|ng an en- ChainS, which reflect Only the interactions between primary
tanglement length and secondary medium chains, may be treated in an effective

medium approximation, in which the ford&r) exerted on

the medium is properly understood to represent an average of
(63) . : .

the force exerted by primary medium chains upon the sec-

. . ondary chains that confine them. We thus set
with a numerical prefactor whose value depends upon the

exact functional form used fdf(x). By using the resulting (Neon(a)) =feond )/ Yema(Q), (69)
value forL. in Eq. (9) for G and Eq.(7) for R,, we obtain

expressions foG andR, that generically vary witlh andL,  where ygya(q) =G/H(q) is the EMA approximation for
with the power law exponents given in E@1). The numeri-  y(q) given in Eq.(57), which was calculated using a distri-

13 —~1/3
LexLpp ™7
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bution of forces appropriate to this interpretation. The ENA 1o’ | .
thus uses the continuum approximation only to describe elas —— Elastic Network (ENA)
tic relaxation of the preferred tube contours of the primary L ——=- Binary Collision (BCA)
medium chains(rather than that of the test chain itself 10° <= -~~~ Effective Medium (EMA)
while using the BCA to describe the additional local dis-
placement of the test chain.

Adding these two contributions yields a total displace- *10”
ment of the formh(q) =f.oni(a)/¥(q), with a total compli- ="
ance

_,Q.
=10
o

2

1 B 1 N 1
(@) yema(Q) ¥ecald)

(69)
10

in which the two mechanisms of displacement act in parallel.
Using explicit results forygma(q) and ygca(q) vields

1 _H@ R

AW G ap’ (70

FIG. 5. Predicted values of the dimensionless tube raljus
BecauseH (q) diverges logarithmically foglL.<1, the cal- ang entanglement Ien_gthe/Lp vs dimensionless concentration
culated compliance 3(q) is dominated in the lovgt limit pLy. The upper three lines are valueslafiL and. the lower three
by the first term, representing the elastic deformation of thé® values ofRe/L,, as predicted by the elastic network model
network. In this limit, the elastic deformation is spread over(S°lid e, the binary collision approximatioiong-dashed ling
a distanceg~1>1, and so the continuum approximation is 2"d the effective medium approximati¢short-dashed line

also expected to become increasingly accurate. In the Opp%'riginal tube model of flexible chains, which is strictly valid

site short _vvavele_ng_th I|m|qLe>_1, H(q) vanishes, and only for L,<L,, and that of the present model, which is
the compliance is instead dominated by the second term,_: P . : .

) . ; valid for L,<L,. Much of the available data on isotropic
representing the local displacement of the test chain. p

To make the ENA self-consistent, we substitute Btg) solutions of long wormlike chains on systems with values of

for y(q) into Eq.(7) for R, and Eqs(9) and(10) for G, and L,/d smaller than that found fdf-actin could fall into this
reqa/irg that thg.calculatgd vaIueqs R{ and G be cons:istent crossover regime. The present model is expected to underes-
with those assumed for the medium chains in the calculationateFe”‘p for small values_(zfglll__o,&smce.the weak con-

of ysea(q), and for the continuum in the calculation of Centration dependence bgecp "™ Qﬂt_g"”ed heggs must
veua(Q), respectively. The resulting pair of coupled integral 8v€ntually cross over to the steefigpep™ = or Ge<p™* de-
equations must be solved numerically, and does not yield gendence that is found for semidilute solutions of flexible

. hains.
simple power law dependence fBg or G on p andL,. ¢ .
Predictions of the BCA, EMA, and ENA for the ratios  One weakness shared by the ENA and EMA is that the

predictions of both approximations depend upon the value
dimensionless concentratig S Because the ENA allows Chgfr?;n;cg;l%g:éﬁﬁtmg;? trl:zesc:r;(i)nrﬁgluc;?éirfgeactggttlgﬁgm
local and collective displacement mechanisms to act in palj-n : P . : N

| have relied here upon a physical picture of the mechanism

allel, the ENA always yields the largest of the three valuesof force transmission over short distances within a network
for R; or L,. The ENA results converge to the EMA results

. 2 g that suggests a cutoff length of ordeg, and, in Appendix
at :j/(la_ry high yallues Obtlr-]pv t;ﬁt the BC?‘ tpreﬁmhons fc:RéMA C, have tried to translate this picture into a well defined
andte remain farger than the as;gmp otically correc regularization scheme. A very different argument for the
values until rather large values pt . The crossover of the

o ! magnitude of such a cutoff length has been given by Maggs,
BCA and EMA predictions forle occurs at much higher i, 3 giscussion of the deformation induced by displacements

values ofpL{ than the crossover foR., because EAL10)  of 4 very small bead embedded in a network of semiflexible

for L, is less sensitive to the logarithmic logvsoftening of  chaing[8], who argued for the breakdown of continuum elas-

¥(q) than is Eq(7) for R, . At values ofpL 3~ 10" typical of ticity below a larger cutoff length of ordeyLeL,. For the

the F-actin solutions discussed belol, is about one order F-actin solutions considered below, for which | fi

of magnitude larger thamR, and one order of magnitude —j0_,, Maggs's result would suggest the use of a cutoff

smaller tharL, . length several times larger than that used above, with a
The ENA predictions for the ratib./L, do not drop to  \veaker dependence on concentration. Without trying here to

values significantly below unity until rather large values of resolve the discrepancy between these estimates, | will note

pL?, €.g. Le/L,=0.5 for pL2=10%. This suggests that a that the predictions of the ENA do not depend very strongly

well defined tightly entangled regime, with,<L,, can oc-  on the choice of a value for the cutoff length, for two rea-

cur only for very large values quf,. If so, there must exist sons. First, the quantitygya(q) =G/H(q) that is obtained

a very wide crossover between the regions of validity of thefrom continuum mechanics depends only logarithmically on

Re/L, andL¢/L, are shown in Fig. 5 as functions of the
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the cutoff length, as shown in E@59), wherelL, appears tive of the properties of unlabeled, unstabilized actin of the
within a logarithm. The EMA prediction of a power laky, ~ sort used in most rheological studies. Except where other-
«p~ s a consequence of the algebraic dependendd of wise noted, we will assume a persistence length ofdri in
upon L., rather than the logarithmic dependenceHffg)  what follows.
uponL., and would be modified only by logarithmic correc-  Kas et al.[21,22 have also used fluoresence microscopy
tions if a cutoff length proportional ta/LcL, were used in to measure the tangential diffusivify,, of entangled actin
place of one proportional th,. Second, the use of a larger filaments as a function of contour length. They find that the
cutoff length in the calculation ofgya(q) would decrease dependence dD ¢, on chain length, for chains of length 7—
the collective contribution to the total ENA compliance 60 wm, is roughly consistent with an Einstein relation of the
1/y(q) in Eq.(70), but cannot cause the ENA compliance to form D.,=T/({L), with a friction coefficient per unit
drop below that obtained from the BCA alone. For param-ength of {=0.1-0.2 dynescm? that shows no measur-
eters typical ofF-actin solutions at experimentally relevant able dependence on concentration.
concentrationgdiscussed beloy it is found that the BCA The values off needed to describe Ka al's observa-
and ENA predictions fot_,, differ by only about a factor of tions of reptation are significantly larger than those obtained
2, which further limits the sensitivity of the ENA predictions by calculating the hydrodynamic drag associated with drag-
for F-actin to increases in the choice of cutoff length. ging a cylindrical fiber tangentially through an aqueous sol-
vent. The friction coefficient off=0.16 dynescm? ob-
tained from measurements bf ., for the two shortest fibers
of L=6.9 um and 11.2 um in [22] corresponds to the use
Solutions of actin protein filaments¢actin are so far in Eq. (9) of [12] of an effective solvent viscosityys
unique in thati) the filaments are sufficiently long, stiff, and =0.08 dynescn?, i.e., eight times the viscosity of water.
thin to be able to form isotropic solutions with. ;=10 and ~ This sluggish tangential diffusion could in principle be due
L~L,=10L,, placing them well within the tightly en- fto elther a_ttractlve or repulsive mteractlons b_etween cha_ms,
tangled concentration regime, afit) independent measure- !-€- diffusion could be slowed e|t.her b_y having Fhe cha_lns
ments are available of the persistence length, the tube dian§tick weakly to one another or by jamming of chains against
eter (both measured by fluoresence microsgomnd the —One another. The effect of steric jamming of rigid rods upon
plateau modulugmeasured by both mechanical and optica|tangentlal diffusion was considered theoretically by Edwards
rheometry. That these solutions are tightly entangled isand Evang33], who showed that the effect could become
graphically confirmed by fluoresence micrographs that shoWmportant at concentrations near the isotropic-nematic tran-
confinement of filaments many micrometers long, with per-Sition concentratiorpy, but were unable to give a reliable
sistence lengths of order 1am, to tubelike regions that are guantitative treatment. Observations of entangfedctin
only a few tenths of a micrometer acrofal,2Z. In this filaments by Kaset al. were carried out at concentrations
section, theoretical predictions are compared to experiment&l0se topy -

measurements of botR, andG in F-actin solutions. Measurements of self-diffusivity of the rodlike polymer
poly(y-benzyl glutamate (PBG) in concentrated solutions

by Bu et al. [34], using fluorescence photobleaching recov-
ery, have shown that the tangential self-diffusivity of PBG
| begin by reviewing measurements of the persistencelecreases significantly at concentrations approacping
length and tangential diffusivity by fluoresence microscopy,Bu et al. find that the ratidD/D of the diffusivity D to the
which are needed as inputs to the theory. valueD obtained in dilute solution, for samples with several
The persistence length &f-actin has been measured by different molecular weights, appears to be a function of the
several groupg23—25 by analyzing observations of the ratio p/p,y alone, and find a value dd/Dy~0.1 near the
Brownian fluctuations of fluorescently labeled filaments inl-N transition. Complete suppression of the diffusion of a
unentangled solutiong23-29. A value ofL,=17+1 um  rodlike polymer in the two directions perpendicular to the
has been consistently obtained from observations of filachain, due to the formation of a cage of surrounding mol-
ments that are stabilized against continuous polymerizatioecules, in the absence of any reduction in tangential diffusiv-
and depolymerization by addition of fluorescently labeledity, would by itself reduceD/D, to about 1/2.(This value
phalloidin, which allows the filaments to be diluted below reflects the fact that the tangential diffusivity of a thin rod in
the critical polymerization concentration for visualization. dilute solution is about twice its diffusivity in either perpen-
Isambertet al. [25] report a persistence length &f,=18 dicular direction. The observation of values d@/D, sub-
+1 wum for phalloidin-stabilized actin, in agreement with stantially less than 1/2 thus implies that tangential, as well as
earlier studies[23,24), but find a lower value oflL,=9 perpendicular, diffusivity must be substantially decreased in
+1 um for rhodamine-labeled actin filaments that are notconcentrated solutions. Both the observed scalin® 6D,
stabilized by phalloidin, which were visualized very near thewith p/p,y and the fact the PBG molecules in pyridine are
critical polymerization concentration in order to produce abelieved to interact as simple hard rods suggest that decrease
solution containing a few long filaments diluted by a largerof tangential diffusivity in PBG solutions is a result of steric
concentration of monomeric actin. It not yet clear whetherfjamming. This, in turn, suggests jamming as the more likely
the properties of labeled but unstabilized actin or those obf the two possible causes of the low tangential diffusivity in
actin stabilized with labeled phalloidin are more representafF-actin.

VII. F-ACTIN SOLUTIONS

A. Persistence length and diffusivity
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dependence of the measured valueRobn concentration in
Fig. 6 is consistent with any power law exponent in the range
between the BCA prediction d?,>p~ %8 and the EMA pre-
diction of R, p~ %2, The quantative predictions of the ENA,
which yields the largest tube diameter of the three models,
are within the scatter of the data.

C. Plateau modulus

Attempts to compare predictions for the plateau modulus
to experiments orfF-actin are thus far plagued by the exis-
tence of significant discrepancies between value& ake-
ported by several different experimental groups. Rheological
measurements df-actin solutions have been carried out by
Janmey and co-worker6], Pollard, Xu, Wirtz, and co-
workers[27,28], and Sackmann and co-workg¢B90,31] (see
references and discussion [ib2]). Enormous discrepancies
between values 06=10°-1C> dyn/cn? initially reported
for the plateau modulus by Janmey and co-workers and val-

ues of G=1-20 dyn/crA reported in Refs[27,28,30,3]
FIG. 6. Tube radiuR, vs actin concentratioe,. Results of  haye apparently been resolved as the result of a collaboration
Kaset al.[21,22 for the tube radius irfF-actin solutions, obtained gnd careful comparison of experimental procedui2.
by reanalysis of fluoresence microscopy data originally reported iffhese large discrepancies have been traced to differences in
Ref. [21] (open squargsand Ref.[22] (open circle§ compared to g5 mple preparation and storage conditions, and are now be-
predictions of the elastic networksolid line), binary collision i\ ed to have been the result of the spontaneous oxidation of
(long-dashed ling and effective mediuntshort-dashed lineap-  ,,nomers during storage, which led to the formation of
proximations. cross-links between actin filaments upon polymerization
[32], together with the sensitivity of the modulus to the pres-
ence of small concentrations of cross-link]. There re-
mains, however, a smaller but apparently systematic discrep-

The contour length density d¢f-actin for a solution with
an actin concentration af,=1 mg/ml, which is typical of

the measurements considered below, is,zB@Fz, based on ancy between values ofG=5-10 dyn/crﬁ for cu

a helical repeat unit of 360 A containing 13 monomers with_ ¢ mg/ml recently reported for freshly polymerized actin
a monomer molecular weight of 42000. This correspondsby Xu et al. [29], and the lower values oB=1 dyn/cn?
for L,=17 um, to a dimensionless concentration ,ﬂtf, reported by Hinneet al. [31].

=1.1x10" | noted in Ref.[12] that quantitative predictions of the
plateau modulus obtained by using fluorescence microscopy
B. Tube radius measurements of the tube diameter to estinateare in

Kas et al.[21,29 have obtained a quantitative measure Ofre_asonable quantitativg agreement with the measurements of
the tube radius irF-actin solutions by visualizing fluctua- Hinneret al.[31], and with earlier measurements by Ruddies
tions of single fluorescently labeled filaments within a tightly &t @ [30], but are, correspondingly, 5-10 times below the
entangled solution of unlabeled filaments. skt al. record  values recently reported in Ref26-29. Here | give a more
micrographs of single labeled filaments, taken at short interdetailed comparlson_of theoretlcal_predlctlons for t_he plateau
vals over a period greater than the entanglement time b odulus to the avallablle rheolog.|cal date_l, focusing on the
much less than the reptation time, e.g., 64 micrographs takefft@ of Refs[30,31, while now using predicted rather than
atintervals of 0.1 sin Ref22]. They then graphically over- measured values for the tube diameter.
lay the resulting images of the chain contour, to produce a
bundle of overlapping lines that visually defines the tube.
Values for the tube diameter originally reported in Refs. Figure 7 shows a comparison of theoretical predictions for
[21,22 were obtained by measuring the average width of théhe plateau modulus to measurements by Hiretedl. [31].
resulting bundle, averaged over the length of each filameniThe values of the plateau modulus reported in R&f] and
and over several filaments at each concentration. To facilitateeproduced here were obtained from the value of the storage
comparison of these experiments to theory, J Kas kindly modulus G'(w) at the frequency for which taaj
provided values for the actual standard deviationh¢§), =G"(w)/G'(w) is minimum. Here, | useG; to denote
projected onto the focal plane of the microscope, calculatedhoduli obtained by this prescription, ai@to denote theo-
from the same data sets. The resulting values for the standardtical values predicted for a hypothetical solution of infi-
deviation are typically about three times smaller than thenitely long chains. In many of the samples studied by Hinner
bundle diameters reported previously. et al, the average chain length has been controlled by adding

Figure 6 shows a comparison of the predictionsRgrof ~ small concentrations of the capping protein gelsolin to the
the three models presented in Secs. IlI-V to these data. The-actin solution, which allows one to calculate a nominal

1. Data of Hinner et al.
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FIG. 7. Comparison of theoretical predictions for the plateau
modulusGj, vs concentration ifF-actin solutions to results of mea-
surements of Hinner and co-workdfl]. Predictions are given for 0 L
elastic networl(solid line), binary collision(long-dashed ling and
effective medium approximatior{short-dashed line Open squares
are the values reported in Fig. 3 of R¢81] for a sequence of
solutions withL=16 um. The inverted triangle is the value ob-
tained from Fig. 1 of the same paper for several solutions contain-
ing filaments of length 4um=<L<15 um. Open circles are ex-
perimental values 0B obtained from the measurements shown in
Fig. 8 below.

G'(w) [dynefcm’]

average chain length under the assumption that each gelso-
lin caps one actin filament, and that uncapped filaments are 10 - - -
rare. Figure 1 of Ref[31] shows measured values G, 10(0 [rad/se::]o 10
reproduced as open squares in Fig. 7, for a series of 12 so-

lutions with actin concentrations in the rangg=0.3— FIG. 8. Comparison of linear viscoelastic measurements of
1.4 mg/ml and a common nominal chain length bf G'() (closed symbolsandG"(w) (open symbolsin F-actin so-
=16 wum. This series of measurements shows a concentré#“orls Wi“:j “é)mé“a'k‘:ha;":t'er:gth Oft_5“|m (de(‘jt_atPrOVi?eg lzy )B-

: H : / 1.4 _ nner an . SacKkmanmno eoretical predictions 1o "(w
disted by the ECA approximation and eariar scaing argu{S01 nes andG(u) long:dashed ine The upper panel shows
ments. In Fig. 1 of the same paper, Hinnetr al. show loss and storage moduli for a solution with=1.0 mg/ml, and the

ts @@ f . f | ith lower panel shows storage moduli for three different concentra-
me,asuremen S 0 or a Series of samples W'_ a Common tions. Short-dashed lines connecting experimental points are guides
actin concentration of,=1.0 mg/ml and varying nominal ; the eye.

average chain lengths in the range 2un<L<27.5 um.

The modulus was found to remain near a constant Valu%btained from the unpublished measurements of storage and
G(=1.05-0.1 dyn/cn} (shown by the inverted triangle in P 9

Fig. 7 for chains of nominal length 4¢m<f<15 pum, but loss moduli for three samples with=5 pm, which are

) — ) shown in Fig. 8 and discussed in greater detail below.
to fall off rapidly for L<4 um, and to increase somewhat The theoretical predictions fdg/, shown in Fig. 7 were

with increasing chain length fdr>15 pm. The decrease in gptained as follows. The BCA, EMA, and ENA were used to
G( for L=<4 um may be plausibly argued to be a result of predict values for the plateau modul@of a hypothetical
the approach of the average chain length to the entanglemenetwork of infinite chains of persistence length,
length of Lc=2 um that is obtained either from the ob- =17 um. Predictions folG were used as inputs to the rheo-
served modulus or from the ENA. The increase3f with logical model developed in Ref12] for a1 mg/ml solution
increasing chain length fok>15 xm is troubling, how- containing an exponential distribution of chain lengths with
ever, since any tube model would predict a plateau modulus=5 um, like those shown in Fig. 8, ar@; was set equal
that is independent of chain length in the limit of long chainto the value ofG’(w) obtained at the frequency for which
lengths. The three open circles in Fig. 7 are valueGgf tan(s) is minimum. This yields a modulus,=G/1.36. Use
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of the shorter reported persistence lengthLgt=9 um in ferent commercial rheometers housed in three different labo-
the ENA results forca,=1.0 mg/ml in a predicted plateau ratories showed that one of the thri¢gee Rheometrics RFS
modulus about 20% larger than that shown in Fig. 7, a prell at Harvard consistently yielded moduli three times larger
dicted tube radius about 4% larger than that shown in Fig. 6than those obtained from the other two instrumeatVeis-
Changes this small would have no effect upon conclusion§enberg Rheogonimeter at Johns Hopkins University and an-
regarding the extent of agreement between theory and egther RFS Il at the University of MarylapdMuch more
periment. The predictions of the ENA for the plateau modu-significantly, Xu et al. showed that some preparation and
lus are thus found to be in good quantitative agreenesyt ~ (particularly storage procedures yielded samples with
ing either value ofL,) with both the concentration moduli 2—3 orders of magnitude larger than those obtained

dependence and absolute magnitudes of the moduli reportd@r freshly polymerized actin. Xt al. reported, however,

by Hinner and co-workers. that they could obtain reproducible values for the storage
In Fig. 8, predictions of the rheological model of Rgf2] ~ modulus of fre;hly poI_ymerized actin. Their results for

for the frequency-dependendent mod@li(») and G”(w)  freshly polymerized actinusing the two rheometers that

are compared to unpublished measurements by Hiena. ~ Yield lower modul) show a storage modulus d&’(w)

of G'(w) and (for one samplpG”(w) for threeF-actin so- =5 dyn/cnf at the flattest part of the plateau, nefr

lutions with a common nominal chain length=5 wxm. —0-01 Hz, which in most samples rises slowly & ()

Predicted storage and loss moduli are obtained by using thg -2 dyn/cnt at 1 Hz. These values are roughly consistent

ENA prediction forG as an input to the rheological model, Wghvt/?:;:ilr?o??;rr‘iiis:r::;-avl\;:)lﬁ(re?;uclj)ll?fa?g gﬁu?ﬂd’ fiiecrt]ivr\;aer;,
and assuming an exponential distribution of chain length igher than those obtained by Hinet al orgth)(;se ore
V.V'th a numbgr-avgraged cham lendth=5 wm. The effec- dicted by the ENA. This difference appears to be larger than
tive solyent viscosity .used. n the theqry has been adjus'ted e sample-to-sample variation found by Xtial. for fresh

as to give a tangenUa! friction CoeffICI'e@t:.O..13 P. This ctin. The reason for this remaining experimental discrep-
value was chosen to fit the data, but is within the range o

. . : ncy is not known.
values for{ inferred by Ka et al. from fluoresence micros- y
copy observations of reptatidf21,22. The theory clearly
does an excellent job of predicting both the plateau moduli VIIl. CONCLUSIONS
(with no free parametersand the main features of the fre- . .
quency dependence in these three samples. The degree ofThe calculations of the tube diameter and plateau modulus

agreement between predicted and measured plateau mod [en above are based upon a consideration of two very dif-

in these samples must, however, be partially fortuitious,[\?vr: grt] znghc;rrp g:]edn}tesngrr);guerf;rrllpt;oiﬂsa? tehne:[;r:ltelgadctrl]cgr;;é)ri-
since Hinner estimatef35] that his data are reproducible 9 9 ’

from sample to sample only to withirt50%, consistent The binary collision approximation attempts to explicitly de-

; o . . scribe the motion of a test chain in a partially frozen envi-
with the range of values seen in Fig. 7. There is a noticeablé . . . ; )

o -~ ronment, in which the surrounding chains are confined to
tendency, which is apparent to greater or lesser degree in a

of the available rheological data féractin solutions, for the static tubes, and is based upon a detailed treatment of the

, . . . interactions of two nearby chains. When treated self-
measured values d&’'(w) to begin increasing slowly with : . S -
. . . ) . . consistently, this approximation yields power law,
increasingw in a range of intermediate frequencies=1— "~ "3 and G p”5 for the tube diameter and modulus. con-
10 rad/s in which the theory predicts a much flatter plateau, P P '

The roughly linear increase of the calculat€d(w) with Sistent with the results of a simple geometrical scaling argu-

frequency at frequencias=10-1 rad/sec is a result of the ment, and predicts numerical prefactors that cannot be ob-

tension induced in a rodlike chain subjected to a small oscilEainGd from such arguments. The effective medium
latory shear flow. which acts o o osfa the oscillator extengpproximation describes the collective elastic displacement
y ’ PP y .of the surrounding network by treating it as an elastic con-

siona}l drag forces exerted on .the chain .by such _aflow. It Rinuum. This approximation yields different power lawg
possible that the slow upturn B’ (w) at intermediate fre- o p~ 2 and Goc p®3 with exponents that happen to be nu-

. . . . p
quencies, which occurs in these samples at frequencies f(fzﬁerically similar to those obtained from the binary collision

A (0)C (0, 8 et o an aionl v, cespis e vy dfren pyscs oo
for in Ref.[12] y ' ated into the two apprOX|mat_|ons. Thg coIIectlve_dlspIacc_a—
' ' ment described by the effective medium approximation is
found to become the dominant contributor to the compliance
of the network at high concentrations, but not by much: The
Agreement between the above predictions for the plateatube diameters predicted by the two models remain compa-
modulus and the results of Xet al. [29] is much less satis- rable at values opr,232104 typical of F-actin solutions,
factory. Xuet al. undertook a systematic study of the effectswhich are thus far the highest accessed in experiment. The
of a number of experimental factors upon the values obtainedlastic network approximation attempts to integrate these
for the plateau modulus of purifieB-actin solutions, in an two approaches, by allowing both for continuum elastic de-
attempt to identify the origins of the large discrepanciesformations of the network and for motion of the test chain
among the values published previously in the literatisee  relative to that of the surrounding network, and so should
Table | of[29]). Comparison of measurements on three dif-provide a more realistic description of confinement than ei-

2. Data of Xu et al.
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ther of the two simpler models. while the external potential ., defined in Eq.(3), is a
Predictions of the elastic network approximation for thefunctional of the test chain contour alone.
tube radius in tightly entangldé-actin solutions are in quan- By differentiating InZ[f] with respect to Fourier ampli-

titative agreementi.e., within a few tens of percenwith  tudesf(q) of the external force, and then averaging over
values of R, in F-actin solutions obtained by fluoresence network topologies, it is straightforward to show that
microscopy.
The theory of confinement presented here, when com- 6 InZ[f]
bined with the tube model of rheology presented previously, m:< (@), (A2)
also predicts absolute magnitudes for the plateau ma@alini
tightly entangled solutions. The comparison of predictions 52 m 5W
for G to rheological measurements énactin solutions is S =(ha(@hg(—a))o,
complicated by the fact that different experimental groups ofa(@)é&fg(—a)|,_, 6fgq) [(_,
have not yet obtained quantitatively consistent results for the (A3)
plateau modulus. The predictions of the elastic network o o
modulus for the plateau modulus are found to be in goodvherea andg are 2D Cartesian indices. By combining Eq.
agreement with values measured by Hineeal, over about  (A3) with Eq. (5) for (h,(a)hg(—d))o, it may then be
one decade in actin concentration, but are roughly a factor gthown that
5 below those reported by the collaboration of Pollard and

Xu and co-workers. A more quantitative test of the accuracy of o(a) B .
(or inaccuracy of predictions for the plateau modulus will sth o =[TLpa"+ ¥(A)18ug, (A4)
thus have to await resolution of the remaining experimental ( ﬁ(q» (hy=0

discrepancies in measurements usk@ctin solutions, or o ) )
the investigation of other model systems of tightly entanglegvhere the left hand side is evaluated in the unperturbed equi-
chains. librium state, wheréd(s) =(h(s))=0.

The potential of mean forca.,,{r] is defined by a path
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The only role of the test chain in this definition is thus to
APPENDIX A: STATISTICAL MECHANICS OF A present an immoveable, uncrossable linelike obstacle to the
CONFINED POLYMER other chains. The potentidl.,,{r] depends upon the con-

. , , o formation of the test chain because changes(s) cause
This Appendix provides formal definitions for several changes in the limits of integratiofthough not the inte-

single-chain thermodynamic potentials that may be used t§,,nq in Eq. (A5). The probabilityP[r] that a fluctuating
characterize the topologically constrained equilibrium stat§.ct chain will adopt a specified contau(s) is given by the

of a single confined polymer. Boltzmann weight
Consider a network oN+1 chains that includes a test

chain with contour (s) andN medium chains with contours P[r]:Zfle*{Ubem{r]+Aconf[r]+Uext[r]}/T (A6)

{ri(s), ... rn(s)}, in which the test chain is subjected to a
transverse external fordés). The canonical partition func- whereUyq,Jr] is the bending energy of the test chain alone.
tion for the entire topologically constrained network is given  In thermal equilibrium, the external fordeexerted on a
by a path integral fluctuating test chain must, on average, be balanced by a
combination of bending forces arising from the bending en-
_ ~ ~ . UM ergy of the test chain and forces arising from collisions with
2[1]= Lccessim?[r’rl’ - e Wrended T, (A1) ne?ghboring chains. We may thus decc?mpbsaes a sum

in which fD[r,r;, ... ry] denotes a path integral over con- f(a) =(fpend @) +{fcontA)), (A7)
formations of allN+1 chains, and in which the subscript
“accessible” indicates that the path integral should be takerfvhere
over only the subspace of topologically accessible mi-
crostates of the network. The bending eneldy, 4 is the

sum of the single-chain bending energies of\alt 1 chains,

< ou benc[h]>

Sh(—q) A8)

<fben(KQ)>
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5Aconf[h]> (A9)

<fconf(q)>5< 5h( _ q)

are the average bending and confinement/collision forces ex-
erted by the test chain. In the limit of weakly curved chains
that is of interest here, we may approximate

<fbeno(q)>:Tqu4<h(q)>- (A10)

Combining Eq.(A10) with Eq. (A4) immediately yields Eq.
(14 for y(gq) as a functional derivative y(q)
= 5fconf,a(q)/5<ha(q)>'

The effective potential'[(h(s))] is defined by the Leg-
endre transform

I[(h)]=-TIn(Z)+ f ds(h(s))-f(s)  (A11)

of the topology-averaged free energy, and is a natural func-

tional of the average displacemdfi(s)). It may be shown
by standard manipulations that

FIG. 9. Geometry for binary interaction of a fluctuating worm-
like test chain with a preferred tube contour unit tangefiertical
)= or , (A12) near the poi~nt of closest approach to a preferred tube contour with
8(h,(—0q)) unit tangentu of a nearby medium chain. The minimum distance
between the preferred tube contourscis co—(h;), where(h;)
wheref is the total force on the chain. To separate the effect=0 in the absence of an external force on the test chain.
of interactions between chains from the effect of the intramo-

lecular bending energy, it is convenient to decomposs a  whereu andu are unit tangent vectors constructed parallel to
sumI'=Tpengt Ieont, in WhichT'yenqis required to satisfy  these unperturbed tube contours at their point of closest ap-

proach.e, is a unit vector perpendicular toandu, c, is the
WE 9l bend (A13) separation of the two tube contours at the point of closest
bend 8h,(—q)) ’ approach, andgu is the position of the test chain contour at
this point. Transverse displacements of the chain contours

and in whichT' s, is required to satisfy the corresponding from these unperturbed tube contours are described by the

f

3

relation given in Eq(15). fields
APPENDIX B: BCA EFFECTIVE POTENTIAL FOR A h(S)Er(S)_<r(S)>t’O' (B3)
SEMIFLEXIBLE TEST CHAIN _~—~ o~~~ ~
h(s)=r(s)—(r(s))+o, (B4)

Here, | present a binary collision approximation calcula-
tion of an effective potential for a semiflexible test chain.which may be decomposed into Cartesian components
The calculation is similar to the one given in Sec. IV for a

rigid test rod, except that here the test and medium chains are h(s)=h,(s)e; +hye,, (B5)
treated on a more equal footing, by allowing both chains to
undergo transverse fluctuations around a preferred tube con- R(3)=h,3)8,+h.(3)8,, (B6)

tour, as shown in Fig. 9. Consider interaction of a semiflex-

Ible test chain and medium chain with contouls) and \yhereg, is a unit vector that is perpendicular to bahand
r(s),Nre~spect|ver, and define preferred tube contdu(s) ), U, ande, is a unit vector perpendicular & andu.

and(r(s)), for both chains; these are their average contours Consider a situation in which a spatially uniform force
in the transparent state of the specified medium chain. In thgensity f is applied to the test chain, so as to produce a

absence of any external force on the test chain_, the unpefjiform average displacemefT)t in the tube(i.e., average
turbed preferred tube contours may be approximated ne@ntour of the test chain. In the BCA, we asume that the

their point of closest approach by straight lines application of this force causes no change in the preferred
tube contour of the medium chain. When attempting to cal-

(r(s))o=su, (B1)  culate the average displacement of the test chain, we must

. o keep in mind that the average displacement of a semiflexible
(r(s))10=Sou+Coer+s U, (B2)  test chain at its point of closest approach to the tube contour
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of a specified medium chain will generally be different from In the physical situation of interest, where the test and
the average displacemefh) at a randomly chosen point medium chains are uncrossable, the probability distribution
along the test chain: The point of closest approach obviousljor values ofh, at the point of closest approach between the
has a special statistical status in the physical state of interedtjoe contours of the test and medium chains, for a chain
since it is known that transverse fluctuations of the test chaitrapped in either ther or — topological state, is given by
are directly constrained at this point by the presence of thé&he Boltzmann weight

medium chain. | assume in what follows that the point of

closest approach loses this special status in the transparent exp[—(1/2R§)(h1—<h1>)2—ﬁat(c0—hl)}
state, in which the test and medium chain can pass through P.(hy)= \/qu_Rz (c/Ry) '
each other, and thus approximate the average displacement X ) (B13)

of the preferred tube contour of the test chain at this point by

the average displacgme@‘lt) of the.test chain at a randomly wherea. (c)= — T In ®(+c/R) is the binary interaction free
chosen point along its length, which may be taken to be fagnergy given in Eq(33), and where the normalization factor
from the point of closest approach. The minimum separatiofs chosen so as to guarantee tfigt. (h;)=1. The average
of the two preferred tube contoufse., the thermal average force exerted upon the medium chain, for a known topologi-
contours in the transparent stabe the presence of an exter- 4 state, averaged over fluctuations of both the medium and
nal force is then given, by analogy to E@Q7), by c=co the test chains, is given by the integral
—(hy).

It is assumed that fluctuations bfandh at the point of <f+>:J dh1P+(hl)8a—i
closest approach are statistically independent in the transpar- B - dhy

ent state, and that the probability distributions in this state o i

the rhs of Eq.(B14) may be expressed as a derivative,

(B14)

o

V= - (= TR /2R J
P(h)=—=—¢ , (B7) (f.)=—T——In y(+c/Ry). (B15)
e a(hy
- 1 - ity — * '
P o PEI2R? B8) The quantity—T In x(=c¢/R;) may thus be interpreted as a

- J27R, binary interaction contribution to the effective potential
I'.ons €xperienced by a semiflexible chain, in close analogy
for Cartesian indices=1 or 2. The probability that the test to the way thati. = —T In ®(*+c/R,) appears in Sec. IV as a
chain and medium chain will be trapped in thetopological ~ contribution to the potential of mean force of a rigid test rod.
state, in whichh,>—cy+h,; at the point of closest ap- The rest of the calculation of the effective potential for a

. . NS . semiflexible test chain proceeds by close analogy to the cor-
Fr:g?f;r;s';aerqeﬁl;& :inﬁgﬁbg’b&%gg :Isng;\r?gr?by(t:ﬁ;r ch)lljrtl)le responding calculation for a rigid test chain, and so is gnly
integral outlined here. 'The average for(® exerted by the test chgln _

upon the medium chains may be expressed as the derivative
o o o~ (fy=(2/L) T con/ 3(h) of an effective potential .y, that
P+(Co)=f wdhlp(hl)f dh;P(hy). (B9 may be expressed in the BCA as an average of the binary
interaction effective potentiat kT In x(=c/R,) over all pos-
The probabilitiesp, (c,) andp_(co) of the + and— topo-  Sible positions and orientations for the tube contours of
logical states may be expressed as nearby medium chains, and over both possible topological
states for test and medium chains with known tube contours.

—cgthy

Co Evaulating this average yields an expressionlfgy,; that is
pr(CO):X( iEG) (B10) identical to that given in Eq41), except for the replacement
of the function® by y throughout the expression. Use of Eq.
where (B12) for x(x) thus immediately yields Eq43) for I'cqps-
* dy 2 * dz ) .
X(X)EJ 7 Ay /zf e 2 (B11) APPENDIX C: FORCE DISTRIBUTION
TNem “xey\2m Here, we consider a situation in which the test chain is
Note that subjected to a forcd(s), and transmits an average force
feont(S) to a relatively small set of primary medium chains.
x(X)=D(x//2), (B12)  We attempt to describe the ensemble averagg for the

force associated with collisions between these primary me-
where ®(x) is the normal distribution function defined in dium chains and the secondary medium chains that confine
Eg. (32), as may be confirmed by differentiatingx) and  them. In doing so, we associate these secondary collision
carrying out the resulting Gaussian integral éy(x)/dxto  forces, as in the BCA, with the forces arising from a self-
show thatd y (x)/dx=dd (x//2)/dx. consistently determined confinement potential imposed on
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each of the primary medium chains. _ . o
First consider the one-dimensional redistribution of forces F(V)ZJ dsf de du s(us+su—r)x(s)f(u,s),
along the length of a primary medium chain that is subjected (C4)

to a forcef(s) arising from collisions with the test chain,

wheref(s) lies in the plane perpendicular to the tube contourwheres is a distance measured along the medium chain from
of the medium chain, and whesds a contour distance along the point of collision with the test chain. Fourier transform-
the medium chain. In practice, this force will be localized ing the above gives
within a region of sizeR, around the point of closest ap-

proach of the tube contours of the test chain and the medium

chain of interest. The resulting average transverse displace- F(k)=f du %f(ﬁ,q), (CH
ment of the medium chain is given, in 1D Fourier space, by TLyg"+¥(q)
h(g)= ———T(a). (cy  whereq=k-T, and wherei(t,q) and(a) are the 1D Fou-
TLpg™+ ¥(q) rier transforms off(u,s) and x(s), respectively.

_ - - Two further approximations are now introduced purely
The corresponding average forég,n«(q)=y(a)h(d) ex-  for reasons of mathematical simplicity.

erted on the confinement potential is given by (i) The forcef(u,s) is approximated by a function
- ya - ~
fconf(q):4—f(Q)- (C2 f(u,s) =fcont(s)/(27) (Co)
TLpg"+ ¥(a)

By inverse Fourier transforming the above, we see that &hatis independent af, thus assuming that the force exerted
localized forcef exerted on a primary medium chain at point by the test cha!n on Its surro_undln_gs IS dlstnk.)ut:ed randomly
~ . . . . - to medium chains with all orientations. By this “preaverag-
s=0 results, in this harmonic model, in a distributed force. ~ . .

NN ing” of f(u,s) with respect tou, we obtain a force of the
on the tube of the fornfi;y,1(S) = x(s)f, where

form given in Eq.(55) with a transformed 3D distribution

dq (@) ) function
T [ e S )
T TLyg*+ (q) i
(o= o2 19D 7
is a one-dimensional distribution function with a range of X 27 TLyg*+ Q)

orderL,.
Now consider the 3D distribution of forces produced bywhereqzkﬂ.

the mieracUon of a test chain with nearby m_ed|um chains. (i) The functiony(q) is approximated for this purpose by
Let f(u,s) be the average force exerted at pardglong tbe a grindependent constan;‘z(q)zTqu‘e", with a value g,
test chain upon primary medium chains with orientation =232 _ chosen so as to return the correct value ffqr

so thatf.,,;= /duf(u,s). The corresponding spatial distribu- when this approximation fo(q) is used in Eq(10).
tion F(r) of forces exerted by the primary chains upon their Equation(56) for x(k) is obtained by using this last ap-

confinement potentials is given by proximation fory(q) in Eq. (C7).
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