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Mechanical properties of a model of attractive colloidal solutions
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We review the nature of glass transitions and the glasses arising from a square-well potential with a narrow
and deep well. Our discussion is based on the mode coupling tiE@Y¥), and the predictions of glasses that
we make refer to the “ideal” glasses predicted by this theory. We believe that the square-well system well
represents colloidal particles with attractive interactions produced by grafted polymers, or depletion interac-
tions. It has been recently shown that two types of glasses, an attractive and a repulsive one, are predicted by
MCT for this model. The former can form at quite low densities. Most of our attention is directed at the
mechanical properties of the glasses predicted by this theory. In particular we calculate the elastic shear
modulus at zero frequency and the longitudinal stress modulus in the long wavelength limit. Results for both
are presented along the glass-liquid transition curves and their interesting behavior is explained in terms of the
underlying physics of the system.
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[. INTRODUCTION MCT seem reasonable, and are reproducible, using a variety

of different input static structure factof$3].
In recent years the idea that colloidal particles can form The situation in experimental studies is even less clear. It
glassy structures has been established in a number of vefjay be that colloidal glasses driven by attractive interactions
interesting experimental and theoretical works. Most attenl'ave been observed and studied for some time, without clear

tion has been focused on colloidal particle systems that ar%ecognition of their distinctive nature. Certainly some of the

dominated by repulsive interactions for which, at high pack_repolrted .kllnetlcally arrested states in colloidal systems, usu-
) . ' i lly identified as “gels,” appear to arise at densities consid-
ing fraction values, the glass represents an alternative pac tably lower than close packind4—16. Given that such
ing to the usually more favorable crystal structure. Thesgpservations appear to be associated with quite strong short-
systems are well represented by a simple hard sphere modginged attractions driven by depletion forces, or grafted
[1]. Where repulsive interactions dominate, the loss of erchains onto larger particles, it would seem likely that indeed
godicity is lost due to blocking of the movements of particlessuch systems are examples of those we currently discuss. On
by the quite dense surrounding cages formed by their neare8ite other hand, as yet, there appear to be no clear reports of
neighbors. In colloidal systems, mode coupling theorycolloidal gless-glase trarjsition in the experimental I_iterature,
(MCT) [2] has played a leading role, interpreting and ratio-Put the typical logarithmic decay of density correlations that
nalizing some of the observatiof3,4], and achieving quite MCT predicts to happen close to g singularity[17] has

; ; . een observed in the past for the glass transition of some
;c:re[gt[astilt;] numerical agreement in comparison to eXpergolymeric system$18,19. More recently a logarithmic de-

. has been reported in a micellar system with short-ranged
Recently a new type of glass has arisen as the focus q y P y g

. : ) ttractive interactions and this may be related to a proximate
interest{8—13]. This has been called the attractive glass. By y P

! . 1~ 91922 Plglass-glass transitions as these authors point{20f The
attractive glass we imply that the loss of ergodicity is drivengyaar recognition of two different glasses would be one clear
largely by strong short-ranged attractive interactions, in othegng ynambiguous signal that a distinctive attractive glassy
words the “stickiness” of the particles to each other even-gtate has been observed. Since this is expected to be an issue
tually dominates the thermal motions and the system freezegs considerable interest to experimentalists, it will be impor-
Thus, close packing is no longer necessary for a glass to b@nt to discuss those measurements that could differentiate
stable and it transpires that such glasses can form at densitige glasses, and this is one aim of the present work.
much lower than close packing. In this paper it is our intention to discuss the mechanical

Once having established the distinct nature of the attracproperties of the glasses formed when repulsive and attrac-
tive glass phenomenon, it is unsurprising that new phenomtive interactions are present, and where, under some condi-
ena should be associated with the system. For instance, MCiions, the latter may become dominant. We shall work within
predicts that for well defined values of the temperature othe framework of the ideal MCT and present results for the
packing fraction, the repulsive and attractive glasses diffetinear elastic shear modulus at zero frequer@®y(w=0),
only by their dynamical propertie@s opposed to structural and for the longitudinal stress modulus in the hydrodynamic
difference$. Many questions remained unanswered in thislimit, corresponding to zero frequency and long wavelengths,
arena and more research using different approaches must hg, to illustrate our point of view. The study of the elastic
developed before one has great confidence in the conclusiogiiear modulus has previously been addressd@Jinbut a
drawn so far. Nevertheless, the basic results emerging fromifferent potential is used there.
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. Our reasoning fqr presen_ting these results_has two ynder- ¢q(t)=<p§(0)pq(t))/<|pq|2> (1)
lying strands of rationale. First, we have outlined the inter-
esting features we believe to be present for colloidal systemwherep(t) = EJN: 1€'9°Ti® with N being the number of par-
where there are strong short-ranged potentials. However, wicles in the system. By using the Mori-Zwanzig formalism,
note that experiments in dense colloidal systems are far from can be shown2] that the equations of motion for the
simple and the number of techniques that can be reliablyariables¢(t) are,
applied to examine these questions are much fewer than in
dilute solutions due to multiple scattering and other limita- - 2 : o [t N e der
tions implied at high concentrations. Furthermore, when one‘bq(t)+9q(ﬁq(t)+ Vq¢q(t)+ﬂqfo Ma(t=t") ¢g(t')dt’=0
works on the boundary between liquids and amorphous sol- 2)
ids there are further restrictions in the options for experimen-
tal techniques that may be applied. In fact, the mechanicdr Newtonian dynamics. The two quantiti€s, and v, are
responses of an amorphous material are amongst the md&spectively the characteristic frequency of the phonon-type
simple and reliable methods of characterization. Even th@otions of the fluid and a term that describes instantaneous
bulk shear and longitudinal moduli are quite helpful in form- damping, the latter arising from the “fast” contribution to
ing an initial assessment of the material itself, and of courséhe memory function. They are defined as
they are themselves amongst the simplest parameters charac-

terizing the transition from a liquid to a glass and, as we shall _ a*kgT 3)
see, even between different glasses. Combined with this, it is 4 mYq)’

clear that most practical applications of amorphous materials

composed from colloidal particles will involve a strong in- vq=r10° (4)

terest in mechanical properties of the glass. Having said all

this, the reader should be aware that many attractive gIass?Qd t%/p@ca}lly Onlf" chooie}el:l irt\ é?\le catI_Clljlations. Equa-
may be quite fragile and some thought will have to be ap—Ion (2) is ormally exact for a se particies. .
To describe the dynamics of colloidal suspensions, they

plied in finding systems and methods where measurements o . L X ;
can be made. In any case, these comments comprise the ﬁf‘?qve been modlf!ed neglectmg the inertia term and including
strand of reasoning for our interest in the mechanical modulf"® solvent contributionf21]. Thus, we have
of attractive glasses. ) t _

The second reason for our interest is quite different and ¢q(t)+q2D§[ ¢>q(t)+f My(t—t")¢g(t")dt’ } =0 (5)
involves a deeper analysis of the basis of the theory that we 0
use to describe glassy systems. That is, rarely is MCT ap- s . . e
plied to a system simple enough that many issues can b\gherqu |s_the Browr_uan _short-tlme d'foS'.on' L
worked out in detail but at the same time that there be a T_h? cru0|al_ approximation of MCT consists O.f gving an
complete knowledge of the “phase diagram” and its dynam-eXpI'C't factorized form for the memory kernel in EqR)
ics. In our particular case, we shall study the square-welf’lnd (5 as
potential model with very short-ranged attractions. Some of 3

. - ; : 11 dk

the basic predictions for structure and dynamics of this m :_f ———V(,k) pi(1) i (1) (6)
model have been worked out in detail within the MCT for- 42 (2m)° a
malism[13]. We have observed that the attractive glass in- ) )
troduces a new richness into the study and it naturally bednd the vertex functions are the coupling constants of the
comes of interest to understand what presumptions MCT igheory,
making about such phenomena. We shall be interested in
such questions as, what part of the physics drives the attrac- _ P . 2
tive glass transition within MCT and whether this under- V(@k q4{q (@=K)Clq-1+a-Ked"SsSSgw - (7
standing can shed some light on the nature of the theory
itself. Finally, as an aside we shall also seek to understand In the static limitt—o, independently on the type of
which physical characteristics of the colloidal particle and ofmicroscopic dynamics, the density correlatgrs(t) tend to
the whole system sets the scale for the mechanical properti@sfinite valuefq=<pa‘(O)pq(oo)>/(|pq(0)|2), known as the
of a colloidal glass. Again, if MCT is correct, this will be of nonergodicity factor, if the system is kinetically arrested.
considerable practical interest. This loss of ergodicity for the density correlators is seen as

In the light of these comments it is now possible to pro-the transition to a kinetic glassy state within MCT. Thus, Eq.
ceed to introduce the fundamental equations that define MCT2) becomes in the static limit,
and the mechanical responses that we calculate from it.

fq 1[0 d%k .y

1-f, 2f (277)3V(q, )i ig—x- €S)

Il. THEORY

Mode coupling theory provides a description of the struc-It is clear thatf ;=0 always corresponds to a solution of Eq.
tural relaxation of super-cooled liquids. The variables of in-(8). This corresponds to an ergodic state of the system in
terest are the normalized density correlators defined as  which the correlations decay for long times. For some criti-
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cal values of the thermodynamic paramet@antrol param- wherev, and v,, are, respectively, the limiting low- and

eters, such as temperature and density, there appear bifurc&igh-frequency sound speeds.

tions of the solutions of Eq(8), that produce nonzero Since the longitudinal modulus is a close equivalent of the

solutions. These correspond to the nonergodic states of ttehear modulus, but for extensional distortions, it is natural

system, and given that there is no positional order in theéhat we should seek to calculate and compare the two quan-

system we identify these solutions as glasses. The bifurcaiies. We would like to point out to experimentalists who

tions can be multiple, up to the number of control parametersnay be interested in this field that the theory as applied to

of the system. Thus, when a bifurcation gives rise to moreatios of quantities at the transition may be quite well mod-

than two solutions of Eq(8), there will exist multiple solu- eled by the theory and less dependent on model details. We

tions with finite nonergodicity factors. In this case, MCT therefore recommend some thought on how experiments of

predicts that only the state corresponding to the largest valuthis type might be carried out.

of f is the long-time limit solution of the equatid,22). We have solved13] the MCT equations for the ideal
With an input structure factor, we can now solve the MCT glass-transitiong8) for a system of monodisperse colloidal

equations for the nonergodicity parameter, and it is possiblparticles, interacting via a square well potential, with a very

to calculate the “phase diagram” of the system, localizingnarrow-range attractive well, defined as

the regions in the thermodynamic parameter space where the

system is in the fluid {;=0) or in the glassy statef{>0) o, r<d

and also some mechanical properties of the glass itself. Note

that by “phase diagram” we mean here that the fluid and V(r)={ —Auo, d<r<d+a (13

glassy states of the system are identified, the latter being 0, d+A<r

nonequilibrium states of matter.

A particularly interesting physical quantity is the elastic whereg=(kgT) ! with kg the Boltzmann’s constant anil

shear modulu$'(w). From the shear viscosity for a colloi- s the well width, which can be related to the small parameter
dal systen(3,23], it is possible to evaluate the elastic sheare=A/(d+A).

modulus within the MCT approximation in the limit—0 to To calculate numerically the equilibrium structure factors
give [8] S(q) of such a system, one can use the mean-spherical ap-
proximation (MSA), Percus-Yevick, or other closure rela-
, d® (= v dins, |2 tions for the Ornstein-Zernike integral equatid8]. Refer-
G'(¢.T)= 6077210 dk Wfk ' ©) ence[13] compares many of the important features of the

statics and dynamics of these systems using MSA and
Percus-Yevick(PY) approximations. In view of the good
agreements found between these closures, we shall here
Ipresent only calculations based on the PY closure. The phase
diagram for different values of the well-width of the poten-
tial has been presented in R¢L3]. In particular, for the
mechanical results, we will focus our attention on the case
where e=0.03. Here we report in Fig. 1 more details and
present both the glass transitions as well as the liquid-gas
. spinodal, which may be regarded as an approximation to the
quo(wzo):mozf V f2dk, (100  equilibrium phase diagram. This provides the reader with an
0 overview of where we expect to find all the phenomena dis-
cussed later. Thus, in Fig. 1 we can see the curves labeled,
where the long wavelength limit of the vertex function is respectivelyB, representing the fluid-repulsive glass &
given by representing the fluid-attractive glass transition. In the inset,

we have shown in more detail the attractive-repulsive glass
Skk 2 2 ﬁCk 1 &Ck 2
Vk=Psqo(z et 3| kG| ot 5 kg

whereG’ is in units of kgT)/d3, whereT is the temperature
of the system and is the diameter of a particle.

Another property that can be examined by experimenta
ists is the longitudinal stress modulug,. We will discuss
only the hydrodynamic approximation of this quanfigy24],
that is easily obtained taking the limite—0 andt—o in
Egs.(6) and(7), giving that

transition curve with its end-point labeled Ag. Beyond this
: point, the two types of glasses become indistinguishable.
(11) Also, the dashed curve in the low volume fraction region
represents the gas-liquid spinodal calculated via an expan-

It is possible to relaten, to the velocity of sound in glass sion in e around the Baxter potentigb5,2q and in good

(solid) compared to that in liquid at the transition line. Thus, 29reement with numerical calculations for the square-wel

we observe that the speed of sound in a liquid is given irpotential, at least to the right-hand side of the critical point
terms of the compressibility of the liquid whilst the forma- (ar9€r volume fractions We comment here that the left-

tion of a solid leads to a finite memory kernel at long timesh"’mdd |Sy|3de branc_:th of the S%m?dal IS sllngul?r for fathBax;er
and consequently an incremen, model because it corresponds to complex values of the char-

acteristic parameters, and also for such low packing frac-
tions and temperatures the numerical PY solution of the

Ve 1+m,, (120  square-well potential was not reliable. Thus, the only true

Vo meaningful branch of the spinodal in Fig. 1 is the “liquid”
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FIG. 2. Plot of the elastic shear modul@ as a function of
FIG. 1. Phase diagram of a colloidal system interacting via alemperature for¢=0.539 672 (black circles and ¢=0.544 052
square-well potential, defined as in E43) with e=0.03, solved (white circles. The first value corresponds to crossing the glass-
within Percus-Yevick closure relation and calculated by solving thedlass critical line, while the second corresponds nearly to the end-
MCT equation(8). The horizontal axis represents the colloid vol- Point Az of this line.
ume fraction¢ and the vertical axis the temperature in units of
Kg/u,. The curve labeled a8, represents the fluid-repulsive glass ~ Since the repulsive glass and the attractive glass illus-
transition that is in agreement with the hard-sphere limit for MCT attrated in Fig. 1 and inset to that figure are differentiated only
large temperaturewertical dashed line ap=0.516). The curve3, by the changes of thefr,, it is therefore natural to ask what
represents the fluid-attractive glass transition. In the inset, it iglifferences are implied in the shear modulus and other me-
shown in more detail the attractive-repulsive glass transition curveghanical properties of these two glasses, and how these dif-
with its endpoint labeled a&;. Also, the dashed curve in the low ferences vanish as we approach the endpoint where the two

volume fraction region represents the gas-liquid spinodal. glasses become identical. We have examined this question
) for the example of the shear modulus.

branch that corresponds_ _approxlmatelyqbezo.m, where. Thus, in Fig. 2 we plotG’ as a function of increasing

we estimated that the critical point is located correspondlngemperature for two fixed volume fractions=0.539 672

to a critical temperature of approximately 0.3. and ¢=0.544 052, both of them involving a crossing of the

It is interesting to note that while the cury is almost  g|ass-glass transition curve. For the smaller of these two vol-
vertical, B, is largely horizontal and the two meet forming a yme fractions, it is evident from the figure that upon crossing
nonzero angle. The fact that the repulsive glass-liquid trane transition, there appears a sharp discontinuity in the shear
sition curve is vertical is ensured by the fact that classificayodulus. For the larger one, which is very close to the end-
tion is driven only by the hard core, which lacks any energypoint value packing fractiO@AS crossing the curve, there is

sc_ale. On_the contrary, the atiractive glgss-liqu_id one, bein%egligible difference between the shear moduli of the two
fairly “horizontal, implies that ‘there is a single well glasses. Evidently, it is of interest to defin&’, the differ-

characterized energy scale that drives the glassification. ence inG’ found in the two glasses at the transition and to
examine this as a function &¢ andAT, respectively, the
lll. RESULTS differences in volume fraction and temperature from their
To discuss our results we shall frequently refer to the€ndpoint values, which we evaluated #g =0.5441 and
phase diagram in Fig. 1. Let us begin by looking at what is aff »,=1.099 75. We numerically find, over the whole range
first sight one of the more striking predictions of the calcu-of the glass-glass transition, that the laws connecting these
lations, the transition between two types of glasses and thetivo quantities are
merging at an endpoint that has been labeled a&\thgoint

[2], si_nce it represents a third-order singularity of the MCT AG'~(A¢)P, A¢:¢_¢A31 (14)
equation(8).

The reader should be aware that, within MCT, on the , q
transition lines, whether they be liquid-glass or glass-glass, AG'~(AT)Y, AT:T_TAs’ (19

the two states of matter do not have any difference in density

or in structure and are differentiated in terms of the nonerwherep is approximately 0.33 0.03 andq is approximately
godicity factorsf,. Since this is a nonequilibrium property 0.32+0.08. The errors in these estimates could be reduced
of the system, we note that there is essentially no equilibriunwith larger computational effort, but there do indeed appear
guantity that establishes the difference in phases and the ot be power laws to high precision. These exponents can be
der parameter must therefore be composeéof explained by a simple argument. We know that nearan
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singularity f, is a solution of a second-order polynomial, 1200 ' ' ' - '
while near anA; point it is solution of a cubic one. This
implies [ e
1000 + x~ X 1
. x
A
fq—fg~(ea) ™ (16) & ®
800 | x LI
A
fa= o~ (ea) ™ w e |
. 600 - x"’ b
whereeAi can be bothT—TAi or ¢—a.. Thus, evaluating .
the expression9) for G’ in the proximity of the singularity
A3 gives, in the leading order, an exponent 1/3. 400 x ]
It will be of interest for experimentalists to seek the pro-
posed phenomenon of glass-glass transition and to deduct ®
estimates of any exponents that arise. Amongst the most ac: 200, 00 010 0.20 030 0.40 0.50
cessible of these is that of the shear modulus discussec ®

above. However, we do note the reservation that it is likely

that there is some associated structural and density relaxation FIG. 3. Plot of the elastic shear modul@ of an attractive
at the glass-glass transition and this may disturb the simpl@lass as a function of the volume fractighalong the liquid-glass
power law outlined above. transition corresponding to packing fraction values up ¢o

Evidently, a fairly practical comment that emerges from=0-535 (as in Fig. . We note that the predicted value of the
these results is that the repulsive glass stiffness with respe¥plume fraction for hard spheres to undergo a glass transition is
to shear is much smaller than the attractive glass one géns=0-52. However, the decrease of the magnitude of the shear
indicated by the large vertical discontinuity shown in the modulus starts before we reach_thls value, at approximaely
inset of Fig. 1. This reflects the fact that particles in the” 0-48- This coresponds to the stiffest glass we can produce along
attractive glass are bonded by the stickiness of the potentia A transition curve.
whilst in the repulsive one there is no real bonding between
them, thus implying that they are more easily broken apart In particular, it will be possible to study many properties
under shear. Also, as expected, the attractive glass shealong the liquid-glass transition. We comment first that any
modulus increases considerably with the decrease of tenattempts to design colloidal particles with the appropriate
perature, the attractions between particles becoming moraell shape will most likely involve some uncertainties. Thus,
relevant, whilst for the repulsive glass there are no signifithe obvious methods of coating the spheres with some attrac-
cant changes with temperature, there being no energy scale layer or using depletion forces in polymer solutions can-
involved in its formation. not hope to exactly reproduce the parameters and shape of

Having outlined our results for the shear modulus differ-the square well. Therefore, the curve of liquid-glass transi-
ences between the two glasses, it is perhaps worthwhile tdons corresponding to the square well may be fit to experi-
revisit the physical meaning and implications of these re-mental data. Though it may not be correct in all details, it
sults. First, all the differences in mechanical properties hershould be reasonably accurate in its behavior as a function of
come from the nonergodicity factor alone rather than statigacking fraction of spheres and in reproducing many of the
structure since the two states have the same structure factattendant phenomena. Thus, irrespective of the extent of
that is essentially the structure factor of the liquid to whichagreement between the square-well potential and the effec-
the MCT glass is referred. It is, therefore, interesting to notdive potential that is ultimately tested in experiments, we
that the differences iriy’s between the two types of glass, may be fairly certain that some predictions of our theory will
reflecting as they do the nature and efficiency of the relaxbe more robust than others. Amongst these we might again
ation processes at different length scales, lead to such largeclude the typical evolution of the mechanical properties as
differences in moduli. a function of packing fraction.

Let us now turn to another part of the phase diagram of Therefore, it becomes of some interest to construct the
these systems. We have earlier alluded to the work by Verevolution of G’ on the glass side of the liquid-glass transi-
duin and Dhon{14] for a very short-ranged attractive col- tion across an extensive range of packing fractions encom-
loidal system where they found some nonergodic states gtassing all of what would be viewed as the attractive glass,
low temperature. These they interpreted as gel states but ko be able to compare these results with experiments. Thus,
line with the ideas laid out in this paper they might also bein Fig. 3 we present the curve &' as a function ok along
viewed as attractive glasses as it was already discussed the attractive glass line, labelds)}, in Fig. 1. We note that
[8]. In fact, the horizontal portion of the glass-liquid curve in this curve extends to quite low volume fractions and that it is
their phase diagram already is indicative that the energjinear in a large range of volume fractions. In fact this is true
scale is playing a leading role rather than packing forcesfor all those values of where the attractive interactions are
Therefore, we believe that it will transpire that it is quite considered to be completely dominant. Ultimately the curve
feasible to prepare and study attractive glasses in some dairns downwards towards typical repulsive glass values of
tail. G’ when we go to higher volume fraction. Even so, we
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1.0

. phase and consequently the density cannot adapt to the new
situation as the ergodicity is lost. The consequences of this
have been outlined for the glass-glass transition but one
should be aware also for the possibility for qualitatively mis-
taken predictions in the region of a liquid-glass transition
where there is a metastable liquid-gas phase separation as in
Fig. 1. Thus we must acknowledge the tendency for separa-
tion into more and less dense phases that could be superim-
posed on the liquid-glass transition cuiBe. That this does
occur has not been proved but if it did, our MCT calculation
would not accommodate it.

Given this concern, we have calculated the mean number
of bonded spheres,, to a central sphere at the formation of
the attractive glass along the curBg. We consider as suf-

0.0 ‘ L e e ficient condition for bonding that the distance between two
0 50 100 150 200 particles is up to the attractive well width. Thus, it is easy to
4 estimaten,, by carrying out the integration over the pair-

FIG. 4. Nonergodicity factors at the glass transition correspond€orrelation function such that only those spheres falling
ing to the circled points in Fig. 3 whemis expressed in units of Within the attractive well are included in the integration.
particle radius (=1). The full line represents the nonergodicity From the definition of the potentidl3), we then have
factor on the repulsive side and the long dashed line represents the
state on the attractive side. The nonergodicity factors are certainly ne= j
different, but it is of interest to consider Fig. 6 where we learn that b 0
these difference in nonergodicity factor alone is sufficient to cause
the considerable softening of the glass as the volume fraction ex- For convenience we also calculated one estimate of the
ceeds its critical value of=0.48. mean coordination numbey, around a sphere irrespective of

whether the spheres are bonded or not.
might have expected that the downward bending of the curve Nevertheless, we have
would have happened very close to the critical hard sphere
packing fraction,¢$=0.52, whereas it commences around n =fr*pg(r)dr (19)
¢=0.485. Very similar characteristics for the shear modulus ¢ ’
along the attractive glass transition line have also been found
for the attractive Yukawa potentif8]. wherer* corresponds to our estimation of the first peak of

Finally as a matter of curiosity let us draw attention to onethe pair-correlation functiog(r).
aspect of the shear modulus plot in Fig. 3. Consider the two The mean bonding number is a well-defined quantity and
circled points on the curve in Fig. 3. They correspond tois calculated exactly here, whereas the mean coordination
states having approximately the same shear modulus bmumber is not so well defined. The former may be relied on,
quite different packing fractions, i.e¢;=0.34 and ¢, the latter is used only as a comparison to the mean bonding
=0.535. Thus, we represent in Fig. 4 the respective nonemumber.
godicity parameters of the two states for comparison. It is Both results are plotted in Fig. 5 as a function of the
interesting to note that whilst the range of the two is almostolume fraction along the curvB,. It is striking that both
the same as it should be since they both represent states @frves are nearly linear. However, the interesting thing to
attractive glass, the one corresponding to the lower packingote is that the mean bonding number¢at0.10 is around
fraction exhibits a more pronounced nonergodicity of thel.5. Also, we can roughly estimate that only¢#=0.17 we
system at every length scale. The fact that we have the sanfi@md n,=2. Thus, it seems unlikely that extended mechani-
shear modulus is a reflection that both the nonergodicity andally stable structures can exist for such small bonding num-
static structure factors are relevant for the modulus and ifers. Indeed, a mean bonding number of 2 would imply
this case we see that they compensate each other so that welymeric structures and for bonding numbers a bit larger
can “build,” from the same system two glasses with thethan 2 we may have enough cross-links to establish a net-
same stiffness with respect to shear, but having completelwork and finite shear moduli. Just how large the mean bond-
different packings and different structure. This would be anng number has to be before a finite shear modulus is ob-
interesting phenomenon if confirmed by experiments. tained, we cannot say. Very simple arguments based on

Now it is worth considering the MCT prediction that counting degrees of rotational and vibrational freedom, and
glasses can exist at volume fractions less than 10% as indiequiring that there be no zero modes of the energy indicate
cated in the phase diagram, Fig. 1. Certainly attractivéhat the minimum number of bonds to form an extended
glasses can and should form at much lower fractions thastructure for a chemical glass should be abou{27. How-
repulsive glasses but we must not accept the results of MCE&ver these arguments have not been shown to be relevant to
blindly. Note carefully the limitation that MCT does not per- the present case, so there is little more progress that can be
mit the self-consistent relaxation of structure in the glassnade now.

0.8

0.6

0.4

0.2

(d+4)
pg(r)dr. (18)
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14 [ ] a correct MCT transition and perhaps, even estimate a cor-
12 [ e - rect mechanical response. We now seek to test this hypoth-
10 + + - esis. We shall examine this question in two steps beginning
- o 1 with the calculation of the nonergodicity factor that deter-
- P 8 mines the glass transition itself, then progressing to the shear
- modulus.
- . For simplicity, we callg* the wave vector corresponding
. . . . ; to the first peak of the structure factor. We then proceeded
M recalculating the liquid-glass transition using two approxi-
s mations. First, we used the correct short-wavelength behav-
81 s ior of the structure factor forq>q*), in solving the MCT
o /// equations(8) but using for the long-wavelength part of the
2L - 1 structure factofi.e., q<q*) the corresponding part of it for
// a packing fraction that we chose arbitrarily. We considered
both ¢=0.31 and¢$=0.39 obtaining no significant changes
boo o010 020 030 040 050 in the results. We found that the essential features of the
¢ trends and quantitative evolution of the transition are set only
by the short-ranged part of the structure factor, then irrespec-
tive of what we chose for the long-wavelength part of it.
Thus, length scales involving only the hard core and attrac-
iors are nearly linear, except for small deviations, at low volumetlve well of a spherical particle are sufficient to determine the

fraction forny, . As discussed in the text, in this region whexgis glass-liquid transition within MCT. Indeed, we investigated a

less than 2, we question the existence of the attractive glass a(@w P‘?i”ts along the curvé, and we alsp fpund that the
predicted by MCT because there are not enough bonds between tH@nsition temperatures are reproduced within a few percents

particles to allow the formation of a rigid structure. error. _ _
To confirm these results, we also tried to evaluate the

The discussion should, however, alert the reader to theurve B, using an opposite strategy. We then used the cor-
possibility that somewhere along tiBg line, possibly when  rect long-wavelength part of the structure factge(q*) and
the bonding number is a little less than 2, the reduction ofis short-ranged part, the corresponding part for the same
any further bonds in the system might cause it to decompos&alues of packing fractions as before. This leads not only to
presumably into a less dense and a more dense phase. Thegech larger errors in the glass-liquid curBg, but what is
remain open questions for the moment but as MCT becomewore important, to the wrong evolution of that curve with
applied more to glasses driven by attractions, it will be im-volume fraction; this means that the curve was not only
portant to consider them in future. shifted but also changed in its shape. We may therefore con-

Of course, another fundamental question that should belude that whatever the full content of MCT, one can esti-
addressed in future is the applicability of idealized MCT tomate the location of the transition curve of the attractive
colloidal systems with attractive interactions. Indeed, whilstglass to high precision by knowing only local information
for hard-sphere-type systems the idealized theory has beebout the particles around a central particle. Long-ranged
found in good agreement with experimental results, it is noeffects, therefore appear not to play a central role in this
yet clear whether for attractive systems, at lower densitiesaspect of the MCT description. The same observation had
activated processes may become important so that hoppirizeen made earlier for the Yukawa model and for the square-
should be included in the theory for a better description ofwell potential, both solved within MSA8,13]. Thus, this is
this type of systems. Our present opinion is that the idealize@ general feature of the theory itself, independent on the
theory is likely to be useful for moderate densities where thgnodel or the approximation chosen to solve it.
bonding number is somewhat larger than 2. We do not pre- We now turn to another natural question about the predic-
clude the possibility that for much lower densities, the theorytions of MCT. After having analyzed what the dominant con-
may still be suggestive, and indeed there have been alreadfibutions are for the prediction of the location of the glass
attempts to interpret these regin{&s10,11. transition, we want to investigate what is important in the

Thus, all this discussion leads us to seek a somewhatetermination of the mechanical properties of the glass
deeper understanding of exactly what the basis of the modeithin the theory. To do so, we still refer to the results of the
coupling predictions are. By this we mean, we seek to unshear modulu&’ in Fig. 3.
derstand the essential features of the theory as it relates to Thus, we note that in Eq9), there are evidently two
attractive glasses. One of the points that we would like tomportant contributions to the shear modulus, the nonergod-
probe a little more is to understand just how local MCT is inicity factor and the logarithmic derivative of the structure
its understanding of the loss of ergodicity, and in its esti-factor. We may ask if only one of these features provides the
mates of the main features of mechanical moduli. The simmain contribution to the shear modulus. To check this we
plest possible proposition would be that essentially withmay proceed as before, first retaining the correct structure
knowledge of the number of bonds and strength of associdactor and using the nonergodicity factor of a chosen value
tions between nearest neighbor particles, we would estimatef packing fraction ¢=0.39), and then vice versa. The

(= VI
T
¥
I

FIG. 5. Plots of the coordination numbeg (19) and the mean
bonding numbem, (18) as a function of the volume fractiot
along the liquid-attractive glass transition liBg. The two behav-
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1500 ' ' ' ' ' that only the short length-scale picture of the system is really
involved in the determination @&’ (circles, we can explain
the linear behavior of the shear modulus with packing frac-
tion in the attractive region, being directly related to the
number of bondings. Thus, we represé&itin function ofny

. in the inset of Fig. 6 and we show that there also exists a
linear relation between them.

Finally, we turn to analyze what happens for the phenom-
enology of the shear modulus at higher packing fractions,
beyond what we believe is the pure attractive region, where
. G’ undergoes a rather rapid decline. We have pointed out
already that along the glass-liquid curve in Fig. 3 this rapid
decrease of the shear modulus happens as we apptpach
=0.48, which is a value quite below the close-packed struc-
ture appropriate for the hard core. It may be argued that this
0 : ' ) : ' phenomenon is hardly surprising since we know that finally,
0.00 010 020 0'30 040 050 the shear modulus must decrease to values characteristic of a

repulsive glass. These are much smaller since, as we have

FIG. 6. Plot of the elastic shear modul@s as a function ofp, earlier pointed out, there are no attractive interactions and no
as in Fig. 3(full line). Superimposed we have plott&d calculated  effectively bonded particles to the central one. However, it is
by using an incorrect referendg (see text and the correct struc- nevertheless interesting to understand why the shear modulus
ture factor(crosses Results obtained by using the correct noner-softens quite dramatically at that particular packing fraction
godicity factor and only the exact short length-scale contribution forgnd by what means the effective attractions are being
S(q) have been plotted using circles. Together these approximatecreened in the system in this region of densities.
curves indicate that for most of the range of stability of the attrac- Tg understand this point, we have studied the thermody-
tive glasses its properties are dominated by the short length scale gbmic pressure for a square-well potential, given in Ref.
the structure factor. Also, providing the system is nonergodiic ( [2g]. In particular, we have examined the pressure and com-
>0), the degree to which it is so is not a very important parametef,agsipility of the liquid along the glass-liquid curve in order
in determining the mechanical properties we discuss. However, gy oy -jude the possibility that there be any anomalies in the
higher densities the shear rigidity of the glass begins to decreas'f\quid itself in the relevant region. We found no anomalies

again as we approach a repulsive glass. This behavior cannot Sithin the PY approximation in the region of packings from
described as above, and we now need to use the correct nonergodic

factor, and the details of the structure factor now becomes lesgpprOXImately 0.45 up to beyond the endpoint Vati;%. It

relevant in determining shear rigidity. Inset: Plot of the elastic sheafS then interesting to note that whilst the liquid is perfectly
modulus versus the number of bong, showing an almost linear normal, the proximate glass undergoes this softening at well-
dependence. Here we see that for the true attractive glass the sh&tgfined values otp and T corresponding to the decrease of
rigidity is close to bring linearly dependent on the number of nearthe shear modulus. In essence we find that the softening of
est neighbors within the range of attraction. the glass, whilst it certainly originates in cancellations be-
tween hard core and attractive parts of the potential as the
question may be further refined by asking whether it is posedensity increases, occurs mechanistically within the MCT
sible to further locate the main driving force of the shearmemory kernel.
modulus as being shortgt>qg*) or long (Q<qg*) length To be more precise, we have used the same strategy as in
scales. the purely attractive region to examine the different contri-
The answer is striking. With almost quantitative accuracybutions of the structure factor and of the nonergodicity factor
we find that the linear behavior of the shear modulus withto the shear modulus. So, in Fig. 6 the data represented with
volume fraction, in the purely attractive region, which we crosses, corresponding to the correct structure factor and a
can define being in the range of volume fractions betweeffixed arbitrary nonergodicity factor, are also represented at
0.17 and 0.4 originates solely in the short length-scaje ( higher volume fractions. It is evident that their linear behav-
>q*) behavior of the structure factor as shown in Fig. 6. Weior, entirely due to the structure factor, persists with increas-
represent here the curve, already reported in Fig. 3, witling density. Conversely, by a similar analysis, where the
superimposed data obtained by using the chdgeand the  structure factor was chosen arbitrarily and the nonergodicity
true structure factofcrossepsand those obtained by using the factor was the correct one, we have found that the principal
true nonergodicity factor and only the exact short length-origin of the decrease in the modulus is the change in the
scale contribution forS(q) (circles. Thus, providing the nonergodicity factor since in this region it is changing from a
nonergodicity factor is finite and on the correct scale, thecharacteristic attractive to a repulsive form. The smaller in-
shear modulus is relatively insensitive across the whole attegral resulting in Eq(9) reflects the fact that the attractive
tractive glass region to its details, being only shifted by aglass is less mobile due to the formation of attractive bonds.
small amount. We note that in the figure all the sets of data’hus, it can only be the nonergodicity factor, solution of the
are coincident aip=0.39 since this is the chosen value of MCT equation(8), which is responsible for the softening of
reference for the different cases. Since we find, as beforéhe glass.

800

1000

300

1.5

500

031501-8



MECHANICAL PROPERTIES OF A MODEL @ . ..

PHYSICAL REVIEW E 63 031501

3000 T (I) T 300 I T I T I T I T I T
-4
F @ )
2500 , — 250 |- O _
O
[} - e T
2000 - - m, O
200 - e —
m, | O 4
1500 .
150 - o7 7
1000 |- o - i o §
e oog o oy T
00 _ s 05 0.52 0.54 0.56 0.58 0.6
o 8x10 T T T T :
i g 1 L (®) |
0 . I . 1 . 1 . | "0000m-bha
0 0.1 02 0.3 0.4 05 0.6 6><104 _ —]
¢ . B "‘o... ]
FIG. 7. Longitudinal stress modulus, as a function of the T N —
packing fractiong along the part of the curve label&} in Fig. 1 5 o J
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We now turn our attention to the behavior of the longitu- 0 L l L L L
dinal stress modulus. We have already shown that it presents 0.3 04 05 06
a discontinuous behavior, similar to the elastic shear modu- ¢

lus, upon crossing the glass-glass transitiofili8]. Now we
showm, along the curveB,, i.e., along the attractive glass-  FIG. 8. (8 Longitudinal stress modulus, as a function of the
liquid transition line in Fig. 7, on the glass side of the tran-Packing fraction along the isother=0.7 . (b) Same as grapta)
sition in the same way as we did for the shear modulus. W&t along the isotherrii=0.3.
conclude that for increasing packing fraction, though the
glass becomes more rigid with respect to shear, reaching & In fact, as we showed earlier, the shear modulus in the
maximum at¢=0.48, the longitudinal modulus decreasesattractive region is mainly determined by nearest neighbor
continuously along that same curve coming close to its charadhesions. The striking difference in the behaviors of the two
acteristic liquid value very close to the point where the twomodulii is an interesting prediction of MCT when applied to
curvesB; and B, meet, corresponding approximately #o attractive glasses. Possibly some of this variation originates
~0.536. At first sight this seems counter-intuitive since webecause long length-scale structures are quenched into the
expect that the extensional rigidity should increase with denglass. Whilst we do not know if it is true in nature, the strong
sity, at least up to that density where the elastic shear corflistinction between longitudinal modulus and shear modulus
stantly increases. along the liquid-glass curve will be readily testable in experi-

If we examine the longitudinal modulus as a function of ments on colloidal systems.
density, for temperatures that cause the system to be within
the repulsive-glass region only, the normal expectation of
increased longitudinal modulus with increasing density is
confirmed as illustrated in Fig(8&. In Fig. 8b), instead, we We have studied the kinetic glass transitions of particles
have the opposite behavior of the longitudinal modulus withwith a model square-well potential using mode coupling
density for a much lower temperature than in Figg)8In-  theory. This interaction potential should, we believe, be a
deed, from Eq(10), it is clear that the modulus depends on reasonable approximation to that found in particles with
the zero-momentum limit of the structure factor, appearinggrafted chains and systems with strong depletion interac-
as a prefactor, and the data correspond to a temperature ftons. All nontrivial results arise when the attractive piece of
which the system passes very closely to the critical point othe interaction potential is strong, but of very short range,
spinodal curve of the underlying liquid-gas transition. In and we have studied a typical example of this type. Based on
fact, MCT implies that the long length-scale associated wittthis, we have been able to describe some mechanical prop-
the proximate liquid, when it is near a critical point, or oth- erties of two types of colloidal glasses, the one resulting
erwise the underlying spinodal is quenched into the solidnainly from attractive and the other mainly from repulsive
glass because both liquid and glass have the same structurgeractions between particles. We and otH&9,13 have
factor. Within MCT the large modulus in the attractive glassearlier proposed a distinction between the two kinds of
region therefore derives essentially from this large quenchedlasses based on their dynamical behavior However, in this
correlation length in the glass rather than any microscopi@aper we have shown that this difference may be probed
interaction. We note that there is no such quenched longxperimentally using the difference in mechanical properties
length-scale dependence implied by the shear modulus eithand that there are exponents that describe the merging of
in the formula(9) or from the results showed in Figs. 3 and these glasses into a single glass beyond some critical density.

IV. CONCLUSIONS
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In general terms, glasses dominated by attractions haveteansition curve passes close to the critical point and some
stronger rigidity under shear than those originating simplyportion of the spinodal of the underlying liquid-gas transition
from packing forces. and consequently the input structure factor at long wave-

Also, we have studied the behavior of the zero-frequencyength is very large. The prefactor in formulhl), therefore,
elastic shear modulus’ and the longitudinal stress modulus becomes very large. The physical implication is that large
mg along the liquid-attractive glass transition curve. Besidesscale density fluctuations quenched into the glass cause a
being of intrinsic interest, this part of the study was choserlarge increase in the longitudinal modulus and the longitudi-
in the belief that comparison to experiments will be morenal modulus is dominated by these for much of the attractive
reliable along this curve and less dependent on model potemglass regime.
tial details. The predictions are striking. This is a positive We note, in passing that MCT does not always reliably
feature since even confirmation of trends will be of somepredict the stability of the attractive glass. By this we mean
interest in evaluating the MCT approach to these systems. that when we check the mean bonding number to a particle

At lower packing fraction where we believe attractions toin what has been predicted to be a glass, we sometimes find
be completely dominant, there is a linear increase of théhat this number is even less than 2. We conclude that in
shear modulus with packing. This reflects the fact that alséhese cases MCT is overemphasizing the stability of the
the mean number of bonds to a particle in the system is fairlglass, probably for a variety of reasons. In any case, we use
linear in ¢ and the only relevant physical mechanism tothis independent calculation as a rough check to exclude re-
determine the shear modulus in this region of the phase diaions of MCT glass that are clearly unphysical. It will be
gram occurs at short length scale. We have argued that heimportant to address these issues in future.
the shear modulus is determined by nearest-neighbor adhe- There is no doubt that the model and the means by which
sions. As an aside, we note also that within MCT the attracwe have studied it are simple and there are numerous limi-
tive glass-liquid transition curve itself is essentially deter-tations implied thereby. Nevertheless, the model is in some
mined by the same factors as those determining the sheaense canonical in that it contains the essential physical input
modulus. of strong short-ranged interaction and repulsion. We believe

On the contrary, at higher values of packing fraction, thethat it encompasses many essential ideas regarding the me-
shear modulus decreases quite dramatically towards typicahanical properties of colloidal glasses and we have laid
repulsive glass values. This phenomenon originates from thénese out for consideration by further theoretical, but mainly
changes in the nonergodicity factor that compete in @y. experimental researches.
with those of the structure factor and lead the system to

soften with respect to shear. The implication is that _theye ACKNOWLEDGMENTS
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