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Phase coexistence in colloidal suspensions: An analytic Poisson-Boltzmann treatment
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~Received 7 September 2000; published 23 February 2001!

We solve the linearized Poisson-Boltzmann equation analytically, subject to justifiable approximations, for
a suspension containing a large number of identical spherical macroions under conditions of constant surface
charge and zero added salt, in order to investigate the phase behavior of charge-stabilized colloidal suspen-
sions. Our results for the electrostatic part of the Helmholtz free energy lead to an interaction which resembles
the intermolecular interaction in the theory of molecular fluids. When combined with the ideal gas free energy
of the counterions, this produces a van der Waals loop in thepV diagram, indicating coexistence between
phases with different densities, for certain values of the macroion radius and charge. We also derive an
expression for the surface potential of the macroions, and clarify the interpretation of the Poisson-Boltzmann
equation.
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I. INTRODUCTION

One of the main theoretical tools which has been use
describe the physics of charged colloidal suspensions is
Poisson-Boltzmann theory. This treats the simple ions~mi-
croions! as point particles responding to a mean field el
trostatic force; their equilibrium arrangement is then giv
by a balance, described by a Boltzmann factor, between
electrostatic potential governed by Poisson’s equation,
the chemical potential.

Applied to just two colloidal particles~macroions or poly-
ions!, the linearized version of the Poisson-Boltzmann the
leads to the Derjaguin-Landau-Verwey-Overbeek poten
@1#, which predicts a purely repulsive interaction between
macroions, in qualitative agreement with experimental
sults@2# for this system. However, the situation in large su
pensions of macroions is more complicated. Under cer
circumstances, coexistence is observed@3–9# between a
dense phase and a rarefied phase or void, analogous t
coexistence between solid/liquid and gaseous phases in
lecular matter. This raises the question of how such an ef
could arise from electrostatic interactions.

An attempt to describe the phenomenon theoretic
within the framework of the linearized Poisson-Boltzma
theory was made by Sogami and Ise@10#, who proposed an
attractive effective interaction between macroions. More
cently, van Roij and co-workers@11–13# used density func-
tional methods, applied to a model whose assumptions
identical to those of the linearized Poisson-Boltzma
theory, to derive a free energy which contains a repuls
effective interaction between macroions and an additio
volume-related term; together, these can lead to coexiste
Warren@14# has also shown that phase coexistence can re
from a model based on similar assumptions.

Sogami and Ise argued that the correct thermodyna
potential for the description of a colloidal suspension is
the Helmholtz free energy but the Gibbs free energy. It
been pointed out@15,16# that there are problems with thi
aspect of the theory, associated with the difficulty of calc
lating the Gibbs free energy in an inhomogeneous syst
however, the theory includes the backbone of a method
1063-651X/2001/63~3!/031403~10!/$15.00 63 0314
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the solution of the linearized Poisson-Boltzmann equat
for a large suspension. A problem with this method is tha
permits microions to penetrate the interiors of the macroi
@11#, but in the present paper we eliminate this difficult
enabling the Helmholtz free energy of some region of a s
pension, as well as the surface potential of a macroion
such a region, to be found analytically. This requires us
make a small number of justifiable approximations, bas
around the idea that the environments of all the macroion
the region are approximately identical and spherically sy
metric, if we ignore boundary effects.

The organization of the remainder of this paper is as f
lows. In Sec. II we define the theoretical model on which o
investigations are based. We also discuss the interpreta
of terms in the Poisson-Boltzmann equation, a point tha
rarely made clear. In Sec. III the linearized Poisso
Boltzmann equation is solved, first for a single macroion a
then for a suspension, and expressions for the electros
part of the free energy are derived; the calculations are
out in some detail in order to make the development as c
as possible. In Sec. IV we consider the application of o
results and their consequences for the phase behavio
macroionic suspensions. We give our conclusions in Sec

We use SI electromagnetic units throughout.

II. THE POISSON-BOLTZMANN EQUATION

A. The model

The theoretical model to be considered treats a cons
number NM of identical spherical macroions of radiusa,
each of which has a constant chargeZe distributed uniformly
over its surface (e is the elementary charge!. Associated with
the macroions are a constant numberNi of each speciesi of
microions, which are regarded as point charges of valuezie.
The system overall is charge neutral, so thatNMZ1( iNizi
50. The ions are suspended in a solvent which is maintai
at constant temperature and which is described accordin
a ‘‘primitive model’’; that is, it is a continuum with permit-
tivity e5e re0, which is unaffected by the ions. Here,e0 is
the permittivity of the vacuum, ande r the relative permittiv-
ity, which is around 80 for water. We consider the behav
©2001 The American Physical Society03-1
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of the macroions to be adiabatically separated from tha
the microions, as the macroions are much larger; the mi
ions will be allowed to take up their equilibrium configur
tion about a ‘‘fixed’’ system of macroions, and only then w
the effect on the macroions be considered.~To simplify the
following discussion about the interpretation of the Bol
mann factor, we shall temporarily forget about the macroio
altogether.! We ignore correlations between the microion
so that they do not interact directly with one another, a
respond instead to a mean field. We also ignore kinetic
ergy, so the phase space for the microions is just the volu
V available to them. The probability densitypi(r ) for each
ion of speciesi within this phase space is given by the c
nonical distribution

pi~r !5
e2bHi (r )

E dVe2bHi (r )

, ~1!

where the volume integral is taken over the whole availa
volume.Hi(r ) is the Hamiltonian, andb51/kBT, wherekB
is the Boltzmann constant andT the absolute temperature
Assume that there areNi identical ions in the space; the
number density will be given by a Boltzmann factor

ni~r !5
Nie

2bHi (r )

E dVe2bHi (r )

5ni0e2bHi (r ), ~2!

whereni05Ni /*dVe2bHi (r ). The Hamiltonian is taken to be
Hi(r )5ziec(r ), wherec(r ) is the electrostatic potential.

B. Interpretation of the Boltzmann factor

The microion number density is

ni~r !5ni0e2bziec(r ). ~3!

It is clear that ifni0 is replaced by some different valueni0
1Dni0, the same ion distribution can still be produced, p
vided thatc(r ) is also shifted by the appropriate consta
amount. There is no physical significance in such a cons
shift in c(r ), since the physics depends only on the gradi
of the potential; the potential has no natural zero value,
its absolute value is of no importance. Consider

ni8~r !5~ni01Dni0!e2bzie[c(r )1Dc(r )] . ~4!

This will be the same density distribution asni(r ) provided
that

Dc~r !5
1

bzie
lnS 11

Dni0

ni0
D , ~5!

which is independent ofr and therefore represents a consta
shift Dc.

This shifting of the electrostatic potential is a little like
gauge transformation@17#, with the ‘‘gauge condition’’ be-
ing a condition on an integral of the potential
03140
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E dVe2bziec(r )5
N

ni0
, ~6!

which can be satisfied by setting the potential zero to
appropriate value. As an example of a gauge, consider th
which ni0 is equal tonī , the mean density of ions of specie
i. This requires the zero of the potential to be set so that

E dVe2bziec(r )5V. ~7!

Note that since the ion density can be represented in
ni05nī gauge as

ni~r !5nīe
2bziec(r ), ~8!

it can also be represented as

ni~r !5ni0e2bzie[c(r )1Dc] , ~9!

whereni05cinī , with ci5ebzieDc, for anyDc. This means
that, whatever gauge is being used,ni0 is some constan
multiple of the mean ion density. This is significant for th
consideration of colloidal suspensions: in the present mo
the total number of microions~and therefore their mean den
sity! is a constant, independent of the macroion configu
tion. Therefore, in a given fixed gauge,ni0 is also a constant

In systems containing several species of microions i
impossible, in any given gauge, to havecj5ci unlesszj
5zi . That is, Eq.~6! can only be satisfied simultaneously fo
ion species having unequal charges if we interpretni0 differ-
ently for each species. For example, we could define
potential zero so as to make theni0 associated with ions o
chargezi equal to the mean densitynī , but then thenj 0
associated with ions of chargezjÞzi would not be equal to
nj̄ . This point would need to be taken into account in t
application of solutions to the full Poisson-Boltzmann equ
tion.

C. The linearized Poisson-Boltzmann equation

Poisson’s equation for the electrostatic potential sta
that

¹2c~r !52
1

e
r~r !, ~10!

wherer(r ) is the charge density. If we consider a system
which the only charges are those on the microions, t
charge density is

r~r !5(
i

zieni~r !5(
i

zieni0e2bziec(r ). ~11!

Inserting this into Poisson’s equation gives the Poiss
Boltzmann equation for the electrostatic potential in an io
system
3-2
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PHASE COEXISTENCE IN COLLOIDAL . . . PHYSICAL REVIEW E 63 031403
¹2c~r !52
1

e (
i

zieni0e2bziec(r ). ~12!

The full Poisson-Boltzmann equation is, unfortunate
too difficult to solve analytically for any but the simple
geometries. However, we can expand the exponential
power series, and if we assume that the potential is ev
where sufficiently close to zero for the condition
ubziec(r )u!1 to be met~the Debye-Hu¨ckel approximation!,
we can keep only the first two terms, leading to the line
ized Poisson-Boltzmann equation

¹2c~r !52
1

e (
i

zieni0@12bziec~r !#. ~13!

It is clear that the extent to which this linearized equation
a good approximation to the original depends not only on
gradient of the potential, but also on the gauge. The equ
lence between gauges that exists in the full equation is los
is no longer true that an arbitrary changeDni0 can be com-
pensated for by a constant shiftDc in c(r ). The best gauge
to use, if we wish to convert to the linearized equation, is o
that keepsc(r ) as close as possible to zero in as much of
system as possible. The one mentioned above, in whichni0

5nī , seems to be quite a good candidate: if we integrate
density~using a linearized Boltzmann factor!,

Ni5E dVni~r !5ni0V2bzieni0E dVc~r !, ~14!

we see that this gauge correponds to the condi
*dVc(r )50, or c̄50.

Now it can be seen that this linearized system posse
an advantage to set against the disadvantage of the restri
on our choice of potential zero. It is possible to writeni0

5cnī , wherec is the same for every species of microio
provided that the gauge used isc̄50 ~so ni05nī and c
51). This means that we can put the same interpretation
ni0 for each ion species.

There is a third, and conclusive, reason for choosingc̄
50 in the linearized system~and this also applies, in fact, t
the nonlinear system!. We shall later wish to calculate th
Helmholtz free energy of a colloidal system from the ele
trostatic energy using Eq.~51!, Debye’s charging-up equa
tion. This involves integrating the elementary chargee from
zero to its physical value. Therefore, we should consider
behavior of a system of ions described by a Boltzmann fa
ase is changed. The ion density at some chargee(1) is given
by the linearized Boltzmann factor as

ni
(1)~r !5ni0

(1)@12bzie
(1)c (1)~r !#. ~15!

There is no reason to expect the density distribution to
main the same ase changes toe(2); however, we require the
total number of ions to remain the same
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ni0
(1)S V2bzie

(1)E dVc (1)~r ! D
5ni0

(2)S V2bzie
(2)E dVc (2)~r ! D . ~16!

During thee integration, we wish to keepni0 constant, that
is, ni0

(2)5ni0
(1) ; applying this condition and considering th

situation whene(1) is equal to zero, we see that Eq.~16! can
only be satisfied ifc̄ (2)5c̄ (1)50. It appears that Debye’s
charging-up theorem only makes sense ifc̄50, so we shall
assume this gauge in the remainder of the paper.

D. Representation of the macroions

Before we can model a colloidal suspension, we must
the macroions. The total surface charge densityrM(r ) is
given @10# by a sum over a set of spherical delta functions
radiusa, thenth of which represents a macroion centered
Rn

rM~r !5(
n

rn~r !5(
n

Ze

4pa2
d~ ur2Rnu2a!. ~17!

The next step is to modify the available volume~and hence
the phase space! to exclude microions from the interior o
the macroions. We encode this exclusion by multiplying t
Boltzmann factor by a product of Heaviside step functio
)nun[)nu(ur2Rnu2a),

ni~r !5ni0@12bziec~r !#)
n

un . ~18!

This change requires the volume integrals mentioned ab
to be taken over all space except the interiors of the ma
ions.

Introducing a constant quantityk2, defined, in the same
way as the square of the inverse screening length in
Debye-Hückel theory to be

k2[
b

e (
i

zi
2e2ni0 , ~19!

allows the linearized Poisson-Boltzmann equation, taking
macroions into account, to be written as

S ¹22k2)
n

unDc~r !52
1

e (
n

rn~r !

2
1

e (
i

zieni0)
n

un . ~20!

The dielectric constant of the macroion interiors will obv
ously be different from that of the solution, but in the
regions the charge density, and therefore¹2c, will be zero,
so the difference in the dielectric constants will have no
fect on our results. Consequently, we use fore its value in
the solution.
3-3
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III. SOLUTION OF THE POISSON-BOLTZMANN
EQUATION

A. A shifted potential

The first step is to simplify Eq.~20! by changing variables
to a new potentialf(r ), which is given by

f~r !5c~r !2
e

ek2 (
i

zini0 , ~21!

so that

S ¹22k2)
n

unDf~r !52
1

e (
n

rn~r !. ~22!

Since the shift is a constant, the gradient off(r ) is equal to
that ofc(r ). This shift in the potential is not the same as t
gauge transformation introduced in Sec. II B. There,
shifted the potential in order to describe the system with
same form of equation, but with a different value forni0.
Here, we shift the potential in order to describe the syst
with a different, simpler form of equation, but with thesame
value forni0.

What is the interpretation of this shifted potentialf(r )?
The value ofc(r ) at some~possibly hypothetical! location
far from any macroions can be found from the condition
local charge neutrality

(
i

zini~r !50 ~23!

to be

c`5
1

be

(
i

zini0

(
i

zi
2ni0

5
e

ek2 (
i

zini0 . ~24!

Sof(r )5c(r )2c` ; that is,f(r ) is the potential relative to
a zero point located at some point far outside the system
macroions. This is the potential zero used by Verwey a
Overbeek@1#; however, theni0 in the definition of thek2

that appears in Eq.~22! is still to be interpreted as the mea
microion density.

B. Solving for the potential in Fourier space

In order to solve Eq.~22!, we follow Sogami and Ise@10#
in Fourier transforming it; our convention for the Fouri
transformF@a(r )# of a functiona(r ) is

F@a~r !#5
1

~2p!3/2E d3ra~r !e2 ik•r, ~25!

where the volume integral is to be taken over the whole
the system. The term involving¹2 is easily dealt with using
F@¹2f(r )#52k2f̃(k), where the meaning of the tilde i
03140
e
e

m

f
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thatã(k)[F@a(r )#. For the second term in Eq.~22!, we use
the fact that)nun is zero inside macroions and unity outsid
to write

FFk2)
n

unf~r !G5k2f̃~k!2
k2

~2p!3/2Eint
dVf~r !e2 ik•r,

~26!

where the integral is over the interiors of all the macroio
To perform this integration, we introduce an approximati
by assuming that the field surrounding each macroion
spherically symmetric. Then the potential inside the mac
ions will be constant, and will in fact be equal to the surfa
potentialfs . If we also writer5Rn1r 8, the integral can be
rewritten as

E
int

dVf~r !e2 ik•r5fs(
n

e2 ik•RnE
ur8u50

a

d3r 8e2 ik•r8.

~27!

The integral on the right hand side of Eq.~27! is identical for
each macroion, and can be evaluated by elementary meth
yielding

FFk2)
n

unf~r !G5k2f̃~k!2S 2

p D 1/2

k2fs

3S sinka

k3
2

a coska

k2 D(
n

e2 ik•Rn.

~28!

To find the Fourier transform of the right hand side of E
~22!, we once again introducer5Rn1r 8, resulting in an
integral which is the same for each macroion. After we in
grate over the angular coordinates ofr 8, a delta function
picks out the valuer 85a in ther 8 integration, with the result

r̃n~k!5
1

~2p!3/2

Zesinka

ka
e2 ik•Rn. ~29!

Collecting Eqs.~22!, ~28!, and~29! leads to the result for the
Fourier transform of the potential

f̃~k!5
1

~2p!3/2

Ze

e

1

k21k2
g~k!(

n
e2 ik•Rn, ~30!

where, to lighten the equations, we have definedg(k) by

g~k![
sinka

ka
1

4pek2fs

Ze S sinka

k3
2

a coska

k2 D . ~31!

C. The potential around a single macroion

Before considering a large suspension, it is instructive
apply the results derived above to the calculation of the e
trostatic field around a single isolated spherical macroi
although this can, of course, be calculated more simply@1#.
The assumption that the field surrounding the particle
3-4
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spherically symmetric will be exactly true for a single ma
roion. Without loss of generality, we can assume that
center of the macroion is atR50, so that from Eq.~30!

f̃~k!5
1

~2p!3/2

Ze

e
g~k!

1

k21k2
. ~32!

Now we use the inverse Fourier transform

f~r !5
1

~2p!3/2E d3kf̃~k!eik•r; ~33!

substituting Eq.~32! into this and integrating over the angu
lar part ofk gives

f~r !5
1

2p2

Ze

er E0

`

dk
k

k21k2
g~k!sinkr. ~34!

This integral can be evaluated by contour integration in
complex plane. We rewrite it as a sum of two separate c
tour integrals, of which one contains terms of the formeikC,
whereC is a positive constant, while the other contains ter
of the forme2 ikC. The former must be integrated around t
upper half plane, the latter around the lower. Howev
which group a given term falls into depends on the relat
values of a and r , with the result that Eq.~34! has two
different solutions: one valid forr ,a ~that is, inside the
macroion!

f r ,a~r !5fs1F Ze

4peka
2fsS 1

k
1aD G sinhkr

r
e2ka,

~35!

which results from poles at zero and1 ik in the upper half
plane and at zero and2 ik in the lower half plane, and on
for r .a ~outside the macroion!

f r .a~r !5F S Ze

4peka
2

fs

k D sinhka1afs coshkaGe2kr

r
,

~36!

which results from poles at1 ik in the upper half plane and
at 2 ik in the lower half plane. To make the link between t
two solutions, we consider the boundary condition on
second solution at the surface

f r .a~a!5fs . ~37!

This leads to the condition

Ze

4peka
5fsS 1

k
1aD ; ~38!

applied to the first solution this condition produces, as
pected, a constant potentialf r ,a5fs , while applied to the
second solution it produces

f r .a~r !5fsaeka
e2kr

r
, ~39!
03140
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which is the potential derived by Verwey and Overbeek@1#.
It is also worth noting that the boundary condition is equiv
lent to

fs5
Ze

4pea

1

11ka
; ~40!

allowing for differences in the electromagnetic units, this
Verwey’s and Overbeek’s relation between the surface
tential fs and the surface chargeZe.

D. The surface potential in a suspension

Now we wish to consider the surface potential of a ma
roion in a suspension of identical macroions. The main m
tivation for doing this is to provide an approximate expre
sion for fs which can be used in calculations of the fre
energy of such a system. The inverse Fourier transform
applied to Eq.~30!, but now with many macroions. Thi
leads to

f~r !5
1

~2p!3

Ze

e (
n
E d3k

1

k21k2
eik•(r2Rn)g~k!,

~41!

which is a sum of potentials, thenth of which has the same
form of equation as the single macroion potential in Eq.~34!,
but centered onRn rather then on zero. Thus, we can use t
results derived in Sec. III C to express the solutions for
potential in real space as sums of the single macroion s
tions, as follows: inside macroionm, we have a sum of the
internal solution for macroionm and the external solution
for all the other macroions

f int~r !5fs1F Ze

4peka
2fsS 1

k
1aD G sinhkur2Rmu

ur2Rmu
e2ka

1F S Ze

4peka
2

fs

k D sinhka

1afs coshkaG (
nÞm

e2kur2Rnu

ur2Rnu
~42!

while, outside all macroions, we have a sum over the ex
nal solutions for all the macroions

fext~r !5F S Ze

4peka
2

fs

k D sinhka

1afs coshkaG(
n

e2kur2Rnu

ur2Rnu
. ~43!

In this system, the assumption that the field around e
macroion is spherically symmetric is only an approximatio
Consequently, the potential inside the macroions will not
exactly constant, nor will the surface potentialfs be constant
over the surface. However, in the present approximate tr
ment we assume that it is constant, and consider the v
taken at the surface of one particular macroionm by the
external solution for the potential. We introduce the furth
3-5
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approximation that the effect of the other macroions on
potential at this surface is the same as it is at the center~that
is, ur2Rnu'uRn2Rmu for all n; this approximation can be
justified by noting that the effect of a macroion located
one side of macroionm being nearer to an element of th
surface ofm than it is to the center ofm, will be partially
cancelled by the effect of a macroion on the opposite s
being further from the surface than it is from the center!. The
result is

fs5F S Ze

4peka
2

fs

k D sinhka1afs coshkaGe2ka1SY

a
,

~44!

whereSY is the sum over the Yukawa potentials

SY[a (
nÞm

e2kRmn

Rmn
5 (

nÞm

e2kaSmn

Smn
; ~45!

here Rmn[uRm2Rnu, and Smn[Rmn /a is a dimensionless
separation between the centers of macroionsm andn. Equa-
tion ~44! can be rearranged to yield a simple expression
the surface potential

fs5
Ze

4pea

e2ka1SY

~11ka!e2ka1~12kacothka!SY
. ~46!

It is easy to see that in the limit of a single macroion (SY

50), this expression forfs reduces to Eq.~40!, as expected
We can also introduce a dimensionless surface pote

Fs , which is the ratio of the surface potential to that of
isolated macroion with the same charge

Fs5
4pea~11ka!

Ze
fs ; ~47!

then Eq.~46! takes the form

Fs5
~11ka!~e2ka1SY!

~11ka!e2ka1~12kacothka!SY
, ~48!

while Eq. ~31! becomes

g~k!5
sinka

ka
1

k2Fs

a~11ka! S sinka

k3
2

a coska

k2 D . ~49!

E. The Helmholtz free energy of a suspension

In order to calculate the free energyF of the system, we
first calculate the electrostatic energyU using the standard
equation, which involves an integral over the square of
potential gradient

U5
e

2E dV@¹f~r !#2, ~50!

and then calculateF by thermodynamic integration@18#, us-
ing Debye’s charging-up equation@19,20#
03140
e

e

r

ial

e

F5F01E
0

ephys
2

de2
U

e2
, ~51!

in which we integrate the elementary charge from zero to
physical valueephys. F0, the free energy of the system in th
absence of charge, is a sum of two terms: the free energyF id
of an ideal gas of hypothetical uncharged microions, an
mildly repulsive entropic termFhs due to uncharged colloida
particles, represented as hard spheres

F05F id1Fhs. ~52!

Fhs may be calculated using the Carnahan-Starling equa
of state@21,22#; however, it is small in comparison with th
electrostatic and ideal gas terms, and therefore we shal
nore it.

The first step in the calculation of the electrostatic fr
energy is to find the gradient of the potential. This is giv
by an inverse Fourier transform

¹f~r !5
1

~2p!3/2E d3kF@¹f~r !#eik•r; ~53!

using Eq.~30! and given thatF@¹f(r )#5 ikf̃(k), this can
be written explicitly as

¹f~r !5
1

~2p!3

Ze

e (
n
E d3k

ik

k21k2
g~k!eik•re2 ik•Rn,

~54!

which leads, through Eq.~50!, to

U52
1

~2p!6

Z2e2

2e (
m

(
n
E d3rE d3k

3E d3k8
k•k8

~k21k2!~k821k2!

3g~k!g~k8!ei (k1k8)•r~e2 ik•Rn!~e2 ik8•Rm!. ~55!

Performing the integral overr , we get a delta function tha
picks outk852k in the integral overk8, giving, sinceg(k)
is an even function

U5
1

~2p!3

Z2e2

2e

3(
m

(
n
E d3k

k2

~k21k2!2
@g~k!#2eik•(Rm2Rn).

~56!

For the range of parameters in which we will be interest
the term ing(k) which depends onFs is well approximated
by

k2Fs

a~11ka!
'Ak21B, ~57!
3-6
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where A5 ln v/9a and B57/2va3. Now U/e2 depends on
the elementary chargee only throughk2. Recalling thatk2

5b/e( izi
2e2ni0, we can perform the integral in Eq.~51!,

with the result

F5F01
1

~2p!3

Z2e2

2e

3(
m

(
n
E d3kH @g~k!#2

k21k2
2k2Y12~X2k2Y!

3F k2

k2
lnS 11

k2

k2 D 21G J
3eik•(Rm2Rn), ~58!

where

X5ABS sinka

k3
2

a coska

k2 D 2

1A
sinka

ka S sinka

k3
2

a coska

k2 D
~59!

and

Y5A2S sinka

k3
2

a coska

k2 D 2

. ~60!

The electrostatic part of the free energy in Eq.~58! can be
split into two sets of terms: terms wheremÞn ~pair free
energy! and terms wherem5n ~self free energy!

F5F01Fpair1Fself. ~61!

After the angular integration,Fpair can conveniently be
rewritten as

Fpair52
i

~2p!2

Z2e2

2e

3(
n

(
mÞn

H E
2`

`

kdkS @g~k!#2

k21k2
2k2YD eikRmn

Rmn

14i E
0

`

kdk~X2k2Y!

3F k2

k2
lnS 11

k2

k2 D 21G sinkRmn

Rmn
J . ~62!

While the second integral must be evaluated numerically,
first can be evaluated by contour integration; since we do
wish the macroions to be able to interpenetrate one ano
we can assumeRmn.2a, and take into account only a pol
at 1 ik. Assuming all macroions to have identical enviro
ments, the pair free energy per macroionf pair can be written
03140
e
ot
er,

f pair5
Z2e2

8pea H Fsinhka

ka
1

Fs

11ka S coshka2
sinhka

ka D G2

SY

1
4 lnv

9pk2a
(

mÞn
E

0

`

I ~k!dk
sinkaSmn

kaSmn
J , ~63!

whereFs is to be calculated from Eq.~48! and

I ~k!5H S 7

2v~ka!2
2

ln v
9 D ~sinka2ka coska!2

1sinka~sinka2ka coska!J F lnS 11
k2

k2 D2
k2

k2G .
~64!

These results can be compared with the equivalent resu
Sogami and Ise@10#,

Fpair5
Z2e2

8pe S sinhka

ka D 2

(
n

(
mÞn

e2kRmn

Rmn
; ~65!

the effect of excluding the microions from the interiors of t
macroions has just been to introduce additional terms.

In Fself, Rm5Rn , and so the exponential in Eq.~58! goes
to unity. The result is a spherically symmetric function ink
space, which is identical for each macroion; after the angu
integration, we find

Fself5
1

~2p!2

Z2e2

2e (
n

H E
2`

`

k2dkF @g~k!#2

k21k2
2k2YG

14E
0

`

k2dk~X2k2Y!F k2

k2
lnS 11

k2

k2 D 21G J .

~66!

Once again, the second integral has to be evaluated num
cally, while the first can be evaluated using contour integ
tion. We split this first integral into three separate integra
of which the first~containing no complex exponential term!
involves a pole at1 ik, the second~containing a positive
complex exponential! involves poles at1 ik and zero, and
the third ~containing a negative complex exponential! in-
volves poles at2 ik and zero. The result for the self fre
energy per macroion is

f self5
Z2e2

8pea F 1

11ka
1

1

3 S ka

11kaD 2

Fs
21

e2ka

11ka

3S sinhka

ka
2coshkaD ~Fs21!22

1

3 S ka ln v
9 D 2

1
4 lnv

9pk2a
E

0

`

I ~k!dkG . ~67!

The role of the macroion surface potential is twofol
First, it provides a boundary condition to link the potential
3-7
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the two regions~inside and outside macroions!, in the same
way as it did in the treatment of a single, isolated macroi
Second, it introduces many-body interactions. The lineari
Poisson-Boltzmann equation is often considered to lead o
to pairwise interactions, and to ignore many-body effec
however, whileFpair looks rather like a sum of pairwise in
teractions, it actually takes account throughFs of the posi-
tions of all the macroions in the suspension~as doesFself; in
this sense, the distinction we have made betweenFpair and
Fself is rather artificial, and is largely a consequence of
form of the equations rather than of any physical feature
the system!.

We should also consider the role of the parameterk de-
fined in Eq.~19!. Although this is defined in the same way
the inverse screening length in the Debye-Hu¨ckel theory, it
has no physical meaning at any particular point in this in
mogeneous system, since it depends on the mean micr
densitiesni0 rather than on the local densities. In a sense
is a ‘‘mean inverse screening length.’’k is related to the
number of microions, and therefore, because of the ove
neutrality of the system, to the total charge on the macroio
but it is also related to the choice of gauge~see Sec. II C!.
Changing the value ofk at constant macroion density ca
thus represent two possible situations. If accompanied by
appropriate change in the value ofZ, it represents a chang
in the charge on the macroions, and therefore in the t
number of microions. Ifk is varied without changingZ, it
represents a change of gauge, and the resulting alteratio
the results is not an indication of any physical change in
system, but of an alteration in the extent to which the line
ized Poisson-Boltzmann equation is a good approximatio
the full version. However, changing the gauge away fr
c̄50 invalidates results for the free energy obtained us
Eq. ~51!.

IV. APPLICATION OF THE RESULTS

Consider the simplest case, where the system cont
only one species of microion, which is a monovalent cou
terion. The absence of coions implies that the suspen
contains no added salt. We wish to specify the thermo
namics of a region which is homogeneous~with respect to
the macroions!, in order to investigate the possibility tha
two such regions, with different macroion densities, mig
coexist. Overall charge neutrality requires thatuZu microions
are associated with each macroion. We can disregard
possibility that the microions are distributed in such a w
that the individual regions depart significantly from char
neutrality; this form of distribution would be energetical
unfavorable. Regional charge neutrality will be satisfied
the number of microions in a given homogeneous region
equal touZu multiplied by the number of macroions; we re
gard each microion as associated with a particular macro
and confined to the region in which that macroion is locat
That is, we consider each region to be approximately equ
lent to a hypothetical system comprising an identical reg
surrounded by an impenetrable wall, which confines the
croions to that region. The thermodynamic potential for t
hypothetical system is the Helmholtz free energy. Then
03140
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can investigate how the free energy of the system depend
the density of the macroions.

In order to calculate the electrostatic part of the free
ergy per macroion,f el5 f pair1 f self, we use the results in Eqs
~45!, ~48!, ~63!, ~64!, and ~67!. The parameterka varies,
through its dependence onni0, as a function of the volume

ka5S 3buZue2

4pea

1

v21D 1/2

. ~68!

Here,v is a dimensionless volume per macroion, in units
the volume of one macroion, (4/3)pa3; it is equal to 1/h,
whereh is the colloid volume fraction. The presence here
(v21) instead ofv accounts for the exclusion of the micro
ions from the interiors of the macroions. The relation b
tween v and the dimensionless nearest neighbor macro
separationS ~in units ofa) depends on the structure, as do
SY. We shall use a face centered cubic structure as an
proximate model of both solidlike and fluidlike phases; f
this structure we have

S5S 4A2p

3
v D 1/3

. ~69!

Figure 1 showsf el as a function ofv, for a macroion radius
of a50.05 mm and a charge ofuZu51076. This part of the
free energy increases monotonically with increasingv; a
hard core repulsion has also been added, as the macro
cannot interpenetrate.

The ideal gas free energyf id of the microions associate
with one macroion is

f id5
uZu
b H lnF3uZu

4p S L

a D 3G2 ln~v21!21J ; ~70!

L5(bh2/2pm)1/2 is the thermal wavelength of the micro
ions, whereh is Planck’s constant andm the mass of one
microion. To simplify the calculations and to avoid having
choose a value form, we shall consider only thev-dependent
part of the ideal gas free energy,D f id52(uZu/b)ln(v21).

FIG. 1. The electrostatic partf el of the free energy per macroio
in units of Z2e2/8pea, for a50.05 mm anduZu51076.
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In the theory of molecular fluids associated with van d
Waals, the free energy contains two terms: an intermolec
interaction which is attractive at long distances and ha
repulsive hard core, and the ideal gas term, which beco
more negative logarithmically as the volumeV increases. At
sufficiently low temperatures, so that the ideal gas term d
not overwhelm the intermolecular interaction, the graph
the total free energyF as a function ofV may develop an
upward bulge, where]2F/]V2 becomes negative; since th
pressure is given byp52]F/]V, this leads to a van de
Waals loop in thepV diagram. A horizontal line drawn
across the loop ensures mechanical stability~the two phases
are at the same pressure!; drawing this line according to
Maxwell’s equal area construction ensures that the free
ergy is globally minimized~the two phases have the sam
chemical potential!. In the present two-component syste
the free energy per macroionf contains two important term
f el and D f id , which take similar forms and similar roles t
the intermolecular interaction and the ideal gas term, resp
tively, in a molecular fluid. For certain values of the macr
ion radiusa and charge numberuZu, an upward bulge ap
pears in the graph off as a function ofv, resulting in a van
der Waals loop, which indicates coexistence between
phases with different densities.

In Fig. 2, f 5 f el1D f id is plotted for macroions of radiu
0.05 mm at three different values ofuZu: 1000, 1076, and
1150. Phase coexistence behavior emerges as the cha
increased above a critical chargeZc of around 1076. Figure 3
shows thepV diagram for a system with the same physic
parameters; atuZu51150, the model predicts coexistence b
tween a rarefied region and a region withv'20, which cor-
responds to a volume fractionh of about 0.05, or a neares
neighbor separationS of about 5.

The values of the charge used here are larger than som
the effective charges observed in recent experiments@9# in
which phase coexistence was observed in suspensions o
loidal particles of about this size. The discrepancy is pr
ably due to the simplifications in the present model: in ad
tion to linearizing the Poisson-Boltzmann equation, we ha

FIG. 2. The free energyf per macroion in units ofZ2e2/8pea,
for a50.05 mm. Dashed line:uZu51000; dotted line:uZu51076;
solid line: uZu51150.
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assumed zero added salt, and ignored the possibility
phases differing in symmetry as well as in density.

V. CONCLUSIONS

We have solved the linearized Poisson-Boltzmann eq
tion analytically, subject to justifiable approximations, for
suspension of identical spherical macroions at constant
face charge with no added salt. This is accomplished by
extension of the method used by Sogami and Ise; by tak
account of the exclusion of microions from the interiors
the macroions, we correct and complete the result obtai
in Ref. @10#. In this way, we have found expressions for bo
the surface potentialfs and the electrostatic partf el of the
Helmholtz free energy per macroion. Through the surfa
potential, each term inf el depends on the positions of all th
macroions, so the results are not limited to pairwise inter
tions.

The electrostatic part of the free energy resembles
intermolecular interaction in the theory of a molecular flu
and plays a similar role. To form the total free energy p
macroionf, it must be combined with a term representing t
free energy of an ideal gas of microions. We find that,
certain values of the macroion radiusa and chargeuZu, an
upward bulge appears inf expressed as a function of th
volume per macroionv. As with a molecular fluid, this leads
to a van der Waals loop in thepV diagram, and therefore to
coexistence between phases with different densities. This
sult is qualitatively in line with experimental observation
and also with the calculations of van Roij and co-worke
@11–13# and of Warren@14#, which predict that phase coex
istence ~and, in particular, coexistence between a de
phase and a rarefied phase! arises from the linearized
Poisson-Boltzmann theory.

We have clarified the interpretation of the Poisso
Boltzmann equation and of results obtained from it, and
particular of the constantni0. This can take any value in th
full equation, but in the linearized version it is restricted

FIG. 3. pV diagram for macroions of radiusa50.05 mm,
showing a van der Waals loop.2] f /]v has units of
1025(3Z2e2/32p2ea4). Dashed line:uZu51000; dotted line:uZu
51076; solid line:uZu51150.
3-9
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values that are consistent with the validity of the lineariz
tion. If we wish to calculate free energies using Deby
charging-up equation, there is a further restriction: the p
cedure makes sense only ifni0 is equal to the mean ion
densitynī .

By its very nature, the Poisson-Boltzmann theory igno
a number of effects, for example ionic correlatio
@16,23,24#. However, it should prove possible to extend t
present treatment to take account of certain other effects
have been ignored here, and which would be important
complete theoretical description of the phase behavior. M
species of microion could be added, to allow the consid
ation of systems containing added salt. By changing the w
that SY is calculated in Eq.~45!, the model could be altere
.

r-

J

v.

y

T
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to take account of differences of symmetry~solidlike/
fluidlike! in addition to density differences. Finally, the a
sumption that the macroion surface charge is independen
the configuration of the system, though often made, is
physically reasonable; since the charge is caused by di
ciation of surface groups, it would be expected to depend
the local ion concentration in the solvent, which depends
the positions of the macroions.
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