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Phase coexistence in colloidal suspensions: An analytic Poisson-Boltzmann treatment
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We solve the linearized Poisson-Boltzmann equation analytically, subject to justifiable approximations, for
a suspension containing a large number of identical spherical macroions under conditions of constant surface
charge and zero added salt, in order to investigate the phase behavior of charge-stabilized colloidal suspen-
sions. Our results for the electrostatic part of the Helmholtz free energy lead to an interaction which resembles
the intermolecular interaction in the theory of molecular fluids. When combined with the ideal gas free energy
of the counterions, this produces a van der Waals loop inpiediagram, indicating coexistence between
phases with different densities, for certain values of the macroion radius and charge. We also derive an
expression for the surface potential of the macroions, and clarify the interpretation of the Poisson-Boltzmann
equation.
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[. INTRODUCTION the solution of the linearized Poisson-Boltzmann equation
for a large suspension. A problem with this method is that it
One of the main theoretical tools which has been used tpermits microions to penetrate the interiors of the macroions
describe the physics of charged colloidal suspensions is tHéd 1], but in the present paper we eliminate this difficulty,
Poisson-Boltzmann theory. This treats the simple itms  enabling the Helmholtz free energy of some region of a sus-
croiong as point particles responding to a mean field elecPension, as well as the surface potential of a macroion in
trostatic force; their equilibrium arrangement is then givensuch a region, to be found analytically. This requires us to
by a balance, described by a Boltzmann factor, between th&@ake a small number of justifiable approximations, based
electrostatic potentiaj governed by Poisson’s equation, anaround the idea that the environments of all the macroions in
the chemical potential. the region are approximately identical and spherically sym-
Applied to just two colloidal particle@macroions or poly- ~Metric, if we ignore boundary effects. _ _
ions), the linearized version of the Poisson-Boltzmann theory The organization of the remainder of this paper is as fol-
leads to the Derjaguin-Landau-Verwey-Overbeek potentialows. In Sec. Il we define the theoretical model on which our
[1], which predicts a purely repulsive interaction between thdnvestigations are based. We also discuss the interpretation
macroions, in qualitative agreement with experimental reof terms in the Poisson-Boltzmann equation, a point that is
sults[2] for this system. However, the situation in large sus-rarely made clear. In Sec. Il the linearized Poisson-
pensions of macroions is more complicated. Under certaifdoltzmann equation is solved, first for a single macroion and
circumstances, coexistence is obsenf@d9] between a then for a suspension, and expressions for the electrostatic
dense phase and a rarefied phase or void, analogous to tRart of the free energy are derived; the calculations are set
coexistence between solid/liquid and gaseous phases in mgut in some detail in order to make the development as clear
lecular matter. This raises the question of how such an effe@S possible. In Sec. IV we consider the application of our
could arise from electrostatic interactions. results and their consequences for the phase behavior of
An attempt to describe the phenomenon theoreticallynacroionic suspensions. We give our conclusions in Sec. V.
within the framework of the linearized Poisson-Boltzmann We use Sl electromagnetic units throughout.
theory was made by Sogami and [d6)], who proposed an
attractive effective interaction between macroions. More re- [l. THE POISSON-BOLTZMANN EQUATION
cently, van Roij and co-workefd1-13 used density func-
tional methods, applied to a model whose assumptions are
identical to those of the linearized Poisson-Boltzmann The theoretical model to be considered treats a constant
theory, to derive a free energy which contains a repulsivéiumber Ny, of identical spherical macroions of radies
effective interaction between macroions and an additiona¢ach of which has a constant chaedistributed uniformly
volume-related term; together, these can lead to coexistencever its surface€ is the elementary chargeAssociated with
Warren[14] has also shown that phase coexistence can resuiie macroions are a constant numbgrof each speciesof
from a model based on similar assumptions. microions, which are regarded as point charges of valee
Sogami and Ise argued that the correct thermodynamidthe system overall is charge neutral, so tNgtZ+ =N,z
potential for the description of a colloidal suspension is not=0. The ions are suspended in a solvent which is maintained
the Helmholtz free energy but the Gibbs free energy. It hasit constant temperature and which is described according to
been pointed oufl15,16 that there are problems with this a “primitive model”; that is, it is a continuum with permit-
aspect of the theory, associated with the difficulty of calcu-tivity e=e¢,€ey, which is unaffected by the ions. Here is
lating the Gibbs free energy in an inhomogeneous systenthe permittivity of the vacuum, anel the relative permittiv-
however, the theory includes the backbone of a method foity, which is around 80 for water. We consider the behavior

A. The model
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of the macroions to be adiabatically separated from that of N

the microions, as the macroions are much larger; the micro- dve Azertn = — (6)
ions will be allowed to take up their equilibrium configura- 10

tion about a “fixed” system of macroions, and only then will
the effect on the macroions be consider€lth simplify the
following discussion about the interpretation of the Boltz-
mann factor, we shall temporarily forget about the macroion
altogethen. We ignore correlations between the microions,
so that they do not interact directly with one another, and

respond instead to a mean field. We also ignore kinetic en- f dVe Bzen =y @
ergy, so the phase space for the microions is just the volume

V available to them. The probability densipy(r) for each

ion of Specieg' within this phase space is gi\/en by the ca- Noteihat since the ion density can be represented in the
nonical distribution n;o=n; gauge as

which can be satisfied by setting the potential zero to the
appropriate value. As an example of a gauge, consider that in

which n;q is equal ton;, the mean density of ions of species
I. This requires the zero of the potential to be set so that

e_ﬁHi(r)

f dVe_IBHi(r)

n;(r)=n;e”Azev), ®)

pi(r)= 1)

it can also be represented as

where the volume integral is taken over the whole available ni(r)=n;pe Paelv+Ad] 9)
volume.H;(r) is the Hamiltonian, an@= 1/kgT, wherekg
is the Boltzmann constant aridl the absolute temperature. \yheren,,=c;n;, with ¢;=€f%®¥, for anyAy. This means

Assume that there arl; identical ions in the space; their that whatever gauge is being used, is some constant
number density will be given by a Boltzmann factor multiple of the mean ion density. This is significant for the
consideration of colloidal suspensions: in the present model,
e B @ the tc_)tal number of microionéand therefore their mean qen—
_aH (1) i0 ’ s_lty) is a consta_nt, |n_deper_1dent of the_macr0|on configura-
f dve 7 tion. Therefore, in a given fixed gaugeg is also a constant.

In systems containing several species of microions it is
wheren;o=N;/fdVe PHi() The Hamiltonian is taken to be impossible, in any given gauge, to haeg=c; unlessz;
H;i(r)=zey(r), wherey(r) is the electrostatic potential. =2z . Thatis, Eq(6) can only be satisfied simultaneously for
ion species having unequal charges if we interprgdiffer-
ently for each species. For example, we could define the
potential zero so as to make thg, associated with ions of

chargez; equal to the mean density;, but then then,
ni(r):nioefﬁziew(r). 3) a_ssouated with ions of charge# z; would not be equal to

n;. This point would need to be taken into account in the

It is clear that ifn;, is replaced by some different valug,  application of solutions to the full Poisson-Boltzmann equa-

+ Anj,, the same ion distribution can still be produced, pro-tion.

vided that(r) is also shifted by the appropriate constant

amount. There is no physical significance in such a constant C. The linearized Poisson-Boltzmann equation

shift in ¢(r), since the physics depends only on the gradient . , . . .

of the potential; the potential has no natural zero value, a”dh Poisson’s equation for the electrostatic potential states

its absolute value is of no importance. Consider that

Nje~BHID
ny(r)= ———

B. Interpretation of the Boltzmann factor

The microion number density is

, iy 1
n{ (r)=(njp+Anjo)e~ AAelAN =20, 4 V2u(r)==~p(r), (10
This will be the same density distribution agr) provided ) ) _ )
that wherep(r) is the charge density. If we consider a system in
which the only charges are those on the microions, this
1 Anm) charge density is
AYy(ry=———=In| 1+ —|, 5
= 5 - (5)
p(N=2 zen(n=2 zenge H0. (11)
I 1

which is independent af and therefore represents a constant
shift A .

This shifting of the electrostatic potential is a little like a Inserting this into Poisson’s equation gives the Poisson-
gauge transformatiofil7], with the “gauge condition” be- Boltzmann equation for the electrostatic potential in an ionic
ing a condition on an integral of the potential system
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V2iy(r)=— % > zienge Fue), (12) nfé)(V—Bzie(l)j dep(l)(r))

_ (2
_ni(O)

The full Poisson-Boltzmann equation is, unfortunately, V—BZie(z)f dVl//(z)(f)>- (16)

too difficult to solve analytically for any but the simplest

geometries. However, we can expand the exponential as Buring thee integration, we wish to keep;, constant, that
power series, and if we assume that the potential is everys n(2)=n(}); applying this condition and considering the
where sufficiently close to zero for the conditions gjtyation where® is equal to zero, we see that H36) can
| Bziey(r)| <1 to be me(_the Debye-Huokel approxmatlo_in only be satisfied ify®=yN=0. It appears that Debye’s
we can keep only the first two terms, leading to the linear- i —.
ized Poisson-Boltzmann equation charging-up theorem only makes sens¢i# 0, so we shall

assume this gauge in the remainder of the paper.

1
V2y(r)=— - 2. zeno[1- Bzey(r)]. (13 D. Representation of the macroions

Before we can model a colloidal suspension, we must add
. . . . .. the macroions. The total surface charge dengity(r) is
It is clear that the extent to which this linearized equation is iven[10] by a sum over a set of spherical delta functions of
a good approximation to the original depends not only on th adiusa, thenth of which represents a macroion centered on
gradient of the potential, but also on the gauge. The equiv '
lence between gauges that exists in the full equation is lost: it "
is no longer true that an arbitrary change;, can be com- Ze
pensated for by a constant shifi/ in ¢(r). The best gauge (=2 pa(r)=> —25(|r— Ri—a). (17
to use, if we wish to convert to the linearized equation, is one n n 4ma

that keeps/(r) as close as possible to zero in as much of the . . .
system as possible. The one mentioned above, in whjigh The next step is to modify the available volurf@d hence

— 1 seems to be quite a qood candidate: if we intearate ththe phase spagdo exclude microions from the interior of
b . e quite a g . 9 the macroions. We encode this exclusion by multiplying the
density(using a linearized Boltzmann facjor

Boltzmann factor by a product of Heaviside step functions
1_[nenEHne(“‘_ Rn| —a),

Ni:f dV”i(r):”ioV—,BZienioj dVvi(r), (14
mﬂ)=md1—ﬁae¢0ﬂ[10w (18)

we see that this gauge correponds to the condition

JdViy(r)=0, or 4=0. This change requires the volume integrals mentioned above
Now it can be seen that this linearized system possessé@ be taken over all space except the interiors of the macro-

an advantage to set against the disadvantage of the restrictitfiS-

on our choice of potential zero. It is possible to writg Introducing a constant quantity’, defined, in the same

—cn;, wherec is the same for every species of microion, W& @S the square of the inverse screening length in the

— — Debye-Huckel theory to be
provided that the gauge used #=0 (so njp=n; and c 4 y
=1). This means that we can put the same interpretation on
n;o for each ion species. K=

There is a third, and conclusive, reason for choosing
=0 in the linearized systertand this also applies, in fact, to
the nonlinear systemWe shall later wish to calculate the
Helmholtz free energy of a colloidal system from the elec-
trostatic energy using Eq51), Debye’s charging-up equa- 1
tion. This involves integrating the elementary chaegeom (VZ— <] an) Pp(r)=—=> pa(r)
zero to its physical value. Therefore, we should consider the n €n
behavior of a system of ions described by a Boltzmann factor 1
aseis changed. The ion density at some chagtfé is given - = zenoll 6,. (20
by the linearized Boltzmann factor as € n

m ™

> Z22en;,, (19

allows the linearized Poisson-Boltzmann equation, taking the
macroions into account, to be written as

The dielectric constant of the macroion interiors will obvi-
ously be different from that of the solution, but in these
regions the charge density, and therefSrey, will be zero,
There is no reason to expect the density distribution to reso the difference in the dielectric constants will have no ef-
main the same aschanges t@(®); however, we require the fect on our results. Consequently, we use éoits value in
total number of ions to remain the same the solution.

nP(r)=n@r1-BzeDyD(n)]. (15)
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lll. SOLUTION OF THE POISSON-BOLTZMANN thata (k)= a(r)]. For the second term in E€R2), we use

EQUATION the fact thatll,, 6, is zero inside macroions and unity outside
A. A shifted potential to write
The first step is to simplify Eq20) by changing variables 2
to a new potentiatp(r), which is given by I T 6,6(r) | =kZp(k)— _j dVe(r)e 'k,
n (27)%2)int

(26)
wm=mm—£§§lmm, (21)

where the integral is over the interiors of all the macroions.
To perform this integration, we introduce an approximation
so that by assuming that the field surrounding each macroion is
spherically symmetric. Then the potential inside the macro-
1 ions will be constant, and will in fact be equal to the surface
2_ .2 —_Z '
(V K 1;[ 9“) Pr=-1 ; pn(T)- (22) potentialgs. If we also writer=R,+r’, the integral can be
rewritten as
Since the shift is a constant, the gradient/df) is equal to
that of 4(r). This shift in the potential is not the same as the f dVe(rye k= ¢SE e—ik-Rnf d3reikr’
gauge transformation introduced in Sec. |IB. There, we int n Ir'|=0
shifted the potential in order to describe the system with the (27)
same form of equation, but with a different value fgp. The integral on the right hand side of E7) is identical for

H_ere, we shift th_e potential in order FO descrlb_e the SySten?aach macroion, and can be evaluated by elementary methods,
with a different, simpler form of equation, but with tlsame

a

yielding
value forng.
What is the interpretation of this shifted potentia(r)? _ 12
The value ofy(r) at some(possibly hypotheticallocation f[KZH 0,(1) =K2¢(k)—<; K2 s
far from any macroions can be found from the condition of .
local charge neutrality sinka acoska B
_ 2 e ik-Ry.
E K3 k2 n
zni(r)=0 23
2 Zi i(r) (23) 29
to be To find the Fourier transform of the right hand side of Eq.
(22), we once again introduce=R,+r’, resulting in an
integral which is the same for each macroion. After we inte-
1 E ZiNjg grate over the angular coordinates 1df a delta function
i e . 7 . ) . .
Ypo=— —————=—— > ZiNi. (24)  picks outthe value’ =a in ther " integration, with the result
Be 2 2 ex?
: ZiNig

1 Zesinka .
—e

Pn(k)= ik-Rn, (29)

o N (2m)*2 ka
So¢(r)=u(r)— .. ; thatis,¢(r) is the potential relative to

a zero point located at some point far outside the system afollecting Eqs(22), (28), and(29) leads to the result for the
macroions. This is the potential zero used by Verwey and-ourier transform of the potential

Overbeek[1]; however, then;, in the definition of thex?

that appears in Eq22) is still to be interpreted as the mean ~ 1 Ze 1

o : K)= — k)2, e ™Ra (30
microion density. é(k) 2m € 12t Kzg( )En: (30)
B. Solving for the potential in Fourier space where, to lighten the equations, we have defigékl) by
~In order to solve E_q(22)., we follow Sogami and IsgL0] _ sinka 4mexe,sinka acoska
in Fourier transforming it; our convention for the Fourier g(k)= + - . (3D
transform «(r)] of a functiona(r) is ka Ze k® k2
Hea(r)]= 3/2] dSra(r)e—ik-r, (25) C. The potential around a single macroion
(2m) Before considering a large suspension, it is instructive to

. ) apply the results derived above to the calculation of the elec-
where the volume integral is to be taken over the whole ofyostatic field around a single isolated spherical macroion,
the system. The term involving? is easily dealt with using  although this can, of course, be calculated more sifibly
FIV24(r)]=—k?4(k), where the meaning of the tilde is The assumption that the field surrounding the particle is
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spherically symmetric will be exactly true for a single mac-which is the potential derived by Verwey and Overbggk
roion. Without loss of generality, we can assume that thdt is also worth noting that the boundary condition is equiva-
center of the macroion is &=0, so that from Eq(30) lent to

Ze 1

Ze 1 _ .
(27)%2 ?g(k) K2t (2 (32 ¢s_47rea 1+«ka’ (40

P(k)=

allowing for differences in the electromagnetic units, this is
Verwey's and Overbeek’s relation between the surface po-
tential ¢5 and the surface chargée.

Now we use the inverse Fourier transform

B0~ —5 | @Bk 33
(2m) D. The surface potential in a suspension
substituting Eq(32) into this and integrating over the angu-  Now we wish to consider the surface potential of a mac-
lar part ofk gives roion in a suspension of identical macroions. The main mo-
tivation for doing this is to provide an approximate expres-
1 Ze(~ k _ sion for ¢s which can be used in calculations of the free
P(r)= o Zfo dkmg(k)smkr. (34 energy of such a system. The inverse Fourier transform is
m K applied to Eq.(30), but now with many macroions. This
This integral can be evaluated by contour integration in thdeads to

complex plane. We rewrite it as a sum of two separate con- 1 7 1
tour integrals, of which one contains terms of the faf, = <€ > 3k—— @ik (r=Rn)g(k

: ) ) : r d*k———e 9(k),
whereC is a positive constant, while the other contains terms (2m)% € “n ke+ Kk
of the forme ™. The former must be integrated around the (41
upper half plane, the latter around the lower. However, = . _ )
which group a given term falls into depends on the relativeVhich is & sum of potentials, theth of which has the same

values ofa andr, with the result that Eq(34) has two form of equation as the single macroion potential in &4),
different solutions: one valid for<a (that is, inside the Putcentered o, rather then on zero. Thus, we can use the

macroion results_ de_rived in Sec. llIC to express t_he solutions_ for the
potential in real space as sums of the single macroion solu-

1 sinhkr tions, as follows: inside macroiom, we have a sum of the

Pr<all)= st m—%(;*'a e “a, internal solution for macroiom and the external solutions

(35) for all the other macroions
Ze 1 N
Aexa s K a

+[( ze —%)sinhxa

sinhk|r—Ry|

which results from poles at zero andi « in the upper half bin(1) = et
" S |r_ le

plane and at zero andix in the lower half plane, and one
for r>a (outside the macroign

—Kr

4reka

28 __ %5 cinhwa+ h
yy— sinhka+ad¢gcoshka

Dr=all)=

e~ &|r =Ryl

>

(36) +ag. coshka _—
Ps “ nzm |r—Ryl

(42

which results from poles at i« in the upper half plane and _ _ _
at —i« in the lower half plane. To make the link between theWhile, outside all macroions, we have a sum over the exter-

two solutions, we consider the boundary condition on thehal solutions for all the macroions
second solution at the surface

bs\ .
br=ald) = os. (37) d’ext(r)_[ dmera sinhka
i iti —k|r=Ry|
e n
This leads to the condition + 2.coshea E | s
n |r—Rn|
Ze B 1 _ a8
47"5’<a_¢3 K+a ' (38 In this system, the assumption that the field around each

macroion is spherically symmetric is only an approximation.
applied to the first solution this condition produces, as exConsequently, the potential inside the macroions will not be
pected, a constant potentié} - ,= ¢, while applied to the exactly constant, nor will the surface potentialbe constant
second solution it produces over the surface. However, in the present approximate treat-
ment we assume that it is constant, and consider the value
(39) taken at the surface of one particular macromnby the
external solution for the potential. We introduce the further

—KI

Broa(r) = paer

r l
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potential at this surface is the same as it is at the cdtitat
is, |r—Ry|~|R,—Ry,| for all n; this approximation can be

justified by noting that the effect of a macroion located on. . . :
one side of macroiom being nearer to an element of the in which we integrate the elementary charge from zero to its

surface ofm than it is to the center ofm, will be partially pBysicaI va;lugsphys. '.:O’ the fre$ energy Of_thr? sfystemrigl the
cancelled by the effect of a macroion on the opposite sig@bsence of charge, is a sum of two terms: the free erieggy

being further from the surface than it is from the cept&he of an ideal gas of hypothetical uncharged microions, and a
mildly repulsive entropic ternfr s due to uncharged colloidal

approximation that the effect of the other macroions on the

2 u
hge? —, (51)
0 e

result is particles, represented as hard spheres
—kKka Y
b= (4:EeKa - %S) sinhka+agscoshka %, Fo=Figt Fns. (52)
(44)  Fpsmay be calculated using the Carnahan-Starling equation
v ) of state[21,27]; however, it is small in comparison with the
whereX " is the sum over the Yukawa potentials electrostatic and ideal gas terms, and therefore we shall ig-
o Rn o <aSmn nore it. _ _ _
SY=3a _ ; (45) The first step in the calculation of the electrostatic free

nzm Rmn  nZm  Smn energy is to find the gradient of the potential. This is given
by an inverse Fourier transform

here R,=|Rn—Ry|, and S,,,=R,,,/a is a dimensionless

separation between the centers of macroiorendn. Equa-

tion (44) can be rearranged to yield a simple expression for Vo(r)=

the surface potential

fd3kf[v¢(r)]e‘k"; (53

(277)3/2

using Eq.(30) and given thatF[ V ¢(r)]=ik$(k), this can

—ka Y
b= ze et . (46)  be written explicitly as
4mea (1+ ka)e “®+ (1— kacothka)y”
1 Ze ik Lo
It is easy to see that in the limit of a single macroich"( Vo(r)= 3 e > J d*k———g(k)e'“ e~k R,
=0), this expression foi reduces to Eq40), as expected. (2m) " Ko+« (54)
We can also introduce a dimensionless surface potential
@, which is the ratio of the surface potential to that of anwhich leads, through Eq50), to
isolated macroion with the same charge
1 z%?
dmea(l+ ka) U=-— E E f d3rf d3k
b= %5 (47) (2m)® 2€ “m 7
k-k’
then Eq.(46) takes the form xf d3k’
(K*+ K?) (K2 + k%)
(1+«ka)(e <a+3Y) o . L
(48) X g(k)g(k ek (e KRy (7K' Rm) - (55)

* (1+ xa)e "+ (1— xacothka)s "’
Performing the integral ovar, we get a delta function that
picks outk’ = —k in the integral ovek’, giving, sinceg(k)

is an even function

while Eq. (31) becomes

sinka P

K= N sinka acoska 49
90 =73 a(l+ka)| K3 K2 | (49) 1 7%
(2m)° 2e
E. The Helmholtz free energy of a suspension 2
In order to calculate the free ener§yof the system, we x> > f d3kﬁ[g(k)]ze‘k'(Rm* Rn) .
first calculate the electrostatic enerfyyusing the standard m.on (k*+ )
equation, which involves an integral over the square of the (56)

potential gradient
For the range of parameters in which we will be interested,

6 ; ; : )

U= Ef AV[V (1) ]2, (50) Lhye term ing(k) which depends o4 is well approximated
and then calculaté by thermodynamic integratiofi8], us- K>Dsg ~AKk2+B (57)
ing Debye’s charging-up equati¢a9,20 a(1+«a) '
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where A=Inv/9a and B=7/2va®. Now U/e? depends on 7262 ([sinhka @ sinhxa) 12
the elementary chargeonly through«?. Recalling thatx? fpair:8 + 1r ° | coshka— 3
= Blez;z°e’n;y, we can perform the integral in E¢51), meal ka Ka Ka
with the result 4Inv " sinkas, .
> f (k) dk——="", (63
1 722 9mka m#n Jo kaSnn
F:F0+ H
(2m)3 2e where®y is to be calculated from Eq48) and
[9(k)]? 7 In
XD > fd?’k 5 — KO+ 2(X—K?Y) I(k)= ~ 2% (sinka—kacoska)?
m n K2+ 2v(ka)? 9
k? K? K2\ k2
X Eln 1+F -1 +smka(smka—kacoska)] In 1+F)_F'
X ei k-(Rpm— Rn)' (58) (64)
where These results can be compared with the equivalent result of
Sogami and Is¢10],
B sinka acoska|’ sinka/sinka acoska c _ Z%¢?|sinhka 22 3 g~ *Rmn 65
- k3 o k2 +tA ka k3 o k2 pair_87T6 Ka N m#n Rmn '
(59

the effect of excluding the microions from the interiors of the
macroions has just been to introduce additional terms.

and In Fseir, Rm=R,, and so the exponential in E(:8) goes
. 2 to unity. The result is a spherically symmetric functionkin
V= A2 sinka acoska) (60)  Space, which is identical for each macroion; after the angular
k3 K2 integration, we find
Thg Qlectrostatic part of the free energy in E59) can be o= 1 E E l f” K2dK la(k)]? —KZY‘|
split into two sets of terms: terms where#n (pair free (2m)? 2€ “§ — k?+ k?

energy and terms wheren=n (self free energy

2 2

_1”

+4ka2dk X—K?Y)|—=In| 1+ —
F=Fo+ Fpit Fear. (61) o TGN 1
After the angular integrationfp,;, can conveniently be (66)
rewritten as Once again, the second integral has to be evaluated numeri-
cally, while the first can be evaluated using contour integra-
i Z2e? tion. We split this first integral into three separate integrals,
Fpair=— ——— 5 of which the first(containing no complex exponential terms
(2m)? 2e . . o e
involves a pole at+ik, the secondcontaining a positive
" [9(K) ]2 eikRmn complex exponentialinvolves poles at+-ix and zero, and
x> > |f kdk(g—— 2 ) the third (containing a negative complex exponentiai-
nomzn | J - k24 «? Rmn volves poles at-ix and zero. The result for the self free
B energy per macroion is
+4if kdk(X—Kk2Y)
0 P Z%?| 1 +1 Ka 2(1)2+ g @
K2 2 sinkR seli”8real|1+ka 3|\1+ka) S 1+ka
X|—=In| 1+ —| - L 62 :
2 K2 Rmn ] 62) sinhxa , 1[«xalnv 2
X —coshka | (Pg—1)"— 3 9
While the second integral must be evaluated numerically, the
first can be evaluated by contour integration; since we do not 4Inv f”l (K)dk 67)
wish the macroions to be able to interpenetrate one another, 9mr2alo '

we can assumB,,>2a, and take into account only a pole
at +ix. Assuming all macroions to have identical environ- The role of the macroion surface potential is twofold.
ments, the pair free energy per macrofgg;, can be written  First, it provides a boundary condition to link the potential in
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the two regionginside and outside macroionsn the same 1.0
way as it did in the treatment of a single, isolated macroion.
Second, it introduces many-body interactions. The linearized
Poisson-Boltzmann equation is often considered to lead only
to pairwise interactions, and to ignore many-body effects;

however, whileF 5 looks rather like a sum of pairwise in- 0.6
teractions, it actually takes account throug§h of the posi- o3
tions of all the macroions in the suspensias does-; in 0.4—

this sense, the distinction we have made betwégs and
Fserr IS rather artificial, and is largely a consequence of the

form of the equations rather than of any physical feature of 0.2
the system
We should also consider the role of the paramatete- 0.0 | | , I
fined in Eq.(19). Although this is defined in the same way as 0 200 400 600 800 1000

the inverse screening length in the Debyeéekil theory, it

has no physical meaning at any particular point in this inho-

mogeneous system, since it depends on the mean microion FIG. 1. The electrostatic paft, of the free energy per macroion

densitiesn;, rather than on the local densities. In a sense, iin units of Z2e?/8wea, for a=0.05 um and|Z|=1076.

is a “mean inverse screening length« is related to the

number of microions, and therefore, because of the overaltan investigate how the free energy of the system depends on

neutrality of the system, to the total charge on the macroionghe density of the macroions.

but it is also related to the choice of gaugee Sec. II ¢ In order to calculate the electrostatic part of the free en-

Changing the value ok at constant macroion density can ergy per macroionfe= f o5+ f s, We use the results in Egs.

thus represent two possible situations. If accompanied by th@l5), (48), (63), (64), and (67). The parameteka varies,

appropriate change in the value of it represents a change through its dependence ar,, as a function of the volume

in the charge on the macroions, and therefore in the total

number of microions. Il is varied without changing, it _[3B]Z]e* 1

represents a change of gauge, and the resulting alteration in K4\ "4mea v—1

the results is not an indication of any physical change in the

system, but of an alteration in the extent to which the linearHere,v is a dimensionless volume per macroion, in units of

ized Poisson-Boltzmann equation is a good approximation tthe volume of one macroion, (4/3p3; it is equal to 14,

the full version. However, changing the gauge away fromwherey is the colloid volume fraction. The presence here of

=0 invalidates results for the free energy obtained usindv —1) instead oy accounts for the exclusion of the micro-

Eq. (51). ions from the interiors of the macroions. The relation be-

tweenv and the dimensionless nearest neighbor macroion

separatiors (in units ofa) depends on the structure, as does

3Y. We shall use a face centered cubic structure as an ap-
Consider the simplest case, where the system contairyoximate model of both solidlike and fluidlike phases; for

only one species of microion, which is a monovalent counthis structure we have

terion. The absence of coions implies that the suspension

contains no added salt. We wish to specify the thermody- B 427 v

namics of a region which is homogeneousth respect to S= 3 Y -

the macroionk in order to investigate the possibility that

two such regions, with different macroion densities, mightFigure 1 showd, as a function ob, for a macroion radius

coexist. Overall charge neutrality requires that microions  of a=0.05 um and a charge diZ|=1076. This part of the

are associated with each macroion. We can disregard tHeee energy increases monotonically with increasinga

possibility that the microions are distributed in such a wayhard core repulsion has also been added, as the macroions

that the individual regions depart significantly from chargecannot interpenetrate.

neutrality; this form of distribution would be energetically  The ideal gas free enerdy, of the microions associated

unfavorable. Regional charge neutrality will be satisfied ifwith one macroion is

the number of microions in a given homogeneous region is

equal to|Z| multiplied by the number of macroions; we re- . _|Z|[ {3|Z|

id— o N

v

172
) . (68)

IV. APPLICATION OF THE RESULTS

(69

A 3
gard each microion as associated with a particular macroion, B A7 \a
and confined to the region in which that macroion is located.

That is, we consider each region to be approximately equivaA = (Bh%27m)Y2 is the thermal wavelength of the micro-
lent to a hypothetical system comprising an identical regiorions, whereh is Planck’s constant anch the mass of one
surrounded by an impenetrable wall, which confines the mimicroion. To simplify the calculations and to avoid having to
croions to that region. The thermodynamic potential for thischoose a value fam, we shall consider only the-dependent

hypothetical system is the Helmholtz free energy. Then wepart of the ideal gas free energyf,q= —(|Z|/8)In(v—1).

—In(v—l)—l]; (70
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0.05

-
“~ S,
\ (e}
005 ™\ -
0.1 N
T ] = T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
% %
FIG. 2. The free energfper macroion in units oZ%e%/8mea, FIG. 3. pV diagram for macroions of radiua=0.05 um,
for a=0.05 um. Dashed line|Z|=1000; dotted line{z|=1076;  showing a van der Waals loop.—df/dv has units of
solid line: |Z|=1150. 1075(32%e%/32n%ea*). Dashed line:|Z|=1000; dotted line]Z|

=1076; solid line;|Z| =1150.

In the theory of molecular fluids associated with van der
Waals, the free energy contains two terms: an intermoleculaassumed zero added salt, and ignored the possibility of
interaction which is attractive at long distances and has @hases differing in symmetry as well as in density.
repulsive hard core, and the ideal gas term, which becomes
more negative logarithmically as the volurd@ncreases. At
sufficiently low temperatures, so that the ideal gas term does
not overwhelm the intermolecular interaction, the graph of We have solved the linearized Poisson-Boltzmann equa-
the total free energ§ as a function ofV may develop an tion analytically, subject to justifiable approximations, for a
upward bulge, wher@?F/39V? becomes negative; since the suspension of identical spherical macroions at constant sur-
pressure is given byp=—dJF/dV, this leads to a van der face charge with no added salt. This is accomplished by an
Waals loop in thepV diagram. A horizontal line drawn extension of the method used by Sogami and Ise; by taking
across the loop ensures mechanical stabititeg two phases account of the exclusion of microions from the interiors of
are at the same pressyrarawing this line according to the macroions, we correct and complete the result obtained
Maxwell's equal area construction ensures that the free erin Ref.[10]. In this way, we have found expressions for both
ergy is globally minimizedthe two phases have the same the surface potentiap, and the electrostatic paft, of the
chemical potential In the present two-component system, Helmholtz free energy per macroion. Through the surface
the free energy per macroidrcontains two important terms  potential, each term ifi; depends on the positions of all the
fo and Afiy, which take similar forms and similar roles to macroions, so the results are not limited to pairwise interac-
the intermolecular interaction and the ideal gas term, respegions.
tively, in a molecular fluid. For certain values of the macro- The electrostatic part of the free energy resembles the
ion radiusa and charge numbéZ|, an upward bulge ap- intermolecular interaction in the theory of a molecular fluid,
pears in the graph dfas a function ob, resulting in a van and plays a similar role. To form the total free energy per
der Waals loop, which indicates coexistence between twenacroionf, it must be combined with a term representing the
phases with different densities. free energy of an ideal gas of microions. We find that, for

In Fig. 2, f=fg+ Afjy is plotted for macroions of radius certain values of the macroion radiasand chargdz|, an
0.05 um at three different values d|: 1000, 1076, and upward bulge appears ihexpressed as a function of the
1150. Phase coexistence behavior emerges as the chargevigume per macroion. As with a molecular fluid, this leads
increased above a critical charggof around 1076. Figure 3 to a van der Waals loop in theV diagram, and therefore to
shows thepV diagram for a system with the same physical coexistence between phases with different densities. This re-
parameters; d&|= 1150, the model predicts coexistence be-sult is qualitatively in line with experimental observations,
tween a rarefied region and a region witk- 20, which cor-  and also with the calculations of van Roij and co-workers
responds to a volume fraction of about 0.05, or a nearest [11-13 and of Warrer 14], which predict that phase coex-
neighbor separatio8 of about 5. istence (and, in particular, coexistence between a dense

The values of the charge used here are larger than some phase and a rarefied phasarises from the linearized
the effective charges observed in recent experimgtin Poisson-Boltzmann theory.
which phase coexistence was observed in suspensions of col- We have clarified the interpretation of the Poisson-
loidal particles of about this size. The discrepancy is prob-Boltzmann equation and of results obtained from it, and in
ably due to the simplifications in the present model: in addiparticular of the constant;,. This can take any value in the
tion to linearizing the Poisson-Boltzmann equation, we havéull equation, but in the linearized version it is restricted to

V. CONCLUSIONS

031403-9



MICHAEL KNOTT AND IAN J. FORD PHYSICAL REVIEW E63 031403

values that are consistent with the validity of the lineariza-to take account of differences of symmetfgolidlike/

tion. If we wish to calculate free energies using Debye’sfluidlike) in addition to density differences. Finally, the as-

charging-up equation, there is a further restriction: the prosumption that the macroion surface charge is independent of

cedure makes sense only nf, is equal to the mean ion the configuration of the system, though often made, is not

densityn; . physically reasonable; since the charge is caused by disso-
By its very nature, the Poisson-Boltzmann theory ignoreiation of surface groups, it would be expected to depend on

a number of effects, for example ionic correlationsthe local ion concentration in the solvent, which depends on

[16,23,24. However, it should prove possible to extend thethe positions of the macroions.

present treatment to take account of certain other effects that

have been ignorgd here, qnq which would be impO(tant toa ACKNOWLEDGMENTS

complete theoretical description of the phase behavior. More
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