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Dynamic susceptibilities of an assembly of dipolar particles in an elastic environment
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Theoretical model to describe magnetodynamics of a ferrogel, i.e., an assembly of ferromagnetic nanopar-
ticles embedded in a gel, is proposed. The reorientations of the particles are determined by the influence of the
elastic matrix and the rotational Brownian motion. Due to the interplay between these two factors, the main
parameter characterizing the static magnetic susceptibility of the system is the ratio of the elastic modulus of
the matrix times particle volume to the thermal energy. It is shown that the main components of the dynamic
magnetic-susceptibility tensor are determined by the combinations of the reference rates of several processes
inherent to the system, namely, the elastic restoration of the particle orientation, Brownian rotary diffusion, and
viscous relaxation of the particle angular momentum. In the framework of the model, absorption of the energy
of an alternating external field by a ferrogel is studied. With allowance for the ever present interaction of elastic
and Brownian forces, the effective relaxation times for the longitudinal and transverse components of the
ferrogel magnetization are evaluated.
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[. INTRODUCTION In what follows we consider the orientational dynamics of
an assembly of noninteracting Brownian dipolar particles re-
The properties of composites obtained by embeddingiding in an elastic matrix. We remark, that unlike the studies
magnetic nanoparticles in easily deformatseft) structures [6,7] of fluid matrices with a nonequilibrium elasticitghe
(sometimes calledomplex magnetic fluidsyre rather fasci- Maxwell fluid), our objective here is a magnetic spectrum of
nating. On the one hand, having been incorporated into st ferrogel. Therefore, we consider a matrix that possesses a
pramolecular structures, such particles can produce neifue (equilibrium elasticity. The particles are assumed to be
magnetically controlledsmar} materials, e.g., ferroliquid Magnetically hard and the coupling of an individual particle
crystals[1—3] or ferrogels[4,5]. On the other hand, when With the matrix is modeled by an orientational potential that
distributed over the bulk of the matrix in small amounts, theis @ quadratic function with respect to the angular deviation
same particles can be used as magnetically driven mecharfif the particle magnetic moment from its equilibrium direc-
cal microprobes thus allowing one to obtain information ontion. The latter is imposed by the matrix, and depending on
the rheology of the carrier media on the scale comparablée history of the sample, two limiting cases are conceivable.
with the particle size, that i&=10 nm[6]. Indeed, single- (&) If the gel forms in the presence of a strong magnetic field,
domain partides possess a h|gh Specific dip0|ar moment S’@'ﬂis direction would be the same for all the particles. Then
that the response of the system to a probing ac field may bé&e system is macroscopically anisotrogimiaxia) and is
easily recorded even with relatively unsophisticated equipcharacterized by a symmetrical susceptibility tensor with two
ment. However, one needs an appropriate theoretical framédain components—the longitudinaly) and transverse
work to analyze the data, i.e., it is necessary to understandy.) ones—which are found by summation of the corre-
what physical mechanisms contribute essentially to the magsponding single-particle contribution®) If the gel was cre-
netodynamic spectra of soft magnetic systems. ated in the absence of a field, the particle axes distribution is
When a disperse system is sufficiently dilute—which israndom, and the equilibrium direction of a particle magnetic
definitely so if the objective is to investigate the properties ofnoment exists only as a mesoscopic parameter. Then, the
the matrix itself—the main contribution to the spectra comessystem as a whole is isotropic, and its macroscopic suscep-
from the behavior oindividual particles. Unlike the situation tibility is constructed according to the well-known rule, see
in more coarse suspensions, in nanosystems the orientatiorRéf. [8], for example, as a weighted average=3(y|
dynamics is always a result of joint action of the determin-+2y,).
istic (applied field, elasticity, and viscosity of the majrand As a dissipative part of the particle interaction with the
fluctuational(Brownian diffusion factors. This circumstance matrix, we take the viscous friction in the Stokes approxima-
is of vital importance6,7] for the understanding of the dy- tion. To simplify the theory, the particle is modeled by a
namical spectra of complex magnetic fluids. plane rotator, so that its only degree of freedom is the angle
¥ describing the deviation of the particle dipolar momgnt
from its equilibrium direction. Such a scheme is in common
*Corresponding author. FAX+7 3422 336957. Email address: use, see Refl9], for example, in the theory of dielectric
raikher@icmm.ru response of polar fluids.
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Il. REFERENCE TIMES Thus, the model system posseses three independent pa-
rameters with the dimensions of time. Moreover, as is shown
below, in a typical nanosuspensidmagnetic fluid, for ex-
ample these times differ from one another by several orders
) oU of magnitude. Under such circumstances, it should be ex-
[9=——+Q(1), (1) pected that the response of the system to an external field
9 H(t) essentially depends on the interrelation between the
Iperiod of the excitation and the reference times of the prob-

where the first term on the right-hand side is the regulaIem However. before commencing the analvsis of the pos-
torque produced by the elastic environment of the particle?, ' 9 y P

: : : : Sible response modes, let us check the range of applicability
and the external fieldH. Assuming a harmoni¢quadratig¢ L ) )
potential, we have for the Stokes approximation. As is well knovh1], this

approach resumes a small Reynolds number. For a particle of
U=3K 92— pu(H|cosd+H, sind), (2) @ sizea moving with the velocityu=wa, wherew is the
oscillation frequency, this condition is
where the indices of the field components correspond to the
directionsd=0 and 9= /2. Re~praul n~pya’wl{~wn <1, (10)
In the Stokes approximation, the torgQ@ein Eq. (1) in-
corporates the usual friction torque and the white npgge ~ Where we set that the density of the liquid mafsixand that
of the particlep, have the same order of magnitude. Substi-
Q(t)z—gi‘Hy(t), (y(O)y(t"))y=2{Ts(t—t"), (3 tuting the reference frequencies—elastig from Eg. (6)
and thermalw; from Eq. (8)—it appears that the Stokes
where the termy(t) accounts for the thermal motion of a approximation(10) is valid as long as
particle at temperatur€ (the Boltzmann constant is set here-
after to unity. We assume that by the order of magnitude N<Tk, 7D, (11
{=67nv, i.e., { is the drag coefficient of a spherical particle
of volumew in a liquid with the viscosityz. i.e., the inertial time should be the smallest of all the refer-
With the elastic potential2), the dissipation mechanism ence times.
(3), and in the absence of an external field, EQ. has the It is convenient to introduce the dimensionless times of
form of the Langevin equation for a torsional oscillator the Debye(therma) and elastic relaxation as

The equation of the orientational motion for a particle
with a moment of inertid writes

|9+ L9+KI=y(t). (4) to=1p/7 =TI, ty=1¢/7=0%KI, (12
Thg ratio of t.he inertial torque to t_he viscous one in ).  so that conditior(11) corresponds top , t>1. The param-
defines the first of the reference times of the problem etertp for suspensions has often been estimated, and the
conditiontp>1 may be written as the inequaliffa»n®<1,
n=1/¢. (®  which for T=10* K and =102 P holds as soon aa

=10 % cm, i.e., under all the conceivable conditions.

To estimate the timg, , we first remark that the elasticity
modulus of a polymeric gel is of the high elasticigntropy
origin, so that in order of magnitude it 5~ vT, wherev is
the number of links in a unit volume. From dimensional
considerations it followK~Ev~vTu, that is the elastic

_ Y constant is the temperature times the number of links in the
ox=\KIT=1/7. ©®  Volume of the matrix that is equal to that of the particle. We
assume that the particle “senses” the presence of an elastic
matrix if, having been embedded there, it dislodges at least
one link, that is whenvv~1. ThenK=T, so thattk has the

=K = (wﬁTl)fl_ 7 same order of magnitude gs, for which case the inequality
(11) is already proven. For the particles of the siae

Since the Brownian particle is in equilibrium with its en- ~10 nm, the conditionrv~1 rendersE~0.4 atm, so that

vironment(heat bath, one can introduce one more referencethe value obtained, namely~10'® cm2 is close to that of

During this interval the particle angular velocity thermalizes,
i.e., the velocity distribution function assumes the Maxwell
form [10].

In an elastic carrier medium, one may introduce the natu
ral frequency of the torsional oscillation of the particle

In combination withr, it defines the reference time of elastic
restoration, namely,

time scale defining the thermal frequency real gel-formation thresholdEl2] in polymers. However,
this estimation needs to be used carefully since, in a certain
wr=\T/N=1rp7. (8) sense, it yields the upper boundary of the tested range. In-

deed, it assumes that the particle interacts with the matrix
In turn, combination ofwr with 7, renders the well-known only in a steric (excluded-volumge way. Therefore, this

Debye time of the thermal orientational relaxation mechanism becomes effective only for the networks that are
so dense that on the average the interchain cell is too small
={IT. 9 for a particle. On the other hand, had the particles been ad-
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sorbed on the junctions or chain segments of the network, thim this limit A, ;t>1, so that in the general formu(a7) one
value of vv may become much lower than unity. needs to retain only the solution of the inhomogeneous prob-
lem
I, EQUILIBRIUM FLUCTUATIONS OF THE .
ORIENTATION ANGLE AND ANGULAR VELOCITY FHt)= 1 j (e)\l(tiu)—e)\z(tiu))y(U)dU
AN ) —o

In order to obtain the equilibrium correlation function for
the orientation angle, we use the Langevin equatfbnThe
general solution of the homogeneous equation is sought in =fﬁxf(t—U)y(u)du. (19
the form ¥(t)<exp(t) yielding the characteristic equation

1 Then the correlation function takes the form of a double
N2+ ?)\erﬁ:O, (13)  integral:
|

t 0
whose roots, determining the rates of the relaxation pr0.<19(t)19(0))=fﬁwduﬁwdu’f(t—u)f(—u’)(y(u)y(u’)),
cesses in the system, are
1 which is easily taken with the aid of E¢3). The result of
ANo=——[1% ‘/1—4(w|<7|)2]- (14) integration once again leads to formylB) as it must do.
' 27, Differentiating Eq.(17) with respect to time, one finds the
time dependence of the angular velocity. The expression for

Using definition(12) for the dimensionless elastic time and its correlator

the fact that in the physically relevant range>1, we may

simplify Eq. (14), by setting (02
; , (QHQ(0)= "1

V1—4(wgm)?=\1—4lty~1—-2kc—2t5. (15

2T
(N M= et~ I—exp( —t/7)
(20)

This transforms formulagl4) into is obtained just as E¢18) and confirms the definition of the

1 relaxation timer, given above.
), (16) Comparing formulag18) and (20) one finds that in the
physically relevant range of material parameterg )

which clearly demonstrates a marked difference in the magthe relaxation goes in two stages. First, in a rather fast man-

nitude of the roots. ner (during a time~ 7,) the equilibrium with respect to the
The general solution of Eq4) with allowance for the particle angular velocities settles. Then, in a much slower
initial conditions 9(0)= ¢ and 9(0)=Q is fashion(on the time scale- 7¢) the equilibrium with respect

to the orientation angle is achieved. Note that we refer only
9 Q to monotonic relaxation. An oscillatory regime, although for-
9(t)= H(Mehzt—)\zexﬂ) + H(exlt—e)‘zt) mally not forbidden, requires the conditi@sy 7,=1, which,
see Sec. I, cannot be realized within a physically meaningful
1 [t domain of material parameters. For example, in order to get
+ mfo(exp)\l(t—u)—exp)\z(t—u))y(u)du, wk7=1 in a gel, the number of junctions should have been
increased by four orders of magnitude while the viscosity
(17) should have been kept constant at a value close to that of
) . . water.
Where AN=A1—Ap. TO f|nd the correlation fu_nct|or_1, we To end this section, we find the asymptotic form of the
multiply Eq. (17) by the initial valued of the orientational ¢, yejation function for small times. To do that, we expand
angle and take the average over the equilibrium ensemble. lﬁ(t) in a Taylor series, multiply the expression obtained by

o . 2 _ _
equilibrium one hag(9%)=T/K, (9Q2)=0, and(9y(U))  he'initial valued, and take the average over the statistical
=0 for allu>0. The nonzero contribution comes only from ensemble. The result is

the first term so that

T g . (9(1) )= (9% + (90t + 3(H9)2. (21)
(9(1)9(0))= m()‘le TR Due to ergodicity, ensemble averaging is equivalent to that

T(1-(KI2DE2 for t<7, over time, so tha{99)=0 and(99)=—(9%). Therefore,

“K|exp(—ting for t>7. (18 (1) 9)=(9%) - 3(QH?, t<r. (22)

Another way to obtain the correlation function that is This expression is usually called the dynamic limit of the
more cumbersome but very useful methodically, is as fol-angular correlation function. It could be derived also from
lows. Since we construct a description for a stationary statehe general equatiofi8) in the small-time limit. We remark
expression17) should hold in the long-time range as well. that since expressiof22) follows from the ergodicity hy-
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pothesis and the assumption that the observation time i&pplying this to Eq.(26), one gets
short, it should hold for more complicated models as well.
-
cosl‘(K) — 1} (28

The equilibrium distribution function for the particles is, |, 4 similar way, forH=H, we get the transverse static
as usual, given by the Gibbs law. For the potentland susceptibility '

with the standard expressionl Q2 for the kinetic energy,
one has

2
nus _
X||(O)= Te T/IK

IV. STATIC SUSCEPTIBILITIES

2 2
x.(0)= n%<sin2 19>=n%e*”'< sinI—(%) . (29
Wo(ﬁ,Q):z—lexp[— ———
For vanishing elasticity K<T), expressions(28) and
(29) tend to the same limit

x(0)=x,(0)=nu?/2T,

which, as it must do, coincides with the already known result
for a system of free rotatof$,10].

In the opposite case of high rigidityKeT) it follows
rom formula (29) that the transverse susceptibility tends to
he finite athermic limit

+ %(HH cosd+H, sind)|, (23

whereZ is the partition function determined by the normal-
izing conditionfd¥[dQ Wy=1

First, we consider the longitudinal static susceptibility,
i.e., the one along the axis imposed by the elastic potentialf
For simplicity, we assume that this direction is the same fo
all the particles of the assembly. In particular, this means tha
even in the abs_enc_e of the probing field the system has a Y. (0)=nu?K, K>T. (30)
nonzero magnetization

M = un(cos) For the longitudinal susceptibility the rigorous athermic limit

- ' is zero. According to Eq(298), it is approached as
wheren is the particle number density. Switching on a mag-
netic fieldH |, imparts an additional orientation to the dipole

moments, so that the magnetlzatlon acqwres the increment

x|(0)=nu?T/2K?, K>T. (31)

Indeed, in a rigid gel, the particle is almost perfectly oriented

SM|(H) = un[{cos®)y—(cosd)]. (24)  along the macroscopic anisotropy axis on account of its cou-
pling to the matrix only. Therefore, application of a magnetic

Here the angular brackets denote the statistical averaging affiéld along the same direction can do practically nothing for

the subscript indicates the value of the magnetic field, athe further enhancement of orientation. From E, in the

which it is taken. The absence of a subscript means the casgtatic fluctuation-free @=0) limit one arrives at the stan-

of zero field. In the approximation, linear iH and with  dard equilibrium condition

allowance for the normalizing condition, the equilibrium dis-

tribution function(23) transforms into dUla9=0. (32
[ K '{ Ki}z) For the longitudinal responséi=H)) Eq. (32) yields
——=exX
27T

K&+ uHsind=0.
mH uH,

X| 14—~ (cosd—(cosd))+ ——sind|, This equation does not have a solution that is linear with
respect to the field strength implying that the longitudinal
(29) susceptibility becomes nonzero only when thermal fluctua-

tions are taken into account, see expresgi®h). For the
transverse susceptibility the finite athermic limit can be, of

M| nu? course, be obtained directly from E(B2) as well. AtH

x|(0)= lim ——=—[(cos ¥)—(cos$)?]. (26) =H, one has

HH—>O H” T

and the longitudinal susceptibility writes

A o . Kd=uH, cosd=~uH, .
The equilibrium averages are evaluated easily with the aid

of the formula Expressing & from here and substituting it intoy,

K 92 =nud/H, , formula(30) is recovered.
(cosNI) = \/ f dﬁex;{—FHNﬁ)

—ex ) @27 The linear response of any system to a weak probing field
- 2K H(t) can be representd@®] as an integral

V. DYNAMIC SUSCEPTIBILITY

031402-4



DYNAMIC SUSCEPTIBILITIES OF AN ASSEMBLY C. .. PHYSICAL REVIEW E 63 031402

o The general expressiofi8) for the angular correlation
M(t):f dr K(1)H(t— 7). (33 function has been derived in Sec. Ill. Its substitution into Eq.

0 (40) enables one to write down the dependence of the sus-

This relationship explicitly takes into account the causalityCePtibility on the material parameters of the system as an
principle, according to which the memory functidd(-)  integral (37). The latter, however, cannot be evaluated in
must vanish in the long-time limifC(-2)=0. For a harmonic  ¢losed form. Thus one cannot derive a simple analytical ex-

signal H(t)=he ! relation (33) allows to define a gener- pression fory valid for an arbitrary set of material param-
alized linear susceptibility as eters. However, a number of important simplifications are

possible. To arrive at them, we represent E@) as

M) =he 1t | dremc(r)=he ot . (34
(t)=he fo 7€ K(7)=he '“'x(w). (34 (9:9)= (8 +bexp[ A1 b)t]

The memory functionC is associated with particular

physical characteristics of a system using the correspondence — _1_ b exd — y(1+Db)t]
principle. Setting the above-found static susceptibility—see
Erc]];.f(iﬁg)sand (29—equal to the limit of Eq(34) at =0, —(9exp(— ) sinh(Bt+ ¢) (41)
sinhy ’
nu? 5 * o dG,
Xal0)= ——(Xo)= fo dr .= J'O g | =Cal0), where we denotey=1/(27,), b=+1— 4/t =tanhy, and
=yb.
(39 To be specific, we take the transverse correlation function
where, according to Eq$28) and(29) we set from Eq.(40). Expanding it in the Taylor series with respect
to the angular correlation function and using the binomial
cosd—{cosd) for a=| expansion we have
=1 g (36)
siny for a=1.

(952 exd — y(2n+1)t]
Sinh(9,9) = 2(2n+1)' (2 sinhy)?n*t

Thus, as the fluctuation-dissipation theorem predist®,
Ref.[10], for example, one finds that the linear susceptibil-
ity of the system is determined by the equilibrium dipolar ‘ .
correlation function. The final expression fgrin the nor- X g’o Cont1(—1) expd(2n+1-2k)
malized form is

2n+1

X(Bt+y)]. (42

Taking into account the relation between the parameters
andb, Eq. (42) may be rewritten as

Xa(w)/)(a(O)z1+iwf:d7'ei“”Ga(7) (37

with
(1+b)(9%) "t 1
e _ (cos®; cosd) —(cosd)? _(sind; sin®)? sinh($,9) = EO b 2nT 1)1
I (cog 9)— (cos9)? Y (si9)? — ’
(38 X 2 brl Chni1 €XN— Yaul) (43)

As it should be, in an isotropic system that has no rigidity
(K=0), one getgcos¥)=0 and thusG|=G, . with
In the model under discussion, both components of the
dipolar correlation function could be calculated exa¢ilg]. (9%)=TIK, v =v[(2n+1)(1—Db)+2kb].
An essential simplification arises because the Langevin equa- '
tion (4) is linear in the phase variablg. Since the white Subs“tu“ng Eq(43) in Eq (37) and integrating with respect
noisey(t) is a Gaussian random process, the variabl€)  to time, we obtain
has the same statistics on account of the linearity of the

Langevin equation. Taking the Gaussian average, one finds Y, (w) o (1+b)(§2)]2+1 1
(e™®y=(cosx)=exf — 3(x?)]. (39) x.(0) 7 sin(92) ico 2b } (2n+1)!
With the aid of formula(39) and standard trigonometric re- ot (b—1\k CK.y
lationships, we have for the dipolar correlation functions X kz_:O b+1 m (44)
N n,k
(0= %' ()= M (40)  In like manner, the longitudinal susceptibility may be trans-
cosi{9?)—1 sinh( 92) formed (see also Refl10]) and takes the form
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X)(@) 1. iw i (1+ b)<ﬂ2>r“ 1 Rex (@ /2,00 404 ]
0) 2y_ 14 2b 2n)! 11
X(0) cosi{9?)—1 n=1 (2n) _ 0.002 1
2n k
b—1\k C
A 1) I 49 l
k=0 + Yok lw i
where 0.6 1
Y =¥[2n(1-b)+2Kb]. 04'
VI. HIGH-RIGIDITY /LOW-TEMPERATURE LIMIT 1
0.2 ]
Formulas(44) and (45) are very convenient in order to
analyze the cas@ <K, which is natural to calthe high- 7 w1,
rigidity limit. As the above estimation shows, for a polymeric 0 +—T T
gel the onset of this inequality is roughly equivalent to the 105 104 108 102 1071 1
condition that the particle-matrix steric interaction is estab-
lished. 0.5 7 Im x (@) [ x,(0)

Apparently, in the high-rigidity limit the macroscopic an-
isotropy is most pronounced, and the two susceptibility com-
ponents differ considerably. To obtain the approximate for-
mula for y, , we retain in expansiori44) only the term ]
linear in the parametél/K and make use of the approximate 0.3 -
relationb=\J1—4fty~1—2kx . The result is

0.4

X o) 14| - "
x.(0) W ygo—io t(yg—io) o
1 w7k ' i
:1—inK+(tK—inK)(l—ia)7‘K) 0 et e
1 105 10+ 108 102 101
= (e>m7). (46)

FIG. 1. (a) Transverse susceptibility foF/K<2; solid curves
(left to right) show the real part by the exact formuldd) at, re-

Therefore, in the lowest order the relation describing theSPectively,T/K=0.5, 1.0, and 1.5; dashed curve shows the result
transverse susceptibility of a suspension in a rigid<K) obtained with the approximate formulé?) for T/K=1.5; for lower

gel has the structure of the Rocard formula. The latter type O\{alues, exact and approximate curves do not resolve within the
frequency dependence is well known in mlolecular SpeCtrosgcale of the figure. Inset shows the details of the curve behavior at

copy, see Ref[10], for example. We would like to remind, :ihbc?liggfr;}frtiguse:r%eVr;?S)eLmoaT%Eary part of the transverse suscep-
however, that in the physically relevant range of material '
parameters 4> 7,) Eq. (46), despite the fact that it is qua- jation(with the same accurapyf the longitudinal sus-
dratic in w, does not display any resonance and its bEhaV'OEeptibiIity with the aid of Eq.(45) yields

is close to the Debye susceptibility. The main function of the

1—iwr— w?n ¢

additional term in the denominator is to prevent the diver- (@) 1 w7 (TIK)?
gence of the integral absorptidfultraviolet catastrophey Xl = — K )

by ensuring the correct behavior @t . Its subsidiary ef- X1(0)  1-liwre— w?n g 124—-iw7y)

fect is that at some high frequency the real pariyof, al- (48

ready being very small, becomes negative, see insets in Figs. . )

1 and 2. We remark also that formuld6) can be derived Ccomparison of formulag4?) and (48) shows, as one might

directly from the Langevin equatiof#) if we neglect fluc- have expected, that in the dynamic lintsiee Ref[13], for

tuations. example the longitudinal magnetization relaxes twice ag fast
In order to evaluate the temperature correction to théS the transverse ong= 7, /2=r7y/2. The corrections<T

transverse susceptibility, we sum E44) up ton=1 allow- 0 the Rocard-like dispersion factors in E¢£7) and(48) are

ing the smallness of the paramete¥ 7 . This yields new. For both orientations, they considerably improve the
quality of the approximation. In Fig. 1 we show the results of

1 i T/K)2 numerically exact evaluation of the transverse susceptibility
XL(;)) = . 5 - Sw;K(, ) . (47 by Eq.(44) against the analytic dependen@&). We remark
X1(0)  1-iwrg—w?ry (3=l that although the approximation is formally justified only for
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_Re (@) /x,(0) Substituting Eq(49) in Eq. (37), after integration and some
1 rearrangements one recovers E@s) and(498).

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2 1

VIl. LOW-RIGIDITY /HIGH-TEMPERATURE LIMIT

The opposite relation between elasticity and temperature,
i.e., T>K, corresponds to weak elastic effects so that the
particles are almost free. In this limit the difference between
the correlation function$40) tends to zero exponentially:

G)(1) =G, () =exd (9 3)— (9], (50)

1 indicating that the transverse and longitudinal susceptibilities
0.1 4 should approach a common limiting form.

01 The angle correlation function entering E§O) is given

105 10¢  10® 102 {0 1 10 by a general formul&l8). We evaluate it with the quadratic
accuracy in the small parameter/ 7« and consider the in-

057 1 2,0 [ %, (0) termediate time asymptotid¢s< rx— 0. The result is
- 2 t.m —t/
0.4 1 (99)—()=——+—(1-e ')
™ 7D
0.3 - m
3 _ 1 2
] +TDTK|:3 2t/7'|+2(t/7'|)
0.2 —(t/m+3)e Y. (51)

The first two terms of this expansion constitute the well-
known expression for the angular correlation function of a
free particld 10]. The effect of rigidity is rendered by the last
term, note that in the limit considered it contains an addi-
tional power of the small parametey/ 7y .

Substituting Eq(51) in Eqg. (50) and integrating the dipo-

FIG. 2. (a) Transverse susceptibility foF/K=3; solid curves lar correlation function so obtained, one finds on the basis of
(left to right) show the real part by the exact formuld) at, re-  the linear-response theo(§7) the approximate expression
spectively, T/K=3,5,10,20; dashed curves show the result obtained

0 b - T T T LA T T TTTIT

108 104 1073 102 101 1

with the approximate formul#52) for T/K=3 and 5; for higher  x(w) 1 K iwmp
values, the exact and approximate curves do not resolve within theX(O) = 1—| ~ 2 1+ T m , T>K.
scale of the figure. Inset shows the details of the curve behavior at @Tp™ @ T7p @Tp (52)

the high-frequency endb) Imaginary part of the transverse suscep-

tibility for the same values oT/K. In deriving this equation, we have taken into account the

T<K, the curves by Eq(47) resemble the exact one rather smallness ofr /TD' Note that in the limit under consider-
closely atT/K=1 as well in the whole frequency range.  ation the subscript of is not relevant.

It should be noted that formuldg7) and (48) are easily As formula (52) shows, at high temperatures the main
derived from the approximate dipolar correlation functions.term of the magnetic susceptibility of a ferrogel once
The pertinent relationships follow from E¢40) when for-  again—compare Eqg47) and (48)—assumes the Rocard
mula (18) and the smallness of the parametdid and form. However, the parameter in this new equatiomgsand

7,/ 7¢ are taken into account: not 7 , so that now Eq(52) is akin to the susceptibility of a
7 dipolar suspension with a simple viscous carfiEd].
G, (t)y=e "+ T—(eft/TK—eft/T') The exact dependencigs (w) by Eq. (44) for T/K=3
K are presented in Fig. 2 in comparison with the approximate
T2 expression52). Here the temperature-dependent correction
+ w(e’e’“TK—e’“TK), to the Rocard form is<1/T. As the graphs show, the ap-

proximation obtained works fairly well down t6/K=5 in
(49 the whole frequency range.

G“(t):e*2t’TK+zl(e*Zt’TK—e*“Tl) According to Fig. 2a), the real part ofy in a weakly
Tk elastic medium does not differ qualitatively from that ren-
2 dered by the standard Rocard factor. However, for the imagi-
+ (e~ 4k —g=27) nary part, see Fig.(B), one easily notices the difference.
12K? Namely, at any finite temperature, the maximum of the ab-
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sorption line is lowered in comparison with the Roc#od
equivalent Debyglevel that in our units is 0.5 and is tem-
perature independent.

This deformation of the absorption peak is also frequency
dependent. Separating the imaginary part of E5§) and
neglecting its difference from the Debye one, i.e., setting
w?rp<1, we have

K 1—3X?
T (1+x?)?

X'(0) X
x(0)  1+x2

: (53

whereX= w7y . From Eq.(593) it follows that the “elastic”
correction is positive at low frequencies, passes through zero
atX=1/\/3 and becomes negative. Inside the negative region
at X=/5/3 it assumes minimum of 9K/16T.

Therefore, in the high-temperature limit the anisotropy of
the susceptibility is exponentially small in the reduced elas-
ticity 7, /7«. However, the contribution from the elastic
mechanism to the isotropic part of the susceptibility is linear
in this parameter. Analysis of the limiting temperature cases
shows that in each of them the susceptibility may be written
in the Rocard form. As one expects, the effective relaxation
time in the high-temperature case coincides with the Debye
time of orientational diffusionry, while in the low-
temperature limit it tends to the elastic relaxation time

The overall behavior of the transverse susceptibility in a
wide temperature range is presented in Fig. 3. As is apparent,
from Fig. 3b), the maximum of the absorption line goes

PHYSICAL REVIEW E 63 031402

Re XJ_((D)/ XJ_(O)

10

103

102

| Im XJ_(O))/ XJ_(O)

down and aff/K~3 falls as low as 0.41, that is about 80% 01
of the pure Debye value, which in the units used here is 0.5.

In Fig. 3(c) the curvesy, (w) are plotted in double- 0 —
logarithmic coordinates. This reveals the presence of two 105 104 10 102 101 1
asymptotics in the absorption line: the low-frequency wing
that depends linearly on the frequency, and the high- gm0
frequency end where the dependence is cubic. In what fol-
lows we derive the corresponding approximate expressions. 10

VIIl. HIGH-FREQUENCY ASYMPTOTICS 102

In the high-frequency range, the behavior of the correla- 10
tion functions at short times is essential. Hence, it is conve-
nient to expand the angular correlator in Taylor series with 104 ¢)
respect to time and to cut off all the terms higher than
This yields 105

242 2:3
w5t w5t T,
— 2 _ T T 10-6 a T TTTTIm T T TTTIT LBLBLLLLLLL LBLBLLLLLLL T TTTTmm T rrrrm 1
(D)= = ——+ 67 t=0. 69 105 104 109 102 10" 1 10

With this expansion, using formul@0), we obtain the trans-
verse dipolar correlation function as

242
w5t

t
Gl(t)=l—(l—3—7_l> 5 (55)

coth( 92).

Substituting this in Eq(37) and performing some simple

FIG. 3. (a) Real parts of the transverse susceptibility curiief
to right) at, respectivelyT/K=0.1, 1, 2, 3, 5, 10 and 20b) Imagi-
nary part of the transverse susceptibility for the same valug@gkof
(c) Imaginary part of the transverse susceptibility for the same val-
ues of T/K double-logarithmic plot.

XL(‘*’)_ i w'zf T
xi<0)‘(_1+w_n)_2‘:°”<?)’ oo 59

rearrangements, the desired asymptotic expression for the

susceptibility is

w
The longitudinal susceptibility is found in like manner as

031402-8
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Re x, (e / %, (0)

-0.005 -

-0.015 -

0.01

0.001

0.0001

1e-005

0.6

1e-006

1 10 0.4 -

FIG. 4. (a) High-frequency asymptotics of the transverse sus-
ceptibility. Solid lines are obtained by the numerically exact solu-
tion of Eq. (44), dashed ones by the approximate form{#6); the
values of T/K are 0.5, 5 and 20 ranging from top to bottom(a) 0 AL LA
and reversely inb). 0.001 0.01 0.1 1 10 100

0.2

FIG. 5. (a) Effective relaxation times: transvergd)) and longi-
XH(“’) i\ w3 T tudinal (2), scaled withry , as functions of the reduced temperature
m =\ - W ® (57) T/K_(solid Iine_s; the corresponding intuitive ex_pressiotimms of
I partial relaxation ratgsare shown by dashed linegh) The same
relaxation times, scaled withy, as functions of the inverse tem-
Formulas(56) and (57) confirm that the high-frequency peratureK/T (solid lines; the intuitive expressions are shown by
asymptotics are &2 for the real part of the susceptibility dashed lines.
and 1k for the imaginary one. In the high-temperature limit
(T>K) the coth function in Eq(56) tends to unity, so that
the high-frequency asymptotics of the absorption line is pro-
portional to the thermal frequencyﬁ:T/I. In the low-
temperature limit, that isT<K, the function coth[/K)
—KIT, so that the asymptotic value of absorption is propor«yhere
tional to Kw?/T=wz=K/I, ie., eigenfrequency of the
elasticity-driven oscillations. These conclusions are illus-
trated in Figs. 4a), 4(b), where these asymptotics are com- ofi [~
pared to the exact results obtained with the aid of @4). Ta = fo G, (t)dt (59

w—0, (58)

IX. LOW-FREQUENCY ASYMPTOTICS. EFFECTIVE

is the effective time characterizing the final stage of the equi-
RELAXATION TIMES

librium settling. Formula58) explicitly shows that the low-

From the basic formul&37) of linear-response theory it frequency asymptotics aljeioc const () and x| «w.
follows that the low-frequency wing of the absorption line  Comparing expressiofb8) with the general formul&44)
may be described by the expression at o—0 we have
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o0

1
LT SInNTIK) &

2n+1

eff

(1+b)(§2)| 201 ingly, atT—>.0_ (dynamic limit, no flyctuatiqn)sboth effectiye
b ) times are finite, th_e transverse time being exactly twice as
large as the longitudinal one. As the temperature grows
and/or the rigidity decreases, the relaxation by orientational
’ (60) diffusion becomes more efficient, and the effective time goes
down tending to the Debye expressiei/T.
In Fig. 5(b) the same effective times are presented scaled
where with the Debye time 75, which controls the high-
temperature case. Here the abscissa axis is inverted with re-
b= y1-4fy, ﬁ’k:[(2n+1)(1—b)+2kb]/27|. spect to that of Fig. ® so that the left end of the plot
corresponds now to a high-temperature case. There the mac-
roscopic anisotropy of the gel is very weak, and both effec-
tive times approach each other exponentially, seg'). In
the low-temperature rand€/ T>1, the dynamic limit, where
Tiff 1 i (TIK)2+1 7, =27, comes in effect, compare Fig(eh. However, in
— o~ — none of the cases does the intuitive approg3) seem ap-
¢ SINN(T/K) 7=6 (2n+1)(2n+1)! propriate to describe the real effective timeS' except

b—l)k 1
b+1] ki(2n+1—K)!

k=0

We reiterate that Eq(60) is valid for arbitrary values of
material parameters. For the case of intergst 7, , formula
(60) simplifies considerably and takes the form

1 TIK sinhu Sinhi(T/K) may.be in trivial limitsT/K—0 andK./TeO..
= — f u= — , (61 Finally, we present the asymptotic relations for the effec-
sinh(T/K) Jo u sinh(T/K) tive times obtained from Eq$61) and (62):
thus reducing it to one hyperbolic integral function. In like [ T2
manner for the effective time of longitudinal relaxation, one T«| 1— — for T<K
has off 9K
seff ]
. K
1 2 (TIK)?" o1+ for TSK,
7« CcosiT/K)—1 ;=1 2n2n! ) ) (64)
1 T/K coshu)—1 1 — for T<K
= f WL (62) 27K 2]
cosiT/K)—1Jg u T‘f‘eﬁ: L
K
The temperature behavior of the effective relaxation times mp| 1+ T for T>K.
is presented in Figs.(8 and %b). For comparison, in the
dashed lines we show the results of the intuitive approach, ACKNOWLEDGMENTS
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