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Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids
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We present a model for the motion of an average atom in a liquid or supercooled liquid state and apply it to
calculations of the velocity autocorrelation functi@ft) and diffusion coefficienD. The model trajectory
consists of oscillations at a distribution of frequencies characteristic of the normal modes of a single potential
valley, interspersed with position- and velocity-conserving transits to similar adjacent valleys. The resulting
predictions forZ(t) andD agree remarkably well with molecular dynamics simulations of Na at up to almost
three times its melting temperature. Two independent processes in the model relax velocity autocorrelations:
(a) dephasing due to the presence of many frequency components, which operates at all temperatures but which
produces no diffusion, an¢b) the transit process, which increases with increasing temperature and which
produces diffusion. Because the model provides a single-atom trajectory in real space and time, including
transits, it may be used to calculate all single-atom correlation functions.
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[. INTRODUCTION (often called the dynamical matjixo find the frequency
distribution for that configuration, and averaging over all
In order to explain the experimental fact that the specificconfigurations chosen. This is done in one of two different
heat of a solid changes little, while its self-diffusion coeffi- ways. In quenched normal modgQNM) theories
cient changes greatly, when it melts to a liquid, Frerke?]  [9,40,41,43,60,6R p(w) is calculated at several potential
suggested that an atom in a liquid undergoes approximatelginima and averaged, while in instantaneous normal mode
harmonic vibrations about an equilibrium position, occasion{INM) theories[10-37,46-51,63,6840(w) is averaged over
ally jumping from one equilibrium position to another; these a thermal distribution of configurations, with no special em-
jumps are responsible for self-diffusion. Using molecular dy-phasis placed upon configurations in potential valleys. This
namics calculations, Stillinger and Webg3—-6] demon- difference manifests itself in the fact that in INM theories,
strated the presence of local many-particle minittiaher- the configuration-averageol w) usually includes both real
ent structures) in the potential surface underlying the liquid and imaginary frequenciggorresponding to stable and un-
state, and they observed that “diffusion and fluid flow within stable normal modgssince most configurations will not lie
a liquid may be interpreted as transitions between ... locaht the bottoms of valleys, while in QNM theories only real
minima” [5]. Building on these ideas, Zwanz|@] studied frequencies are represented. In addition, the QNM density of
the self-diffusion coefficienD, given in terms of the velocity states for a given system will in general be temperature-
autocorrelation functiorZ(t) = 3(v(t)-v(0)) by the Green- independent, while the INM density will depend strongly on

Kubo formula[8] temperature. The two most prominent ways to determige
are (a) to extract it from the imaginary frequency INM dis-
D= JmZ(t)dt 0 tribution, developed most notably by Keyld€—25, and(b)
0 ‘ to set rz_wl equal to the long-time decay rate of the “cage

correlation function” of Rabani, Gezelter, and Berne
For harmonic motion about a many-particle equilibrium po-[60,62. (Another theory uses Cao and Voth's frequency-
sition, Z(t) is given by dependent multiplicative fact¢#4,45.) Notice that none of
these theories attempt to model the actual motion of a dif-
fusing particle in the liquid and then calculatét) from this
motion; they try to model the effects of diffusion on the
autocorrelation function directly.
wherep(w) is the density of normal mode frequenci€bhe The theory ofZ(t) we propose differs from those dis-
derivation of this formula is discussed [iii]] and performed cussed above both in how we determjmgo) and how we
in Sec. Il of [31].) Zwanzig suggested that jumps betweenmodel the effects of diffusion. In Sec. Il we suggest a density
equilibrium positions will have the effect of multiplying this of states of the QNM type that also incorporates insights
expression by a factor expf/r,,), where the “hopping drawn from studies of the potential energy surface of liquid
time” 7, is characteristic of the time between jumps. MuchNa by Clements and Walladéb5,56. These studies were
effort has been devoted to developing these ideas into fullindertaken to test a theory of monatomic liquid dynamics
harmonic theories of liquid dynamics, particularly theories ofproposed by Wallacg52] that has been applied previously
self-diffusion in liquids and supercooled liquifi8—64]. In  with some success to the thermodynamics of a wide variety
most theories one finds(w) by expanding the potential en- of liquid metals[53] and an earlier study dZ(t) [54], and
ergy to second order around each of some set of configurahe present work is also intended to lend credence to that
tions, diagonalizing the second-order term in the potentiatheory. We propose a model for the process of diffusion

kT
Z(t)= Vj p(w)cog wt)dw, (2
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based on the following observations. The system moves in a 45 T T T T T T T
set of nearly harmonic many-particle valleys, and the motion
within each valley may be analyzed into normal modes of
vibration about the valley minimum. The motion of the sys-
tem from one valley to another is called a transit, and it
corresponds to a change in the equilibrium positions of a
small group of atoms. When a transit occurs involving a
given atom, or one of its neighbors, the normal mode eigen-
vector components for that atom will change, and since this
can happen many times during a single vibrational pefasd
we will see in Sec. lll, the eigenvectors will not necessarily
provide a useful basis for describing the motion. This sug-
gests that an independent atom model will be a good theo-
retical starting poinf54]. (Notice that this argument does not
apply to INM, where the eigenvectors change continuously
with the motion, instead of discontinuously only at trangits.
Therefore we propose a mean-atom-trajectory model which
describes a single average particle in the diffusing liquid ac-
tually transiting between single-particle equilibrium posi-
tions, and from this model we calculafét) directly. In Sec.

Il we compare our predictions with molecular dynamics

p(w) (8t)

(MD) simulations of liquid Na over a very broad range of 0 | L L L L L L
temperatures, and in Sec. IV we discuss our results. 0 0.01 0.02 0.03 0.04
o ¢t)
Il. THE MODEL FIG. 1. p(w) for liquid Na constructed from the set of frequen-
cies in Fig. 7 of [65]. Here 6t is the MD time step (1.4

A. Density of states X107 g).

Wallace[52] has predicted that in any monatomic liquid
the many-body potential valleys can be divided into three B. Motion of an average particle
categories: the few crystalline valleys; so-called “symmet-
ric” valleys which retain some remnant of the crystal sys-
tem’s symmetry; and “random” valleys, in which no crystal
symmetries remain. He argued further that the random va
leys should greatly outnumber the symmetric ofiess con-
trolling the statistical mechanics of the ligyjdand that all
random valleys should have the same distribution of norm
mode frequencies. Wallace and Clemdis,56 have veri-
fied these predictions for liquid Na and have discovered cri-
teria that one can use to determine whether the system is in a r()=R+u(t)=R+2> w, sin(w,t+a,), (4)
symmetric or random valley when nondiffusing. From Fig. 7 »
of [55] one can construct a distributigi(w) for liquid Na ) N o )
that will be valid whenever the system remains in a randonyvhere the particle’s position(t) is divided into a center of
valley; this p(w) is shown in Fig. 1. However, since we oscnlatlonR_and osc!llatlonsu(t) about that center, and the
actually have the set of normal mode frequengies} found ~ Parameters in(t) aside from thew, have yet to be deter-

in [55], we can use them in Eq2) directly, so our nondif- Mined. Let us assume that the values of the phaseare
fusing Z(t) is randomly distributed among the particles; then one calculates

Z(t) from Eq. (4) by differentiating to findv(t), computing
the productv(t)-v(0), andaveraging over each of the,
3IN=3 M < Codanb), (3 separately; the result is

Ouir first goal is to construct a model for the motion of an
average particle that reproduces E8). for Z(t) in the ab-
sence of transits. Since the system is transiting with over-
whelming likelihood from random valley to random valley,
and since all the random valleys have the same frequency

istribution, it is sensible to model an average particle’s mo-
ion in terms of oscillations at those frequencies, or

Z(t)=

1 2
where N is the number of particles in the system, and the Z(t)= 6 ; [wi[* coslant). ®)
number of normal modes isNB— 3 because the three zero-
frequency modes corresponding to center of mass motion al
not excited. This is our model(t) when the system remains
in a single random valley without diffusion. Note that be-

cause all of the random valleys have the sagni®), an _ 1 2KkT.
. TR Wy= "\ 7 Wy, (6)
average over quenched configurations is unnecessary. N-1 M
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y pared with the MD result for supercooled liquid Na at

0.5 . . . . =216.3 K.
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t (61) This is the change iR produced by a transit. We choose to

R leave the unit vectorsy, in Eq. (6) unaffected by transits,

FIG. 2. The model prediction foZ(t) at v=0.0 compared with leaving only the effect on the phaseg to be determined.
the MD results for glassy liquid Na af=6.69 K and T They must change in such a way as to reverse the sign of

=223 K. u(t) but conservey(t); sinceu(t) is a sum of sines while
v(t) is a sum of cosines, this is easily done by reversing the

wherew, is an arbitrarily chosen unit vector. Thus Hg)  Signs of the argumentsoft+ C;%\n)arin Eq. (4). Lege;fpre transit
with the phasesy, randomly chosen and, given by Eq.  OCCur at timeto; thenw,to+ ay = — (w\to+ a9 s0

(6), with the unit vectorsw, also randomly chosen, consti- a®'= — 2, to— oMo, (8)
tute our mean-atom-trajectory model when the system is not
diffusing.

To include diffusion in our model, we must incorporate
both the rate at which transits occur and their effect on th
particle’s motion. We will allow the ratev to be a R—R+2u(ty),
temperature-dependent parameter that we will determine in
Sec. Il by fitting to MD simulationgso the probability of a
transit in small timeAt is vAt), and we assume that the ] )
transit occurs instantaneousiyie particle simply crosses the ThiS conserves(t), reverses the sign af(t), and conserves

surface separating distinct vallgyso it must conserve both v(t). .
the particle’s positiorr(t) and velocityv(t). To be more ~ Now the model consists of two partéa) Between tran-
specific, we assume that the transit occurs in the forwardits, the average particle moves nondiffusively as given by
direction, so that the center of the new valley lies an equaEgs. (4) and (6), with the phasesr, and unit vectorsw,
distance away from the particle but on the opposite side fronassigned randomly(b) In each small time intervalt a tran-
the center of the old valley. Let”™'qt), RPe'® and  sit occurs with probabilitwAt; if it occurs, it replace® and
ue'qt) be the position parameters from Hd) before the  «, with new values according to E¢Q). With the addition
transit, and let@©(t), R’ andu®®(t) be the parameters of transits, we can no longer expregs) andv(t) in closed
after; then our assumption of a forward transit implies thatorm at all times, so we no longer have a closed form for
udfe(t)= —uPeqt), and this together withrqt)  Z(t); but the model can be implemented easily on a com-
=r3(t) implies puter, and then the data from the run can be used to calculate
Z(t) in a manner analogous to an MD simulation. We turn to
a comparison of the predictions of this model with MD re-
Rafter= gbefore, ,beforq ) (7) sults next.

Thus a transit is implemented at tinig by leaving thew,
é';llone and making the substitutions

ay— —2w\tg— ay . 9
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FIG. 4. The model prediction faf(t) at »=0.602 76 =~ com-
pared with the MD result for supercooled liquid Na at

=309.7 K.

The MD setup used to test our model is that described irnagnitude asr
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age of the normal mode frequency distribution, is approxi-
mately 28%t.) We performed equilibrium runs of the system
at 6.69, 22.3, 216.3, 309.7, 425, 664.7, and 1022 K; at the
lower two temperatures the system is not diffugiag can be
seen from the system’s mean square displacement, or from
the integral ofZ(t)], and the system is diffusing otherwise.
Since T,,=371 K for Na at this density, our simulations
range from the glassy regime to nearly three times the melt-
ing temperature. We then ran the model for various values of
v, adjusting until the model matched the value of the first
minimum of Z(t) at each temperature. The valuesiothat

we fit for all temperatures are given below; Figs. 2-7
compare the model’s predictions with the MD results for
Z(t)=2Z(t)/Z(0). Themodel requires’=0 for both nondif-
fusing states, so they are presented together in Fig. 2.

600

t (Ot)

IIl. COMPARISON WITH MD

800

T (K) v(r™h
6.69 0.0
22.3 0.0
216.3 0.35018
309.7 0.602 76
425 0.83985
664.7 1.248 58
1022 1.687 74

Notice that in all diffusing cases is of the same order of
~1, indicating roughly one transit per mean

[55] with two changesN =500 in all runs and the MD time Vibrational period, as predicted [57] and noted in Sec. I.

step was reduced tt=0.2*, wheret* =7.00x10 ° s is
the natural time scale defined jB5]. (The system’s mean
vibrational periodr=2m/wns, Wherew,sis the rms aver-
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04
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02

FIG. 5. The model prediction f(ﬁ(t) atr=0.83985 7! com-
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800

pared with the MD result for liquid Na at=425.0 K.

The most obvious trend iA(t) is that its first minimum is
rising with increasingT; this is the primary reason for the
increasing diffusion coefficienD. Note that the model is
able to reproduce this most important feature quite satisfac-
torily. In fact, all fits of the model to the MD results capture
their essential features, but we do see systematic trends in the
discrepancies. First, note that the location of the first mini-
mum barely changes at all in the model:as raised, but in
MD the first minimum moves steadily to earlier times as the
temperature rises. The first minimum occurs at a time
roughly equal to half of the mean vibrational perigécall
T7=2876t), so the steady drift backward suggests that the
MD system is sampling a higher range of frequencies at
higher T. Also, for the three lowest diffusing temperatures
the model tends to overshoot the MD result in the vicinity of
the first two maxima after the origin, and at the highest two
temperatures this overshoot is accompanied by a positive tail
that is slightly higher than thestill somewhat longtail pre-
dicted by MD. These overshoots should clearly affect the
diffusion coefficientD. To check this, we calculated the re-

duced diffusion coefficienb, the integral ofZ(t), which is
related toD by D= (kT/M)D. The results are compared to
the values oD calculated from the MD runs in Fig. 8. In all

of the diffusing cases, the model overestimeﬁ)eby roughly

the same amount, which we take to be the effect of the over-
shoots at the first two maxima. At the higher temperatures
the discrepancy is also higher, presumably due to the mod-
el's long tail.
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FIG. 6. The model prediction faf(t) at »v=1.248 58 1 com-

FIG. 7. The model prediction foi(t) atv=1.687 74 v ! com-
pared with the MD result for liquid Na at=664.7 K.

pared with the MD result for liquid Na at=1022.0 K.

IV. CONCLUSIONS symmetric valleys that liquid Na doeg® is known that

We have presented a single-atom model of a monatomi‘,:ennard—Jor!es_ Ar doe[§8j.) How harm_onig: are thesg val-
liquid that provides a unified account of diffusing and non- eys? How s'lmllar are their frequency distributions? Figure 2
diffusing behavior. The nondiffusing motion is modeled as aShOWS that in Na the valleys are Very n_early perfectly har-
sum of oscillations at the normal mode frequengess. (4) monic, and we expect the same qualitative potential surface
and(6)]; self-diffusion is accounted for in terms of instanta- fpr _aII nearly free electron. mgtal@a _total of 24 elemental
neous transits between wells, which occur at ::1temperatur<£'—qlJId metalg, but pt_h.er liquids might show more pro-
dependent ratev. Since this model gives a simple and nounced anharmonlutles, and those would .ne'ed to be ac-
straightforward account of the motion itself, it can easily becounted for in the model. Could a more sophisticated model
used to calculate any single-atom correlation function one
wishes; here we have focused B(t) and its integraD. The ' ' ' MD +
relaxation of correlations expressed by the decayZ(tf) 16 - Model © ]
arises here from two distinct processes: Dephasing as a result
of the large number of frequencies in the single-valley mo- 14 - ;F
tion, and transits between valleys. The dephasing effect pro-
duces relaxation but not diffusion: It causgét) to decay 12
but its integral remains zero. On the other hand, transits cer- $
tainly contribute to relaxation, but in addition they raise the
first minimum of Z(t) substantially, increasing its integral
and providing a nonzerDb. _ .
Most other workers in the field have studied Lennard— ©
Jones or molecular liquids; the only other work with liquid 6 L N |
Na we have found is Wu and Tsay’s INM analy§#8,49, ©
with which our results are of comparable quality. This is
remarkable in light of the fact that our model of the transit 4r o +
process is exceedingly simple; one would expect that a more
realistic model would produce even better results. We are 2
also pleased to see that the model retains its validity from the
glassy regime to well beyond the liquid’s melting tempera- 0® L L L L L
ture. 0 200 400 600 800 1000 1200
In light of these results, answers to the following ques- T (K)
tions are worth pursuing. Do other monatomic liquids exhibit
the same division of their potential valleys into random and

FIG. 8. D as a function ofT for both the model and MD.
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of the transit procesg&s opposed to simply transiting for-
ward) produce the shift in the first minimum and smaller
long-time tail shown in MD? Can one develop a theory to
predict the transit probability? (Such a theory would be

PHYSICAL REVIEW E63 031204

shear viscosities? Future work will focus on answering these
questions.
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