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Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids

Eric D. Chisolm, Brad E. Clements, and Duane C. Wallace
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~Received 4 February 2000; revised manuscript received 4 October 2000; published 26 February 2001!

We present a model for the motion of an average atom in a liquid or supercooled liquid state and apply it to
calculations of the velocity autocorrelation functionZ(t) and diffusion coefficientD. The model trajectory
consists of oscillations at a distribution of frequencies characteristic of the normal modes of a single potential
valley, interspersed with position- and velocity-conserving transits to similar adjacent valleys. The resulting
predictions forZ(t) andD agree remarkably well with molecular dynamics simulations of Na at up to almost
three times its melting temperature. Two independent processes in the model relax velocity autocorrelations:
~a! dephasing due to the presence of many frequency components, which operates at all temperatures but which
produces no diffusion, and~b! the transit process, which increases with increasing temperature and which
produces diffusion. Because the model provides a single-atom trajectory in real space and time, including
transits, it may be used to calculate all single-atom correlation functions.
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I. INTRODUCTION

In order to explain the experimental fact that the spec
heat of a solid changes little, while its self-diffusion coef
cient changes greatly, when it melts to a liquid, Frenkel@1,2#
suggested that an atom in a liquid undergoes approxima
harmonic vibrations about an equilibrium position, occasio
ally jumping from one equilibrium position to another; the
jumps are responsible for self-diffusion. Using molecular d
namics calculations, Stillinger and Weber@3–6# demon-
strated the presence of local many-particle minima~‘‘inher-
ent structures’’! in the potential surface underlying the liqu
state, and they observed that ‘‘diffusion and fluid flow with
a liquid may be interpreted as transitions between . . . lo
minima’’ @5#. Building on these ideas, Zwanzig@7# studied
the self-diffusion coefficientD, given in terms of the velocity
autocorrelation functionZ(t)5 1

3 ^v(t)•v(0)& by the Green-
Kubo formula@8#

D5E
0

`

Z~ t !dt. ~1!

For harmonic motion about a many-particle equilibrium p
sition, Z(t) is given by

Z~ t !5
kT

M E r~v!cos~vt !dv, ~2!

wherer(v) is the density of normal mode frequencies.~The
derivation of this formula is discussed in@7# and performed
in Sec. II of @31#.! Zwanzig suggested that jumps betwe
equilibrium positions will have the effect of multiplying thi
expression by a factor exp(2t/tzw), where the ‘‘hopping
time’’ tzw is characteristic of the time between jumps. Mu
effort has been devoted to developing these ideas into
harmonic theories of liquid dynamics, particularly theories
self-diffusion in liquids and supercooled liquids@9–64#. In
most theories one findsr(v) by expanding the potential en
ergy to second order around each of some set of config
tions, diagonalizing the second-order term in the poten
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~often called the dynamical matrix! to find the frequency
distribution for that configuration, and averaging over
configurations chosen. This is done in one of two differe
ways. In quenched normal mode~QNM! theories
@9,40,41,43,60,62#, r(v) is calculated at several potentia
minima and averaged, while in instantaneous normal m
~INM ! theories@10–37,46–51,63,64# r(v) is averaged over
a thermal distribution of configurations, with no special e
phasis placed upon configurations in potential valleys. T
difference manifests itself in the fact that in INM theorie
the configuration-averagedr(v) usually includes both rea
and imaginary frequencies~corresponding to stable and un
stable normal modes!, since most configurations will not lie
at the bottoms of valleys, while in QNM theories only re
frequencies are represented. In addition, the QNM densit
states for a given system will in general be temperatu
independent, while the INM density will depend strongly o
temperature. The two most prominent ways to determinetzw
are ~a! to extract it from the imaginary frequency INM dis
tribution, developed most notably by Keyes@10–25#, and~b!
to set tzw

21 equal to the long-time decay rate of the ‘‘cag
correlation function’’ of Rabani, Gezelter, and Bern
@60,62#. ~Another theory uses Cao and Voth’s frequenc
dependent multiplicative factor@44,45#.! Notice that none of
these theories attempt to model the actual motion of a
fusing particle in the liquid and then calculateZ(t) from this
motion; they try to model the effects of diffusion on th
autocorrelation function directly.

The theory ofZ(t) we propose differs from those dis
cussed above both in how we determiner(v) and how we
model the effects of diffusion. In Sec. II we suggest a dens
of states of the QNM type that also incorporates insig
drawn from studies of the potential energy surface of liqu
Na by Clements and Wallace@55,56#. These studies were
undertaken to test a theory of monatomic liquid dynam
proposed by Wallace@52# that has been applied previous
with some success to the thermodynamics of a wide var
of liquid metals@53# and an earlier study ofZ(t) @54#, and
the present work is also intended to lend credence to
theory. We propose a model for the process of diffus
©2001 The American Physical Society04-1
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based on the following observations. The system moves
set of nearly harmonic many-particle valleys, and the mot
within each valley may be analyzed into normal modes
vibration about the valley minimum. The motion of the sy
tem from one valley to another is called a transit, and
corresponds to a change in the equilibrium positions o
small group of atoms. When a transit occurs involving
given atom, or one of its neighbors, the normal mode eig
vector components for that atom will change, and since
can happen many times during a single vibrational period~as
we will see in Sec. III!, the eigenvectors will not necessari
provide a useful basis for describing the motion. This s
gests that an independent atom model will be a good th
retical starting point@54#. ~Notice that this argument does n
apply to INM, where the eigenvectors change continuou
with the motion, instead of discontinuously only at transit!
Therefore we propose a mean-atom-trajectory model wh
describes a single average particle in the diffusing liquid
tually transiting between single-particle equilibrium po
tions, and from this model we calculateZ(t) directly. In Sec.
III we compare our predictions with molecular dynami
~MD! simulations of liquid Na over a very broad range
temperatures, and in Sec. IV we discuss our results.

II. THE MODEL

A. Density of states

Wallace@52# has predicted that in any monatomic liqu
the many-body potential valleys can be divided into th
categories: the few crystalline valleys; so-called ‘‘symm
ric’’ valleys which retain some remnant of the crystal sy
tem’s symmetry; and ‘‘random’’ valleys, in which no cryst
symmetries remain. He argued further that the random
leys should greatly outnumber the symmetric ones~thus con-
trolling the statistical mechanics of the liquid!, and that all
random valleys should have the same distribution of nor
mode frequencies. Wallace and Clements@55,56# have veri-
fied these predictions for liquid Na and have discovered
teria that one can use to determine whether the system is
symmetric or random valley when nondiffusing. From Fig
of @55# one can construct a distributionr(v) for liquid Na
that will be valid whenever the system remains in a rand
valley; this r(v) is shown in Fig. 1. However, since w
actually have the set of normal mode frequencies$vl% found
in @55#, we can use them in Eq.~2! directly, so our nondif-
fusing Z(t) is

Z~ t !5
1

3N23

kT

M (
l

cos~vlt !, ~3!

where N is the number of particles in the system, and t
number of normal modes is 3N23 because the three zero
frequency modes corresponding to center of mass motion
not excited. This is our modelZ(t) when the system remain
in a single random valley without diffusion. Note that b
cause all of the random valleys have the samer(v), an
average over quenched configurations is unnecessary.
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B. Motion of an average particle

Our first goal is to construct a model for the motion of
average particle that reproduces Eq.~3! for Z(t) in the ab-
sence of transits. Since the system is transiting with ov
whelming likelihood from random valley to random valle
and since all the random valleys have the same freque
distribution, it is sensible to model an average particle’s m
tion in terms of oscillations at those frequencies, or

r ~ t !5R1u~ t !5R1(
l

wl sin~vlt1al!, ~4!

where the particle’s positionr (t) is divided into a center of
oscillationR and oscillationsu(t) about that center, and th
parameters inu(t) aside from thevl have yet to be deter
mined. Let us assume that the values of the phasesal are
randomly distributed among the particles; then one calcula
Z(t) from Eq. ~4! by differentiating to findv(t), computing
the productv(t)•v(0), andaveraging over each of theal

separately; the result is

Z~ t !5
1

6 (
l

uwlu2 cos~vlt !. ~5!

Equation~5! becomes Eq.~3! with the choice

wl5A 1

N21

2kT

M
ŵl , ~6!

FIG. 1. r(v) for liquid Na constructed from the set of frequen
cies in Fig. 7 of @55#. Here dt is the MD time step (1.4
310215 s).
4-2



i-
n

te
th

e

e
e

a
u
o

s
ha

to
,

n of

the

by

for
m-
late
to

e-

MEAN-ATOM-TRAJECTORY MODEL FOR THE VELOCITY . . . PHYSICAL REVIEW E63 031204
whereŵl is an arbitrarily chosen unit vector. Thus Eq.~4!
with the phasesal randomly chosen andwl given by Eq.
~6!, with the unit vectorsŵl also randomly chosen, const
tute our mean-atom-trajectory model when the system is
diffusing.

To include diffusion in our model, we must incorpora
both the rate at which transits occur and their effect on
particle’s motion. We will allow the raten to be a
temperature-dependent parameter that we will determin
Sec. III by fitting to MD simulations~so the probability of a
transit in small timeDt is nDt), and we assume that th
transit occurs instantaneously~the particle simply crosses th
surface separating distinct valleys!, so it must conserve both
the particle’s positionr (t) and velocityv(t). To be more
specific, we assume that the transit occurs in the forw
direction, so that the center of the new valley lies an eq
distance away from the particle but on the opposite side fr
the center of the old valley. Letrbefore(t), Rbefore, and
ubefore(t) be the position parameters from Eq.~4! before the
transit, and letrafter(t), Rafter, anduafter(t) be the parameter
after; then our assumption of a forward transit implies t
uafter(t)52ubefore(t), and this together with rbefore(t)
5rafter(t) implies

Rafter5Rbefore12ubefore~ t !. ~7!

FIG. 2. The model prediction forẐ(t) at n50.0 compared with
the MD results for glassy liquid Na atT56.69 K and T
522.3 K.
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This is the change inR produced by a transit. We choose
leave the unit vectorsŵl in Eq. ~6! unaffected by transits
leaving only the effect on the phasesal to be determined.
They must change in such a way as to reverse the sig
u(t) but conservev(t); sinceu(t) is a sum of sines while
v(t) is a sum of cosines, this is easily done by reversing
signs of the arguments (vlt1al) in Eq. ~4!. Let the transit
occur at timet0; thenvlt01al

after52(vlt01al
before) so

al
after522vlt02al

before. ~8!

Thus a transit is implemented at timet0 by leaving theŵl

alone and making the substitutions

R→R12u~ t0!,

al→22vlt02al . ~9!

This conservesr (t), reverses the sign ofu(t), and conserves
v(t).

Now the model consists of two parts.~a! Between tran-
sits, the average particle moves nondiffusively as given
Eqs. ~4! and ~6!, with the phasesal and unit vectorsŵl

assigned randomly.~b! In each small time intervalDt a tran-
sit occurs with probabilitynDt; if it occurs, it replacesR and
al with new values according to Eq.~9!. With the addition
of transits, we can no longer expressr (t) andv(t) in closed
form at all times, so we no longer have a closed form
Z(t); but the model can be implemented easily on a co
puter, and then the data from the run can be used to calcu
Z(t) in a manner analogous to an MD simulation. We turn
a comparison of the predictions of this model with MD r
sults next.

FIG. 3. The model prediction forẐ(t) at n50.350 18 t21 com-
pared with the MD result for supercooled liquid Na atT
5216.3 K.
4-3
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III. COMPARISON WITH MD

The MD setup used to test our model is that described
@55# with two changes:N5500 in all runs and the MD time
step was reduced todt50.2t* , wheret* 57.00310215 s is
the natural time scale defined in@55#. ~The system’s mean
vibrational periodt52p/v rms, wherev rms is the rms aver-

FIG. 4. The model prediction forẐ(t) at n50.602 76 t21 com-
pared with the MD result for supercooled liquid Na atT
5309.7 K.

FIG. 5. The model prediction forẐ(t) at n50.839 85 t21 com-
pared with the MD result for liquid Na atT5425.0 K.
03120
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age of the normal mode frequency distribution, is appro
mately 287dt.! We performed equilibrium runs of the syste
at 6.69, 22.3, 216.3, 309.7, 425, 664.7, and 1022 K; at
lower two temperatures the system is not diffusing@as can be
seen from the system’s mean square displacement, or f
the integral ofZ(t)#, and the system is diffusing otherwis
Since Tm5371 K for Na at this density, our simulation
range from the glassy regime to nearly three times the m
ing temperature. We then ran the model for various value
n, adjusting until the model matched the value of the fi
minimum of Z(t) at each temperature. The values ofn that
we fit for all temperatures are given below; Figs. 2–
compare the model’s predictions with the MD results f
Ẑ(t)5Z(t)/Z(0). Themodel requiresn50 for both nondif-
fusing states, so they are presented together in Fig. 2.

T ~K! n(t21)

6.69 0.0
22.3 0.0

216.3 0.350 18
309.7 0.602 76

425 0.839 85
664.7 1.248 58
1022 1.687 74

Notice that in all diffusing casesn is of the same order o
magnitude ast21, indicating roughly one transit per mea
vibrational period, as predicted in@57# and noted in Sec. I.

The most obvious trend inẐ(t) is that its first minimum is
rising with increasingT; this is the primary reason for th
increasing diffusion coefficientD. Note that the model is
able to reproduce this most important feature quite satis
torily. In fact, all fits of the model to the MD results captu
their essential features, but we do see systematic trends i
discrepancies. First, note that the location of the first m
mum barely changes at all in the model asn is raised, but in
MD the first minimum moves steadily to earlier times as t
temperature rises. The first minimum occurs at a ti
roughly equal to half of the mean vibrational period~recall
t5287dt), so the steady drift backward suggests that
MD system is sampling a higher range of frequencies
higher T. Also, for the three lowest diffusing temperatur
the model tends to overshoot the MD result in the vicinity
the first two maxima after the origin, and at the highest t
temperatures this overshoot is accompanied by a positive
that is slightly higher than the~still somewhat long! tail pre-
dicted by MD. These overshoots should clearly affect
diffusion coefficientD. To check this, we calculated the re
duced diffusion coefficientD̂, the integral ofẐ(t), which is
related toD by D5(kT/M )D̂. The results are compared t
the values ofD̂ calculated from the MD runs in Fig. 8. In a
of the diffusing cases, the model overestimatesD̂ by roughly
the same amount, which we take to be the effect of the ov
shoots at the first two maxima. At the higher temperatu
the discrepancy is also higher, presumably due to the m
el’s long tail.
4-4
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IV. CONCLUSIONS

We have presented a single-atom model of a monato
liquid that provides a unified account of diffusing and no
diffusing behavior. The nondiffusing motion is modeled a
sum of oscillations at the normal mode frequencies@Eqs.~4!
and~6!#; self-diffusion is accounted for in terms of instant
neous transits between wells, which occur at a temperat
dependent raten. Since this model gives a simple an
straightforward account of the motion itself, it can easily
used to calculate any single-atom correlation function o
wishes; here we have focused onZ(t) and its integralD. The
relaxation of correlations expressed by the decay ofZ(t)
arises here from two distinct processes: Dephasing as a r
of the large number of frequencies in the single-valley m
tion, and transits between valleys. The dephasing effect
duces relaxation but not diffusion: It causesZ(t) to decay
but its integral remains zero. On the other hand, transits
tainly contribute to relaxation, but in addition they raise t
first minimum of Z(t) substantially, increasing its integra
and providing a nonzeroD.

Most other workers in the field have studied Lennar
Jones or molecular liquids; the only other work with liqu
Na we have found is Wu and Tsay’s INM analysis@48,49#,
with which our results are of comparable quality. This
remarkable in light of the fact that our model of the tran
process is exceedingly simple; one would expect that a m
realistic model would produce even better results. We
also pleased to see that the model retains its validity from
glassy regime to well beyond the liquid’s melting tempe
ture.

In light of these results, answers to the following que
tions are worth pursuing. Do other monatomic liquids exhi
the same division of their potential valleys into random a

FIG. 6. The model prediction forẐ(t) at n51.248 58 t21 com-
pared with the MD result for liquid Na atT5664.7 K.
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symmetric valleys that liquid Na does?~It is known that
Lennard-Jones Ar does@58#.! How harmonic are these val
leys? How similar are their frequency distributions? Figure
shows that in Na the valleys are very nearly perfectly h
monic, and we expect the same qualitative potential surf
for all nearly free electron metals~a total of 24 elementa
liquid metals!, but other liquids might show more pro
nounced anharmonicities, and those would need to be
counted for in the model. Could a more sophisticated mo

FIG. 7. The model prediction forẐ(t) at n51.687 74 t21 com-
pared with the MD result for liquid Na atT51022.0 K.

FIG. 8. D̂ as a function ofT for both the model and MD.
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of the transit process~as opposed to simply transiting fo
ward! produce the shift in the first minimum and small
long-time tail shown in MD? Can one develop a theory
predict the transit probabilityn? ~Such a theory would be
conceptually related to the decay of the cage correla
function of @60,62#.! Finally, how can these ideas be applie
to theories of other transport coeffi-cients, such as bulk
m

ys

03120
n

d

shear viscosities? Future work will focus on answering th
questions.
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