
ty,

PHYSICAL REVIEW E, VOLUME 63, 031112
Euler-Poincaré characteristics of classes of disordered media
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We consider a family of statistical measures based on the Euler-Poincare´ characteristic ofn-dimensional
space that are sensitive to the morphology of disordered structures. These measures embody information from
every order of the correlation function but can be calculated simply by summing over local contributions. We
compute the evolution of the measures with density for a range of disordered microstructural models; particle-
based models, amorphous microstructures, and cellular and foamlike structures. Analytic results for the
particle-based models are given and the computational algorithm verified. Computational results for the dif-
ferent microstructures exhibit a range of qualitative behavior. A length scale is derived based on two-point
autocorrelation functions to allow qualitative comparison between the different structures. We compute the
morphological parameters for the experimental microstructure of a sandstone sample and compare them to
three common stochastic model systems for porous media. None of the statistical models are able to accurately
reproduce the morphology of the sandstone.
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INTRODUCTION

The structure of a disordered material—an oil bear
rock, a piece of paper, or a polymer composite—is a rema
ably incoherent concept. Despite this, scientists and e
neers are asked to predict the properties of a disordered
terial based on the ‘‘structure’’ of its constituen
components. A major shortcoming in the understanding
processes involving complex materials has been an inab
to accurately characterize microstructure. The specifica
of the structure requires topological as well as geome
descriptors to characterize the connectivity and the shap
the spatial configuration. In oil recovery from petroleum re
ervoir rocks, an area of particular interest to the autho
recovery depends crucially on the topology of the pore sp
and on the mean curvature of the surfaces where immisc
phases meet at a contact angle. To determine accurate
models and to devise intelligent recovery strategies, an a
rate characterization of reservoir rocks in terms of topolo
and geometry is required.

To date, the toolkit used to quantify complex structur
has been primarily that of the statistical physicist. Compl
characterization of the effective morphology, however,
quires knowledge of an infinite set ofn-point statistical cor-
relation functions. In practice only lower-order morpholog
cal information is available; common methods@1# are based
on matching the first two moments~volume fraction and
two-point correlation function! of the binary phase function
to a random model. It is widely recognized that although
two-point correlation function of a reference and a reco
structed system is in good agreement, this does not en
that the structures of the two systems will match well, a
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attempts to reconstruct materials from experimentally m
sured two-point information have not been very succes
@2,3#. The same problem has been encountered at the ato
scale in characterizing and comparing amorphous ato
glasses, where two-point correlation functions are recogni
to give poor structural signatures. The function is nonuniq
and does not capture many important features of the mi
structure.

Other useful two-point characterizations of microstructu
include the chord-length distribution function@4,5# ~and the
related lineal-path function@6#! and the pore-size distribution
function @7#. However reconstructions of experimental da
sets based on these characterizations have been show
give a poor representation of the connectivity of the syste
@8#. Functions that may provide more complete informati
about connectivity@9# are unfortunately too complex to in
corporate into reconstruction schemes@8#. Incorporation of
three- and four-point information may lead to a better e
mation of structure, but their measurement is very comp
and it is not clear how to incorporate the information with
reconstruction algorithms.

There is a need for morphological measures which
clude higher-order correlations, but are fast and reliable
characterizing the morphology of a structure. Statistical m
sures that are sensitive to the morphology of structures h
been extensively investigated in other fields such as im
analysis and pattern recognition@4,10,11#. Integral geometry
provides a suitable family of morphological descriptors, t
Minkowski functions~MFs!. These measures embody info
mation from every order of the correlation functions, a
numerically robust even for small samples, are independ
of statistical assumptions on the distribution of phases,
yield global as well as local morphological information. Th
MFs are additive measures allowing one to calculate th
measures effectively by simply summing over local con
butions. The measures are based on the Euler-Poincare´ char-
©2001 The American Physical Society12-1
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ARNS, KNACKSTEDT, PINCZEWSKI, AND MECKE PHYSICAL REVIEW E63 031112
acteristic ofn-dimensional space. In ad-dimensional space
there ared11 such measures. In three dimensions the fu
tionals are related to the familiar measures of volume fr
tion, surface area, integral mean curvature, and Euler c
acteristic. These measures are efficiently calculated at
local scale from digital images@12,13#. MFs have been use
previously to distinguish quantitatively between differe
complex morphologies, to characterize turbulent and reg
Turing patterns from chemical reaction-diffusion syste
@14#, to show that the hole distribution in thin films are in
consistent with the concept of spinodal decomposition,
consistent with a nucleation scenario@15#, and to discrimi-
nate between different cosmological models of the early u
verse@16#. Measurements of the MFs for model random m
terials has to date been made on only a simple random fil
of a cubic network@17#.

In this paper we consider the evolution of the Minkows
functionals for a range of complex morphologies. We loos
consider three types of model microstructures:~1! Particle-
based models, models based on Poisson distributed ove
ping and nonoverlapping spheroids that generate gran
packs, sintered spheroid packs, etc.;~2! Models based on
level cuts of Gaussian random fields that describe the m
phology of amorphous alloys@18#, disordered microemulsion
phases@19,20#, and polymer composites@21–23#; and ~3!
models based on Voronoi tesselations of Poisson-distrib
points that result in closed-cell and open-cell foams@24# and
fibrous bundles. We derive analytic results for Poiss
distributed particles and verify the computational algorith
The MFs for the range of microstructures are then prese
and we discuss the qualitative differences observed.
compute the morphological parameters for the experime
microstructure of a sandstone sample and compare to t
three different stochastic model systems. None of the sta
tical models are able to accurately reproduce the morpho
of the sandstone.

The plan of the paper is as follows. In the next section
review concepts in mathematical morphology and give
theoretical predictions for the MFs of Poisson-distribut
cubes and spheres. We then describe the computational
rithm, the generation of the model microstructures, a
verify the algorithm against theory. In the following sectio
we present numerical predictions of the MFs for a range
microstructures.

I. MINKOWSKI FUNCTIONALS

In this study we consider the Minkowski functionals
digitized representations of complex media at various v
ume fractions. We consider a two-component medium fill
a cubic volumeV5Ld. A digitized setQ5ø iQi of either
component can be described by a collection of voxelsQi or
compact~closed and bounded! convex sets. In order to char
acterizeQ in a morphological way, let us first recall som
basic facts from combinatorial integral geometry@25,13#.
The convex ringR constitutes the stage for our model.R
denotes the class of all subsetsA of the Euclidean spaceRd,
which can be represented in terms of a finite union
bounded closed convex sets. Clearly, digitized spatial c
03111
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figurationsQ belong also to the convex ringR.
The Euler characteristicx is introduced as an additive

functional overR, so that forA,BPR,

x~AøB!5x~A!1x~B!2x~AùB! ~1.1!

and

x~A!5H 1, convex AÞ0”

0, A50” .
~1.2!

We note that this functionalx coincides with the Euler-
Poincare´ characteristic in algebraic topology. Th
Minkowski functionals overR are now defined through

Wn~A!5E x~AùEn!dm~En!. ~1.3!

Here,En is an-dimensional plane inRd, dm(En) denotes its
kinematical density normalized so that for ad-dimensional
ball Bd(r ) with radius r ,Wn„Bd(r )…5vdr d2n;vd
5pd/2/G(11d/2) is the volume of the unit ball. From defi
nition ~1.3! it is clear that the Minkowski functionals inher
additivity from x. For lattice configurationsQ, i.e., configu-
rations sampled as unions of voxelsQi it is convenient to
renormalize the Minkowski functionals by setting

Vn~Q!5
Wn~Q!

vn
~1.4!

so thatVn(Qi)51 for a single cube~voxel! Qi . Note that
according to the definition given by Eq.~1.3! the Minkowski
functionalsVn can be considered as Euler-Poincare´ charac-
teristicsx for lower-dimensional planar intersections of th
spatial configurationQ. The Minkowski functionals in three
dimensions are related to familiar geometric quantities,
instance, the surface area 6V1 and integral mean curvatur
3pV2 of the surface exposed by a coverage with volumeV
5V0 and Euler characteristicX5V3 .

Two general properties that a functionalV(Q) should
possess in order to be a morphological measure are mo
invariance and continuity, since the ‘‘shape’’ of a doma
does not depend on its location and orientation and shoul
approximately given by an inscribed polygon. In many ca
it is important that a domain can be decomposed into p
such as a digitized setQ5ø iQi into a collection of voxels
Qi . Therefore, we require the additivity relation~1.1! as a
third property of a morphological functionalV(Q). Three-
dimensional space examples of such measures include
ume and surface area of a domainQ. In two dimensions they
include the boundary length and area. A remarkable theo
in integral geometry is the completeness of the Minkow
functionals@25#. The theorem asserts that any additive, co
tinuous, and motion invariant functionalV(A) on subsets
A,Rd,APR, is a linear combination of thed11
Minkowski functionals

V~A!5 (
n50

d

cnVn~A!. ~1.5!
2-2
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EULER-POINCARÉCHARACTERISTICS OF CLASSES OF . . . PHYSICAL REVIEW E 63 031112
with real coefficientscn independent ofA. The d11
Minkowski functionals therefore are the complete set
morphological measures. The continuity of the function
Vn allows the definition of integrals of the curvature functio
to be evaluated for surfaces with singular edges, i.e.,
Minkowski functionals generalize curvatures as differen
geometric quantities to singular edges@12,13,16,26#. There-
fore, it is straightforward to apply the notion of morpholog
cal measures even to patterns consisting of individual lat
grains~voxel-based images!. Since many physical phenom
ena depend essentially on the geometry of spatial structu
such morphological measures may be useful tools, in part
lar, in combination with the Boolean model well known
stochastic geometry@13#. This model generates rando
structures by overlapping grains such as spheres or c
each with arbitrary location and orientation.

The normalized mean valuesvn(r)5^Vn(Q)&/V of the
Minkowski functionals for Poisson-distributed lattice grai
of densityr ~in units of a22, a is the lattice constant! are
@13#

v0~r!512e2rV0,

v1~r!5e2rV0~12e2rV1!,

v2
~8!~r!5e2rV0~2112e2rV12e2r~2V11V2!!, ~1.6!

v3
~26!~r!5e2rV0~123e2rV113e2r~2V11V2!

2e2r~3V113V21V3!!.

where Vn(K) are the morphological measures of the in
vidual grainsK. For Poisson-distributed cubes of sideleng
l, q̃512 p̃5e2r being the probability that a cube is no
placed at a lattice site, andV05l3, V15l2, V25l, and
V351 this becomes

v0~r!512q̃l3
,

v1~r!5q̃l3
~12q̃l2

!,
~1.7!

v2
~8!~r!5q̃l3

~2112q̃l2
2q̃2l21l!,

v3
~26!~r!5q̃l3

~123q̃l2
13q̃2l21l2q̃3l213l11!.

The numbers in brackets specify the different neighb
hoods of the cubes. In contrast to the measuresv0 andv1 , v2
depends on the definition of the local neighborhood o
grain. Since one must have topological closed sets, gr
may be connected only by a single point. For voxel-ba
images this leads to some ambiguity in the measure. O
square lattice, diagonally connected pixels have only
point in common—in the absence of a preferred continuity
either phase, the interface can be considered to be cu
equally toward either medium. In the presence of stron
preferred continuity, the neighborhood will have eight neig
bors~a pixel is connected to the nearest and the next-nea
neighbors! for the phase of preferred continuity and fo
neighbors~only nearest neighbor connections! for the other
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phase. This leads to a duality of these measures. Similarl
a cubic lattice one may have 6 or 26 neighbors depending
the absence or presence of preferred continuity. The cont
ity of either phase can be varied continuously by defining
probability a of a common edge to be continuous in o
phase and the probabilityb512a in the other phase@27#. If
neither phase has preferred continuity we seta5b51/2.

As shown by Seyfried and Mecke@28#, one can relate the
measures ofv2(r) andv3(r) for different neighborhoods,

v2
~4!~r!5v2

~8!~r!1dv2 ,
~1.8!

v3
~6!~r!5v3

~26!~r!23dv21dv3 ,

with the two correction terms for Poisson-distributed cub
given by

dv252q̃l312l22l~12q̃l!2,

dv35q̃l313l22l21@ q̃4l22~8p̃2q̃22!124q̃

112q̃3l~11 p̃!26q̃2l~114p̃!18p̃q̃l224q̃l11#

24q̃l313l223l11. ~1.9!

The derivation of theoretical results for the other partic
based models is fully analogous. If spheres are used
grains, the Minkowski measures of the single grain in t
continuum become

V05
4

3
pr 3, V15pr 2, V252r , V351. ~1.10!

leading to the global measures for Poisson-distributed
identical overlapping spheres~IOS! using Eq.~1.6!.

II. COMPUTATIONAL ASPECTS

In this section we describe the algorithm implemented
calculate the Minkowski functionals, the generation of t
model morphologies, the validation of the algorithms
some of those model morphologies, and discretization
fects.

A. Algorithm to calculate the MFs

The MFs are obtained directly from any image made
of discrete voxels. For example, the volume fraction of
phase is trivially obtained by dividing the number of voxe
of that phase by the total number of voxels. The other fu
tionals are obtained by considering the interface associ
with the vertices of each voxel or the Voronoi cell of th
lattice @27#. Each vertex of the lattice is shared by eig
neighboring cubes; there are therefore 285256 possible con-
figurations, which can be evaluated quickly using a mas
sum

config5(
i 50

7

2i3phasei , phaseiP$0,1%, ~2.1!
2-3
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where the sum is taken over only one phase. For voxel
equal side length, the local Minkowski measures are ro
tionally invariant and the 256 configurations reduce to
~see Fig. 1!. The mapping is given in Table I and the loc
contributions to the global Minkowski functionals are give
in Table II. The various patterns and their resultant MFs h
been derived elsewhere@27,28# for generala. The global
measures for each configuration are obtained then by a
figuration count over all vertices on any voxelated struct
normalized by the total number of vertices. On a 500 M
Alpha microprocessor we calculate all MFs on a 5003 image
in 40 secs using 2 MB of memory. The execution time sca
linearly with the volume of the image.

B. Generation of model media

The models we considered in this paper can be loos
separated into three different classes. The first class, part
based models, includes Poisson-distributed cubes
Poisson-distributed overlapping oblate and prolate sphero
Cubes of slidelengthl5(1,2,4,8) are considered. For sph
roids we consider both fully oriented and isotropic packs
special case of this model is based on overlapping sph
~IOS model!. For this model we consider radii ofr
5(4,8,12,16). Two more systems of spheroidal packs
evaluated, both with a half-axis range of 4<r<20 and an
average half axis ofr̄ 512. In one case we consider ra
domly oriented spheroids and in the second case sphe

FIG. 1. Catalog of filling patterns of a unit cell giving rise t
distinct configurations. Some configurations with exchanged ph
are not shown; 22 isotropic configurations exist, the rest can
generated by rotations. Isotropic configurations~A!–~G! are gener-
ated by inverting the phases of configurations~A!–~G! and~N!. ~D8!
and ~G8! are shown as an illustration.
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fully aligned along a specific axis. Examples for some
these models are given in Fig. 2.

A class of materials that is not in general well describ
by particulate models is that of amorphous composites.
cently, model random materials have been described by l
cuts of a superposition of random plane waves—the leve
wave model@29,30#. Originally developed to describe th
morphologies associated with spinodal decomposition@18#,
and later to describe the structure of bicontinous microem
sions @19#, the leveled-wave model accounts for many fe
tures observed in real disordered materials@29# including
polymer blends@21# and foams@31#.

In the original scheme due to Cahn@18# one associates a
interface between two distinct phases~e.g., pore/matrix! with
a level set~or contour! of a random standing wavey(r )
composed ofN sinusoids with fixed wavelengthl52p/k0
but random directionskn , phase constantsFn , and ampli-
tudesAn ,

y~r !5
1

AN
(

n
An cos~k0kn•r1F r !. ~2.2!

es
e

TABLE I. Mapping of the 256 vertex configurations to the 2
isotropic configurations following the order shown in Fig. 1. I
defines the isotropic configuration number andN the multiplicity of
the configuration.

IC N Configuration number defined by Eq.~2.1!

0 1 0
1 8 1, 2, 4, 16, 32, 64, 128
2 12 3, 5, 10, 12, 17, 34, 48, 68, 80, 136, 160, 192
3 12 6, 9, 18, 20, 33, 40, 65, 72, 96, 130, 132, 144
4 4 24, 36, 66, 129
5 24 7, 11, 13, 14, 19, 21, 35, 42, 49, 50, 69, 76,

81, 84, 112, 138, 140, 162, 168, 176, 196, 200, 208, 22
6 24 25, 26, 28, 37, 38, 44, 52, 56, 67, 70, 74, 82,

88, 98, 100, 131, 133, 137, 145, 152, 161, 164, 193, 19
7 8 22, 41, 73, 97, 104, 134, 146, 148
8 6 15, 51, 85, 170, 204, 240
9 8 23, 43, 77, 113, 142, 178, 212, 232

10 24 27, 29, 39, 46, 53, 58, 71, 78, 92, 114, 116,
139, 141, 163, 172, 177, 184, 197, 202, 209, 216, 226,

11 24 30, 45, 54, 57, 75, 86, 89, 99, 101, 106, 108, 120,
135, 147, 149, 154, 156, 166, 169, 180, 198, 201, 210,

12 6 60, 90, 102, 153, 165, 195
13 2 105, 150
14 8 107, 109, 121, 151, 158, 182, 214, 233
15 24 61, 62, 91, 94, 103, 110, 118, 122, 124, 155, 157, 167

173, 181, 185, 188, 199, 203, 211, 217, 218, 227, 229,
16 24 31, 47, 55, 59, 79, 87, 93, 115, 117, 143, 171, 174,

179, 186, 205, 206, 213, 220, 234, 236, 241, 242, 244,
17 4 126, 189, 219, 231
18 12 111, 123, 125, 159, 183, 190, 215, 222, 235, 237, 246,
19 12 63, 95, 119, 175, 187, 207, 221, 238, 243, 245, 250, 2
20 8 127, 191, 223, 239, 247, 251, 253, 254
21 1 255
2-4
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FIG. 2. The interface of models of Poisson-distributed partic
Top: cubes of sidelengthl58 and overlapping spheres of radiu
r 58. Bottom: overlapping spheroids with a half-axis range or
54.20; randomly oriented~left!, fully aligned ~right!. The volume
fraction of the particle phase isf50.25.

TABLE II. Local contributions to the global Minkowski mea
sures for the 22 isotropic configurations.L gives the configuration
in Fig. 1 that matches the configuration number IC.

IC N L 8V0 24V1 24V2
(4) 24V2

(8) 8V3
(6) 8V3

(26)

0 1 N8 0 0 0 0 0 0
1 8 A 1 3 3 3 1 1
2 12 B 2 4 2 2 0 0
3 12 C 2 6 6 2 2 22
4 4 D 2 6 6 6 2 26
5 24 E 3 5 1 1 21 21
6 24 F 3 7 5 1 1 23
7 8 G 3 9 9 23 3 21
8 6 I 4 4 0 0 0 0
9 8 M 4 6 0 0 22 22
10 24 H 4 6 0 0 22 22
11 24 L 4 8 4 24 0 0
12 6 J 4 8 4 24 0 0
13 2 K 4 12 12 212 4 4
14 8 G8 5 9 3 29 21 3
15 24 F8 5 7 21 25 23 1
16 24 E8 5 5 21 21 21 21
17 4 D8 6 6 26 26 26 2
18 12 C8 6 6 22 26 22 2
19 12 B8 6 4 22 22 0 0
20 8 A8 7 3 23 23 1 1
21 1 N 8 0 0 0 0 0
03111
As y(r ) is positive as often as it is negative, a 50/50~iso-
metric! blend coincides with the zero set ofy(r ). If a distri-
bution of wavelengths is allowed, the functiony(r ) is just a
Gaussian random field~GRF!. The resultant morphology is
characterized by an undulating interface of consistent cu
ture and exhibits two similar phase structures.

Cahn’s approach was extended@19# to a description of the
interspace between a pair of interfaces associated with
nearby level sets of the random field. The volume betwee
pair of interfaces associated with two level sets of the sa
wave, say the level cutsa<y(r )<b, is considered to be in
one phase, while the two regions contiguous to this@y(r )
,a;y(r ).b# are defined as a second phase. The mac
scopic volume fractions of the two phases are specified o
the position of the level cuts is assigned. Mathematical str
tures so defined exhibit a wide range of morphologies. T
symmetric two-level cut modea52b exhibits a ribbon or
sheetlike structure and is characterized by a high degre
interconnectivity~even at low volume fractions!. One may
choose any number ofb anda for a given phase fractionf.
Clearly, the freedom in choosing the position of the lev
cuts ~for a chosen volume fraction! allows one to model an
even larger variety of microstructures@32#.

More general models can also be developed based on

.

FIG. 3. The interface of Gaussian models of periodicityt510
for volume fractions off50.25 andf50.75 from left to right.
Top, One-level cut. Middle, Two-level cut. Bottom, Intersection
two two-level cuts.
2-5
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approach. Intersection sets of any number of fields can
generated@33,34#. In this paper we consider the intersectio
of two two-level cut fields that are thought to accurate
describe the pore morphologies of sandstones@35#. Realiza-
tions of each of the Gaussian models are shown in Fig.

The third class of morphologies, random cellular sol
@24#, are constructed using a Voronoi tesselation. In t
model we subdivide space randomly into convex polyhe
by scattering Poisson points to a given density and const
the bisecting plane between each pair of points. From
tiles formed by the intersections of the bisecting planes
tween a given Poisson point and its neighbor, we const
convex polyhedra. Within each polyhedra every point
closer to the given Poisson point than to any other. The
sultant structure is similar to that of a closed-cell foam
random honeycomb. By thickening the walls of the polyh
dra we probe a large range of phase fractions. To do this
generate a Euclidean distance map~EDM!—a mapping giv-
ing the Euclidean distance~1, &, ), 2, ...! of each voxel
from its nearest surface voxel. By stepping through the
ferent distances a range of phase fractions for the morp
ogy is generated.

To form a foamlike network of low coordination numbe
we considered the trisecting planes of the Poisson points
using the EDM we grow a network of connected cylinde
At fractions below ca. 10% this may be a good model
foams~see, e.g., Figs. 2 and 4 in@36#! and of aerogels@34#.
Examples of the Voronoi structures are given in Fig. 4.

C. Validation of the algorithm

The algorithm for calculating the Minkowski measur
was validated against theoretical predictions for model s
tems of Poisson-distributed cubes of equal sidelength~Fig. 2!

FIG. 4. The interface of Voronoi models with 100 seeds on
2003 lattice. First row, facet models for volume fractions off
50.26 ~left! and f50.74 ~right!. Second row, edge models fo
volume fractions off50.06 ~left! andf50.50 ~right!.
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given by Eqs. ~1.7!–~1.9! as well as Poisson-distribute
spheres of identical radius. All computational data are ba
on a minimum of 50 realizations on a 2003 lattice. We mea-
sure the MFs over the full range of the volume fractionf in
steps ofDf50.02 for each model. The models are mapp
periodically, therefore, edge effects can be ignored.

As can be seen in Fig. 5 the numerical data matches
theoretical@Eqs.~1.7!–~1.9!# prediction for cubes of varying
sidelength. For cubes withl51 the result reduces to random
filled lattices as simulated by Jernot and Jouannot@17#.

To match the predictions for spheres, one must be car
with the definition of the local measures of each spheri
grain. One must use the local Minkowski measures of
digital sphere and not a continuum sphere of equivalent
dius @using Eq.~1.10! directly#. We define the digital sphere
of radiusr by all voxels radiating from the central voxel tha
are separated by a euclidean distancel ,r . The discretized
one-dimensional radius for continuum spheres is given
r 1d5r c20.5 because the spheres are centered at a ve
The properties of the discretized sphere are given in Ta
III. Using these values for the local measures in Eqs.~1.7!–

a

FIG. 5. Minkowski measures over fraction: comparison of th
oretical predictions~lines! with numerical simulations~symbols! for
Poisson-distributed cubes at different sizes:~a! l51, ~b! l52, ~c!
l54, and ~d! l58. The measures are scaled asv1→lv1 , v2

→l2v2 , andv3→l3v3 .

TABLE III. Comparison of the local Minkowski measures i
two and three dimensions for spherical grains in the continu
against the discretized spheres used in the simulations. We us* to
denote the continuum values as compared to the discretized.V1 is
given byV152r 1 .

r * V2* V2 V3* V3 r 1 r 2 r 3

4 50.3 45 268.1 251 3.5 3.79 3.91
8 201 193 2145 2103 7.5 7.84 7.95
12 452 437 7238 7141 11.5 11.8 12.0
16 804 793 17157 17071 15.5 15.9 16.0
2-6
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~1.9! we obtain excellent agreement with theory~see Fig. 6!.
The symmetry of the Euler characteristic for dimensio

d.1 was also checked. Interchanging phases correctly
rors

v2
~4!~f!→2v2

~8!~12f!,
~2.3!

v3
~6!~f!→v3

~26!~12f!

for all binary models.

D. Discretization effects

Here we discuss the effect of the choice of preferred c
tinuity on the measure of the MFs. In particular, we consi
the effect on the Euler characteristic. In Table I of@27# and
Table IX of @28# the local contribution to the Euler chara
teristic in three dimensions of the 22 possible local confi
rations of the unit cell is described. The eight~ambiguous!
configurations that are dependent on preferred continuity
configurationsC, D, F, G, C8, D8, F8, andG8 of Fig. 1. To
consider the discretization effects in the measure of the E
characteristic, we compare the contribution of these confi
rations to both Poisson-distributed cubes at differentl and to
the IOS model at differentr ~see Fig. 7!. One observes tha
for the Poisson cube model, the contributions are only c
siderable forl52 and 4, while for largerl the effects are
minimal. This is mirrored in Fig. 5, where we observed t
convergence of the curves for 6~26! neighborhoods for large
l. The reason for the fast convergence of the different ne
borhoods is that, configurations giving rise to the ambigu
configurations only occur for cubes that are exactly adjac
Anyoverlap of two adjacent cube surfaces will eliminate t

FIG. 6. Minkowski measures over fraction: comparison of th
oretical predictions~lines, highly connected neighborhoods! with
numerical simulations~symbols, both neighborhoods! for Poisson-
distributed spheres of different radius:~a! r 54, ~b! r 58, ~c! r
512, and ~d! r 516. The measures are scaled asv1→rv1 , v2

→r 2v2 , andv3→r 3v3 .
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possibility of generating these configurations. Thus we fi
that the contribution of these configurations scales appr
mately as the cube volumel 23 over most of the fractiona
range. For the IOS model the contributions do decrease,
more slowly, asr 21. The contribution of these configura
tions to models exhibiting large local curvature is consid
able even at higher resolutions. The choice of preferred c
tinuity should be considered carefully for boolean mod
with curved surfaces.

III. RESULTS

In this section we report and discuss the Minkowski fun
tionals of the different microstructures and qualitative
compare between the models. We generate the model m
structures atroughly the same length scales.

The MFs are in general size dependent. For example,
Euler characteristic per unit volume for a sphere pack
radius r 54 cannot be directly compared to results for
sphere pack of radiusr 516. A dimensionless measure suc

-

FIG. 7. The configuration probabilitiesC5C(X) over fraction
of Poisson-distributed cubes and spheres for the ambiguous
figurations~X! in Fig. 1. The letters correspond to the specific co
figurations. Data for the cube model is given by open squares
for the IOS by solid circles. The configurational probabilities d
crease with increasing size. Here we show data for sphere radr
5(4,8,12,16), and for the cube sidelength,l 5(1,2,4,8).
2-7



us
he

-
de

le
cu
ve
or
he
e
t

e
In
c
i-
n
fo

th
le
n
m

w
is
th

es
q

to
er
ori-
ly

. In
ct
ial

tric
-
For
nt

o-
on
te
tio

n-

me

ne-

ARNS, KNACKSTEDT, PINCZEWSKI, AND MECKE PHYSICAL REVIEW E63 031112
as the Euler characteristic per particle would be of great
in comparing results. In Fig. 6 we showed the MFs for t
IOS model at different radii. By scaling the measuresv1
→rv1 , v2→r 2v2 , andv3→r 3v3 , we see approximate over
lap of the curves, therefore, scaling of this particulate mo
by particle size is appropriate.

However for general models the definition of a partic
size is problematic. For example, the one- and two-level
Gaussian models generated from the same field exhibit
different correlation functions, the correlation function f
the two-level cut model decaying far more rapidly than in t
single-level cut case. This point is observed by visual insp
tion of Fig. 3. We therefore choose our model systems
have similar correlation lengthsj defined by the decay of th
envelope of the spatial two-point correlation function.
some cases, for example the two-level cut Gaussian, the
relation length at low volume fractions is very small, so d
rect comparison is difficult. In Fig. 8 we plot the correlatio
lengthj for the range of models considered in this paper
different volume fractions. The choice of the periodicityT
for the Gaussian fields and the density of sites for
Voronoi models were made to closely match the partic
based models forr 512 across the range of volume fractio
f. This allows us to form a basis for a semiquantitative co
parison of the MFs across the range of models.

A. Comparison of MFs for different model morphologies

1. Particle-based models

First we discuss the MFs for particle-based models sho
in Figs. 5 and 6. Other than the discretization effects d
cussed above, there is little difference when comparing
data for Poisson-distributed cubes and spheres. For cub
sidelengthl 51 the measures show a higher symmetry; E
~1.8! is satisfied without interchanging phases.

FIG. 8. Correlation length over fraction derived from the tw
point correlation functions in real space in units of the lattice c
stanta; IOS, identical overlapping spheres; ROS, randomly orien
spheroids; three different Gaussian and two Voronoi tessela
models.
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We compare the sensitivity of the Minkowski measures
deviations in form or alignment. To do this we consid
packs of overlapping spheroids. We generate randomly
ented and fully aligned overlapping spheroids of uniform
distributed half axesr 54,...,20 andr̄ 512 and compare them
to the IOS model with r 512. As Fig. 9 shows, the
Minkowski measures for these systems are quite similar
fact, the different continuity rules have a far stronger effe
than the differences in size or alignment. It may be nontriv
to distinguish the measures for these different systems.

2. Gaussian models

The Gaussian one-level cut model results in symme
MFs aroundf50.5 ~see Fig. 10!. The integral mean curva
ture is much less than for the particle-based models.
small and largef, isolated elliptical inclusions are prese

-
d
n

FIG. 9. Minkowski measures over fraction for Poisso
distributed overlapping spheroids of half axesr 54.20, with r̄
512, compared to fully aligned overlapping spheroids of the sa
size distribution and IOS ofr 512. The measures are scaled asv1

→ r̄v1 , v2→ r̄ 2v2 , andv3→ r̄ 3v3 .

FIG. 10. Minkowski measures over fraction for Gaussian o
level cut models of periodicityt520.
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and the Euler characteristic is positive. In the regimef
.0.20– 0.80, the interface becomes predominantly hyp
bolic (v3,0) and both phases are continuous. The rela
smoothness~small local curvature! of the interface when
compared to the sphere pack model leads to a low proba
ity for obtaining ambiguous configurations. Accordingly th
measures for the two different neighborhoods converge.

For the symmetric two-level cut Gaussians of smallf the
surface to volume ratio is much larger than for the previo
systems. Particularly, at low volume fractions the morph
ogy exhibits a sheetlike phase and the surface to volu
ratio quickly reaches a maximum~Fig. 11!. Further densifi-
cation is associated with a thickening of the sheets and
surface to volume ratio drops. Also for smallf, discretiza-
tion effects are important and the different neighborhoo
play an important role. The Euler characteristic is very la
and becomes negative for smallf once the sheetlike phas
connects implying a strongly bicontinuous structure, as
evident in Fig. 3.

FIG. 11. Minkowski measures over fraction for Gaussian tw
level cut models of periodicityt520.

FIG. 12. Minkowski measures over fraction for Gaussian int
section models of periodicityt520.
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The intersection set of the two two-level cut Gaussia
has a distinct signature~Fig. 12! when compared to the one
and two-level cut models. The strong Gaussian curvat
feature at smallf may be useful as a signature of this stru
ture when compared with the other models.

3. Voronoi models

For the Voronoi facet model, the connected polyhed
phase always percolates, and the other phase is made
disconnected inclusions. Accordingly, the curvature ne
changes sign—the holes remain convex for allf ~Fig. 13!.
Similarly, the Euler characteristic always remains positi
while the surface area due to the construction of the fie
starts at a maximum and decreases with thickening fa
boundaries. Small ambiguities arise at the intersections of
facets, again giving rise to a separation of the MFs based
the choice of continuity.

For the Voronoi cylinder model, both the network of cy
inders and the background phase percolate over a wide r

-

-

FIG. 13. Minkowski measures over fraction for Voronoi fac
models of 100 seeds on a 2003 lattice.

FIG. 14. Minkowski measures over fraction for Voronoi ed
models of 100 seeds on a 2003 lattice.
2-9
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of f. Here, the surface area first grows with increasing c
inder radius and then decreases again after the cylinders
gin merging~Fig. 14!. The curvature decreases with increa
ing dilation and becomes negative once individual edges
the Voronoi cells begin to generate isolated inclusions of
background phase. The Euler characteristic is initially ne
tive, implying that both phases percolate, and then increa
almost linearly, finally becoming positive.

IV. CALCULATION OF CHARACTERISTICS ON A
SANDSTONE SAMPLE

Direct measurement of a three-dimensional structure
now available via micro x-ray computed microtomograp
micro-CT@37–39#. These techniques provide the opportun
to experimentally measure the complex morphology o
range of materials in three dimensions at resolutions dow
5 mm. We have obtained a 51235123666 image of a cross
bedded sandstone at 10mm resolution via micro-CT imag-
ing. Analysis of the full image would give us a single valu
for each of the MFs and would give us little data to comp
model predictions. However, this sample shows strong
erogeneity in the pore volume fraction. We show in Fig. 1
trace of 600 values of the porosity measured at a separa
of 10 mm. Due to this heterogeneity and by appropriate
choosing different window sizes on the image we are abl
generate morphological parameters for the sandstone f
range of f. This allows us to quantitatively compare th
experimental microstructure for different proposed mo
morphologies.

The original sample view was of a cylindrical plug wit
5123512 voxels in the plane and 660 slices. Two cub
blocks of 30033003300, 16 blocks of 15031503150, 54
blocks of 10031003100, and 250 blocks of 60360360
were obtained from the full sample volume. This provided
spread of porosities across different sampling volumes~see
Fig. 16!. Results for the morphological measures are sum
rized in Fig. 17. With decreasing sampling volume the va
ability of the measures increases, but the values are co

FIG. 15. Variation in the porosity distribution along a cros
bedded sandstone sample.
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tent with the data for the larger volumes, suggesting that
the smaller blocks a meaningful average is obtained.

A number of statistical models have been proposed
reconstructing porous media from statistical informati
@1,2,33,35,40–42#. These methods, based on different und
lying model microstructures, are generated in such a man
that they match the observed two-point statistical proper
of the rock. We compare the morphological measures for
sandstone to three standard stochastic models used to g
ate realizations of sedimentary rock microstructures fr
two-point information@43#. The first is based on the boolea
sphere model@41#, the second on the one-level cut mod
@1,2#, and the third on the intersection set model@35#. The
quantities used to characterize the microstructures of th
systems are the volume fraction, the surface to volume r
s/v, andp(2)(r ) the two-point correlation function. Note tha
f5p(2)(0) ands/v524dp(2)(0)/dr.

The correlation function for the phase external to t
spheres of radiusr 0 in the IOS model isp(2)(r )5p„n(r )… for
r ,2r 0 and p(2)(r )5f2 for r .2r 0 , where n(r )51
13r /4r 02r 3/16r 0

3, and s/v523f ln f/r0. To generate
matching GRF models we employ the field-field correlati
function @44,33#

FIG. 16. The pore structure for sections of the x-ray-CT data
the cross-bedded sandstone for different window sizes.~a!, ~b!
1503, ~c!, ~d! 1003, ~e!, ~f! 603. The spread inf is evident across
the samples.
2-10
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g~r !5
e2r /j2~r c /j!e2r /r c

12~r c /j!

sin 2pr /d

2pr /d
~4.1!

characterized by a correlation lengthj, domain scaled, and a
cutoff scaler c . The three length scale parameters are
tained by a best fit procedure to minimize the nonlinear le
squares error@33#,

Ep~2!5

(
i 51

M

@pfit
~2!~r i !2pexp

~2!~r i !#
2

(
i 51

M

@pfit
~2!~r i !2pexp

2 #2

, ~4.2!

FIG. 17. Minkowski measures for a cross-bedded sandst
Shown are the data points for the different blocks of sizes 63,
1003, 1503, and 3003. In this case the measures are plotted o
porosity, not over fractions of a constituting grain density. From
to bottom:~a! v1 , ~b!, v2

(8) , and~c! v3
(26) .
03111
-
st

and a downhill simplex method is used to find the best
rameter set@45#. We generate the stochastic models that b
match the two 30033003300 samples and compare the no
malized two-point correlation functionsS(r )5@p2(r )
2p2#/(p2p2) of these models in Fig. 18.

Values of r 0 for the IOS model, andd, j, and r c are
summarized in Table IV along with the error estima
E(p(2)). The average fit is worst for the sphere model, a
more than a factor of 2 better for the Gaussian one-level
and intersection set. The sphere model, however, has
one free parameter as compared to three for the Gaus
models.

We then calculate the Minkowski functionals of the thr
stochastic models and compare them with the sandstone
~Fig. 19!. The measures are compared to the values resu
from the sampling window at 1003. The values for the
samples were binned in steps of porosityDf50.02.

e.

r
p

FIG. 18. Normalized two-point correlation functionsS(r ) of the
two 3003 sandstone samples and the averaged best fits for the m
structures.

TABLE IV. Parameters of the models for the cross-bedd
sandstone in microns. The original sandstone data set image
resolution at 10mm per pixel. For the IOS model, the equivale
sphere radius is in ther c column.

Model r c ~mm! j ~mm! d ~mm! Ep(2)

Spheres 94.2 231023

One-level cut 20.2 22.4 1080 931026

Intersection 54.3 80.5 410 431024
2-11
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None of the models satisfactorily match the experimen
data. The surface areav1 is matched best across allf by the
intersection model. Integral curvaturev2 is best matched by
the IOS models that honor the granularity of the sedimen
rock. The topologyv3 is described well by both the IOS an
the one-cut models. The intersection model is particula
poor for this model over the full range off. The model that
best captures the characteristics of the sandstone is the
model. Even though the other models do reasonably we
the fraction where the two-point correlation functions we
matched, they fail to describe the structure across a rang
phase fractions. Different transport and mechanical proce
will depend more strongly on the agreement withspecific
morphological measures. For example, single phase flow
conductivity will be most strongly affected by surface-t

FIG. 19. Comparison of the MFs for the sandstone data to
three stochastic models based on a window size of 1003.
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volume ~related to average constriction size! and the topol-
ogy. A model that accurately describes these measures
still yield good agreement with experiment. However, m
tiphase flow properties depend crucially on the curvature
the surfaces where immiscible phases meet. For these
cesses a model that also accurately matchesv2 will be re-
quired. In this case the IOS model is the best of the th
candidates as a reconstructed data set. Recently, a mod
describing sandstone morphology has been developed b
on a full process-based sedimentation, compaction, and
agenesis model@46#. This model honors both the shape
the original grains and the geological formation proces
and therefore may provide a more accurate description
pore space morphology of sedimentary rock.

V. CONCLUSIONS

Integral geometry provides alternative methods and to
for measuring spatial structure. A family of measures,
Minkowski functionals ~MFs!, in particular, seem to be
promising measures for describing the morphology of co
plex materials. The MFs characterize not only the connec
ity but also the shape and content of spatial figures. Th
measures embody information from every order of the c
relation function but can be calculated simply by summi
over local contributions of a configuration. In three dime
sions the functionals are related to the familiar measure
volume fraction, surface area, integral mean curvature,
Euler characteristic. The morphological measures are us
order parameters for describing spatial patterns quan
tively and providing for a comparison between experime
and theory.

They may also play a role in the statistical reconstruct
of complex three-dimensional morphologies. To date, me
ods used to reconstruct morphologies have been prima
based on averaged statistical pointwise information to sec
order. In previous simulated annealing procedures the en
function has been defined by the ‘‘distance’’ from the refe
ence two-point correlation function@47# and the chord dis-
tribution function@6#. After interchanging voxels on a digi
tized representation, one must perform anontrivial
calculation of two-point information on the new structure
decide if the move is accepted or rejected. Integral geom
provides an alternative method to measure spatial struct
and use of the measures may lead to fast simulated anne
procedures for reconstructing random media. In contras
the methods based on two-point information, the intercha
of voxels leads to local changes in the MFs, and trial sta
are more easily evaluated.
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