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Euler-Poincare characteristics of classes of disordered media
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We consider a family of statistical measures based on the Euler-Poidcaracteristic oh-dimensional
space that are sensitive to the morphology of disordered structures. These measures embody information from
every order of the correlation function but can be calculated simply by summing over local contributions. We
compute the evolution of the measures with density for a range of disordered microstructural models; particle-
based models, amorphous microstructures, and cellular and foamlike structures. Analytic results for the
particle-based models are given and the computational algorithm verified. Computational results for the dif-
ferent microstructures exhibit a range of qualitative behavior. A length scale is derived based on two-point
autocorrelation functions to allow qualitative comparison between the different structures. We compute the
morphological parameters for the experimental microstructure of a sandstone sample and compare them to
three common stochastic model systems for porous media. None of the statistical models are able to accurately
reproduce the morphology of the sandstone.
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INTRODUCTION attempts to reconstruct materials from experimentally mea-
sured two-point information have not been very successful
The structure of a disordered material—an oil bearing2,3]. The same problem has been encountered at the atomic
rock, a piece of paper, or a polymer composite—is a remarkscale in characterizing and comparing amorphous atomic
ably incoherent concept. Despite this, scientists and engiglasses, where two-point correlation functions are recognized
neers are asked to predict the properties of a disordered m#o give poor structural signatures. The function is nonunique
terial based on the “structure” of its constituent and does not capture many important features of the micro-
components. A major shortcoming in the understanding obtructure.
processes involving complex materials has been an inability Other useful two-point characterizations of microstructure
to accurately characterize microstructure. The specificatioinclude the chord-length distribution functi¢4,5] (and the
of the structure requires topological as well as geometrigelated lineal-path functiof6]) and the pore-size distribution
descriptors to characterize the connectivity and the shape dé@inction [7]. However reconstructions of experimental data
the spatial configuration. In oil recovery from petroleum res-sets based on these characterizations have been shown to
ervoir rocks, an area of particular interest to the authorsgive a poor representation of the connectivity of the systems
recovery depends crucially on the topology of the pore spacg8]. Functions that may provide more complete information
and on the mean curvature of the surfaces where immisciblebout connectivityf9] are unfortunately too complex to in-
phases meet at a contact angle. To determine accurate flasorporate into reconstruction schen{&s. Incorporation of
models and to devise intelligent recovery strategies, an accuyhree- and four-point information may lead to a better esti-
rate characterization of reservoir rocks in terms of topologymation of structure, but their measurement is very complex
and geometry is required. and it is not clear how to incorporate the information within
To date, the toolkit used to quantify complex structuresreconstruction algorithms.
has been primarily that of the statistical physicist. Complete There is a need for morphological measures which in-
characterization of the effective morphology, however, reclude higher-order correlations, but are fast and reliable for
quires knowledge of an infinite set ofpoint statistical cor- characterizing the morphology of a structure. Statistical mea-
relation functions. In practice only lower-order morphologi- sures that are sensitive to the morphology of structures have
cal information is available; common methddg are based been extensively investigated in other fields such as image
on matching the first two momentwolume fraction and analysis and pattern recognitips,10,11. Integral geometry
two-point correlation functionof the binary phase function provides a suitable family of morphological descriptors, the
to a random model. It is widely recognized that although theMinkowski functions(MFs). These measures embody infor-
two-point correlation function of a reference and a recon-mation from every order of the correlation functions, are
structed system is in good agreement, this does not ensureimerically robust even for small samples, are independent
that the structures of the two systems will match well, andof statistical assumptions on the distribution of phases, and
yield global as well as local morphological information. The
MFs are additive measures allowing one to calculate these
*Corresponding author. measures effectively by simply summing over local contri-
Email address: mak110@rsphysse.anu.edu.au butions. The measures are based on the Euler-Poicbare
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acteristic ofn-dimensional space. In ddimensional space figurationsQ belong also to the convex ring.
there ared+ 1 such measures. In three dimensions the func- The Euler characteristiy is introduced as an additive
tionals are related to the familiar measures of volume fracfunctional overR, so that forA,Be R,
tion, surface area, integral mean curvature, and Euler char-
acteristic. These measures are efficiently calculated at the X(AUB)= x(A)+x(B)—x(ANB) (11
local scale from digital imagd4d2,13. MFs have been used
previously to distinguish quantitatively between differentand
complex morphologies, to characterize turbulent and regular
Turing patterns from chemical reaction-diffusion systems X(A):[
[14], to show that the hole distribution in thin films are in-
consistent with the concept of spinodal decomposition, but
consistent with a nucleation scenafits], and to discrimi- We note that this functionak coincides with the Euler-
nate between different cosmological models of the early uniPoincare characteristic in algebraic topology. The
verse[16]. Measurements of the MFs for model random ma-Minkowski functionals overR are now defined through
terials has to date been made on only a simple random filling
of  cubic networ{17). | o W)= [ X(ANE)du(E,). w3
In this paper we consider the evolution of the Minkowski
functionals for a range of complex morphologies. We loosely i , , g ,
consider three types of model microstructurés: Particle- ere,E, is ar-dimensional plane ifi°, d(E,) denotes its
based models, models based on Poisson distributed overlaﬁé—?emat'caI density normalized so that fordadlmedrlsymnal
ping and nonoverlapping spheroids that generate granul “d/2 By(r) with radius r,W,(By(r))=wgr® "oq
packs, sintered spheroid packs, et@) Models based on =7 /1'(1+d/2) is the volume of the unit ball. From defi-
level cuts of Gaussian random fields that describe the mofition (1.3) it is clear that the Minkowski functionals inherit
phology of amorphous alloyid 8], disordered microemulsion additivity from x. For lattice configurationg), i.e., configu-
phaseg19,20, and polymer compositef21-23; and (3) rations sgmpled as unions of vqxeﬂs it is convenlent to
models based on Voronoi tesselations of Poisson-distributeignormalize the Minkowski functionals by setting
points that result in closed-cell and open-cell fod@¥| and
fibrous bundles. We derive analytic results for Poisson- V,(Q)= MQ) (1.4)
distributed particles and verify the computational algorithm. W,
The MFs for the range of microstructures are then presented )
and we discuss the qualitative differences observed. W&0 thatV,(Q;)=1 for a single cubgvoxe) Q;. Note that
compute the morphological parameters for the experimentaiccording to the definition given by E€L.3) the Minkowski
microstructure of a sandstone sample and compare to thefdnctionalsV, can be considered as Euler-Poincaharac-
three different stochastic model systems. None of the statigeristics x for lower-dimensional planar intersections of the
tical models are able to accurately reproduce the morpholog§Patial configuratiorQ. The Minkowski functionals in three
of the sandstone. dimensions are related to familiar geometric quantities, for
The plan of the paper is as follows. In the next section wehstance, the surface are&/fand integral mean curvature
review concepts in mathematical morphology and give the37V2 of the surface exposed by a coverage with volurhe
theoretical predictions for the MFs of Poisson-distributed= Vo and Euler characteristi¢’=V;.
cubes and spheres. We then describe the computational algo- TWo general properties that a functiong(Q) should
rithm, the generation of the model microstructures, ancPossess in order to be a morphological measure are motion
verify the algorithm against theory. In the following section invariance and continuity, since the “shape” of a domain
we present numerical predictions of the MFs for a range ofloes not depend on its location and orientation and should be
microstructures. approximately given by an inscribed polygon. In many cases
it is important that a domain can be decomposed into parts
such as a digitized s&®=U;Q; into a collection of voxels
|. MINKOWSKI FUNCTIONALS Q;. Therefore, we require the additivity relati¢h.1) as a
¢ third property of a morphological functional(Q). Three-

digitized representations of complex media at various Vol_d|menS|onaI space examples of such measures include vol-
ume fractions. We consider a two-component medium fiIIing_ume and surface area of a domalnin two dimensions they
a cubic volumeV=LY. A digitized setQ=U Q, of either !ncllude the boundaryllength and area. A remarkablg theorem
in integral geometry is the completeness of the Minkowski
functionals[25]. The theorem asserts that any additive, con-
tinuous, and motion invariant functional(.4) on subsets
ACRYAeR, is a linear combination of thed+1
Minkowski functionals

1, convexA#0

0, A=0. (-2

In this study we consider the Minkowski functionals o

component can be described by a collection of voxgl®r
compact(closed and boundégaonvex sets. In order to char-
acterize@ in a morphological way, let us first recall some
basic facts from combinatorial integral geome{i35,13.
The convex ringR constitutes the stage for our mod&.

denotes the class of all subsét®f the Euclidean spaci?, d
which can be represented in terms of a finite union of V(A) = c V(A 1
bounded closed convex sets. Clearly, digitized spatial con- (A) Z‘o Vil A). @9
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with real coefficientsc, independent ofA. The d+1  phase. This leads to a duality of these measures. Similarly on
Minkowski functionals therefore are the complete set ofa cubic lattice one may have 6 or 26 neighbors depending on
morphological measures. The continuity of the functionalsthe absence or presence of preferred continuity. The continu-
V, allows the definition of integrals of the curvature function ity of either phase can be varied continuously by defining the
to be evaluated for surfaces with singular edges, i.e., thprobability « of a common edge to be continuous in one
Minkowski functionals generalize curvatures as differentialphase and the probabilifgy=1— « in the other phasg27]. If
geometric quantities to singular eddd®,13,16,2& There- neither phase has preferred continuity we getg=1/2.

fore, it is straightforward to apply the notion of morphologi-  As shown by Seyfried and Meck&8], one can relate the
cal measures even to patterns consisting of individual latticeneasures ob,(p) andvs(p) for different neighborhoods,
grains (voxel-based imagesSince many physical phenom-

ena depend essentially on the geometry of spatial structures, v (p)=vP(p)+ dv,,
such morphological measures may be useful tools, in particu- (1.9
lar, in combination with the Boolean model well known in v ®(p) =0 (p)—3v,+ v,

stochastic geometry13]. This model generates random
structures by overlapping grains such as spheres or cubggth the two correction terms for Poisson-distributed cubes
each with arbitrary location and orientation. given by
The normalized mean values,(p)=(V,(Q))/V of the
Minkowski functionals for Poisson-distributed lattice grains 5v2=2ﬁh3+2*2‘h(1—ﬁ*)2,
of densityp (in units ofa~2, a is the lattice constahtare

[13] A3 3NZ N dr AN — 2, ok e
503:q)\ +3N“ =\ 1[q4}\ 2(8p2q_2)+24q
—1_apV
volp)=1-e 7 + 1253 (1+T5) — 637 (1+ 4P) + 854" — 245" 1]
vi(p)=e"PVo(1—e V1), —4ﬁ}‘3+3)‘2_3)‘+1- (1.9
vy (p)=e PVo(—1+2e "1 P2V1*V2)) " (1.6)  The derivation of theoretical results for the other particle-
) based models is fully analogous. If spheres are used as
vZ%(p)=e PVo(1—3e PVi+3e P(2V1tV2) grains, the Minkowski measures of the single grain in the
e pVLHV, V) continuum become

whereV,(K) are the morphological measures of the indi- Voszrg’, Vi=mr?, V,=2r, Vy=1. (1.10
vidual grainsK. For Poisson-distributed cubes of sidelength 3

N\, G=1-Pp=e"* being the probability that a cube is not _ i o
placed at a lattice site, and,=\%, V;=A2, V,=\, and leading to the global measures for Poisson-distributed or

V4=1 this becomes identical overlapping spherékOS) using Eq.(1.6).

vo(p)=1—1"", Il. COMPUTATIONAL ASPECTS
3. 2 In this section we describe the algorithm implemented to
va(p)=T" (1-0%), calculate the Minkowski functionals, the generation of the
® .3 2 2y (1.7 model morphologies, the validation of the algorithms on
vy (P)=0" (—-1+20" -G ), some of those model morphologies, and discretization ef-
fects.

~\3 )\ 2 __ o\ 2 ~2\2
v(326)(p)=q}\ (1_3q)\ +3q2)\ +)\_q3)\ +3}\+l).

. . . . A. Algorithm to calculate the MFs
The numbers in brackets specify the different neighbor- ) ) )
hoods of the cubes. In contrast to the measugeandv, v, The MFs are obtained directly from any image made up

depends on the definition of the local neighborhood of &°f discrete voxels. For example, the volume fraction of a
grain. Since one must have topological closed sets, grairl%hase is trivially obtained by dividing the number of voxels
may be connected only by a single point. For voxel-based?f that phase by_ the total nur_nber of voxgls. The other fqnc-
images this leads to some ambiguity in the measure. On ré(_)nals are o_btalned by considering the mterfa_ce associated
square lattice, diagonally connected pixels have only ondith the vertices of each voxel or the Voronoi cell of the
point in common—in the absence of a preferred continuity oféttice [27]. Each vertex of the lattice is shared by eight
either phase, the interface can be considered to be curvétpighboring cubes; there are therefofe-256 possible con-
equally toward either medium. In the presence of Strongbﬂguranons, which can be evaluated quickly using a masked

preferred continuity, the neighborhood will have eight neigh-SUm

bors(a pixel is connected to the nearest and the next-nearest 7
neighbor$ for the phase of preferred continuity and four confi 2% phas hasee [0 1 2.7
neighbors(only nearest neighbor connectiorfsr the other g:izo phase,  phasee {0.3) @
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(A) B) O (D) TABLE I. Mapping of the 256 vertex configurations to the 22
isotropic configurations following the order shown in Fig. 1. IC
defines the isotropic configuration number &hthe multiplicity of
the configuration.

IC N Configuration number defined by E@.1)
(E) 1) G (H) 1
@ @ @ @ 8
24 7,11, 13, 14, 19, 21, 35, 42, 49, 50, 69, 76,
) ) (K) @0 81, 84, 112, 138, 140, 162, 168, 176, 196, 200, 208, 224
24 25, 26, 28, 37, 38, 44, 52, 56, 67, 70, 74, 82,
88, 98, 100, 131, 133, 137, 145, 152, 161, 164, 193, 194
22,41, 73, 97, 104, 134, 146, 148
15, 51, 85, 170, 204, 240

0
1,2, 4,16, 32, 64, 128

12 3,5, 10, 12, 17, 34, 48, 68, 80, 136, 160, 192
12 6, 9, 18, 20, 33, 40, 65, 72, 96, 130, 132, 144
4 24, 36, 66, 129

ga b~ wWNPEFLO

(e}

7 8
8 6
9 8 23,43,77,113, 142, 178, 212, 232
M) N) (D) (G) 10 24 27, 29, 39, 46, 53, 58, 71, 78, 92, 114, 116,
139, 141, 163, 172, 177, 184, 197, 202, 209, 216, 226, 228
11 24 30, 45, 54, 57, 75, 86, 89, 99, 101, 106, 108, 120,
135, 147, 149, 154, 156, 166, 169, 180, 198, 201, 210, 225
12 6 60, 90, 102, 153, 165, 195
13 2 105, 150
FIG. 1. Catalog of filling patterns of a unit cell giving rise to 14 g 107, 109, 121, 151, 158, 182, 214, 233

distinct configurations. Some configurations with exchanged phasegs 24 g1 62 91. 94 103. 110. 118. 122. 124. 155. 157. 167

are not shown; 22 isotropic configurations exist, the rest can be 173. 181 185 188. 199. 203. 211. 217. 218. 227 229 230
generated by rotations. Isotropic configurati¢A$—(G) are gener- 16 24 31 47 55 59 79 87.93 115. 117. 143 171. 174

ated by inverting the phase_s of configurati(()AS—(G) and(N). (D) 179, 186, 205, 206, 213, 220, 234, 236, 241, 242, 244, 248
and(G’) are shown as an illustration. 17 4 126, 189, 219, 231

8 12 111, 123, 125, 159, 183, 190, 215, 222, 235, 237, 246, 249
9 12 63, 95, 119, 175, 187, 207, 221, 238, 243, 245, 250, 252
8 127, 191, 223, 239, 247, 251, 253, 254
1 255

where the sum is taken over only one phase. For voxels 01
equal side length, the local Minkowski measures are rota:
tionally invariant and the 256 configurations reduce to 2
(see Fig. 1L The mapping is given in Table | and the local
contributions to the global Minkowski functionals are given
in Table Il. The various patterns and their resultant MFs have

been derived elsewhel@7,28 for generala. The global fully aligned along a specific axis. Examples for some of
measures for each configuration are obtained then by a cothese models are given in Fig. 2.

figuration count over all vertices on any voxelated structure A class of materials that is not in general well described
normalized by the total number of vertices. On a 500 MHzby particulate models is that of amorphous composites. Re-
Alpha microprocessor we calculate all MFs on a%0fage  cently, model random materials have been described by level
in 40 secs using 2 MB of memory. The execution time scaleguts of a superposition of random plane waves—the leveled-

linearly with the volume of the image. wave model[29,30. Originally developed to describe the
morphologies associated with spinodal decomposifitf],
B. Generation of model media and later to describe the structure of bicontinous microemul-

sions[19], the leveled-wave model accounts for many fea-

The models we co_nS|dered in this paper can be Ioos.e|¥ures observed in real disordered materi@9] including
separated into three different classes. The first class, particle- lymer blendg21] and foamg31]

based models, includes Poisson-distributed cubes arPaDI the oriainal sch due to Caft] it
Poisson-distributed overlapping oblate and prolate spheroids. n the original scheme due fo L.a one associates an
Cubes of slidelength = (1,2,4,8) are considered. For sphe- interface between two distinct phagesy., por.e/matn)(Wlth
roids we consider both fully oriented and isotropic packs. A2 €vel set(or contouy of a random standing vzavy'(r)
special case of this model is based on overlapping spher&9MPosed ol sinusoids with fixed wavelength=2/k,
(10S mode). For this model we consider radii of but random direction&,, phase constant®,, and ampli-
=(4,8,12,16). Two more systems of spheroidal packs ardesA,,

evaluated, both with a half-axis range o&4<20 and an 1

average half axis of =12. In one case we consider ran- y(r)= En: A, cod Kok, T+ ®,). (2.2

domly oriented spheroids and in the second case spheroids N
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TABLE IlI. Local contributions to the global Minkowski mea-

sures for the 22 isotropic configuratioris gives the configuration
in Fig. 1 that matches the configuration number IC.

IC N L 8V, 24v; 24§ 2av 8V v
0 1 N 0 0 0 0 0 0
1 8 A 1 3 3 3 1 1
2 12 B 2 4 2 2 0 0
3 12 Cc 2 6 6 2 2 -2
4 4 D 2 6 6 6 2 -6
5 24 E 3 5 1 1 -1 -1
6 24 F 3 7 5 1 1 -3
7 8 G 3 9 9 -3 3 -1
8 6 | 4 4 0 0 0 0
9 8 M 4 6 0 0o -2 -2
10 24 H 4 6 0 0o -2 -2
1 24 L 4 8 4 —4 0 0
12 6 J 4 8 4 —4 0 0
13 2 K 4 12 12 -12 4 4
14 8 G 5 9 3 -9 -1 3
15 24 F' 5 7 -1 -5 -3 1
16 24 E 5 5 -1 -1 -1 -1
17 4 D' 6 6 -6 -6 -6 2
18 12 C' 6 6 -2 -6 -2 2
19 12 B’ 6 4 -2 -2 0 0
20 8 A 7 3 -3 -3 1 1
21 1 N 8 0 0 0 0 0

PHYSICAL REVIEW E 63 031112

FIG. 3. The interface of Gaussian models of periodi¢ityl0
for volume fractions of¢p=0.25 and¢=0.75 from left to right.
Top, One-level cut. Middle, Two-level cut. Bottom, Intersection of
two two-level cuts.

As y(r) is positive as often as it is negative, a 50/&b-
metric) blend coincides with the zero set pfr). If a distri-
bution of wavelengths is allowed, the functigfr) is just a
Gaussian random fiel@GRF. The resultant morphology is
characterized by an undulating interface of consistent curva-
ture and exhibits two similar phase structures.

Cahn’s approach was extenddd®] to a description of the
interspace between a pair of interfaces associated with two
nearby level sets of the random field. The volume between a
pair of interfaces associated with two level sets of the same
wave, say the level cute<y(r)<g, is considered to be in
one phase, while the two regions contiguous to flyiér)
<a;y(r)>p] are defined as a second phase. The macro-
scopic volume fractions of the two phases are specified once
the position of the level cuts is assigned. Mathematical struc-
tures so defined exhibit a wide range of morphologies. The
symmetric two-level cut moder=— B exhibits a ribbon or
sheetlike structure and is characterized by a high degree of
interconnectivity(even at low volume fractionsOne may

FIG. 2. The interface of models of Poisson-distributed particlesChoose any number g8 and « for a given phase fractiogh.
Top: cubes of sidelength=8 and overlapping spheres of radius Clearly, the freedom in choosing the position of the level
r=8. Bottom: overlapping spheroids with a half-axis ranger of cuts (for a chosen volume fractigrallows one to model an
=4.20; randomly orientedeft), fully aligned (right). The volume

fraction of the particle phase ig=0.25.

even larger variety of microstructurg32].
More general models can also be developed based on this
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FIG. 5. Minkowski measures over fraction: comparison of the-
oretical predictionglines) with numerical simulationgsymbols for
Poisson-distributed cubes at different sizes:\=1, (b) A\=2, (c)
N=4, and (d) A=8. The measures are scaled @s~\v, v,
—\2,, andvg—\3us.

FIG. 4. The interface of Voronoi models with 100 seeds on a
200° lattice. First row, facet models for volume fractions &f
=0.26 (left) and ¢=0.74 (right). Second row, edge models for
volume fractions of¢p=0.06 (left) and ¢=0.50 (right).

iven by Egs.(1.7)—(1.9) as well as Poisson-distributed
pheres of identical radius. All computational data are based
on a minimum of 50 realizations on a Z0@ttice. We mea-
sure the MFs over the full range of the volume fractipin
steps ofA ¢=0.02 for each model. The models are mapped
periodically, therefore, edge effects can be ignored.

As can be seen in Fig. 5 the numerical data matches the

approach. Intersection sets of any number of fields can bg
generated33,34]. In this paper we consider the intersection
of two two-level cut fields that are thought to accurately
describe the pore morphologies of sandstdi3&s. Realiza-
tions of each of the Gaussian models are shown in Fig. 3.
The third class of morphologies, random cellular solids

[24], are constru_cted using a Voronpl tesselation. In thIStheoreticaI[Eqs.(1.7)—(1.9)] prediction for cubes of varying
model we subdivide space randomly into convex polyhedrg idelength. For cubes withi=1 the result reduces to random

by scattering Poisson points to a given density and constru% led lattices as simulated by Jernot and Jouariaa.

e ot b e b O ME e preictons for sphres,one s e care
a Dy the ) . . gp with the definition of the local measures of each spherical
tween a given Poisson point and its neighbor, we construct

convex polvhedra. Within each polvhedra everv point isgrain. One must use the local Minkowski measures of the
closer topthg iveﬁ Poisson point Fcha);] to an oth)(/arpThe reqigital sphere and not a continuum sphere of equivalent ra-

given Foisson p y ; dius [using Eq.(1.10 directly]. We define the digital sphere
sultant structure is similar to that of a closed-cell foam or

random honevcomb. By thickening the walls of the pol he_of radiusr by all voxels radiating from the central voxel that
y - 2y 9 : POYNE- e separated by a euclidean distarfcer. The discretized

dra we probe a large range of phase fractions. To do this we ; : . X o

. : : : one-dimensional radius for continuum spheres is given by
generate a Euclidean distance m&pM)—a mapping giv- rig=r.—0.5 because the spheres are centered at a vertex
ing the Euclidean distancl, v2, v3, 2, ..) of each voxel le?e_ ?o érties of the discreptized sphere are given in Table.
from its nearest surface voxel. By stepping through the dif- " UFs)inpthese values for the Iocaleneasures ?n R —
ferent distances a range of phase fractions for the morphol- ' 9

og)_/rlsfgenera:cted. lik Kof I dinati b TABLE 1ll. Comparison of the local Minkowski measures in
0 form a foamlike network of low coordination number two and three dimensions for spherical grains in the continuum

we considered the trisecting planes of the Poisson points. Bé(gainst the discretized spheres used in the simulations. Wetaise

using the EDM we grow a network of connected cylinders.qenote the continuum values as compared to the discretizeis
At fractions below ca. 10% this may be a good model ofgiven byv,=2r,.

foams(see, e.g., Figs. 2 and 4 [86]) and of aerogel§34].
Examples of the Voronoi structures are given in Fig. 4. r, V3 v, V3 Vs, r ry rs

4 50.3 45 268.1 251 35 3.79 3.91
8 201 193 2145 2103 7.5 7.84 7.95

The algorithm for calculating the Minkowski measures12 452 437 7238 7141 115 11.8 12.0
was validated against theoretical predictions for model sysig 804 793 17157 17071 155 159 16.0
tems of Poisson-distributed cubes of equal sideleffgth 2)

C. Validation of the algorithm

031112-6



EULER-POINCARECHARACTERISTICS OF CLASSES B. . . PHYSICAL REVIEW E 63 031112

— v, ov,

1
—0.2 } --- v, 8neighbors 1 ov, 4neighbors
— - - V,, 26 neighbors © V,, 8 neighbors
r=4 2 v,, 6 neighbors r=8
v v,, 26 neighbors
-0.4 t t

FIG. 6. Minkowski measures over fraction: comparison of the-
oretical predictionglines, highly connected neighborhogdsith
numerical simulationgsymbols, both neighborhoodfor Poisson-
distributed spheres of different radiug@) r=4, (b) r=8, (c) r
=12, and(d) r=16. The measures are scaled ws—rvy, v,
—r12,, andvy—ris.

(1.9 we obtain excellent agreement with thedsge Fig. 6.

The symmetry of the Euler characteristic for dimensions
d>1 was also checked. Interchanging phases correctly mir-
rors

(4) (8)
v ——vy (1=¢),
2(¢) 2 2 FIG. 7. The configuration probabilitieS=C(X) over fraction

of Poisson-distributed cubes and spheres for the ambiguous con-
figurations(X) in Fig. 1. The letters correspond to the specific con-
figurations. Data for the cube model is given by open squares and
for the 10S by solid circles. The configurational probabilities de-
crease with increasing size. Here we show data for sphere radii,
D. Discretization effects =(4,8,12,16), and for the cube sidelength,(1,2,4,8).

Here we discuss the effect of the choice of preferred con:
tinuity on the measure of the MFs. In particular, we conside
the effect on the Euler characteristic. In Table I[287] and
Table IX of [28] the local contribution to the Euler charac-
teristic in three dimensions of the 22 possible local configu

rations of _the unit cell is described. The elg{htnblgu_ou_}a tions to models exhibiting large local curvature is consider-
configurations that are dependent on preferred continuity a8ble even at higher resolutions. The choice of preferred con-

configurationsC, D, F, G C’, D', F', andG’ of Fig. 1. To  nyity should be considered carefully for boolean models
consider the discretization effects in the measure of the Eulgfith curved surfaces.

characteristic, we compare the contribution of these configu-

rations to both Poisson-distributed cubes at differeand to

the 10S model at different (see Fig. 7. One observes that

for the Poisson cube model, the contributions are only con- In this section we report and discuss the Minkowski func-
siderable forn=2 and 4, while for largei the effects are tionals of the different microstructures and qualitatively
minimal. This is mirrored in Fig. 5, where we observed thecompare between the models. We generate the model micro-
convergence of the curves for(86) neighborhoods for large structures atoughly the same length scales.

\. The reason for the fast convergence of the different neigh- The MFs are in general size dependent. For example, the
borhoods is that, configurations giving rise to the ambiguouguler characteristic per unit volume for a sphere pack of
configurations only occur for cubes that are exactly adjacentadius r=4 cannot be directly compared to results for a
Any overlap of two adjacent cube surfaces will eliminate thesphere pack of radius=16. A dimensionless measure such

(2.3
v ()= (1-¢)

for all binary models.

ossibility of generating these configurations. Thus we find
that the contribution of these configurations scales approxi-
mately as the cube volumeé 2 over most of the fractional
range. For the IOS model the contributions do decrease, but
‘more slowly, asr ~1. The contribution of these configura-

IIl. RESULTS
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3

2
N, 1V, TV,

0.0 -
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02 ! . ) .
0.0 0.2 0.4 ¢ 08 08 1.0

FIG. 9. Minkowski measures over fraction for Poisson-
distributed overlapping spheroids of half axes4.20, with T
FIG. 8. Correlation length over fraction derived from the two- =12, compared to fully aligned overlapping spheroids of the same
point correlation functions in real space in units of the lattice con-size distribution and IOS aof=12. The measures are scaledvas
stanta; |0S, identical overlapping spheres; ROS, randomly oriented—Tv 1, v,—T2v,, andvs—T v;.
spheroids; three different Gaussian and two Voronoi tesselation
models. We compare the sensitivity of the Minkowski measures to
deviations in form or alignment. To do this we consider
ﬁacks of overlapping spheroids. We generate randomly ori-

]

as the Euler characteristic per particle would be of great us

in comparing results. In Fig. 6 we showed the MFs for thegneq ang fully aligned overlapping spheroids of uniformly
I0S model at different radii. By scaling the measuras distributed half axes=4,...,20 and = 12 and compare them
=TV, V=120, andug— 35, We see approximate over- " yhe [0S model withr=12. As Fig. 9 shows, the
lap of the curves, therefore, scaling of this particulate mOdeL/Iinkowski measures for these systems are quite similar. In
by particle size is appropriate. - . _fact, the different continuity rules have a far stronger effect
However for general models the definition of a particley,, the gifferences in size or alignment. It may be nontrivial

size is problematic. For example, the one- and two-level cufy, gistinguish the measures for these different systems.
Gaussian models generated from the same field exhibit very

different correlation functions, the correlation function for 2. Gaussian models
the two-level cut model decaying far more rapidly than in the ) _ )
single-level cut case. This point is observed by visual inspec- The Gaussian one-level cut model results in symmetric
tion of Fig. 3. We therefore choose our model systems td¥IFs aroundé=0.5 (see Fig. 1 The integral mean curva-
have similar correlation lengtisdefined by the decay of the tureé is much less than for the particle-based models. For
envelope of the spatial two-point correlation function. In Small and largeg, isolated elliptical inclusions are present
some cases, for example the two-level cut Gaussian, the cor-
relation length at low volume fractions is very small, so di-
rect comparison is difficult. In Fig. 8 we plot the correlation
length & for the range of models considered in this paper for
different volume fractions. The choice of the periodicity
for the Gaussian fields and the density of sites for the
Voronoi models were made to closely match the particle—g
based models for=12 across the range of volume fraction 8
¢. This allows us to form a basis for a semiquantitative com- &
(=3

T T T

parison of the MFs across the range of models.

A. Comparison of MFs for different model morphologies

1. Particle-based models 04}
First we discuss the MFs for particle-based models showr \Mw*’*/ st
in Figs. 5 and 6. Other than the discretization effects dis-
cussed above, there is little difference when comparing the 025 02 ol o Y 038 1.0

data for Poisson-distributed cubes and spheres. For cubes ot
sidelengthl =1 the measures show a higher symmetry; Eq. FIG. 10. Minkowski measures over fraction for Gaussian one-
(1.9) is satisfied without interchanging phases. level cut models of periodicity= 20.
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FIG. 11. Minkowski measures over fraction for Gaussian two-  FIG. 13. Minkowski measures over fraction for Voronoi facet
level cut models of periodicity=20. models of 100 seeds on a Z0@attice.

and the Euler characteristic is positive. In the regige The intersection set of the two two-level cut Gaussians
=0.20-0.80, the interface becomes predominantly hyperhas a distinct signatur@ig. 12 when compared to the one-
bolic (v3<0) and both phases are continuous. The relativeand two-level cut models. The strong Gaussian curvature
smoothnesgsmall local curvature of the interface when feature at smallh may be useful as a signature of this struc-
compared to the sphere pack model leads to a low probabiture when compared with the other models.
ity for obtaining ambiguous configurations. Accordingly the
measures for the two different neighborhoods converge. 3. Voronoi models

For the symmetric two-level cut Gaussians of smathe For the Voronoi facet model, the connected polyhedra
surface to voIl_Jme ratio is much larger thqn for the Previougihase always percolates, and the other phase is made up of
systems. Particularly, at low volume fractions the morphol-gisconnected inclusions. Accordingly, the curvature never
ogy exhlblts a sheetlike ph_ase a_nd the surface to V_Q'“mghanges sign—the holes remain convex fordal(Fig. 13.
ratio quickly reaches a maximufi¥ig. 1. Further densifi-  gimilarly, the Euler characteristic always remains positive,
cation is associated with a thickening of the sheets and thgjje the surface area due to the construction of the fields
surface to volume ratio drops. Also for smal| discretiza-  giarts at a maximum and decreases with thickening facet
tion effects are important and the different neighborhoods,ondaries. Small ambiguities arise at the intersections of the
play an important role. The Euler characteristic is very |ar9ﬁ‘acets, again giving rise to a separation of the MFs based on
and becomes negative for smallonce the sheetlike phase e choice of continuity.

connects implying a strongly bicontinuous structure, as is Eqor the Voronoi cylinder model, both the network of cyl-

evident in Fig. 3. inders and the background phase percolate over a wide range
0.8 T T T T 0.20 i
.
~~~~~~~~~ v,, 4 neighbors
08 - - v, 8naightors - 015 | |
b — — v, 6 neighbors "
e n — - - V,, 26 neighbors
.
S
. ., 010r h_+ - ¥, 4 neighbors 1
3 3 *H - - - v,, 8 neighbors
=3 =3 1 — — v,, 6 neighbors
- 3 H .
& -~ :tl — - - V,, 26 neighbors.
S S 005 N 1
3 3 e
e 8 P,
= . o,
1] > [ “+
= 2 ooof RS e
PR, PN
mr*'um"*»-- +- ?{t;
et restvireiend
005 | o E 1
rj:’:ﬂ»
P
oa ‘ ‘ ‘ ‘ o0 ‘ ‘ ‘ .
0.0 0.2 04 o 0.6 0.8 1.0 0.0 0.2 0.4 ¢ 06 0.8 10

FIG. 12. Minkowski measures over fraction for Gaussian inter-  FIG. 14. Minkowski measures over fraction for Voronoi edge
section models of periodicity= 20. models of 100 seeds on a Z0ttice.
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FIG. 15. Variation in the porosity distribution along a cross-
bedded sandstone sample. [

of ¢. Here, the surface area first grows with increasing cyl-
inder radius and then decreases again after the cylinders be
gin merging(Fig. 14). The curvature decreases with increas-
ing dilation and becomes negative once individual edges of
the Voronoi cells begin to generate isolated inclusions of the
background phase. The Euler characteristic is initially nega-
tive, implying that both phases percolate, and then increase
almost linearly, finally becoming positive.

le]

IV. CALCULATION OF CHARACTERISTICS ON A h ¢ . fth f
SANDSTONE SAMPLE FIG. 16. The pore structure for sections of the x-ray-CT data o

the cross-bedded sandstone for different window sizaks. (b)
Direct measurement of a three-dimensional structure i85, (o), (d) 10C%, (e), (f) 60°. The spread inp is evident across
now available via micro x-ray computed microtomographythe samples.
micro-CT[37-39. These techniques provide the opportunity
to experimentally measure the complex morphology of &ent with the data for the larger volumes, suggesting that for
range of materials in three dimensions at resolutions down tg,o smaller blocks a meaningful average is obtained.
5 um. We have obtained a 5%¥512X 666 image of a cross-

. S ; A number of statistical models have been proposed for
bedded sandstone at Jfn resolution via micro-CT imag-

ina. Analvsis of the full i Id ai Tl | reconstructing porous media from statistical information
Ing. Analysis of the Iull Image would give us a singie value 1,2,33,35,40-4R These methods, based on different under-

for each of the MFs and would give us little data to compare . del mi di h
model predictions. However, this sample shows strong he ying model microstructures, are generated in such a manner

erogeneity in the pore volume fraction. We show in Fig. 15 ahat they match the observed two-point statistical properties

trace of 600 values of the porosity measured at a separatio(?{ the rock. We compare the morpholt_)gical measures for the
of 10 um. Due to this heterogeneity and by appropriatelysandsmne t_o three stan_dard stochastic models used to gener-
choosing different window sizes on the image we are able &€ realizations of sedimentary rock microstructures from
generate morphological parameters for the sandstone for 4/0-point information43]. The first is based on the boolean
range of . This allows us to quantitatively compare the SPhere mode[41], the second on the one-level cut model

experimental microstructure for different proposed model1,2], and the third on the intersection set mofg]. The
morphologies. quantities used to characterize the microstructures of these

The original sample view was of a cylindrical plug with Systems are the volume fraction, the surface to volume ratio
512x 512 voxels in the plane and 660 slices. Two cubicS/v, andp®(r) the two-point correlation function. Note that
blocks of 300< 300x 300, 16 blocks of 158 150150, 54  ¢=p®)(0) ands/v=—4dp®(0)/dr.
blocks of 100<100x 100, and 250 blocks of 6060x 60 The correlation function for the phase external to the
were obtained from the full sample volume. This provided aspheres of radius, in the 10S model ip®?)(r)=p™") for
spread of porosities across different sampling voluifisee r<2ro and p®(r)=¢? for r>2r,, where »(r)=1
Fig. 16. Results for the morphological measures are summa#+ 3r/4r,—r3/16r3, and s/lv=—3¢In¢lr,. To generate
rized in Fig. 17. With decreasing sampling volume the vari-matching GRF models we employ the field-field correlation
ability of the measures increases, but the values are consiftsnction[44,33
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100 - i FIG. 18. Normalized two-point correlation functioBér) of the
two 30 sandstone samples and the averaged best fits for the model
5 structures.
E of . I . .
E and a downhill simplex method is used to find the best pa-
< i 1 rameter sef45]. We generate the stochastic models that best
-100 | . - match the two 308 300X 300 samples and compare the nor-
. ] malized two-point correlation functionsS(r)=[p,(r)
. —p?)/(p—p?) of these models in Fig. 18.
" 1 s 1 " 1 L
200 00 o010 020 030 040 Values ofr, for the 10S model, and), & andr, are
o summarized in Table IV along with the error estimate

E(p®). The average fit is worst for the sphere model, and
FIG. 17. Minkowski measures for a cross-bedded sandstonemore than a factor of 2 better for the Gaussian one-level cut
Shown are the data points for the different blocks of size¥ 60 and intersection set. The sphere model, however, has only
1003, 1503, and 306 In this case the measures are plotted overpgne free parameter as Compared to three for the Gaussian
porosity, not over fractions of a constituting grain density. From topmodels.
to bottom:(a) vy, (b), v5”, and(c) v¥?. We then calculate the Minkowski functionals of the three
stochastic models and compare them with the sandstone data
e e~ (r.1¢&)e e sin2zr/d (Fig. 19. The measures are compared to the values resulting
1—(r./é) 27r/d 4D from the sampling window at 160 The values for the
samples were binned in steps of porosity=0.02.

g(r)=

characterized by a correlation lengthdomain scalel, and a

ff | he th | h | b TABLE IV. Parameters of the models for the cross-bedded
cutoff scalerc. The three length scale parameters are o Sandstone in microns. The original sandstone data set image has

tained by a best fit procedure to minimize the nonlinear leasfeso|ytion at 10um per pixel. For the 10S model, the equivalent
squares errof33], sphere radius is in the, column.

M
Model e (um)  &(um)  d(um) Ep®
2 [P (r) = P12
@_'"1 Spheres 94.2 210°°
Ep©= M ' (4.2 One-level cut 20.2 22.4 1080 >010 ©
21 [pﬁif)(ri) - pixp]z Intersection 54.3 80.5 410 410~ 4
i<
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volume (related to average constriction sizznd the topol-

ogy. A model that accurately describes these measures may
still yield good agreement with experiment. However, mul-
tiphase flow properties depend crucially on the curvature of
the surfaces where immiscible phases meet. For these pro-
cesses a model that also accurately matehewiill be re-
quired. In this case the IOS model is the best of the three
candidates as a reconstructed data set. Recently, a model for
describing sandstone morphology has been developed based
on a full process-based sedimentation, compaction, and di-
agenesis moddl6]. This model honors both the shape of
the original grains and the geological formation processes
and therefore may provide a more accurate description of
pore space morphology of sedimentary rock.

V. CONCLUSIONS

Integral geometry provides alternative methods and tools
for measuring spatial structure. A family of measures, the
Minkowski functionals (MFs), in particular, seem to be
promising measures for describing the morphology of com-
plex materials. The MFs characterize not only the connectiv-
ity but also the shape and content of spatial figures. These
measures embody information from every order of the cor-
relation function but can be calculated simply by summing
over local contributions of a configuration. In three dimen-
sions the functionals are related to the familiar measures of
volume fraction, surface area, integral mean curvature, and
Euler characteristic. The morphological measures are useful
order parameters for describing spatial patterns quantita-
tively and providing for a comparison between experiment
and theory.

They may also play a role in the statistical reconstruction
of complex three-dimensional morphologies. To date, meth-
ods used to reconstruct morphologies have been primarily
based on averaged statistical pointwise information to second
order. In previous simulated annealing procedures the energy
function has been defined by the “distance” from the refer-
ence two-point correlation functiopt7] and the chord dis-
tribution function[6]. After interchanging voxels on a digi-
tized representation, one must perform rontrivial

FIG. 19. Comparison of the MFs for the sandstone data to th&alculation of two-point information on the new structure to

three stochastic models based on a window size of.100

decide if the move is accepted or rejected. Integral geometry
provides an alternative method to measure spatial structure,

None of the models satisfactorily match the experimentaPnd use of the measures may lead to fast simulated annealing

data. The surface areq is matched best across alby the

procedures for reconstructing random media. In contrast to

intersection model. Integral curvatuse is best matched by the methods based on two-point information, the interchange
the 10S models that honor the granularity of the sedimentarf voxels leads to local changes in the MFs, and trial states
rock. The topology 5 is described well by both the I0S and are more easily evaluated.

the one-cut models. The intersection model is particularly

poor for this model over the full range @f. The model that
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