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Josephson vortex in a ratchet potential: Theory
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We propose a type of Josephson vortex ratchet. In this system a Josephson vortex moves in a periodic
asymmetric potential under the action of a deterministic or random force with zero time average. For some
implementations the amplitude of the potential can be controlled during the experiment, thus allowing us to
tune the performance of the system and build rocking as well as flashing ratchets. We discuss the differences
between conventional and Josephson vortex ratchets and present a model describing the dynamics of the fluxon
in such a system. We show numerical simulation results that predict rectification of a monochromatic, deter-
ministic signal with zero time average. The investigation of this system may lead to the development of the
fluxon rectifier—a device that produces a dc voltage from nonequilibrium fluctuations.
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I. INTRODUCTION systems can operate at very high frequencies up to about 100
GHz. As a first example we mention the asymmetric dc su-

To extract useful work from random motion was a dreamperconducting quantum interference devi€QUID) where
of mankind since the days when the Brownian motion waghe equation of motion for the Josephson phaiféerence of
recognized. Unfortunately, the second law of thermodynamduantum mechanical phase®rresponds to the motion of an
ics forbids extracting energy “for free” from equilibrium Imaginary particle in a two-dimensionéD) ratchet poten-
thermal fluctuationgwhite noisg, which was didactically fual. SUCh.SQUID ratchets have been propoficand stud-
demonstrated by Feynmai al.in fl] Nevertheless, one can !ed ex'penmentaIMlO]: Another type of Josephson 'ratchet

T X ’ investigated recently is a 1D array of Josephson junctions
extract useful work frormonequilibriumor time-correlated i ‘spatially modulated propertigd 1]. A Josephson kink
(colored noise “not paying” for it, using so-called ratchets, (yortex), which can move along the array, can be considered
i.e., systems with an asymmetric periodic potentdl Re- oo 5 quasiparticle in a 1D ratchet potential.
cently there was a boost of activity in this field related to the  Here we propose a class of Josephson ratchets that further
experimental investigation of directed motion in biological gevelops the idea of a kink in a 1D array. The proposed
systems, the so-called Brownian motors which, e.g., movgystem consists of a 1D long Josephson junctiai) that
muscles or transport vesicles in a ddl. In the latter case may be bent in thab plane[see Fig. 1a)] or have variable
the probable mechanism of operation is the motion of kinesiwidth w(x). Here and belowk is a curvilinear coordinate
molecules along the surface of microtubules, which can balong the junction. The fluxotJosephson vorteéxmoving
mapped to the motion of Brownian particles along a one-along the junction, from a mathematical point of view, is a
dimensional ratchet potential with the period 8.2 th The  topological soliton. It has its own mass, velocity, and other
nonequilibrium energy is supplied by the chemical reactiorparticlelike propertie$12]. We study the motion of a fluxon
of splitting of adenosine triphosphate, which takes placén LJJs in a ratchet potential that can be formed either by
close to the kinesin molecule. applying an external magnetic field and bending the junction

In addition to the application of ratchets as noise rectifi-properly or by modulating its widthw(x). To provide the
ers, it was suggested to use them for very efficient separatioequired periodicity of the potential, the junction is topologi-
of small objects with different mobility, e.g., DNA mol- cally closed in a loop. Such a geometry is similar to the
ecules, viruses, et¢5,6]. Particle separation is based on so-well-known annular Josephson junctipt3—16 in which a
called deterministic ratchef3], where the particles move in fluxon moves in a sinusoidal potential created by a magnetic
a certain direction under the action of a deterministic forcefield. [17] Using a more elaborate shafis], one can form
with zero time average. Moreover, changing the force proan asymmetric potential with the possibility to control its
file, one can reverse the direction of the particle mofieh ~ amplitude by changing the amplitude of the external mag-
The classification and discussion of different types of ratchehetic field. An alternative idea of magnetic field modulation
systems can be found in R¢B]. using a specially shaped control line is proposed in Ref|.

In this paper we focus on Josephson ratchets, which are dfhe directional motion of a fluxon can be detected by mea-
particular interest becauga) the directed motion results in a suring the dc voltage across the junction that is, due to the
dc voltage according to the Josephson relation @hdhese  Josephson relation, proportional to the average velocity of a

fluxon.
Before discussing fluxon dynamics in a ratchet potential
*URL: http://www.geocities.com/e_goldobin. Email address:we would like to stress the difference between conventional
e.goldobin@fz-juelich.de ratchets and Josephson vortex ratchets. First, the fluxon, al-
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the ab plane[see Fig. 18], the uniform magnetic fieldd

applied in the plane of the junctiofin the b direction, as
well as the modulation of the LJJ wid(x) along its length
X.

We start from a discrete representation of the LJJ shown
schematically in Fig. (b). The Kirchhoff equations for the
Josephson phases in the cell and for the currents in one of the
nodes are

2 21
d(X+dx)— ¢(x)= (}TOCD(X): ao[(l’e(x)—L(X)' LX) ],
(6N

LX) =T (x=dx) =l¢(X) —1(X), 2

where¢(x) is the Josephson phase at poirtf the junction,
d(x) andd4(x) are the total magnetic flux and the external
magnetic flux applied to the cell, respectively(x) is the
inductance of the piece of the junction electrodes between
and x+dx, I (x) is the current in the electrodes, i.e.,
through the inductanck(x), l.(x) is the externally applied
bias current, andl(x,t) is the current through the Josephson
perconducting electrodes amtl is the thickness of the insulating junction. The particular expression fbx,t) depends on the

tunnel barriey that is bent in theab plane and has variable width JJ model adopted and is introduced later.

w(x); (a) 3D view of geometry(b) schematic representation using A_Ssuming that the _intervcf;‘dix is _inﬁnitesimz_il, we can
discrete elements. rewrite Eqs.(1) and(2) in a differential form using the fol-

lowing expressions:
though it has a topological charge and in general behaves

FIG. 1. Piece of LJJd; andd, are the thicknesses of the su-

like a particle, is a nonlinear wave, i.e., it can change its 1) =] ()w(x)dx, ©)
shape rather strongly as well as emit electromagnetic waves. )

Second, fluxon dynamics is usually studied in the under- le(X) = Je(x)W(X)dX, 4
damped limit, which is opposite to the overdamped case that

was considered for the majority of work on Brownian par- L(x)= pod’ d 5
ticles in a ratchet potential. Small damping may result in (X)= W(X) X (5)

chaotic dynamics even in the deterministic c2@ and, in

the case of the fluxon, even without any potertedl]. Thus, D o(X) = po(H-N)Adx= pmoH(X)AdX, (6)

to have a well-defined behavior of a fluxon ratchet, one has

to work in the overdamped or in the weakly underdampedyhereu,d’ is the inductance of one square of the supercon-
limit. If one uses conventional Nb-AIGNb technology to  ducting electrode$24], d'~2\, is the effective magnetic
fabricate the LJJ, this requirement means that the Workin%ickness of the jUnCtiO[\24], n is the unit vector normal to
temperature should be very close To. As an alternative the plane of the junction cell as shown in Figbl A
one can use junctions with intrinsically high damping such as< 2, is the effective penetration depth of the magnetic field
superconductor instulator normal-conductor instulator supefinto the junction[24], and \, is the London penetration
conductor LJJ$22] or high-T, LJJ technology23], which  depth of the superconducting electrode. We assume that the
allows one to fabricate LJJs of required topology. Third, iffims are spatially uniform so that’ andA are independent
we consider multiparticle dynamics, the strong repelling in-of x.

teraction between fluxons plays an important role and must sybstituting Eqs(3)—(6) into Egs. (1) and (2) we can

be taken into account.. _ rewrite the latter in a differential form as
This paper is organized as follows. In Sec. Il we derive
the equations for the dynamics of the Josephson phase in a a¢p 2w od’
bent LJJ of variable widtlw(x) in the external magnetic X D poH(X)A — WlL(X) : (7)

field. We also discuss different kinds of fluxon ratchets, their
advantages, and drawbacks. The numerical simulation results AL (X)
are presented in Sec. lll. Section IV concludes this work. AR

X

W)[Je(X) = J(X)]. ®

Il. THE MODEL Excluding |l (x) from Egs.(7) and(8), we get the equation

Here we derive the generalized perturbed sine-Gordothat describes the dynamics of the Josephson phase in the
equation that takes into account the curvature of the LJJ isystem
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®, [w,(X)/w(x)] ¢, comes from the width modulation. The last
MoAH(X)— =— 5 ¢XH term [w,(x)/w(x)]h(x) describes the mixture of both and
appears only when both field modulation due to curvature
9 and width modulation are present.
It can be checked by a direct substitution into the Euler-
Lagrange equation

1 d
WOOLIe00 =001 =~ ,dX{wu>

Here and below, the subscriptsand x, if any, denote the
derivatives with respect to timeand coordinate, respec-
tively. Note, that we did not include any particular model of dor d oL or
JJ into our equation up to now, which is a definite advantage — 4 - =
of this derivation procedure. In the case of the simple resis- dt d¢, dxdpx o
tively shunted junctionfRSJ model, one should substitute . )
i(x), which is the sum of the supercurrent, normiqliasi-  that the Lagrangian density
particle current, and displacement current densities, ) )
¢ [d—h(x)]

2 2

(14)

L=w(X) —(1—cos¢) (15

D,
j(X)=jcsin(¢) > R +C ¢ttv (10

results in the equation of motiqi2) without thea ¢, andy
into Eq.(9). Herej., R andC are the critical current den- terms that describe dissipation and external force and there-
sity, specific resistance, and specific capacitance of the jungore are not included in the Lagrangian density. Of course,
tion, respectively. In this case E(P) can be rewritten in a the Lagrangian density15) can be obtained directly from

form that resembles the usual sine-Gordon equé@di Fig. 1(b) and the RSJ model. From E(.5) one can see that
2,0 2, o1, instead of the usual potential energy teqtri'lz we now have
Nybxx— 0p "= SIN(h) = ¢~y = ¥(X) + QH(X) w(X)[px—h(x)]%/2, i.e., actually three terms. The first,
(X) w(X) ¢)2(/2, is the obvious generalization of the usual poten-
w(x) [QH(X)— NS¢y, tial energy term to the case of variable widi(x). The

second termw(x)h(x)?/2 is a constant term due to the ap-
(11) plied field andis not related to the fluxon motion or other

— (Bol e d) i . Josephson phase activity in the junction. In fact, there are no
where \y=\®o/(2mpojd’) is the Josephson penetration v, -aq of this term in Eq(12). The third termh(x) ¢, w(X)

depth, w,=27jc/(PoC) is the Josephson plasma fre- rapresents the part of the potential energy density that we are
quency,w.=2mjR/d, is the so-called critical frequency, ipterested in and that we are going to exploit to build a
'y(X)ZJe(X)/jC is a normalized bias current density, a@d system with a ratchet potential.

=27 AN Dy One of the solutions of the sine-Gordon HG2) with
For theoretical investigation of the system we introducezerg right-hand sidérhs) is a soliton(fluxon)

standard normalized units, i.e., we normalize the coordinate

to the Josephson penetration depth and the time to the (X, Xg) =4 arctan exx—Xo), (16)
inverse plasma frequenay;l. After such simplifications,
Eq. (11) can be rewritten ag25,26| with the center situated at poirg. We consider nonrelativ-

Wo() istic motion, i.e.,dxy/dt<1. Further, assuming that the
o _ fluxon profile (16) does not change much due to the rhs of
P dumsin($) = ad=y () +()+ o W(X) [h(x) = ] Eq. (12) which acts as a perturbation, we can get the explicit
(120 expression for the potential energy(x,) as a function of
the fluxon coordinate,. For this purpose, we note that in
expression(15) for the Lagrangian density the second and
the third terms correspond to the potential energy density
2H(X) Z/l(x,?<0) (with oppqsitg sigh The potential en.ergyJ(xo) is
I (13 obtal_ned by _substltutlnq>(x,x0) from Eq.(16) into (X, Xg)
cl and integrating ovex. Thus, we get

with the damping coefficient=w,/w.=1/J/B., and the
field h normalized in the usual way as

h(x)=

Here,H 1 =®o/(muoAN ;) is the first critical field(penetra-

tion field) for a LJJ that is, in fact, equal to the field in the [t Aw(x) 2w(x)h(x)
. L . U(Xp)= - —

center of the fluxon. The normalized velocity is given in — cosHf(x—xg) COSHX—Xo)

natural units ofto=\ jo,,, wherec, is the so-called Swihart

velocity. The normalized voltag€ = ¢; is given in units of The first term corresponds to the potential energy due to
®ow,/(27). From now on all quantities are given in nor- width modulation, the second corresponds to the potential
malized units. energy due to shape, field, and width.

In comparison with the usual perturbed sine-Gordon The first possible way to form a ratchet potential is to
equation, Eq(12) contains three additional terms. The term apply no magnetic fieldh(=0) and to vary the widthw(x)
h,(x) describes the effect of the applied magnetic field wherof the junction. In this case the potential energy will be given
the junction is bent in theab plane. The second term by the first term of Eq(17). Moreover, when the junction

(17
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shown by the arrow. coordinate, x
) ) .04 ,- T b
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pared to the fluxon size, the potential

U(Xo) ~8W(Xo) (18

5 0.5- \
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] \ .
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3

just repeats thav(x,) profile. From Eq(18) it follows that if
the width changes as a sawtooth, so does the potential en-

potential (x) [arb. units]
- =
,<
\\

potential force fix) [arb. units]

ergy, except in the vicinity of the sawtooth’s infinite slope 059 4 ," e N
where one has to calculate the convolution according to Eq. i ﬂx,)‘\\ S| =) 1
(17). Here and below, when mentioning the sawtooth profile .09 -7 NS -
we mean a sawtooth with finite positive slope and infinite 0 5 10 15 20
negative slope. In the case of the sawtooth where the width coordinate, x,

changes fromwo to wo+Aw at the pointx,=0 (infinite FIG. 3. lllustration to the explanation of the.y(ho) and

?ﬂopéf the pote_ntlal energy in the vicinity of the poiRp ¥ (ha) dependencesa h(x) and y.(x). (b U(xo) andf(xo).

=0 is U(xg)=8wy+4Aw[1l+tanhfy)]. The practical ™ d 1o th LJJP h h in Biw. 2

implementation of such a ratchet would look like an annular ese curves correspond to the shape shown in og.

LJJ with the outer edge having the shape of a circle and inner

edge having the shape of one turn of a spiral. This geometryf antenna close to the junction so that tHeof the emitted

has the advantage that the corresponding potential can kgectromagnetic wave will have a nonzero component in the

made ideally sawtoothlike except for the smearing due to theb plane.

convolution in Eq.(17), which is a common feature of all Note that the termsy/(x) andh,(x) in Eqg. (12), from a

fluxon-based systems. In some sense, this system is an anfathematical point of view, play the same role. Therefore in

log of the Josephson ratchets based on 1D afrays Un-  the experiment the fielti(x) can be substituted by a prop-

fortunately both types of ratchets do not allow one to controler|y chosen additional bias curremt,(x)=—h,(x), which

the potential height during experiment that can be considereHas zero average in space. The inverse mapping is also valid,

as a disadvantage. but the bias current with a nonzero average maps to a non-
The second possibility is to keep constant, to apply a periodic field(potentia) with a linearly growing component,

magnetic field, and to bend the junction in tab plane. In  which does not belong to the class of ratchets. In Sec. Il A

this case the first term of Eq17) gives a constant and we e, in fact, usgy)#0 (these brackets denote spacial aver-

have to consider only the second term. Again,hifx)  aging, but only to test the asymmetry of the potential. When

changes slowly in comparison with the fluxon size, Bf)  we demonstrate the real operation of the ratchet in Sec. IlI B,

is simplified to we have(y)=0.

U(Xg) = —27wWh(Xg). (19
In the well-known case of the ring-shaped junction, the field Nl SIMULATION RESULTS
h(x) =hg cos@)=hycos§/R) (8 is the angle betweeH and In this section we study the fluxon dynamics in a Joseph-
n as shown in Fig. 1 and therefore we get a symmetric son ratchet of the second typk+# 0, w=const) for a saw-
potential. If we deform the ring properly, the potential can betooth field profileh(x). This ideal asymmetric profile is not
made asymmetric as desired. Possible experimental shapesly of academic interest because it should show good fig-
are shown in Fig. 2. The advantage of this kind of ratchet isures of merit for fluxon ratchets, but also can be quite closely
that one can control the amplitude of the potential during theeproduced in a real systelsee shape in Fig.(B) and cor-
experiment by varying the amplitude, of the magnetic respondingh(x) in Fig. 3@]. All simulations were per-
field. The possibility of tuning the potential height allows formed using an explicit numerical scheme for EtR) us-
one to implement the so-called flashing ratch@&lsby either ing a LJJ of the normalized lengtfi=20, with damping
applying an ac magnetic field using a coil or just placing ancoefficienta= 0.2 (weakly underdamped limit The numeri-
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cal technigue and simulation software are discussed in detagiven hy. For fields G<hg<<h, , vy.1(hg) is given by Eq.

elsewherd27]. (22), and forhy>h, by Eq.(23), where the field
A. Probing the asymmetry of the potential _ -1
h, = X2 (29
First, we probe the asymmetry of the potential by calcu- (Xp)/27 +H,y(X2)

lating critical currenty, vs potential heighh, for the case of
one trapped fluxofiy,;(hy)] and for the case of no trapped
fluxons [ ygo(ho)]. The superscripts 4 or “ —" corre-
spond to opposite directions of applied bias current.

On the basis of the model derived in the previous sectioqh
we can understand how these dependences should look f
an arbitrary magnetic field profila(x). In general, due to
the looplike geometry, the left and right tails of a fluxon can
interact. We assume that the junction is long enough and thi
interaction in negligible. This situation is equivalent to the
long periodic system where the fluxons are separated by
large distance”’>\;. Furthermore, we represent the field
h(x) ashyH(x) and map it to the equivalent additional bias
currentyp(x) = —hgHy(x). An example ofh(x) and yp(x)
derived from the geometry in Fig(l® is shown in Fig. 8a).

is the field where these two dependences intersect. The de-
pendencey.y(hg) has only one brancf23) since the fluxon-
depinning mechanism is absent.

When one applies the currestin the opposite direction,

e dependences qualitatively look the same but the particu-
r values of slopesan be different in the case of an asym-
metric potential, if y,(X2) # — yp(Xs) and f(x;) # —f(x3)

gsee Fig. 3. Thus, the measurement ¢f,(ho) and y;(ho)
gives direct information about the asymmetry of the field and
%f the potential, respectively. Note that an asymmetric poten-
tial mayhavey,(x;) = — y,(X4) and/orf(x,) = —f(x3), i.e.,

it does not reveal its asymmetry in the measurements of
Yeo(ho) and y;(ho). Inversely, the asymmetry of.,(ho)

andy,; (ho) is a clear indication of asymmetry in the system.

If there is a fluxon in the junctiony(x) and y,(x) trans- We stres§ that the first branch gf,(h,) and th_e second
late into a driving forceF (xo) and a potentiapinning ~ branch ofy;(hg) show the asymmetry of the field(x),
force F (o), respectively, acting on the fluxd2s] while the first branch ofy;(ho) shows the asymmetry of

re 29(x) potentialU(x,), i.e., already after convolutiofl7) with ¢, .
[T ay(X)W _ While h,(xy) may have appreciable asymmetty(x,) may
Fy(xo)= f_oc coshx—xg) dx=2myw, 20 pe almost symmetric.
We should note that the above analysis is valid for an
+ 2y,(X)W arbitrary field profileh(x) as long ash,(x) can be consid-
Fp(Xo) = j . COSHX=Xg) dx=hof(Xo)w. ered as a perturbation in the rhs of Efj2). However, for the

21) case of the sawtooth potential this is not the case, $inEe
has ad(x)-like behavior at the point of the junction where

The corresponding potentidll(x,) and force f(x,) are the sawtooth has infinite slope. Therefore our analysis is
shown in Fig. ). For the sake of simplicity we suppose valid only qualitatively. In particular, the dependences
thaty does not depend ox but our discussion can be easily v. (ho) still have linear slopes but the values of the slopes
generalized to the case when the rhs of &) is equal to  cannot be calculated using simple integrals as shown above
27T (Xo)w. The pinning forcg21) can be also obtained di- because the fluxon shape will differ from E46) quite con-
rectly from expressiori17) for the potential energy. When siderably, as we saw in numerical simulations. Therefore we
we increasey the fluxon is pinned while these two forces can present the results of direct numerical simulation of @).

compensate each other, i.E.,(Xo) + F(Xo) =0. The depin- The simulatedyy(ho) andyg;(h) for an ideal sawtooth
ning occurs for field profile h(x) are presented in Fig. 4. The magnetic field
is given in terms of the force amplitude,2=//". If the
¥=Ye1= ~hof(x1)/27, (22 system is closed in a loop with a normalized circumference

/, the fieldh(x) can be written in the fornhyH(27x//)
whereH is a geometry-dependentr2periodic function nor-
malized to 1. Therefore the term(x) in Eq. (12) is

where X, is the coordinate at whicli(x;) has a minimum
[see Fig. &)]. We assume thay>0 andf(x;)<0. Thus
from Eq.(22) we see thaty.;(hg) is a straight line that starts
from the origin. 20
On the other hand, regardless of the presence of a fluxon, hy(x)= hofH’(
the Josephson phase evolves under the action of the net cur- g
renty+vy,. From Fig. 3a) it is clear that at poink,, where
Yp(X) is maximum, this sum can exceed 1 for some value o
v=17. and the junction switches to the resistive state. Usin
¥p= —hoHx(X) the conditiony.+ yp(x;) =1 gives

7X , (25)

Ivvhere?-(’(g)=d7—((§)/d§ is a periodic function. This means
hat the potential force scales inversely proportional to the
ength of the junction”. So, to get rid of the length depen-
dence and make our results valid for any lengta 1, we

ye(hg) =1+ hoHy(X5) =1 — hg| Hy(X2)], (23 present our results as a functiontf2w// .
From Fig. 4 one can see that the depinning current
i.e., also a straight line, but with negative slope. v.1(0)=0 and then grows linearly with the field, as ex-

Summarizing,y.1(hg) has two branche$22) and (23), pected from the theory, up to some fidlg27//~1.8. Af-
and follows the one with the lowest critical current for a ter that it decreases linearly with field, also according to our
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FIG. 5. Normalized fluxon-trapping curremt,(hg) vs magnetic
field amplitudeh, for the sawtooth magnetic field(x) in the an-
nular LJJ of /=20 anda=0.2. Dotted lines show the values of

length ~'=20. Dotted lines show the values of magnetic field at magnetic field at which rectification shown in Figga)Z-7(c) was

which rectification shown in Figs.(@—7(c) was calculated.

prediction, and finally, exhibits multiple branches corre-
sponding to the multifluxon states.

calculated.

is no hysteresis on the-V characteristic when the system

As it should be in the case of a sawtooth potential theSwitches from zero-voltage state to the state with the moving

slopes ofygo(hg) and y.;(hy) are not symmetric, and the
ratio of the slopes is about 4. Ideally, if the fluxon were a rea
particle we could expect an infinite force necessary to push
the fluxon out of the well in the direction against the infinite
slope and, therefore, an infinite ratio of slopes on#fighy)
curves. In practice, due to the convoluti¢hi7), we have a
finite force and a finite ratio of slopes on thg; (h,) depen-
dences. The finite ratio of slopes og,(ho) as well as of the
second slopey,;(ho>h, ) is observed because perturbation
theory does not apply as mentioned above.

The next step is the understanding of thanamicsof the

B. Motion due to monochromatic force

fluxon and back. Instead, for the negative bias the hysteresis
is present as can be seen in Fig. 6.

In the following we investigate the motion of a fluxon in
a system with the sawtooth field profitdx) andw= const
under the action of a monochromatic ac bias currgnt
= y.:Sin(wt) in Eq. (12). If as a result of an ac drive the
fluxon starts to move around the junction, we can estimate
the characteristic frequency of this process. It is clear that the
maximum velocity of the fluxon is equal to the Swihart ve-

fluxon in an asymmetric potential. One of the simplest ob-ocity (1 in normalized unitstherefore the maximum revo-
servations that can be made numerically as well as expefiytion frequency isw a2/ ~0.314.

mentally is the examination of the fluxon trapping current
Y, 1.€., the minimum current at which a fluxon still moves
along the system, not being trapped by the potential. Obvi-
ously, in the underdamped system the trapping of the fluxon
by the potential will not take place while the kinetic energy
of the fluxon exceeds the height of the potential, and one
should not see any difference in the fluxon trapping currents
¥ (ho) for opposite bias current directions. In the strongly
overdamped case the fluxon dissipates energy so quickly that
to move further under the action of the driving force, the
driving force should always overcome the maximum value
of the potential(trapping force. In an asymmetric potential
the maximum force created by the potential is different for
opposite directions of fluxon motion and we should expect a
difference in the fluxon trapping current. The simulated
ﬁ(ho) curves for a sawtooth potential are shown in Fig. 5.
Even in the slightly underdamped caae=0.2 the depen-
dences for positive and negative direction of fluxon motion
(bias current differ quite considerably. We also note that
¥4 (hg) almost coincides withyZ;(ho) (see Fig. 4 for hy

bias current y

10 T T T T T I
v~ 0.896]-- 1=
0.5+ o
S o
R2mI=1.0 o/ -
0.0
] -~ |
0547 1y~ 0522 y
. =—1..| 1, 0.916
-1.0 L L L LR L N
4 6 -4 -2 0 2 4 8 8

average velocity u(y)

FIG. 6. Current-voltage characteristic of LJJ with one trapped
fluxon shown as the dependence of fluxon velouityV /127 on

<2, which means that for the positive direction of bias therethe amplitude of the bias currentobtained fora=0.2.
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In the limit of low frequency (quasistatic drive w respectively. The upper curves marked as “dgliasistatic
<wmax, We can calculate the net average velocity of theare calculated using Eq(26). All other curves for w
fluxon, just integrating the current-velocity characteristics=0.01-0.1 were obtained by means of direct numerical

u(y) (see Fig. 6 at a given value of field, as simulation of Eq.(12). Such values of frequencies were cho-
sen taking into account that they should be less but compa-
1 (2m ] rable withw .. AS we saw in the simulations, at=0.2[in
U(vad = ﬂfo U(yacsin(7))dr, (26)  the case of Fig. (&) already foro=0.1] the rectification is

suppressed almost completely.
From Fig. 7 one can see that the dependamce,) for

where the integration path should follow the proper hysterthe quasistatic case is piecewise with jumps at the values of

etic branches of the(y) dependence. bias current where switching between different hysteretic
In the case whenw is comparable with the maximum branches occurs. For example, let us focus g@m//
frequency of the fluxon rotation around the junctien.,, =1.0[see Fig. ™)]. In this case the switch between differ-

we perform direct numerical simulations. The dependencesnt hysteretic branches occursjatwhich is equal to 0.522,
U(ya9 calculated numerically for different values af are  0.696, 0.916(cf. Figs. 4, 6, and )¢ Several characteristic
shown in Figs. fa-7(c) for he2#//=0.5, 1.0, and 2.0, regions can be distinguished. First, in the region of small

T I . I T I . I T I .
a5 T T v T . y v (@) ]
. h2n/i=0.5
3.04
QX
=
9
K]
(]
>
o
o)
5
>
®
L 1 L 1 1
. ; Iir
3.5 g 1
{1 os T p— o
3.0 - \
] P o il o S fi
- /et T i
: 254 044 98,5 ] 1 Thon I'H
Far) [ 0.01 breforerf VLA 1.3
8 1 g ] 8 i ) ot
< 204 0,02 [y n i
. - 0.03 o] 1.4 1t A 1.1
> 0.2 : [ 5y W -
® 4 “0.05 [ ! |
o) : S S o | 117
0 1.5+ ! I}
)
> !
(0] ol

T T T T T T T ‘
0.0 0.2 0.4 0.6 0.8 1.0 1.2
amplitude of ac drive v,

FIG. 7. The dependence of the dc voltage across the junetjpgiven in terms of average fluxon velocity= V4~ /27 on the amplitude
of the ac drivey, for different normalized frequencies=qs,0.01...,0.1 of the ac drive and=0.2. The curves corresponding to the
different frequencies are intentionally shifted by 0.06860 velocity quanta atw=0.01) relative to each other for the sake of better
visibility. The insets of(a) and (b) show magnified views of the fluxon-rectification regida), (b), and(c) were obtained for zZhy//
=0.5, 1.0, and 2.0, respectively.
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3.5

3.0

d g h2n/l=2.0

average velocity u

0.0 0.5 1.0 1.5 2.0
amplitude of ac drive v,

FIG. 7. (Continued)

values ofy,., whereu=0, the amplitude of the ac current is the quasistatic curves look smooth.

not big enough to exceed the pinning current and the fluxon A further increase of the ac bias amplitude 0.522,.

is localized in the well. At higher ac bias up $.=0.522, <0.696 results in a decrease of the dc voltage because dur-
the positive depinning current is exceeded and the systeimmg the negative semiperiod of the ac drive, the fluxon starts
switches to the fluxon step, i.e., the fluxon escapes from themoving in the opposite direction so that the efficiency of the
well and starts to move around the junction. Note that duringluxon ratchet drops.

a period of ac drive the fluxon can only make an integer The big peak at 0.696v,.<0.916 in Fig. Tb) is related
number of turns and at the end of the period will be agairto the switching of the junction to the resistive state during
localized in the well. This results in the quantization of thethe positive semiperiod while during the negative semiperiod
average velocity, which can be seen as steps on all curveghe junction stays in the zero-voltage state or on the fluxon
except for the quasistatic one. The step number correspondsep. When the amplitude of the ac drive gets big enough to
to the number of turns done by the fluxon during one periodswitch the system to the resistive state also during negative
of ac drive. The voltage rectifier based on this principle will semiperiods, the dc voltage drops again and in the limit of
give a quantized voltag¥,=n®yw/27 (in physical unity  very strong ac drive approaches zero. A large amplitude of
that is defined by fundamental constants and the applied freac biasy,>1 implies that the system spends almost the
quency. The corresponding velocity quanta in Fig. 7 arewhole period in the positive or negative resistive state and
given by u,=nw//(2m). This givesu;~0.0318 for /  only a tiny fraction of the period on the asymmetric part of
=20 andw=0.01. Note that the voltage quantum increaseshe current-velocity characteristic at low currents, so that the
with w; and for =0.01, five quantdturns per ac cycle resulting average velocity is close to zero. In addition, such a
give the same voltage as one quantumdot 0.05. For the  strong ac drive results in chaotic dynamics, as can be seen in
guasistatic case the voltage quantum is infinitesimal so thdtig. 7 for large values ofy,.. Figure 7 also shows that the
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rectification effect decreases when the driving frequency in{nonlinear wavg moving in the underdamped medium with
creases and approaches the maximum fluxon rotation frexsymmetric potential, we expect some nontrivial effects re-
qUENCY ® - lated to(a) wave properties of the fluxortb) underdamped
We point out that the performance of the fluxon rectifierdynamics, and(c) interaction between fluxons. As a first
depends on the chosen potential amplithge For compari-  step, we performed a numerical analysis of the effective po-
son in Figs. 7Ta)—7(c) we show the rectification characteris- tential seen by a fluxon and checked the rectification of a
tics for different values of magnetic field amplitude monochromatic signal. We found that a fluxon rectifier pro-
2why//=0.5, 1.0, and 2.Qsee Fig. 4 We see that the duces a quantized voltage, with a quantum giteure to the
potential depth affects the amplitude of the ac drive at whichJosephson relatigronly by the fundamental constadt, and
rectification appears and at whial(y,) has a maximum the driving frequencyw. The experimental investigation of
and it affects the relative location of the two regions corre-the deterministic propertiegests for asymmetry, rectifica-
sponding to the fluxon-rectification regime and resistive-tion of monochromatic signabf the proposed system based
rectification regime. We note that the resistive-rectificationon Nb-AI-AlO,-Nb Josephson junction technology is in
regime in principle gives a larger effect that is inversely pro-progress. Furthermore, it will be interesting to investigate
portional to the damping coefficient, i.e., it can be made theoretically and experimentally the fluxon motion in a
rather big. However, this is a rather trivial effect that can beratchet potential under the action of a random force that may
obtained using any nonsymmetrieV curve. The fluxon- be due to thermal equilibrium or due to nonequilibrium fluc-
rectification regime, which is the main subject of this study,tuations, and that can either produce white or colored noise.
gives smaller but quantized voltages. This can be an advarFhis problem is quite nontrivial and has been far outside the

tage for some applications. scope of the present work. In particular the impact df 1/
noise on ratchet systems has to our knowledge not yet been
IV. CONCLUSION investigated. The proposed fluxon ratchet may very well

serve as a model system for the investigation of the above-
We proposed a type of Josephson vortex ratchet, whergyentioned issues.

the motion of a fluxon along a long Josephson junction
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