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Josephson vortex in a ratchet potential: Theory
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We propose a type of Josephson vortex ratchet. In this system a Josephson vortex moves in a periodic
asymmetric potential under the action of a deterministic or random force with zero time average. For some
implementations the amplitude of the potential can be controlled during the experiment, thus allowing us to
tune the performance of the system and build rocking as well as flashing ratchets. We discuss the differences
between conventional and Josephson vortex ratchets and present a model describing the dynamics of the fluxon
in such a system. We show numerical simulation results that predict rectification of a monochromatic, deter-
ministic signal with zero time average. The investigation of this system may lead to the development of the
fluxon rectifier—a device that produces a dc voltage from nonequilibrium fluctuations.
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I. INTRODUCTION

To extract useful work from random motion was a drea
of mankind since the days when the Brownian motion w
recognized. Unfortunately, the second law of thermodyna
ics forbids extracting energy ‘‘for free’’ from equilibrium
thermal fluctuations~white noise!, which was didactically
demonstrated by Feynmanet al. in @1#. Nevertheless, one ca
extract useful work fromnonequilibriumor time-correlated
~colored! noise ‘‘not paying’’ for it, using so-called ratchets
i.e., systems with an asymmetric periodic potential@2#. Re-
cently there was a boost of activity in this field related to t
experimental investigation of directed motion in biologic
systems, the so-called Brownian motors which, e.g., m
muscles or transport vesicles in a cell@3#. In the latter case
the probable mechanism of operation is the motion of kine
molecules along the surface of microtubules, which can
mapped to the motion of Brownian particles along a o
dimensional ratchet potential with the period 8.2 nm@4#. The
nonequilibrium energy is supplied by the chemical react
of splitting of adenosine triphosphate, which takes pla
close to the kinesin molecule.

In addition to the application of ratchets as noise rect
ers, it was suggested to use them for very efficient separa
of small objects with different mobility, e.g., DNA mol
ecules, viruses, etc.@5,6#. Particle separation is based on s
called deterministic ratchets@7#, where the particles move in
a certain direction under the action of a deterministic fo
with zero time average. Moreover, changing the force p
file, one can reverse the direction of the particle motion@7#.
The classification and discussion of different types of ratc
systems can be found in Ref.@8#.

In this paper we focus on Josephson ratchets, which ar
particular interest because~a! the directed motion results in
dc voltage according to the Josephson relation and~b! these
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systems can operate at very high frequencies up to about
GHz. As a first example we mention the asymmetric dc
perconducting quantum interference device~SQUID! where
the equation of motion for the Josephson phase~difference of
quantum mechanical phases! corresponds to the motion of a
imaginary particle in a two-dimensional~2D! ratchet poten-
tial. Such SQUID ratchets have been proposed@9# and stud-
ied experimentally@10#. Another type of Josephson ratch
investigated recently is a 1D array of Josephson juncti
with spatially modulated properties@11#. A Josephson kink
~vortex!, which can move along the array, can be conside
as a quasiparticle in a 1D ratchet potential.

Here we propose a class of Josephson ratchets that fu
develops the idea of a kink in a 1D array. The propos
system consists of a 1D long Josephson junction~LJJ! that
may be bent in theab plane@see Fig. 1~a!# or have variable
width w(x). Here and belowx is a curvilinear coordinate
along the junction. The fluxon~Josephson vortex! moving
along the junction, from a mathematical point of view, is
topological soliton. It has its own mass, velocity, and oth
particlelike properties@12#. We study the motion of a fluxon
in LJJs in a ratchet potential that can be formed either
applying an external magnetic field and bending the junct
properly or by modulating its widthw(x). To provide the
required periodicity of the potential, the junction is topolog
cally closed in a loop. Such a geometry is similar to t
well-known annular Josephson junction@13–16# in which a
fluxon moves in a sinusoidal potential created by a magn
field. @17# Using a more elaborate shape@18#, one can form
an asymmetric potential with the possibility to control i
amplitude by changing the amplitude of the external m
netic field. An alternative idea of magnetic field modulatio
using a specially shaped control line is proposed in Ref.@19#.
The directional motion of a fluxon can be detected by m
suring the dc voltage across the junction that is, due to
Josephson relation, proportional to the average velocity o
fluxon.

Before discussing fluxon dynamics in a ratchet poten
we would like to stress the difference between conventio
ratchets and Josephson vortex ratchets. First, the fluxon

:
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E. GOLDOBIN, A. STERCK, AND D. KOELLE PHYSICAL REVIEW E63 031111
though it has a topological charge and in general beha
like a particle, is a nonlinear wave, i.e., it can change
shape rather strongly as well as emit electromagnetic wa
Second, fluxon dynamics is usually studied in the und
damped limit, which is opposite to the overdamped case
was considered for the majority of work on Brownian pa
ticles in a ratchet potential. Small damping may result
chaotic dynamics even in the deterministic case@20# and, in
the case of the fluxon, even without any potential@21#. Thus,
to have a well-defined behavior of a fluxon ratchet, one
to work in the overdamped or in the weakly underdamp
limit. If one uses conventional Nb-AlOx-Nb technology to
fabricate the LJJ, this requirement means that the work
temperature should be very close toTc . As an alternative
one can use junctions with intrinsically high damping such
superconductor instulator normal-conductor instulator sup
conductor LJJs@22# or high-Tc LJJ technology@23#, which
allows one to fabricate LJJs of required topology. Third,
we consider multiparticle dynamics, the strong repelling
teraction between fluxons plays an important role and m
be taken into account.

This paper is organized as follows. In Sec. II we der
the equations for the dynamics of the Josephson phase
bent LJJ of variable widthw(x) in the external magnetic
field. We also discuss different kinds of fluxon ratchets, th
advantages, and drawbacks. The numerical simulation re
are presented in Sec. III. Section IV concludes this work

II. THE MODEL

Here we derive the generalized perturbed sine-Gor
equation that takes into account the curvature of the LJ

FIG. 1. Piece of LJJ (d1 and d2 are the thicknesses of the su
perconducting electrodes anddI is the thickness of the insulatin
tunnel barrier! that is bent in theab plane and has variable widt
w(x); ~a! 3D view of geometry,~b! schematic representation usin
discrete elements.
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the ab plane @see Fig. 1~a!#, the uniform magnetic fieldH
applied in the plane of the junction~in the b direction!, as
well as the modulation of the LJJ widthw(x) along its length
x.

We start from a discrete representation of the LJJ sho
schematically in Fig. 1~b!. The Kirchhoff equations for the
Josephson phases in the cell and for the currents in one o
nodes are

f~x1dx!2f~x!5
2p

F0
F~x!5

2p

F0
@Fe~x!2L~x!I L~x!#,

~1!

I L~x!2I L~x2dx!5I e~x!2I ~x!, ~2!

wheref(x) is the Josephson phase at pointx of the junction,
F(x) andFe(x) are the total magnetic flux and the extern
magnetic flux applied to the cell, respectively,L(x) is the
inductance of the piece of the junction electrodes betweex
and x1dx, I L(x) is the current in the electrodes, i.e
through the inductanceL(x), I e(x) is the externally applied
bias current, andI (x,t) is the current through the Josephs
junction. The particular expression forI (x,t) depends on the
JJ model adopted and is introduced later.

Assuming that the intervaldx is infinitesimal, we can
rewrite Eqs.~1! and ~2! in a differential form using the fol-
lowing expressions:

I ~x!5 j ~x!w~x!dx, ~3!

I e~x!5 j e~x!w~x!dx, ~4!

L~x!5
m0d8

w~x!
dx, ~5!

Fe~x!5m0~H•n!Ldx5m0H~x!Ldx, ~6!

wherem0d8 is the inductance of one square of the superc
ducting electrodes@24#, d8'2lL is the effective magnetic
thickness of the junction@24#, n is the unit vector normal to
the plane of the junction cell as shown in Fig. 1~b!, L
'2lL is the effective penetration depth of the magnetic fie
into the junction @24#, and lL is the London penetration
depth of the superconducting electrode. We assume tha
films are spatially uniform so thatd8 andL are independen
of x.

Substituting Eqs.~3!–~6! into Eqs. ~1! and ~2! we can
rewrite the latter in a differential form as

]f

]x
5

2p

F0
Fm0H~x!L2

m0d8

w~x!
I L~x!G , ~7!

]I L~x!

]x
5w~x!@ j e~x!2 j ~x!#. ~8!

Excluding I L(x) from Eqs.~7! and ~8!, we get the equation
that describes the dynamics of the Josephson phase in
system
1-2
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JOSEPHSON VORTEX IN A RATCHET POTENTIAL: THEORY PHYSICAL REVIEW E63 031111
w~x!@ j e~x!2 j ~x!#5
1

m0d8

d

dx H w~x!Fm0LH~x!2
F0

2p
fxG J .

~9!

Here and below, the subscriptst and x, if any, denote the
derivatives with respect to timet and coordinatex, respec-
tively. Note, that we did not include any particular model
JJ into our equation up to now, which is a definite advant
of this derivation procedure. In the case of the simple re
tively shunted junction~RSJ! model, one should substitut
j (x), which is the sum of the supercurrent, normal~quasi-
particle! current, and displacement current densities,

j ~x!5 j c sin~f!1
F0

2pR
f t1C

F0

2p
f tt , ~10!

into Eq. ~9!. Here j c , R, andC are the critical current den
sity, specific resistance, and specific capacitance of the j
tion, respectively. In this case Eq.~9! can be rewritten in a
form that resembles the usual sine-Gordon equation@24#:

lJ
2fxx2vp

22f tt2sin~f!5vc
21f t2g~x!1QHx~x!

1
wx~x!

w~x!
@QH~x!2lJ

2fx#,

~11!

where lJ5AF0 /(2pm0 j cd8) is the Josephson penetratio
depth, vp5A2p j c /(F0C) is the Josephson plasma fr
quency,vc52p j cR/F0 is the so-called critical frequency
g(x)5 j e(x)/ j c is a normalized bias current density, andQ
52pm0LlJ

2/F0.
For theoretical investigation of the system we introdu

standard normalized units, i.e., we normalize the coordin
to the Josephson penetration depthlJ , and the time to the
inverse plasma frequencyvp

21 . After such simplifications,
Eq. ~11! can be rewritten as@25,26#

fxx2f tt2sin~f!5af t2g~x!1hx~x!1
wx~x!

w~x!
@h~x!2fx#

~12!

with the damping coefficienta5vp /vc[1/Abc, and the
field h normalized in the usual way as

h~x!5
2H~x!

Hc1
. ~13!

Here,Hc15F0 /(pm0LlJ) is the first critical field~penetra-
tion field! for a LJJ that is, in fact, equal to the field in th
center of the fluxon. The normalized velocity is given
natural units ofc̄05lJvp , wherec̄0 is the so-called Swihar
velocity. The normalized voltageV5f t is given in units of
F0vp /(2p). From now on all quantities are given in no
malized units.

In comparison with the usual perturbed sine-Gord
equation, Eq.~12! contains three additional terms. The ter
hx(x) describes the effect of the applied magnetic field wh
the junction is bent in theab plane. The second term
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@wx(x)/w(x)#fx comes from the width modulation. The la
term @wx(x)/w(x)#h(x) describes the mixture of both an
appears only when both field modulation due to curvat
and width modulation are present.

It can be checked by a direct substitution into the Eul
Lagrange equation

d

dt

]L
]f t

1
d

dx

]L
]fx

2
]L
]f

50 ~14!

that the Lagrangian density

L5w~x!H f t
2

2
2

@fx2h~x!#2

2
2~12cosf!J ~15!

results in the equation of motion~12! without theaf t andg
terms that describe dissipation and external force and th
fore are not included in the Lagrangian density. Of cour
the Lagrangian density~15! can be obtained directly from
Fig. 1~b! and the RSJ model. From Eq.~15! one can see tha
instead of the usual potential energy termfx

2/2 we now have
w(x)@fx2h(x)#2/2, i.e., actually three terms. The firs
w(x)fx

2/2, is the obvious generalization of the usual pote
tial energy term to the case of variable widthw(x). The
second termw(x)h(x)2/2 is a constant term due to the a
plied field andis not related to the fluxon motion or othe
Josephson phase activity in the junction. In fact, there are
traces of this term in Eq.~12!. The third termh(x)fxw(x)
represents the part of the potential energy density that we
interested in and that we are going to exploit to build
system with a ratchet potential.

One of the solutions of the sine-Gordon Eq.~12! with
zero right-hand side~rhs! is a soliton~fluxon!

f~x,x0!54 arctan exp~x2x0!, ~16!

with the center situated at pointx0. We consider nonrelativ-
istic motion, i.e., dx0 /dt!1. Further, assuming that th
fluxon profile ~16! does not change much due to the rhs
Eq. ~12! which acts as a perturbation, we can get the expl
expression for the potential energyU(x0) as a function of
the fluxon coordinatex0. For this purpose, we note that i
expression~15! for the Lagrangian density the second a
the third terms correspond to the potential energy den
U(x,x0) ~with opposite sign!. The potential energyU(x0) is
obtained by substitutingf(x,x0) from Eq. ~16! into U(x,x0)
and integrating overx. Thus, we get

U~x0!5E
2`

1` 4w~x!

cosh2~x2x0!
2

2w~x!h~x!

cosh~x2x0!
dx. ~17!

The first term corresponds to the potential energy due
width modulation, the second corresponds to the poten
energy due to shape, field, and width.

The first possible way to form a ratchet potential is
apply no magnetic field (h50) and to vary the widthw(x)
of the junction. In this case the potential energy will be giv
by the first term of Eq.~17!. Moreover, when the junction
1-3
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E. GOLDOBIN, A. STERCK, AND D. KOELLE PHYSICAL REVIEW E63 031111
width w(x) does not change much over the distance co
pared to the fluxon size, the potential

U~x0!'8w~x0! ~18!

just repeats thew(x0) profile. From Eq.~18! it follows that if
the width changes as a sawtooth, so does the potentia
ergy, except in the vicinity of the sawtooth’s infinite slop
where one has to calculate the convolution according to
~17!. Here and below, when mentioning the sawtooth pro
we mean a sawtooth with finite positive slope and infin
negative slope. In the case of the sawtooth where the w
changes fromw0 to w01Dw at the pointx050 ~infinite
slope!, the potential energy in the vicinity of the pointx0
50 is U(x0)58w014Dw@11tanh(x0)#. The practical
implementation of such a ratchet would look like an annu
LJJ with the outer edge having the shape of a circle and in
edge having the shape of one turn of a spiral. This geom
has the advantage that the corresponding potential ca
made ideally sawtoothlike except for the smearing due to
convolution in Eq.~17!, which is a common feature of a
fluxon-based systems. In some sense, this system is an
log of the Josephson ratchets based on 1D arrays@11#. Un-
fortunately both types of ratchets do not allow one to con
the potential height during experiment that can be conside
as a disadvantage.

The second possibility is to keepw constant, to apply a
magnetic field, and to bend the junction in theab plane. In
this case the first term of Eq.~17! gives a constant and w
have to consider only the second term. Again, ifh(x)
changes slowly in comparison with the fluxon size, Eq.~17!
is simplified to

U~x0!522pwh~x0!. ~19!

In the well-known case of the ring-shaped junction, the fi
h(x)5h0 cos(u)5h0 cos(x/R) (u is the angle betweenH and
n as shown in Fig. 1! and therefore we get a symmetr
potential. If we deform the ring properly, the potential can
made asymmetric as desired. Possible experimental sh
are shown in Fig. 2. The advantage of this kind of ratche
that one can control the amplitude of the potential during
experiment by varying the amplitudeh0 of the magnetic
field. The possibility of tuning the potential height allow
one to implement the so-called flashing ratchets@8# by either
applying an ac magnetic field using a coil or just placing

FIG. 2. Possible shapes of LJJs~top view! that provide a ratche
potential when the magnetic fieldH is applied in the direction
shown by the arrow.
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rf antenna close to the junction so that theH of the emitted
electromagnetic wave will have a nonzero component in
ab plane.

Note that the termsg(x) and hx(x) in Eq. ~12!, from a
mathematical point of view, play the same role. Therefore
the experiment the fieldh(x) can be substituted by a prop
erly chosen additional bias currentgp(x)52hx(x), which
has zero average in space. The inverse mapping is also v
but the bias current with a nonzero average maps to a n
periodic field~potential! with a linearly growing component
which does not belong to the class of ratchets. In Sec. I
we, in fact, usê g&Þ0 ~these brackets denote spacial av
aging!, but only to test the asymmetry of the potential. Wh
we demonstrate the real operation of the ratchet in Sec. II
we have^g&50.

III. SIMULATION RESULTS

In this section we study the fluxon dynamics in a Jose
son ratchet of the second type (hÞ0, w5const) for a saw-
tooth field profileh(x). This ideal asymmetric profile is no
only of academic interest because it should show good
ures of merit for fluxon ratchets, but also can be quite clos
reproduced in a real system@see shape in Fig. 2~b! and cor-
respondingh(x) in Fig. 3~a!#. All simulations were per-
formed using an explicit numerical scheme for Eq.~12! us-
ing a LJJ of the normalized lengthl 520, with damping
coefficienta50.2 ~weakly underdamped limit!. The numeri-

FIG. 3. Illustration to the explanation of thegc0
6 (h0) and

gc1
6 (h0) dependences.~a! h(x) and gp(x), ~b! U(x0) and f (x0).

These curves correspond to the LJJ shape shown in Fig. 2~b!.
1-4
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cal technique and simulation software are discussed in d
elsewhere@27#.

A. Probing the asymmetry of the potential

First, we probe the asymmetry of the potential by calc
lating critical currentgc vs potential heighth0 for the case of
one trapped fluxon@gc1

6 (h0)# and for the case of no trappe
fluxons @gc0

6 (h0)#. The superscripts ‘‘1 ’’ or ‘‘ 2 ’’ corre-
spond to opposite directions of applied bias current.

On the basis of the model derived in the previous sec
we can understand how these dependences should loo
an arbitrary magnetic field profileh(x). In general, due to
the looplike geometry, the left and right tails of a fluxon c
interact. We assume that the junction is long enough and
interaction in negligible. This situation is equivalent to t
long periodic system where the fluxons are separated b
large distancel @lJ . Furthermore, we represent the fie
h(x) ash0H(x) and map it to the equivalent additional bia
currentgp(x)52h0Hx(x). An example ofh(x) andgp(x)
derived from the geometry in Fig. 2~b! is shown in Fig. 3~a!.

If there is a fluxon in the junction,g(x) andgp(x) trans-
late into a driving forceFg(x0) and a potential~pinning!
force Fp(x0), respectively, acting on the fluxon@28#

Fg~x0!5E
2`

1` 2g~x!w

cosh~x2x0!
dx52pgw, ~20!

Fp~x0!5E
2`

1` 2gp~x!w

cosh~x2x0!
dx5h0f ~x0!w.

~21!

The corresponding potentialU(x0) and force f (x0) are
shown in Fig. 3~b!. For the sake of simplicity we suppos
thatg does not depend onx, but our discussion can be easi
generalized to the case when the rhs of Eq.~20! is equal to
2pG(x0)w. The pinning force~21! can be also obtained di
rectly from expression~17! for the potential energy. When
we increaseg the fluxon is pinned while these two forces c
compensate each other, i.e.,Fg(x0)1Fp(x0)50. The depin-
ning occurs for

g5gc152h0f ~x1!/2p, ~22!

wherex1 is the coordinate at whichf (x1) has a minimum
@see Fig. 3~b!#. We assume thatg.0 and f (x1),0. Thus
from Eq.~22! we see thatgc1(h0) is a straight line that start
from the origin.

On the other hand, regardless of the presence of a flu
the Josephson phase evolves under the action of the net
rentg1gp . From Fig. 3~a! it is clear that at pointx2, where
gp(x) is maximum, this sum can exceed 1 for some value
g5gc and the junction switches to the resistive state. Us
gp52h0Hx(x) the conditiongc1gp(x2)51 gives

gc~h0!511h0Hx~x2!512h0uHx~x2!u, ~23!

i.e., also a straight line, but with negative slope.
Summarizing,gc1(h0) has two branches~22! and ~23!,

and follows the one with the lowest critical current for
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given h0. For fields 0,h0,h* , gc1(h0) is given by Eq.
~22!, and forh0.h* by Eq. ~23!, where the field

h* 5
21

f ~x1!/2p1Hx~x2!
~24!

is the field where these two dependences intersect. The
pendencegc0(h0) has only one branch~23! since the fluxon-
depinning mechanism is absent.

When one applies the currentg in the opposite direction,
the dependences qualitatively look the same but the part
lar values of slopescan be different in the case of an asym
metric potential, ifgp(x2)Þ2gp(x4) and f (x1)Þ2 f (x3)
~see Fig. 3!. Thus, the measurement ofgc0

6 (h0) andgc1
6 (h0)

gives direct information about the asymmetry of the field a
of the potential, respectively. Note that an asymmetric pot
tial mayhavegp(x2)52gp(x4) and/orf (x1)52 f (x3), i.e.,
it does not reveal its asymmetry in the measurements
gc0

6 (h0) and gc1
6 (h0). Inversely, the asymmetry ofgc0

6 (h0)
andgc1

6 (h0) is a clear indication of asymmetry in the system
We stress that the first branch ofgc0

6 (h0) and the second
branch ofgc1

6 (h0) show the asymmetry of the fieldh(x),
while the first branch ofgc1

6 (h0) shows the asymmetry o
potentialU(x0), i.e., already after convolution~17! with fx .
While hx(x0) may have appreciable asymmetry,U(x0) may
be almost symmetric.

We should note that the above analysis is valid for
arbitrary field profileh(x) as long ashx(x) can be consid-
ered as a perturbation in the rhs of Eq.~12!. However, for the
case of the sawtooth potential this is not the case, sincehx(x)
has ad(x)-like behavior at the point of the junction wher
the sawtooth has infinite slope. Therefore our analysis
valid only qualitatively. In particular, the dependenc
gc

6(h0) still have linear slopes but the values of the slop
cannot be calculated using simple integrals as shown ab
because the fluxon shape will differ from Eq.~16! quite con-
siderably, as we saw in numerical simulations. Therefore
present the results of direct numerical simulation of Eq.~12!.

The simulatedgc0
6 (h0) andgc1

6 (h0) for an ideal sawtooth
field profile h(x) are presented in Fig. 4. The magnetic fie
is given in terms of the force amplitudeh02p/l . If the
system is closed in a loop with a normalized circumferen
l , the fieldh(x) can be written in the formh0H(2px/l )
whereH is a geometry-dependent 2p-periodic function nor-
malized to 1. Therefore the termhx(x) in Eq. ~12! is

hx~x!5h0

2p

l
H8S 2p

l
xD , ~25!

whereH8(j)5dH(j)/dj is a periodic function. This mean
that the potential force scales inversely proportional to
length of the junctionl . So, to get rid of the length depen
dence and make our results valid for any lengthl @1, we
present our results as a function ofh02p/l .

From Fig. 4 one can see that the depinning curr
gc1(0)50 and then grows linearly with the field, as e
pected from the theory, up to some fieldh* 2p/l '1.8. Af-
ter that it decreases linearly with field, also according to o
1-5
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prediction, and finally, exhibits multiple branches corr
sponding to the multifluxon states.

As it should be in the case of a sawtooth potential,
slopes ofgc0

6 (h0) and gc1
6 (h0) are not symmetric, and th

ratio of the slopes is about 4. Ideally, if the fluxon were a r
particle we could expect an infinite force necessary to p
the fluxon out of the well in the direction against the infin
slope and, therefore, an infinite ratio of slopes on thegc1

6 (h0)
curves. In practice, due to the convolution~17!, we have a
finite force and a finite ratio of slopes on thegc1

6 (h0) depen-
dences. The finite ratio of slopes ongc0

6 (h0) as well as of the
second slopesgc1

6 (h0.h* ) is observed because perturbati
theory does not apply as mentioned above.

The next step is the understanding of thedynamicsof the
fluxon in an asymmetric potential. One of the simplest o
servations that can be made numerically as well as exp
mentally is the examination of the fluxon trapping curre
g tr , i.e., the minimum current at which a fluxon still move
along the system, not being trapped by the potential. O
ously, in the underdamped system the trapping of the flu
by the potential will not take place while the kinetic ener
of the fluxon exceeds the height of the potential, and o
should not see any difference in the fluxon trapping curre
g tr

6(h0) for opposite bias current directions. In the strong
overdamped case the fluxon dissipates energy so quickly
to move further under the action of the driving force, t
driving force should always overcome the maximum va
of the potential~trapping! force. In an asymmetric potentia
the maximum force created by the potential is different
opposite directions of fluxon motion and we should expec
difference in the fluxon trapping current. The simulat
g tr

6(h0) curves for a sawtooth potential are shown in Fig.
Even in the slightly underdamped casea50.2 the depen-
dences for positive and negative direction of fluxon mot
~bias current! differ quite considerably. We also note th
g tr

1(h0) almost coincides withgc1
1 (h0) ~see Fig. 4! for h0

,2, which means that for the positive direction of bias the

FIG. 4. Normalized critical currentsgc0
6 (h0) ~no trapped flux-

ons! andgc1
6 (h0) ~one trapped fluxon! vs magnetic field amplitude

h0 for the sawtooth magnetic field profileh(x) in the annular LJJ of
length l 520. Dotted lines show the values of magnetic field
which rectification shown in Figs. 7~a!–7~c! was calculated.
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is no hysteresis on theI -V characteristic when the system
switches from zero-voltage state to the state with the mov
fluxon and back. Instead, for the negative bias the hyster
is present as can be seen in Fig. 6.

B. Motion due to monochromatic force

In the following we investigate the motion of a fluxon i
a system with the sawtooth field profileh(x) andw5const
under the action of a monochromatic ac bias currentg
5gacsin(vt) in Eq. ~12!. If as a result of an ac drive the
fluxon starts to move around the junction, we can estim
the characteristic frequency of this process. It is clear that
maximum velocity of the fluxon is equal to the Swihart v
locity ~1 in normalized units! therefore the maximum revo
lution frequency isvmax52p/l '0.314.

t

FIG. 5. Normalized fluxon-trapping currentg tr(h0) vs magnetic
field amplitudeh0 for the sawtooth magnetic fieldh(x) in the an-
nular LJJ ofl 520 anda50.2. Dotted lines show the values o
magnetic field at which rectification shown in Figs. 7~a!–7~c! was
calculated.

FIG. 6. Current-voltage characteristic of LJJ with one trapp
fluxon shown as the dependence of fluxon velocityu5Vdcl /2p on
the amplitude of the bias currentg obtained fora50.2.
1-6
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In the limit of low frequency ~quasistatic! drive v
!vmax, we can calculate the net average velocity of t
fluxon, just integrating the current-velocity characterist
u(g) ~see Fig. 6! at a given value of fieldh0 as

u~gac!5
1

2pE0

2p

u„gacsin~t!…dt, ~26!

where the integration path should follow the proper hyst
etic branches of theu(g) dependence.

In the case whenv is comparable with the maximum
frequency of the fluxon rotation around the junctionvmax,
we perform direct numerical simulations. The dependen
u(gac) calculated numerically for different values ofv are
shown in Figs. 7~a!–7~c! for h02p/l 50.5, 1.0, and 2.0,
03111
e
s

-

s

respectively. The upper curves marked as ‘‘qs’’~quasistatic!
are calculated using Eq.~26!. All other curves for v
50.01–0.1 were obtained by means of direct numeri
simulation of Eq.~12!. Such values of frequencies were ch
sen taking into account that they should be less but com
rable withvmax. As we saw in the simulations, atv>0.2 @in
the case of Fig. 7~a! already forv50.1# the rectification is
suppressed almost completely.

From Fig. 7 one can see that the dependenceu(gac) for
the quasistatic case is piecewise with jumps at the value
bias current where switching between different hystere
branches occurs. For example, let us focus onh02p/l
51.0 @see Fig. 7~b!#. In this case the switch between diffe
ent hysteretic branches occurs atg, which is equal to 0.522,
0.696, 0.916~cf. Figs. 4, 6, and 7!. Several characteristic
regions can be distinguished. First, in the region of sm
e
ter
FIG. 7. The dependence of the dc voltage across the junctionVdc given in terms of average fluxon velocityu5Vdcl /2p on the amplitude
of the ac drivegac for different normalized frequenciesv5qs,0.01, . . . ,0.1 of the ac drive anda50.2. The curves corresponding to th
different frequencies are intentionally shifted by 0.0636~two velocity quanta atv50.01) relative to each other for the sake of bet
visibility. The insets of~a! and ~b! show magnified views of the fluxon-rectification region.~a!, ~b!, and ~c! were obtained for 2ph0 /l
50.5, 1.0, and 2.0, respectively.
1-7
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FIG. 7. ~Continued.!
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values ofgac, whereu50, the amplitude of the ac current
not big enough to exceed the pinning current and the flu
is localized in the well. At higher ac bias up togac50.522,
the positive depinning current is exceeded and the sys
switches to the fluxon step, i.e., the fluxon escapes from
well and starts to move around the junction. Note that dur
a period of ac drive the fluxon can only make an integ
number of turns and at the end of the period will be ag
localized in the well. This results in the quantization of t
average velocityu, which can be seen as steps on all curv
except for the quasistatic one. The step number corresp
to the number of turns done by the fluxon during one per
of ac drive. The voltage rectifier based on this principle w
give a quantized voltageVn5nF0v/2p ~in physical units!
that is defined by fundamental constants and the applied
quency. The corresponding velocity quanta in Fig. 7
given by un5nvl /(2p). This gives u1'0.0318 for l
520 andv50.01. Note that the voltage quantum increas
with v; and for v50.01, five quanta~turns per ac cycle!
give the same voltage as one quantum forv50.05. For the
quasistatic case the voltage quantum is infinitesimal so
03111
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the quasistatic curves look smooth.
A further increase of the ac bias amplitude 0.522,gac

,0.696 results in a decrease of the dc voltage because
ing the negative semiperiod of the ac drive, the fluxon sta
moving in the opposite direction so that the efficiency of t
fluxon ratchet drops.

The big peak at 0.696,gac,0.916 in Fig. 7~b! is related
to the switching of the junction to the resistive state duri
the positive semiperiod while during the negative semiper
the junction stays in the zero-voltage state or on the flux
step. When the amplitude of the ac drive gets big enoug
switch the system to the resistive state also during nega
semiperiods, the dc voltage drops again and in the limit
very strong ac drive approaches zero. A large amplitude
ac biasgac@1 implies that the system spends almost t
whole period in the positive or negative resistive state a
only a tiny fraction of the period on the asymmetric part
the current-velocity characteristic at low currents, so that
resulting average velocity is close to zero. In addition, suc
strong ac drive results in chaotic dynamics, as can be see
Fig. 7 for large values ofgac. Figure 7 also shows that th
1-8
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JOSEPHSON VORTEX IN A RATCHET POTENTIAL: THEORY PHYSICAL REVIEW E63 031111
rectification effect decreases when the driving frequency
creases and approaches the maximum fluxon rotation
quencyvmax.

We point out that the performance of the fluxon rectifi
depends on the chosen potential amplitudeh0. For compari-
son in Figs. 7~a!–7~c! we show the rectification characteri
tics for different values of magnetic field amplitud
2ph0 /l 50.5, 1.0, and 2.0~see Fig. 4!. We see that the
potential depth affects the amplitude of the ac drive at wh
rectification appears and at whichu(gac) has a maximum
and it affects the relative location of the two regions cor
sponding to the fluxon-rectification regime and resistiv
rectification regime. We note that the resistive-rectificat
regime in principle gives a larger effect that is inversely p
portional to the damping coefficienta, i.e., it can be made
rather big. However, this is a rather trivial effect that can
obtained using any nonsymmetricI -V curve. The fluxon-
rectification regime, which is the main subject of this stud
gives smaller but quantized voltages. This can be an ad
tage for some applications.

IV. CONCLUSION

We proposed a type of Josephson vortex ratchet, wh
the motion of a fluxon along a long Josephson junct
closed in a loop can be considered as the motion of a qu
particle in a ratchet potential. The derived model sugge
several implementations of this fluxon ratchet, and, in p
ticular, the one where the amplitude of the potential can
controlled during experiment. Since the fluxon is a solit
a
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~nonlinear wave! moving in the underdamped medium wit
asymmetric potential, we expect some nontrivial effects
lated to~a! wave properties of the fluxon,~b! underdamped
dynamics, and~c! interaction between fluxons. As a firs
step, we performed a numerical analysis of the effective
tential seen by a fluxon and checked the rectification o
monochromatic signal. We found that a fluxon rectifier pr
duces a quantized voltage, with a quantum given~due to the
Josephson relation! only by the fundamental constantF0 and
the driving frequencyv. The experimental investigation o
the deterministic properties~tests for asymmetry, rectifica
tion of monochromatic signal! of the proposed system base
on Nb-Al-AlOx-Nb Josephson junction technology is
progress. Furthermore, it will be interesting to investiga
theoretically and experimentally the fluxon motion in
ratchet potential under the action of a random force that m
be due to thermal equilibrium or due to nonequilibrium flu
tuations, and that can either produce white or colored no
This problem is quite nontrivial and has been far outside
scope of the present work. In particular the impact of 1f
noise on ratchet systems has to our knowledge not yet b
investigated. The proposed fluxon ratchet may very w
serve as a model system for the investigation of the abo
mentioned issues.
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