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Effects of colored noise on stochastic resonance in a bistable system subject
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The effects of colored noise on stochastic resong®® in a bistable system driven by multiplicative
colored noise and additive white noise and a periodic signal are studied by using the unified colored noise
approximation and the theory of signal-to-noise ra8dIR) in the adiabatic limit. In the case of no correlations
between noises, there is an optimal noise intensities R which SNR is a maximum that identifies the
characteristics of the SR when the correlation timef the multiplicative colored noise is small. However,
when 7 is increased, a second optimal valueFoéppears, and two peaks appear in the SNR simultaneously.

In the case of correlations between noises, the SNR is not only dependent on the correlatignbtirnalso
on the intensity of correlations between noises. Moreover, the double peak phenomenon can also appear as
is increased in certain situations.
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[. INTRODUCTION noise, especially the stochastic system driven by white Gaus-
sain noise and colored noise. This situation is generic for a
Since stochastic resonant®R) was proposed to explain variety of physical situations, for example, the biological
the periodic recurrences of the earth’s ice afeg], the transport that works in the presence of white thermal noise
phenomenon has been extensively studied from both the thend correlated random noise of biological origin, and the
oretical and experimental points of vig®&—7]. SR is a name dynamics of a dye laser, etc. Therefore, it is very important
coined for the rather counterintuitive fact that the response ofo study the effects of colored noise on the SR phenomenon
a nonlinear system to a periodic signal may be enhancedf nonlinear systems. In this paper, we will use the theory of
through the addition of an optimal amount of noise. SNR proposed by McNamara and Wiesenfgdd to study
There have been many theoretical developments of SR ithe effects of colored noise on the SR in conventional
conventional bistable systemi8—20.. McNamara, Wiesen- bistable systems under the simultaneous action of a multipli-
feld and Roy[8,9] have suggested a master equation for thecative colored noise and an additive white noise and a peri-
populations in two stable states. They considered the signabdic signal.
to-noise ratidSNR), i.e., the ratio of theS peak height in the According to the theory of Ref9], the bistable case is
power spectrum to the noise background as a probe of the SRduced to a two-state system, characterized by the occupa-
effect. Zhou, Moss, and Jurid@4] have suggested the escapetion probabilitiesn.. = prob(x=x..) of both stable states. .
time distribution to describe SR. Jung andnggi [15] de- The master equation for these occupation probabilities is
scribed SR within the framework of nonstationary stochastic
processes without restriction to small driving amplitudes or

frequencies, where they presented power spectral densities n,=-n_=W_(t)n_—W,(t)n.
and signal amplification as measures of SR.
The largest amount of work about the SR phenomenon =W_(t) = [W_() + W, () ]n,, 1)

has referred to the consideration of systems with just one
noise source. However, many physical systems require con-
sidering various noise sources. Moreover, in certain situawhereW.. is the transition rate out of stable states. To
tions noises may be correlated with each other. Recently, thebtain an expression of SNR in terms of the output signal
SR phenomenon in a conventional bistable system under th@wer spectrum, the key problem is to calculate the transi-
simultaneous action of multiplicative and additive noise andion rate. It must be stressed that the expression for the tran-
a periodic signal has been discussed by using the theory aition rate would be valid only in thadiabatic limit so this
SNR in Ref.[21]. It should be pointed out that the multipli- theory of SNR is also called the adiabatic approximation. In
cative noise and additive noise are all assumed as whiterder to keep our results’ validity throughout this paper, we
Gaussian noise in Reff21]. However, more realistic models will also restrict ourselves to the case of the adiabatic limit.
of physical systems require considering the case of coloredn the other hand, different theories have been used to deal
with the colored noise problem, for instance, the conven-
tional small+ theory[22], the functional calculus theory of
*Electronic address: jiay@phy.ccnu.edu.cn Fox [23], the decoupling theoryoften called the Haggi
"Mailing address. ansatz [24], the unified colored noise approximation
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(UCNA) [25], etc. Here we will apply the UCNA to study IP(X,) P 52
the effects of colored noise on the SNR. Because the UCNA —=— —AX,7)P(Xx,t)+ —B(X,7)P(x,t) (9
is valid for both small and large correlation times of the at ax ax?
colored noisg25], our results are valid in a large region of
the 7 value. In Sec. Il the general theory of nonlinear system"‘”th
driven by multiplicative colored noise and additive white
noise is given by using the UCNA. Considering conventional - fx) K'(x)  C'(x,7)K(X)
bistable system, we study the effects of colored noise on the AX,7)= C(x,7) + C2(x,7) N C3(x,7)
SNR for two cases: the case of no correlations between ' '
noises and the case of correlations between noises in Sec. Ill.
We end with conclusions in Sec. IV. _ KX)
B(x,1)="—"——, (10
Ca(x,7)

Il. GENERAL THEORY OF COLORED NOISE . )
where the state-dependent functikiix) is also dependent

Let us consider the overdamped motion of a Brownianon either correlations or no correlations between the noises
particle in a potentiall o(x) that has two stable statgs and  £(t) and 5(t). When&(t) is correlated withy(t) according
an unstable state,, the stochastic system under the simul-to (7(t)£(s))=(&(t) 7(s))=2A JQD&(t—s), wherex de-
taneous action of multiplicative colored noise and additivenotes the strength of the correlations betwégn and #(t),

white noise is described by the Langevin equation and|\|<1 , thenK(x) becomes
x=f(x)+g(x)e(t) + n(t), 2 K(x,\)=Qg*(x) +2\yQDg(x)+D
=D[R@(x)+ 2\ JRg(x) +1], (11)

wheref(x) = —U{(x) and

R=Q/D is the ratio of noise intensities. The stationary prob-
(3) ability distribution P¢(x) of Eq. (9) is

t_
(e0)=0, (e(e(s))=2ext| f'),

d(x,7,\)
exg —
|Deti(X, 7,N)| 2 ;{ D

(n())=0, (n(t)n(s))=2Ds(t-s), 4 Py(x)= ) (12)
Q and r denote the intensity and the correlation time of the
multiplicative Gaussian colored nois€t), and D denotes
the intensity of the additive Gaussian white noigg).

The one-dimensional non-Markovian proce&d with

Egs. (3) and (4) is stochastically equivalent to two- Dor(X, T\ ) = KOXN)
e 14y

where the effective diffusio¢¢(X,7,\) and the general-
ized potentialb (x,7,\) are given by

dimensional Markovian processes Cz(x,q-)'
x="f(x)+g(x)e(t) + 7(t), (5) f(x)C(x,7)
<I>(x,r,>x)——Df Koo dx. (13
. 1 1
€= ;E”L ;g(t)’ ®  The mean first passage tinillFPT) 7. of the procesx(t)

to reach the stat&. with initial condition x(t=0)=x.. is
where £(t) is another Gaussian white noise witk(t))=0  given by the Kramers time whe <1 [27-3(
and (£(t)€(s))=2Q45(t—s). Applying the UCNA to two-

dimensional Markovian processé® and(6), one can obtain T.= 27| Ug(x+)Ug(xy)| M2
the following one-dimensional Markovian approximation
d(x,,7N)—DP(X+ , 7\
[25,26) ><xp[ b )D G mM (g
v—r-1
X=CxnTC)+90) &)+ n(D)], @ Then, one can obtain the transition rai%'s out of x.. ac-
cording tow. =7.1 [9].
where =
g’ (x) Ill. EFFECTS OF COLORED NOISE ON STOCHASTIC
Cx,r)=1-7 f’(X)—Wf(X) : (8) RESONANCE

Now considelUy(x) is a conventional symmetric bistable
the prime denotes differentiation with respecixtdarhen the  potential, and assume that the system [g.is driven by a
Fokker-Planck equation corresponding to Eg).can be read periodic signal(or periodic forcing, then the dimensionless
as form of the Langevin equation for this system can be read as
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x=x—x3+xe(t)+AcosQt+ 7(t), (15) 0.05

where the statistical properties of the nois€s) and »(t)
are given by Eqgs(3) and (4), A is the amplitude, and) is 0.04
the frequency of the periodic signal.

In the absence of the periodic signal, the deterministic
potential of the bistable system ig,(x)=—x?%/2+x%/4,
which has two stable states =—1, x,=+1 and an un-
stable statex,=0. In the presence of the periodic signal, the
potential of the system is modulated by the signal. However, 0.02
it is assumed?9] that the signal amplitude is small enough
(i.e.,A<1) that, in the absence of any noise, it is insufficient
to force a particle to move from one well to the other and it 0.01
can be considered that. = =1 andx,=0 are still the stable
states and unstable state of the system. Moreover, the varia-
tion of the periodic signal is slow enoudhe., <1 or in
the adiabatic limit that there is enough time to make the
system reach local equilibrium in the period ofXl/There-
fore, one can obtain the quasi-steady-state distribution func-
tion of the system in the adiabatic limit. In order to discuss FiG, 1. SNR for the case of no correlations between noises as a
the effects of colored noise on the stochastic resonance, WMgnction of the noise intensities ratR for different values of the
cases of the correlation between noises will be considered cqrrejation timer of the colored noiseA=0.05, Q=0.001, and

D=0.05.

0.03

Rsnr

A. The case ofA=0

When there is no correlation betwegft) and »(t) (i.e., Within the framework of the theory of SNF9], we can
A=0) and(2<1 (the adiabatic limi, the quasi-steady-state optain the standard form of the signal-to-noise r&iggfor
distribution functionP¢(x,t) of system can be written as  the pistable system with no correlations between noises in
terms of the output signal power spectrum,

PLx.t) N F{ d(x,7,\=0})
(X, t)= exg — ————|,
Dere(X, 7\ =01)| 12 D 19 mWoA® (7 T-Rr-R Jﬁ)z
~=————| = — ———=—arctan
' . SNR— 4D2 R R\/ﬁ
and the generalized potentigh(x,7,A=0t) can be ex-
pressed as W2A2?
l_—
r , 2rt2:R-R, 2D*(W5+0?)
d(X, 7 A=0t)= ==x*— ——x
2R 2R? 27-1
X( 7 7-R7—R ) \/ﬁ (19
—— ————arctan ,
27+ (27—1)R—R? R RVR
+ In|Rx%+ 1]
2R3
where
N T N —R7—R tan/R
— =X+ ———=—arctanyRx
R RVR J2 1 r 27+2R7—R
X A cosQt+O(A?), (17 m D] 2R 2R
where the signal amplitude is very smalle. A<1). The 27+ (27— 1)R—R?
MFPT 7. of the proces(t) to reach the state. with - RO In[R+1]|. (20)

initial condition x(t=0)=Xx.. is given by Eq.(14), thus the
transition ratedV.. out of x.. are approximately . .
By virtue of the expressiofEq. (19)] of SNR, the effects

1 1 T 27+2R7—R of colored noise on SNR can be discussed by numerical
Wt:EeX Dl ﬁJr T computation. In Fig. 1 we present the SNR as a function of

the noise intensities rati®(=Q/D) for different values of

27+ (27—1)R—R2 correlation timer of the colored noise. When=0 (the case

— 3 In|R+ 1] of white nois¢ and r is small, there is a maximum in the
2R SNR at the moderate value of the noise intensities Rtid

means that there is an optimal ratio of noise intensities at

- ﬂarctan\/ﬁ AcosQt|{. (18  Which the SNR of the system is a maximune., there is one
R RVR peak that identifies as characteristic of the SR phenomenon,
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we can call this phenomenon amgle stochastic resonance T
(SSR. The largest amount of previous investigations aboutd(x,r, +1t)= ==x*F

T .3 g2 +
Rx +a(7,=1)x "+ B(7,£1)x

SR has referred to the SSR phenomenon. The peak of the 2R 3RVR
SNR increases on increasing the correlation time. However,
. . .. K(’T)
when the correlation time is increased, a second peak appears + (7, =1)In|RXx2Rx+1| =
at a smaller value of the noise intensities rafpand the \/ﬁxil

peak becomes high as the correlation time increases. It has
been show_n that, when the multipligative noise is Gaussi_an xiL|n|Rx2t2\/§x+ 1]
colored noise, there can be two optimal values of the noise R RVR

intensities ratio, that is, there are two peaks in the SNR at

which the stochastic resonance occurs, so we may call this n p(7)
phenomenon aglouble stochastic resonanc®SR). Al- JRx*1
though a similar phenomenon has been shown in Réfs.

and[21], where this phenomenon appears for a sufficiently (23)
low frequency of the input signdB] and for the increasing

amplitude of the input signdR1], respectively, yet for the i

increasing correlation time of the multiplicative colored

noise here. Moreover, the first peak is very broad and low in

Refs.[9,12]. Another interesting point here is that, whBn 27(4N2—1)—-R(27—-1)
—0, the SNR decreases but saturates to a plateau value; a(7,\)= ,
however, the signal-to-noise ratio will vanish whn- o,

T

+

AcosQt+0O(A?) for \==*1,

SR (24)

B. The case ofA#0 IB(T)\):27\[47'(1_2)\2)+R(27_1)]
In the presence of the correlations betwe&ét) and 7(t) R*\R
(i.e., A #0), when the signal frequency is very loW)&1)
and the signal amplitude is very smal€1), the quasi-

steady-state distribution functio®g(x,t) of the system can

(25

_27(16M* =127+ 1)~ R(27—1)(4\*~1)—-R?

be written as N7h)= JR3 ’
(26)
P.(x.1) p[ @(x,r,)\,t)} 2
X,t)= exg — ———|,
° |Deff(XIT!)\vt)|l/2 D
(T, \)=
(7,\) Y
where the generalized potenti(x, 7,\,t) can be expressed
as R2+R(27—1)(4\?>—3)—27(16M*— 20N+ 5)
X =3 ,
d(x,7,\,1) Ty 4 X3+ a(7,\)x%+ B(7,\)X 2
771 1 =55 - a Tr TI
2R 3R\/§
2_
+y(7,\)In|Rx+ 2\ VRx+ 1] L) = 1 7(2n 1)+R(T+1)1 28
1-\2 RVR
+ 6(7,\)arct H—\/ﬁ)(ﬂ\
7,\)arctal
J1—2\?2
( 27—R(27-1)-R? T+R(7+1)
A K(7T)= , plr7)=———.
T —Tln|Rx2+2)\\/§x+1| R3 RVR
R™ RJR (29
\/§x+}\
_“(T')‘)amta“m A cos(dt From Egs. (24—(28), it can be seen thata(7,—\)
=CL’(T,)\), ,B(T,_)\)z—ﬁ(T,)\), ’)/(7-1_)\)2')/(71)\)1 9(7’,
+0(A?) for |\|<1, (220 —N)=—6(7,\), andu(r,—N)=pu(7,\).
The transition rateN(x(t=0)=x.,7,\) out of the x.
states can be approximately obtained from Ef) since
and W(Xs. 7 \) =T 21,
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1 1 T
WX+, 7| N<l)=——exp — = (7,\ N 7 N)In|[R=2\VR+1
<||>@Tp(D2R3RJ_ )BT M) = ¥(r.M)In[R= 20 R+ 1
7'
—B(T,A)(arctan— arctan— In|R+2)\\/_+1|
/ 11— \/—
*+ u( A)( t M t \ A cosQt (30
+ u(7,\)| arctanr—— —arctan—— cos
H J1-2\2 \/1—7\2
W =) 1 1 v 47 Wax ) V2 1] 7  4m .
X+, TN = =—exp —=| —z=* X+,N)=—exp — =| — 5= —a(r,
* 2 D| 2R 3R\R 0 D| 2R 3R\R
—a(r,+1)FB(1,+1)— y(7,+1) FB(1 M) = y(r,\)In[RE2NVR+1|— 6(7,\)
VRk(7) AR )
XIn[R£2yR+1|*= X| arctan —arctan , (34
| VR+1| N Y \/— (34)
Wo(X+ M)A 7 7A
R . = — —F +
RJ— Wy (X \) 5 R+R\/§In|R+2)\\/§+l|
\i:p\(/z) Acosit (3Y) ( A)(arctan—R arctaﬁ)\—>
- 7,
=K J1—2\?2 \/l—)\z
(35)
Wi Ne 1 1 1 T A4r .
(X+,7,A= )—TWGX ) ﬁ+m (i) Forn=+1,
—a(r,—1)+p(r,—1)=y(7,—1) 2 1 4
A 7 Wo(xi,+1)=\/—_ex - = —li—T—a(r,Jrl)
JRk(7) T D| 2R 3R{R
XIn|RF¥2VR+1|F 3
1R T B(r,+1)— y(7,+1)In|R=2JR+1|
K(7)\R
+ —| RT2VR+1 * : 36
VRp(7)
+— A cosQt (32 ~ Wo(xe , +DAI T _ 7
17 VR Wi(Xs ,+1)= 5 R+R\/§In|Ri2\/§+1|
. . p(7)\R
The standard form of the signal-to-noise raRgyg for +—F. (37)
the bistable system with correlations between noises in terms 1=\R
of the output signal power spectrum can be given by
(i) Forn=-1,
TW2(X- \) W2(x. N) | V2 1] 7 4r
Rsnr= = - = Wo(Xs,—1)=—exp —=| —scF——=—a(r,—1
SN AWo(x= M) | T 2[W2(x. 0) + Q2] S b| 2R 3ryg 7Y
(33
FB(1,—1)— y(r,— 1)In|RF2R+1]
whereWy(x ,\) andW;(x. ,\) are the following. ;K(T)‘/ﬁ ' (38)
(i) For |\ |<1, 17R
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FIG. 2. SNR for the case of correlations between noiskes
case off]\|<1) with \=—0.7 as a function of the noise intensities
ratio R for different values of the correlation timeof the colored
noise.A=0.05, (1=0.001, and>=0.05.

C

n

Wo(Xa ,—1)A

Wy(x. ,—1)= o(X_D ) %iR\T/ﬁ|n|R:2J§+1|
+P(T)\/§. 39 Y
1¥yJR

PHYSICAL REVIEW E63 031107

0.04
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Rsnr
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R

FIG. 3. SNR for the case of correlations between noisks
ase of\|<1) with \=+0.7 as a function of the noise intensities

ratio R for different values of the correlation timeof the colored

oise.A=0.05, (2=0.001, andD =0.05.

and the DSR phenomendne., there are two peaks in the
SNR) will appear asr increases. It should be pointed out that
the two peaks are located in the regionRf1. WhenR

<1 (or Q<D), the SNR increases but saturates to a plateau

alue asR decreases, and there is no peak in this region.

However, for the case ok(t=0)=x, and A\>0 [or X(t

=0)=x, and\<0], it is shown in Fig. 3 that there is one

Although the effects of correlation between noises on th
SR phenomenon have been discussed in Rdf], yet the
multiplicative noise and the additive noise are all whlteb
noises there, and the effects of colored noise on SR have no
been studied. On the other hand, becausg\) andy(7,\)
are symmetric functions of the correlation intensityfi.e.,
a(7,—\N)=a(r,\), y(7r,—N)=7y(7,\)], and B(7,\) and
6(r,\) are antisymmetric functions of the correlation inten-
sity \ [i.e., B(7,—\)=—pB(7,\) andé(7,—\)=—6(7,\)],
it can be found thati) when|\|<1, the SNR forx(t=0)
=X, and\>0 is equal to that fox(t=0)=x_ andA<O0;
the SNR forx(t=0)=x_ andA>0 is equal to that fox(t
=0)=x, and A<0. (i) When |[\|=1, the SNR forx(t
=0)=x, and\=+1 is equal to that fox(t=0)=x_ and
A=-—1, and the SNR fok(t=0)=x_ andA=+1 is equal
to that forx(t=0)=x, and\=—1. Therefore, we can just
discuss the effects of colored noise on the SNR for the fol-
lowing four cases: the case &f{t=0)=x, and\<0, the
case ofx(t=0)=x, and\>0, the case ok(t=0)=x, and
A=+1, and the case of(t=0)=x_ and\ =+ 1 since there

are some inherent symmetries on the SNR as mentioned

above.

For the case ok(t=0)=x, and\<0 [or x(t=0)=x_
and \>0], we present the SNR as a function of the noise
intensities ratioR=Q/D for different values of correlation

eak in the SNR in the region &&>1, and a second peak
ill appear in the region oR<1 as the correlation time of
olored noise is increased. Wh&-0, the SNR decreases
Pt saturates to a plateau value, and the signal-to-noise ratio

0.04

0.03

Rsnr

0.02

0.01

FIG. 4. When the noise intensities raftis fixed, R=1; SNR

for the case of correlations between noiébe case ofA|<1) as a

time 7 of the colored noise in Fig. 2. It is found that, when function of the correlative intensity for different values of the

R>1 (or Q>D), there is only one peak in the SNRe., the
SSR phenomengrfor a small value of correlation time,

031107-
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0.04 3x10®
(3
0.08
4 o
5 5
C 002 o 2x10°
0.01
0_1 0 10 10°
Y R
FIG. 5. When the correlation time of the colored noise is 8x10°
fixed, 7=0.7; SNR for the case of correlations between noities (b)
case of|\|<1) as a function of the correlative intensity for -
different values of the noise intensities ratR A=0.05, O
=0.001, and>=0.05. 6x10° -
vanishes wheiR— . In Figs. 4 and 5 we present the SNR <
as a function of noise correlative intensityfor the different & ax10° |
values of correlation time- and for the different values of
noise intensities ratid®, respectively. There is a peak for a
large value of correlation timée.g., 7=0.7 in Fig. 4, it
means that there is an optimal correlative intensity at which ox10°
the SR phenomenon can occur. When correlation time is
fixed (e.g., see Fig. 57=0.7), our computation shows that
the SR phenomenon can occur for a different valueRof
and the SNR decreases but saturates to a plateau value  0x10° ] 26
ash—+1. '
0.04 R
FIG. 7. SNR for the case of correlations between no[sks
case ofA=+1 andx(t=0)=x_] as a function of the noise inten-
sities ratioR for different values of the correlation time of the
0.03 colored noise A=0.001, 2=0.001, andD=0.085.(a) R<1 or
Q<D, (b) R>1 orQ>D.
3
@ 002 For the case oik(t=0)=x, and A=+1 [or x(t=0)
=x_ and\A=—1], in Fig. 6 we present the SNR as a func-
tion of the noise intensities ratiR for different values of
0.01 correlation timer. When7=0 (the case of white noiseand
7 is small, there is one peak that is located in the region of
R>1. As the correlation time is increased, a second peak
appears in the region <1, and the DSR appears as the
wol ol ol 0l 1l sl

0 Ll L i
10* 10° 102 10" 10° 10' 102 10° 10*
R

FIG. 6. SNR for the case of correlations between no[sles
case ofA =+1 andx(t=0)=x, | as a function of the noise inten-
sities ratioR for different values of the correlation time of the
colored noiseA=0.05, 2=0.001, andD=0.05.

correlation time increases. The SNR decreases but saturates
to a plateau value aB—0, and vanishes a@&&—. For the

case ofx(t=0)=x_ and\=+1 [or x(t=0)=x, and \
=+1], the SNR as a function of the noise intensities r&io

for different values of correlation time is presented in Fig.

7. WhenR<1, our computation shows that there is no peak
in the SNR[see Fig. 7a)], it increases but saturates to a
plateau value aR— 0, the value of the SNR is very small
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(of the order of 10°) and it decreases as the correlation time(one peakthat identifies a characteristic of the SR phenom-
7 is increased. However, wheR>1 there is one peak for enon when the correlation timeis small. However, when
different = values over a very narrow range Ri[see Fig. the correlation time is increased, a second optimal value of
7(b)], the value of the SNR is very largef the order of 18)  the noise intensities ratio appears, i.e., there are two peaks in
and the SNR increases as the correlation timi@increased. the SNR that has been calletbuble stochastic resonance
There is a large variation in the value of the SNR peak ovefi.e., DSR. Although a similar DSR phenomenon has been
a very narrow range im. Moreover, it should be pointed out shown in Refs[9] and[21], yet this phenomenon appears for

that there is no DSR phenomenon for1. the increasing correlation timeof the multiplicative colored
noise here.
IV. CONCLUSIONS In the case of correlations between noises, the SNR is not

only dependent on the correlation time of the colored noise,
In this paper, we have discussed the effects of colore¢yyt also on the intensitx of correlations between noises.
noise on the SR in conventional bistable systems by usingynhen I\[<1 and \=+1 with x(t=0)=x, [or A=—1
the theory of SNR9]. First of all, the general equations of wjth x(t=0)=x_], the DSR appears as the correlation time
nonlinear systems under the simultaneous action of multiplijs increased. However, when= +1 with x(t=0)=x_ [or
cative colored noise and additive white noise are derived by — — 1 wijth x(t=0)=x, ], there is no DSR phenomenon.

applying the unified colored noise approximati@®]. Sec-  \hen the noise intensities ratio is fixed, there is an optimal
ond, considering the conventional bistable system addition ofrrelative intensity where the SSR occurs. When the corre-
the action of a periodic signal, we study the SR phenomenofation time of colored noise is fixed, the SSR phenomenon

in the bistable system and two cases have been consideredin occur for different values of the noise intensities ratio.
one is the case of no correlations between noises and the

other is the case of correlations between noises. The expres-

sions of the SNR for both cases have been obtained. Third, ACKNOWLEDGMENTS
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