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Ground-state fluctuations in finite Fermi systems
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We consider a small and fixed number of fermions in a trap. The ground state of the system is defined at
T=0. For a given excitation energy, there are several ways of exciting the particles from this ground state. We
formulate a method for calculating the number fluctuation in the ground state using microcanonical counting,
and implement it for noninteracting fermions in harmonic confinement. This exact calculation for fluctuation,
when compared with canonical or grand canonical ensemble averaging, gives considerably different results.
This difference is expected to persist at low excitation even when the fermion number in the trap is large. For
comparison, the well-known bosonic results are also given.
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I. INTRODUCTION semble(GCE). As is well known, the GCE fails for bosons
[9] as the temperaturé—0, since the relative fluctuation
In this paper, we calculate the fluctuation in the popula-tends to unity in this limit, rather than zero. For the fermionic
tion of confined fermions from the ground state of the systenproblem under consideration, however—the lifit: 0—the
with excitation energy. This work was inspired by the recentGCE ground-state fluctuation does go to zero, and the
experimental observation of quantum degeneracy in a dilutenethod yields results that are close to what one would obtain
gas of trapped fermionic atoms at low temperatures by Detising the canonical ensemble. Our objective is to compare
Marco and Jin[1,2]. Even before the experimental work, these results with an exact calculation. To this end, a com-
several theoretical papers had studied the properties of Rinatorial method based on microcanonical counting is de-
trapped dilute gas of fermionic atoms. Butts and Rokfighr Vveloped in Sec. Il, and calculations are made for particles in
studied the momentum and spatial distribution of the noninone- and two-dimensional harmonic traps. Comparison re-
teracting system in the Thomas-Fermi approximationVveals substantial differences between the exact and the
Schneider and Walli§4] looked into other thermodynamic €ensemble-averaged results. Unfortunately the exact fermi-
properties of such a gas and the effect of shell structure ofinic calculations are very time consuming and were only
the specific heat. The effect of an attractive interaction on th@erformed for up toN=15 fermions. Nevertheless, as ex-
low-temperature properties of a trapped fermi gas was inveglained later, we expect this inaccuracy of the canonical en-
tigated by Bruun and Burnefs]. More recently, the collec- Semble averaging method to persist for fermions at low ex-
tive excitations of the system in the normal phase have beegitation, even when the fermion number in the trap is large.
examined by Bruun and Claf] and in the superfluid phase In Sec. Il we show that even though the canonical entropies
by Baranov and Petrof7]. The latter paper also lists many for noninteracting bosons and fermions in a one-dimensional
other papers related to the superfluid phase of the trappdtarmonic trap are identical, the number fluctuations in the
gas. ground state are vastly different. The numerical results are
For simplicity, we consider noninteracting fermions in a discussed in Sec. IV.
confining potential. At zero temperature all the particles are
in the ground state, occupying the lowest energy single-|I. FLUCTUATIONS IN THE INDEPENDENT PARTICLE
particle states up to the Fermi energy. A given excitation MODEL
energy, however, may be shared in many different ways ) _
among the particles, so that the population of the original 1he GCE may be applied to obtain the ground-state fluc-
ground state is not fixed, although the total numiés still  tuation for fermions in a mean field with a set of single-
the same. Our objective here is to define and calculate thigarticle orbitals. As is well knowf10], the GCE fluctuation
fluctuation in the ground-state occupation as a function ofor the occupancy of a fermion in a given single-particle
excitation energy or, equivalently, temperature. The correOrbitali is given by
sponding problem for bosons in a trap has been studied by

2 2_ /

many group$8] and will not be elaborated on here, although (nf)=(n)A)Y2=[(n)(1—(n;)]*2 1)

we shall also present the known bosonic results for compari- ) ) )
son with fermions. Here (n;) is the usual Fermi occupancy factor at a given

The traditional approach of determining the number fluc-temperaturel for the orbitali with energye; :
tuations in a given quantum state relies on the statistical
description of the system based on the grand canonical en- ()= 1 @
Voexd(e—w)IT]+1°

*Permanant address: The Institute of Mathematical Sciences, CIThe chemical potentigk is determined by the condition that
Campus, Chennai 600 113, India. =(n;)=N, the total number of particles in the trap. To avoid
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complications, assume for the moment that there is no dewhere Py(x) is a polynomial in x which depends on the
generacy. AfT=0, the lowest orbitalsiF) are occupied, dimension and the statistics of the system. We shall use the
whereF is the Fermi level. In the GCE, consider this ground- notation Py (x) =By(x) and Py(x)=Fy(x) for bosons and
state to be a subsystem that is in contact with the rest of thiermions where necessary. The polynomial may be calcu-
trap. At a nonzero temperatufg this subsystem gets de- lated using the recursion relation in E&):

pleted in number, and the ground-state fluctuation may be

obtained by adding up the contributions of the orbitals ( N

<F) in Eqg. (1). One may easily generalize this when there is 1 N _dL (1—xh)e
degeneracy in the single-particle states, as in the two- or py(x)=— >, (i)ﬂ+1j_ Pn_n(X).
higher-dimensional harmonic oscillators. N =1 (1-x")¢

We now proceed to develop the canonical ensemble 9
method by assuming that the partition function is given ana- . ] . )
lytically or may be computed. We first give the well-known The recursion relation above should bg used with the condi-
recipe of calculating thél-particle quantum canonical parti- tion Po(x)=1 for both bosons and fermions. We further note
tion system from this. This is done to define the canonicafhat in one dimensiorBy(x)=1 for bosons andFy(x)
and the microcanonical multiplicities, and the exact ground-zXN(Nfl)/% for fermions. They are, however, more compli-
state fluctuation. These have already been done in connectigdted in higher dimensiorj43].
to the bosonic problenj11,12 and apply equally well to
fermions. We then go on to calculate the ground state fluc- A. Fluctuations from microcanonical counting
tuation for fermions using combinatorics. The canonical par-
tition function for bosons and fermions in any space dimen
sion may be written as

We first define the fluctuation in particle number from the
‘ground state at a given excitation energy through a set of
counting rules. Again we first write down the general formu-
N

[+ Z,(i BT las for a given a set of discrete energy levels and then spe-
ZE,’F=(i)N z H —<Up)l , ©) cialize to the harmonic trap. The single-particle partition
NpNyo. .y j=1 n;! function may be written as

whereZ,(B) is the single-particle partition functiog is the *
inverse temperature, and the upper and lower signs refer to Zl(,8)=x502 X€i, (10
bosons and fermions, respectively. The sum over the set of =1

integersn; is constrained by the relation

wherex=e# and €j,J=0, ... o are the single-particle en-
N ergies. It is understood thg in the exponent defining has
2 jnj=N. (4) been multiplied by a characteristic energy scale of the sys-
=1

tem, and similarlye; has been divided by the same, which
we put to unity for convenience. For the harmonic oscillator,
This energy scale i w, andx is given by Eq.(7). Substitut-
ing this into Eq.(3) and expressing,y, in a power series in,

we obtain[11]

The above formula allows us to write a general recursio
relationship for the canonical partition function

%)

Zy=x %, Q(EE N, (11)

L N
ZEI'F:N ngl (£)"1Z,(nB)ZRE(B) ©

for bosons (+) and fermions ). We note that in the above
recursion relatiorZ, is formally taken to be unity for con-
sistency. where theN-particle eigenenergieg,=Ey+E{ form an

In order to perform explicit calculations, we specialize to ordered set, wittE, andE{® denoting the ground-state en-
the case of a harmonic oscillatordrdimensions. The single- ergy and the excitation energy with respect to the ground
particle partition function is given by state, respectively. The expansion coefficiéhtE{*” ,N)
denotes the number of possible ways of distributing the ex-

12 1d
2,(8)= X (6 citation energyE(®¥ in utmostN particles[12,11].
' (1-x)])" Furthermore, we may writ€ (E{? ,N) as
where N
QELRY N)= ELY Ney,N), 12
X=exgl— Bho). @ (B N)= 2 0B NeoN) (12

~ The canonical partition function for a system withpar-  \wherew(E{*¥ ,N,4,N) denotes the number of possible ways
ticles is then computed using E(®) and is given by of distributing the excitation energg®® amongexactly N.,

N 1 particles. Hence the probability of exciting exacMy, par-
ZN:XNdIZPN(X)H — (8) ticles from anN-particle system at an excitation enet@&“x)
=1 (1—x1)¢ is given by
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W(EEY Ngy,N) spinless. In the ground state Bt 0, theN fermions form a

(ex) k7 Texs - .

P(Ei™ Nex,N) = QEE Ny Nex=0,...N. closed shell system filling an integral number of shedis,
(Bc™.N) (19 =1,2,... S, corresponding to the Fermi enerdy:=(S

—1+d/2)fiw. The determination of the microcanonical dis-
By definition this probability is properly normalized. Further tribution @(n,Ney,N) depends not only on the distribution

bosons, but also on how th&l,, holes are distributed in the
p(O,NeX,N)zﬁoNex, (14 ground state. Let there be, holes hs=g,) in the shells
(1=<s<S), such thatElehsz Nex. Then the number of
P(ELY Ngy,N)=0, Ng>N. (15)  ways theseN,, holes may be created in the ground state is
given by

The number fluctuation in the ground state of the system
may now be defined in terms of the moments of the prob-
ability distribution given above. We first define the moments

s
11 (gs)chs_

s=1

N
_ (ex) Now consider exciting\, particles from this ground state
(New N§=1 NexP(Ei™ Nex.N), (18) sharingn quanta of energy. An allowed configuration is one
in which each and every one of theNg, particles is found
N in states above the Fermi energy, with the shell indices rang-
(N&o= 2 NZP(EL? Ney,N), (17 ing from (S+1) up to (S+n), such that their excitation
Nex™1 energies add up to yield the totBL,=n#Aw. This compli-

and the number fluctuation from the ground state is given bates the counting rules for fermions as compared to bosons.
e shall denote the occupancy of orbitals for the excited

ONG=(N2)—(Ngy? particles bym;, wherei=S+1,...S+n. The number of
5 ) ways them; fermions are distributed in the sta®e-i is then
=(Ng)—(No)*, (18 given by the counting rule
since(Ng)+{Ng,) =N is a constant. Os+)C,. .

A few remarks are in order here: The above definitions
apply equally well to bosonic and fermionic systems. TheThe microcanonical distributiom is then given by
fluctuation in the number of particles from the ground state is
expressed here as a function of the excitation energy with S
respect to the ground state. In the case of bosons this is just  (n,Ne,N)=>, > [I @c, [] Gswc,,
the fluctuation from the lowest-energy single-particle state, {mi} {hs} s=1 =St '
where as for fermions it is the number fluctuation across the
(zero-temperatuyg=ermi energy. Formally the above expres- where No,=;m;, and the microcanonical multiplicityo
sions complete the necessary basic definitions for furthesye i obtained by summing over all the allowed possibili-
analysis. For a harmonic trap, we henceforth consider thgeg gch that the sum total of the excited quanta is exactly
excitation energy from the ground state toew, and de-  5pce thew's are known the probability distribution may be

note the corresponding canonical and microcanonical multiz 4 -y 1ated using Eq13) and hence the fluctuation as a func-
plicities to be(}(n,N) and w(n,Nex,N). For bosons, it is  tion of the excitation energy.

well known[11] that the microcanonical multiplicity may be e compare these results with the fluctuations obtained
directly obtained by taking the difference between the Capy the canonical ensemble averaging method of Pagvah
nonical multiplicities of two different systems wilNex and  [16] as detailed below. It is our objective to see how close
Nex—1 particles: the results are for the ground-state fluctuations calculated by

0NN N) = (1 No) — (N Ngy— 1), (19 the two methods.

S+n

(20

This, however, is not true for fermions, as explained in the B. Fluctuations from canonical ensemble averaging

next section. Therefore we have to formulate a combinatorial | statistical thermodynamics, a macrostate at a given en-
method for counting the number of ways of exciting exactlyergy may be formed in many ways from the microstates, and
Nex fermions from theT=0 Fermi sea whem quanta of  the number of distinct ways is the multiplicity of the mac-
excitation energy are given to the system. This is a nontrivialgpstate. As we saw in the preceding sectiGec. 11 A), the
problem. To the best of our knowledge, unlike the bose cas§nultiplicity Q(ES*,N) was defined by Eq(12) through this

no asymptotic formula is known for fermions counting method. In the canonical ensemble, we may alter-
Consider ad-dimensional harmonic oscillatotclosed nately define

shel). In a shell characterized by the indexthere aregs
single-particle orbitals, each having the same energy ( Q(T,N)=exgd S(T,N)]=exd (U—F)/T]=x"YZ\(x).
—1+d/2)hw. For simplicity, the fermions are taken to be (21
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In the above, the internal energyy(T) is determined as usual 02 —«\ '
from the canonical partition function, and the excitation en- / S

ergy at any temperature is given by / “ N
0.15 ’/
E(®)=U(T)—-U(0). @ It

We may therefore compare the calculated quantities from theS ot i // e —~
. . . . 3 i e —
canonical and the microcanonical ensembles as a function ¢_ A i / T
the excitation energy. Zo [ ———
i

ComparingQ(T,N) given by Eq.(21) from the canonical
ensemble with the serig¢d1), we see that it is as if only one ¥ oosfl
term from this series is picked in the ensemble averaging. I:
This is realized for a large number of particles, since the ,'}"'
multiplicity Q(EZ*,N) increases rapidly with the excitation 0 , - -
energy, where as the factaFk decreases exponentially. In 2 k 4-|- d s

this paper, we focus on systems whétés not large, espe- B
cially for fermions. It is therefore interesting to examine the

differences in the results of the calculation made by the two FIG. 1. Plots of (6No)*)¥*N versus temperatufE (in units of
methods. For bosons, one may obtaifT,N,,) directly hw) as calculated by the GCIEq. (1)] ar_ld thPT canonlcal_enser_nble
from Eq.(19), whereQ(T,N,,) is determined by the canoni- [Eqg. (26)] for N=6, 15, and 28 fermions in a two-dimensional

cal partition function olN,, particles by replacingy by N, armonic oscillator.

in Eq. (21). For fermions, however, the Fermi energy of a . . ) )
system defined bi{,, particles is less than the Fermi energy S€cond moment is to emphasize that these are in canonical

of the full system withN particles. The fluctuations are de- €nsemble averaging. The ground-state fluctuation is now

fined with respect to the ground state with the Fermi energiven by

corresponding to the full system. Therefore EtP) cannot

be applied to fermions. A consistent definition of ground- 5 2 2

state fluctuations applicable to both fermions and bosons, 5N0_% ((nidn=(Mow)- (26)

and which for bosons coincides with the earlier calculation

‘é\':r?]g:;e iig?g'?g(lggﬁ gﬁg(,ﬂlhsoivgve\r/;/ge sglj\r/r?rr’r]];r)i/z:ahetr?g_ The sum runs through all the allowed k values in the ground
ging e state defined at zero temperatureor fermions, it can be

method below. .
The canonical partition function in E¢11) may be writ- shown[16] using Egs.(24) and(25) that
ten in the occupation number representation 148 2
(Nion=(Mi)n »
ZN:{;} l_kI XK, (23 so that even in the canonical ensemble the fluctuation is
: given by the same form as E(l) of the GCE. The differ-

where we have used the fact that the energy oN#particle ence lies |n.the.,- fapt th"’(mk}’\' IS not given by the Fe'rml-
system for a given set of occupancigs) is given by E Dirac (FD) d_|str|but|on function(2). Numerl_cal calculations
=S, en,. The occupancyn,=0,1 for fermions and may show(_see Fig. 1, how_ever, that _the canonical and the grand
takek ::n;'value up toN for kaSO;‘IS At finite temperatures canonical methods give very similar results even when the
using the recursion relation in Eq.5) and some nontrivial particle number is very small. Both, however, differ from the
algebra, the ensemble-averaged moments of the occupanexaCt mlqrocanonlcal result. Before_ dlscu§S|ng the results,
N ma ,be written a$16] % des_crlbe below _the es_peC|aIIy interesting case of one-
k may dimensional harmonic confinement. In this case, even though
the canonical entropies for bosons and fermions are identical,
_ - j+lgje the ground-state fluctuations for the two systems are very
<nk>N_ZN le (2N @49 different. Moreover, the microcanonical ensemble yields
substantially different results, especially for fermions.

N

N

1 : .
2\ _ +1;
<”k>N—Z_N ,2‘1 ()T Zy lll. FLUCTUATIONS IN A ONE-DIMENSIONAL
HARMONIC TRAP
N N-—j
+i S (m)itixithaz, (25 The one-dimensional harmonic trap is especially interest-
Zy =1 = : ing because even though the canonical entropies for bosons

and fermions are identical, the number fluctuations from the

where the upper and lower signs refer to bosons and fermground state are very different. This may be seen by writing
ons, respectively. The subscriltin the occupancy and its the canonicaN-particle partition function as
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FIG. 2. (3 Plots of the ground-state occupangy,) versus the FIG. 3. (a) Plots of the ground-state occupar(dy,) versus the
excitation energwy (in units of i w) for N=15 bosongfermions in excitation quantan for N=10 bosons (fermiong in a two-
a one-dimensional harmonic oscillator. The results are displaye@imensional harmonic oscillator, according to the legends in the
according to the legends in the inséh) Plots of the relative inset.(b) Plots of the relative ground-state quctuati(a?NS)l’Z/N as
ground-state fluctuatiofSN3)*¥N as a function of excitation 5 function of excitation quanta for the same systems as (@).
guantan for the same systems as (a).

and thatQ)(n,N) is independent of the parametgrand is

1 the same for bosons and fermions. Since it is the logarithm
(27 of Q(n,N) that determines the canonical entropy of the sys-
tem at an excitation energy of quanta, it follows that the
entropy is independent a@. The same result is true if one
calculates the ensemble-averaged entropy at a given tem-

other positive values af, the above form is the exact parti- perature. This may be easily verified by using the.relation
tion function for the so-called Calogero-Sutherland model® = ~INZxn/B for the free energy and then calculating the
[14], where theN particles interact pairwise by a potential €NtropyS=—dJF/oT. _ _
(ﬁzlm)g(g—1)2{\‘<j(xi—xj)‘2. For bosons, the dimension- For the microcanonical calcul_at|on of the quctuatl_on_, we
less parameteg is in the range 6&g=<1/2, while for fermi- need to calc.ulat'e the ~ microcanonical T““!“p".c'ty
onsg>1/2. The special valueg=1(0) give noninteracting “’(n’Nex’N)’ .Wh'Ch is the number of ways of _dlstrlbutlng
fermions(boson$. The effect of interaction has only been to the n ex0|tat|on. quanta among exactlex particles. Al-
shift the energy of every state by the same amount, which igwough the relation

absorbed in the prefactor. It follows from Ed41) and(27) N

that we may write QNN)= S w(nNeN) (29)
Nex=1

N
7= xONN- DN | _
" 1 (1)

with g=0 for bosons andj=1 for fermions. Actually, for

©

Zpy=xINN-D)/2+ N/ZE Q(n,N)x" (28) is obeyed both by fermions and bosons and the left-hand side
n=0

of the above equation is the same for both, the microcanoni-

031105-5



MUOI N. TRAN, M. V. N. MURTHY, AND R. K. BHADURI PHYSICAL REVIEW E 63 031105

TABLE I. Tabulation of bosoniau(n,Ngy,N) for N=3.

n= 1 2 3 4 5 6 7
Nee=1 1 1 1 1 1 1 1
0 1 1 2 2 3 3

(1+2) (2+1) (3+1) (4+1) (5+1) (6+1)

(2+2) (3+2) (4+2) (5+2)

®(N,Ney,N):  Ng,=2 (3+3) (4+3)
0 0 1 1 2 3 4

(1+1+1) (2+1+1) (3+1+1) (4+1+1) (5+1+1)

(2+2+1) (3+2+1) (4+2+1)

(2+2+2) (3+3+1)

(3+2+2)

Ngy=3 (3+2+2)

Q(n,N)= 1 2 3 4 5 7 8

cal counting ofw’s is very different for the two cases. In the occupancy(Ny), but overestimates the relative fluctuation
Appendix, this is illustrated explicitly foN=3 in Tables |  substantially. In one dimension, the number of microcanoni-
and Il. Thus the fluctuations for the bosonic and fermioniccal possibilitiesw(n,Ney,N) is very restricted at low excita-
cases differ substantially when the exact counting method igons due to the nondegeneracy in the single-particle energy
used. As is to be expected, the fermionic fluctuation is contevels and the Pauli exclusion principle. This results(iin
siderably suppressed compared to the bosonic system. Thg ) for fermions getting depleted more slowly than bosons
same qualitative conclusion may also be reached by usingnii) reduced fluctuation. In Fig. 2, the same quantities are
Egs. (24—(26) based on canonical ensemble averagingyisplayed for particles in a two-dimensional harmonic oscil-
rather than exact counting. In the next section, we display,, potential. It is well known from previous work

Lhese results,_lﬁst well as the results for the two-dlmensmnft\ ,11,17 that there is a peak in the relative fluctuation some-
armonic osciiator. what below the critical temperature for bosons. For fermions,

the graph has less structure, especially in the exact calcula-
IV. RESULTS AND DISCUSSION tion. The peak in the bosonic fluctuation signals a phase

) ) .. transition, which is absent in noninteracting fermions.
In Fig. 1, we compare the relative ground-state fermionic o microcanonical method of exact counting for fermi-
fluctuation, as obtained from the grand canonidzd. (1)] ons is computationally very time-consuming because, unlike

and the canonicdlEq. (26)] methods. The relative fluctua- bosons, Eq(19) cannot be used. We have therefore restricted

tions for with N=6, 15, and 28 fermions in a two- he fermionic calculations to only up td=15 particles. As
dimensional harmonic oscillator are plotted as a function oft ; y upe=-=op e .
e see from Figs. 2 and 3, there is considerable difference in

temperature. We see that the agreement between the tw . . .
b g e results for the relative fluctuations for small particle num-

methods is very good, especially as the particle number i ) o X
increased. As was mentioned at the outset, this is in contraS€'s: For fermions, we expect this difference to persist at low

to the bosonic case, where the GCE fails completely at vergXcitations even whem is large. This is because at low
low temperatures due to the macroscopic occupancy of thgxcitations, only a small fraction of the fermions near the
ground state. For the one-dimensional harmonic oscillator"€'mi sea can be excited, so the effective number of fermi-
the agreement between the grand canonical and canonic@ins Contributing to the number fluctuation remains small
results is even better, and is not shown separately. even when the system is large. For bosons, there is no diffi-
In Fig. 2, we display(@) the ground-state occupan¢) culty in performing the microcanonical calculation for a
and (b) the relative fluctuatiod SNg)/N for N= 15 noninter-  large number of particles.
acting particles in a one-dimensional harmonic oscillator po- We have made the comparison between the microcanoni-
tential as a function of the excitation energy. The excitationcal and canonical results as functions of the excitation en-
energy, rather than the temperature, is chosen as the variabkrgy, rather than temperature. As stated earlier, the excitation
This is because the exact microcanonical counting is donenergy is the natural variable for microcanonical counting.
naturally as a function of the excitation energy, and relating=or the canonical ensemble, of course, a mapping from the
it to temperaturglunlike in canonical and grand canonical excitation energy to temperature can be done usingE).
ensembleswould involve unnecessary approximations. Fur-We may also note that starting from the canonical equation
ther, we do not show the GCE results, since these are almo&1) and using Eq(19) for bosons, one can obtain the ana-
identical with the canonical ones. Although the bosonic redytical expression for the low temperature dependence of the
sults are well known, these are also shown for comparisofiuctuation, as, for example, given by E@L4) of [11]. It
with the fermionic fluctuations. The canonical method givesremains a challenging problem to obtain similar microca-
results in close agreement with counting for the ground-stataonical relations for fermions.
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TABLE Il. Tabulation of fermionicw(n,Ngy,N) for N=3.

n

Ll Nmin 1 2 3 4 5 6 7
Ney=1 3, 1 1 1 1 1 1 1 1
2, 2 0 1 1 1 1 1 1
1, 3 0 0 1 1 1 1 1
o(n,1N)= 1 2 3 3 3 3 3
4 0 0 0 1 1 2 2

(1+3) a+4 (1+5) (1+6)

Ney=2 3,2, (2+4) (2+5)
5 0 0 0 0 1 1 2

(1+4) (1+5) (1+6)

3,1, (2+5)
6 0 0 0 0 0 1 1

2,1 (2+4 (2+5)
o(n,2N)= 0 0 0 1 2 4 5
Ney=3 3,2,1, 9 0 0 0 0 0 0 0
o(n,3N)= 0 0 0 0 0 0 0
Q(n,N)= 1 2 3 4 5 7 8
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V. APPENDIX Z3=1+X+2x°+3x°+4X"+5x>+ 7x°+ 8%
Calculation ofw(n,Ngy,N) in one-dimensional harmonic B. Fermions
oscillator. This case is the same as for bosons, except that two more
vertical columns have been added under the headingsd
A. Bosons Nmin (See Table II. For three spinless fermions, the lowest

. o ) . three energy levels (1,2,3)n increasing order of energy

For illustration, in Table I, we display the simple case of gre occupied af=0. The column undel, lists the possible
N=3 bosons, with the number of excitation quant&7.  configuration of holes in these levels for an excitation energy
Since there is no degeneraey(n,Ne,,N) in this case is just  of n=n,,;, quanta, the latter being listed in the adjacent col-
the number of distinct ways in which the integemay be  umn. For example, foNg,= 2, (3;2;) under the colummh.,
partitioned amongst exactl., identical bosonsNg,=<3). denotes a two-hole configuration, with one hole in level 3
In Table I,n increases from left to right, and increasing val- and another in level 2. The minimum energy required for
ues ofN,, are tabulated in a vertical column. The integer inthis is n,;,=4 in units off w.
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