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Ground-state fluctuations in finite Fermi systems
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We consider a small and fixed number of fermions in a trap. The ground state of the system is defined at
T50. For a given excitation energy, there are several ways of exciting the particles from this ground state. We
formulate a method for calculating the number fluctuation in the ground state using microcanonical counting,
and implement it for noninteracting fermions in harmonic confinement. This exact calculation for fluctuation,
when compared with canonical or grand canonical ensemble averaging, gives considerably different results.
This difference is expected to persist at low excitation even when the fermion number in the trap is large. For
comparison, the well-known bosonic results are also given.
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I. INTRODUCTION

In this paper, we calculate the fluctuation in the popu
tion of confined fermions from the ground state of the syst
with excitation energy. This work was inspired by the rece
experimental observation of quantum degeneracy in a di
gas of trapped fermionic atoms at low temperatures by
Marco and Jin@1,2#. Even before the experimental wor
several theoretical papers had studied the properties
trapped dilute gas of fermionic atoms. Butts and Rokhsar@3#
studied the momentum and spatial distribution of the non
teracting system in the Thomas-Fermi approximati
Schneider and Wallis@4# looked into other thermodynami
properties of such a gas and the effect of shell structure
the specific heat. The effect of an attractive interaction on
low-temperature properties of a trapped fermi gas was inv
tigated by Bruun and Burnett@5#. More recently, the collec-
tive excitations of the system in the normal phase have b
examined by Bruun and Clark@6# and in the superfluid phas
by Baranov and Petrov@7#. The latter paper also lists man
other papers related to the superfluid phase of the trap
gas.

For simplicity, we consider noninteracting fermions in
confining potential. At zero temperature all the particles
in the ground state, occupying the lowest energy sing
particle states up to the Fermi energy. A given excitat
energy, however, may be shared in many different w
among the particles, so that the population of the origi
ground state is not fixed, although the total numberN is still
the same. Our objective here is to define and calculate
fluctuation in the ground-state occupation as a function
excitation energy or, equivalently, temperature. The co
sponding problem for bosons in a trap has been studied
many groups@8# and will not be elaborated on here, althou
we shall also present the known bosonic results for comp
son with fermions.

The traditional approach of determining the number flu
tuations in a given quantum state relies on the statist
description of the system based on the grand canonical
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semble~GCE!. As is well known, the GCE fails for boson
@9# as the temperatureT→0, since the relative fluctuation
tends to unity in this limit, rather than zero. For the fermion
problem under consideration, however—the limitT→0—the
GCE ground-state fluctuation does go to zero, and
method yields results that are close to what one would ob
using the canonical ensemble. Our objective is to comp
these results with an exact calculation. To this end, a co
binatorial method based on microcanonical counting is
veloped in Sec. II, and calculations are made for particles
one- and two-dimensional harmonic traps. Comparison
veals substantial differences between the exact and
ensemble-averaged results. Unfortunately the exact fe
onic calculations are very time consuming and were o
performed for up toN515 fermions. Nevertheless, as e
plained later, we expect this inaccuracy of the canonical
semble averaging method to persist for fermions at low
citation, even when the fermion number in the trap is lar
In Sec. III we show that even though the canonical entrop
for noninteracting bosons and fermions in a one-dimensio
harmonic trap are identical, the number fluctuations in
ground state are vastly different. The numerical results
discussed in Sec. IV.

II. FLUCTUATIONS IN THE INDEPENDENT PARTICLE
MODEL

The GCE may be applied to obtain the ground-state fl
tuation for fermions in a mean field with a set of singl
particle orbitals. As is well known@10#, the GCE fluctuation
for the occupancy of a fermion in a given single-partic
orbital i is given by

~^ni
2&2^ni&

2!1/25@^ni&~12^ni&!#1/2. ~1!

Here ^ni& is the usual Fermi occupancy factor at a giv
temperatureT for the orbitali with energye i :

^ni&5
1

exp@~e i2m!/T#11
. ~2!

The chemical potentialm is determined by the condition tha
( i^ni&5N, the total number of particles in the trap. To avo
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complications, assume for the moment that there is no
generacy. AtT50, the lowest orbitals (i<F) are occupied,
whereF is the Fermi level. In the GCE, consider this groun
state to be a subsystem that is in contact with the rest of
trap. At a nonzero temperatureT, this subsystem gets de
pleted in number, and the ground-state fluctuation may
obtained by adding up the contributions of the orbitalsi
<F) in Eq. ~1!. One may easily generalize this when there
degeneracy in the single-particle states, as in the two
higher-dimensional harmonic oscillators.

We now proceed to develop the canonical ensem
method by assuming that the partition function is given a
lytically or may be computed. We first give the well-know
recipe of calculating theN-particle quantum canonical part
tion system from this. This is done to define the canoni
and the microcanonical multiplicities, and the exact grou
state fluctuation. These have already been done in conne
to the bosonic problem@11,12# and apply equally well to
fermions. We then go on to calculate the ground state fl
tuation for fermions using combinatorics. The canonical p
tition function for bosons and fermions in any space dim
sion may be written as

ZN
B,F5~6 !N (

n1 ,n2 , . . . ,nN
)
j 51

N
@6Z1~ j b!/ j #nj

nj !
, ~3!

whereZ1(b) is the single-particle partition function,b is the
inverse temperature, and the upper and lower signs refe
bosons and fermions, respectively. The sum over the se
integersni is constrained by the relation

(
j 51

N

jn j5N. ~4!

The above formula allows us to write a general recurs
relationship for the canonical partition function

ZN
B,F5

1

N (
n51

N

~6 !n11Z1~nb!ZN2n
B,F ~b! ~5!

for bosons (1) and fermions (2). We note that in the above
recursion relationZ0 is formally taken to be unity for con
sistency.

In order to perform explicit calculations, we specialize
the case of a harmonic oscillator ind dimensions. The single
particle partition function is given by

Z1~b!5F x1/2

~12x!G
d

, ~6!

where

x5exp~2b\v!. ~7!

The canonical partition function for a system withN par-
ticles is then computed using Eq.~3! and is given by

ZN5xNd/2PN~x!)
j 51

N
1

~12xj !d
, ~8!
03110
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where PN(x) is a polynomial in x which depends on th
dimension and the statistics of the system. We shall use
notationPN(x)5BN(x) and PN(x)5FN(x) for bosons and
fermions where necessary. The polynomial may be ca
lated using the recursion relation in Eq.~5!:

PN~x!5
1

N (
n51

N

~6 !n11

)
j 5N2n11

N

~12xj !d

~12xn!d
PN2n~x!.

~9!

The recursion relation above should be used with the co
tion P0(x)51 for both bosons and fermions. We further no
that in one dimensionBN(x)51 for bosons andFN(x)
5xN(N21)/2 for fermions. They are, however, more comp
cated in higher dimensions@13#.

A. Fluctuations from microcanonical counting

We first define the fluctuation in particle number from t
ground state at a given excitation energy through a se
counting rules. Again we first write down the general form
las for a given a set of discrete energy levels and then s
cialize to the harmonic trap. The single-particle partiti
function may be written as

Z1~b!5xe0(
j 51

`

xe j , ~10!

wherex5e2b ande j , j 50, . . . ,̀ are the single-particle en
ergies. It is understood thatb in the exponent definingx has
been multiplied by a characteristic energy scale of the s
tem, and similarlye j has been divided by the same, whic
we put to unity for convenience. For the harmonic oscillat
this energy scale is\v, andx is given by Eq.~7!. Substitut-
ing this into Eq.~3! and expressingZN in a power series inx,
we obtain@11#

ZN5xE0(
k51

`

V~Ek
(ex) ,N!xEk

(ex)
, ~11!

where theN-particle eigenenergiesEk5E01Ek
(ex) form an

ordered set, withE0 andEk
(ex) denoting the ground-state en

ergy and the excitation energy with respect to the grou
state, respectively. The expansion coefficientV(Ek

(ex) ,N)
denotes the number of possible ways of distributing the
citation energyEk

(ex) in utmostN particles@12,11#.
Furthermore, we may writeV(Ek

(ex) ,N) as

V~Ek
(ex) ,N!5 (

Nex51

N

v~Ek
(ex) ,Nex ,N!, ~12!

wherev(Ek
(ex) ,Nex ,N) denotes the number of possible wa

of distributing the excitation energyEk
(ex) amongexactly Nex

particles. Hence the probability of exciting exactlyNex par-
ticles from anN-particle system at an excitation energyEk

(ex)

is given by
5-2
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p~Ek
(ex) ,Nex ,N!5

v~Ek
(ex) ,Nex ,N!

V~Ek
(ex) ,N!

, Nex50, . . . ,N.

~13!

By definition this probability is properly normalized. Furth
the probability has the following properties:

p~0,Nex ,N!5d0Nex
, ~14!

p~Ek
(ex) ,Nex ,N!50, Nex.N. ~15!

The number fluctuation in the ground state of the syst
may now be defined in terms of the moments of the pr
ability distribution given above. We first define the momen

^Nex&5 (
Nex51

N

Nexp~Ek
(ex) ,Nex ,N!, ~16!

^Nex
2 &5 (

Nex51

N

Nex
2 p~Ek

(ex) ,Nex ,N!, ~17!

and the number fluctuation from the ground state is given

dN0
25^Nex

2 &2^Nex&
2

5^N0
2&2^N0&

2, ~18!

since^N0&1^Nex&5N is a constant.
A few remarks are in order here: The above definitio

apply equally well to bosonic and fermionic systems. T
fluctuation in the number of particles from the ground state
expressed here as a function of the excitation energy w
respect to the ground state. In the case of bosons this is
the fluctuation from the lowest-energy single-particle sta
where as for fermions it is the number fluctuation across
~zero-temperature! Fermi energy. Formally the above expre
sions complete the necessary basic definitions for fur
analysis. For a harmonic trap, we henceforth consider
excitation energy from the ground state to ben\v, and de-
note the corresponding canonical and microcanonical m
plicities to beV(n,N) and v(n,Nex ,N). For bosons, it is
well known @11# that the microcanonical multiplicity may b
directly obtained by taking the difference between the
nonical multiplicities of two different systems withNex and
Nex21 particles:

v~n,Nex ,N!5V~n,Nex!2V~n,Nex21!. ~19!

This, however, is not true for fermions, as explained in
next section. Therefore we have to formulate a combinato
method for counting the number of ways of exciting exac
Nex fermions from theT50 Fermi sea whenn quanta of
excitation energy are given to the system. This is a nontri
problem. To the best of our knowledge, unlike the bose ca
no asymptotic formula is known for fermions.

Consider a d-dimensional harmonic oscillator~closed
shell!. In a shell characterized by the indexs, there aregs
single-particle orbitalsi, each having the same energys
211d/2)\v. For simplicity, the fermions are taken to b
03110
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spinless. In the ground state atT50, theN fermions form a
closed shell system filling an integral number of shellss
51,2, . . . ,S, corresponding to the Fermi energyEF5(S
211d/2)\v. The determination of the microcanonical di
tribution v(n,Nex ,N) depends not only on the distributio
of Nex fermions in the excited states~as in the case of
bosons!, but also on how theNex holes are distributed in the
ground state. Let there behs holes (hs<gs) in the shells
(1<s<S), such that(s51

S hs5Nex . Then the number of
ways theseNex holes may be created in the ground state
given by

)
s51

S

(gs)Chs
.

Now consider excitingNex particles from this ground stat
sharingn quanta of energy. An allowed configuration is on
in which each and every one of theseNex particles is found
in states above the Fermi energy, with the shell indices ra
ing from (S11) up to (S1n), such that their excitation
energies add up to yield the totalEex5n\v. This compli-
cates the counting rules for fermions as compared to bos
We shall denote the occupancy of orbitals for the exci
particles bymi , where i 5S11, . . . ,S1n. The number of
ways themi fermions are distributed in the stateS1 i is then
given by the counting rule

(gS1 i )Cmi
.

The microcanonical distributionv is then given by

v~n,Nex ,N!5(
$mi %

(
$hs%

)
s51

S

(gs)Chs )
i 5S11

S1n

(gS1 i )Cmi
,

~20!

where Nex5( imi , and the microcanonical multiplicityv
above is obtained by summing over all the allowed possib
ties such that the sum total of the excited quanta is exactln.
Once thev ’s are known the probability distribution may b
calculated using Eq.~13! and hence the fluctuation as a fun
tion of the excitation energy.

We compare these results with the fluctuations obtai
by the canonical ensemble averaging method of Parvanet al.
@16# as detailed below. It is our objective to see how clo
the results are for the ground-state fluctuations calculated
the two methods.

B. Fluctuations from canonical ensemble averaging

In statistical thermodynamics, a macrostate at a given
ergy may be formed in many ways from the microstates, a
the number of distinct ways is the multiplicity of the ma
rostate. As we saw in the preceding section~Sec. II A!, the
multiplicity V(Ek

ex ,N) was defined by Eq.~12! through this
counting method. In the canonical ensemble, we may al
nately define

V~T,N!5exp@S~T,N!#5exp@~U2F !/T#5x2UZN~x!.
~21!
5-3
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In the above, the internal energyU(T) is determined as usua
from the canonical partition function, and the excitation e
ergy at any temperature is given by

E(ex)5U~T!2U~0!. ~22!

We may therefore compare the calculated quantities from
canonical and the microcanonical ensembles as a functio
the excitation energy.

ComparingV(T,N) given by Eq.~21! from the canonical
ensemble with the series~11!, we see that it is as if only one
term from this series is picked in the ensemble averag
This is realized for a large number of particles, since
multiplicity V(Ek

ex ,N) increases rapidly with the excitatio
energy, where as the factorxEk decreases exponentially. I
this paper, we focus on systems whereN is not large, espe-
cially for fermions. It is therefore interesting to examine t
differences in the results of the calculation made by the
methods. For bosons, one may obtainv(T,Nex) directly
from Eq.~19!, whereV(T,Nex) is determined by the canon
cal partition function ofNex particles by replacingN by Nex
in Eq. ~21!. For fermions, however, the Fermi energy of
system defined byNex particles is less than the Fermi ener
of the full system withN particles. The fluctuations are de
fined with respect to the ground state with the Fermi ene
corresponding to the full system. Therefore Eq.~19! cannot
be applied to fermions. A consistent definition of groun
state fluctuations applicable to both fermions and boso
and which for bosons coincides with the earlier calculat
with the definition~19!, may, however, be given by the en
semble averaging method@15,16#. We summarize the
method below.

The canonical partition function in Eq.~11! may be writ-
ten in the occupation number representation as@16#

ZN5(
$nk%

)
k

xeknk, ~23!

where we have used the fact that the energy of theN-particle
system for a given set of occupancies$nk% is given by E
5(keknk . The occupancynk50,1 for fermions and may
take any value up toN for bosons. At finite temperatures
using the recursion relation in Eq.~5! and some nontrivial
algebra, the ensemble-averaged moments of the occup
nk may be written as@16#

^nk&N5
1

ZN
(
j 51

N

~6 ! j 11xj ekZN2 j , ~24!

^nk
2&N5

1

ZN
(
j 51

N

~6 ! j 11 jx j ekZN2 j

1
1

ZN
(
j 51

N

(
i 51

N2 j

~6 ! i 1 j x( i 1 j )ekZN2 i 2 j , ~25!

where the upper and lower signs refer to bosons and fe
ons, respectively. The subscriptN in the occupancy and its
03110
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second moment is to emphasize that these are in cano
ensemble averaging. The ground-state fluctuation is n
given by

dN0
25(

k
~^nk

2&N2^nk&N
2 !. ~26!

The sum runs through all the allowed k values in the grou
state defined at zero temperature. For fermions, it can be
shown@16# using Eqs.~24! and ~25! that

^nk
2&N5^nk&N ,

so that even in the canonical ensemble the fluctuation
given by the same form as Eq.~1! of the GCE. The differ-
ence lies in the fact that̂nk&N is not given by the Fermi-
Dirac ~FD! distribution function~2!. Numerical calculations
show~see Fig. 1!, however, that the canonical and the gra
canonical methods give very similar results even when
particle number is very small. Both, however, differ from th
exact microcanonical result. Before discussing the resu
we describe below the especially interesting case of o
dimensional harmonic confinement. In this case, even tho
the canonical entropies for bosons and fermions are ident
the ground-state fluctuations for the two systems are v
different. Moreover, the microcanonical ensemble yie
substantially different results, especially for fermions.

III. FLUCTUATIONS IN A ONE-DIMENSIONAL
HARMONIC TRAP

The one-dimensional harmonic trap is especially intere
ing because even though the canonical entropies for bo
and fermions are identical, the number fluctuations from
ground state are very different. This may be seen by writ
the canonicalN-particle partition function as

FIG. 1. Plots of̂ (dN0)2&1/2/N versus temperatureT ~in units of
\v) as calculated by the GCE@Eq. ~1!# and the canonical ensembl
@Eq. ~26!# for N56, 15, and 28 fermions in a two-dimension
harmonic oscillator.
5-4
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ZN5xgN(N21)/21N/2)
j 51

N
1

~12xj !
, ~27!

with g50 for bosons andg51 for fermions. Actually, for
other positive values ofg, the above form is the exact part
tion function for the so-called Calogero-Sutherland mo
@14#, where theN particles interact pairwise by a potenti
(\2/m)g(g21)( i , j

N (xi2xj )
22. For bosons, the dimension

less parameterg is in the range 0<g<1/2, while for fermi-
onsg.1/2. The special valuesg51(0) give noninteracting
fermions~bosons!. The effect of interaction has only been
shift the energy of every state by the same amount, whic
absorbed in the prefactor. It follows from Eqs.~11! and~27!
that we may write

ZN5xgN(N21)/21N/2(
n50

`

V~n,N!xn, ~28!

FIG. 2. ~a! Plots of the ground-state occupancy^N0& versus the
excitation energyn ~in units of\v) for N515 bosons~fermions! in
a one-dimensional harmonic oscillator. The results are displa
according to the legends in the inset.~b! Plots of the relative
ground-state fluctuation̂dN0

2&1/2/N as a function of excitation
quantan for the same systems as in~a!.
03110
l

is

and thatV(n,N) is independent of the parameterg, and is
the same for bosons and fermions. Since it is the logarit
of V(n,N) that determines the canonical entropy of the s
tem at an excitation energy ofn quanta, it follows that the
entropy is independent ofg. The same result is true if on
calculates the ensemble-averaged entropy at a given
perature. This may be easily verified by using the relat
F52 ln ZN /b for the free energy and then calculating th
entropyS52]F/]T.

For the microcanonical calculation of the fluctuation, w
need to calculate the microcanonical multiplici
v(n,Nex ,N), which is the number of ways of distributin
the n excitation quanta among exactlyNex particles. Al-
though the relation

V~n,N!5 (
Nex51

N

v~n,Nex ,N! ~29!

is obeyed both by fermions and bosons and the left-hand
of the above equation is the same for both, the microcan

d

FIG. 3. ~a! Plots of the ground-state occupancy^N0& versus the
excitation quantan for N510 bosons ~fermions! in a two-
dimensional harmonic oscillator, according to the legends in
inset.~b! Plots of the relative ground-state fluctuation^dN0

2&1/2/N as
a function of excitation quantan for the same systems as in~a!.
5-5
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TABLE I. Tabulation of bosonicv(n,Nex ,N) for N53.

n5 1 2 3 4 5 6 7

Nex51 1 1 1 1 1 1 1
0 1 1 2 2 3 3

~111! ~211! ~311! ~411! ~511! ~611!

~212! ~312! ~412! ~512!

v(n,Nex ,N): Nex52 ~313! ~413!

0 0 1 1 2 3 4
~11111! ~21111! ~31111! ~41111! ~51111!

~21211! ~31211! ~41211!

~21212! ~31311!

~31212!

Nex53 ~31212!

V(n,N)5 1 2 3 4 5 7 8
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cal counting ofv ’s is very different for the two cases. In th
Appendix, this is illustrated explicitly forN53 in Tables I
and II. Thus the fluctuations for the bosonic and fermio
cases differ substantially when the exact counting metho
used. As is to be expected, the fermionic fluctuation is c
siderably suppressed compared to the bosonic system.
same qualitative conclusion may also be reached by u
Eqs. ~24!–~26! based on canonical ensemble averag
rather than exact counting. In the next section, we disp
these results, as well as the results for the two-dimensio
harmonic oscillator.

IV. RESULTS AND DISCUSSION

In Fig. 1, we compare the relative ground-state fermio
fluctuation, as obtained from the grand canonical@Eq. ~1!#
and the canonical@Eq. ~26!# methods. The relative fluctua
tions for with N56, 15, and 28 fermions in a two
dimensional harmonic oscillator are plotted as a function
temperature. We see that the agreement between the
methods is very good, especially as the particle numbe
increased. As was mentioned at the outset, this is in con
to the bosonic case, where the GCE fails completely at v
low temperatures due to the macroscopic occupancy of
ground state. For the one-dimensional harmonic oscilla
the agreement between the grand canonical and cano
results is even better, and is not shown separately.

In Fig. 2, we display~a! the ground-state occupancy^N0&
and~b! the relative fluctuation̂dN0&/N for N515 noninter-
acting particles in a one-dimensional harmonic oscillator
tential as a function of the excitation energy. The excitat
energy, rather than the temperature, is chosen as the vari
This is because the exact microcanonical counting is d
naturally as a function of the excitation energy, and relat
it to temperature~unlike in canonical and grand canonic
ensembles! would involve unnecessary approximations. Fu
ther, we do not show the GCE results, since these are alm
identical with the canonical ones. Although the bosonic
sults are well known, these are also shown for compari
with the fermionic fluctuations. The canonical method giv
results in close agreement with counting for the ground-s
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occupancy^N0&, but overestimates the relative fluctuatio
substantially. In one dimension, the number of microcano
cal possibilitiesv(n,Nex ,N) is very restricted at low excita
tions due to the nondegeneracy in the single-particle ene
levels and the Pauli exclusion principle. This results in~i!
^N0& for fermions getting depleted more slowly than boso
and~ii ! reduced fluctuation. In Fig. 2, the same quantities
displayed for particles in a two-dimensional harmonic osc
lator potential. It is well known from previous work
@8,11,12# that there is a peak in the relative fluctuation som
what below the critical temperature for bosons. For fermio
the graph has less structure, especially in the exact calc
tion. The peak in the bosonic fluctuation signals a ph
transition, which is absent in noninteracting fermions.

The microcanonical method of exact counting for ferm
ons is computationally very time-consuming because, un
bosons, Eq.~19! cannot be used. We have therefore restric
the fermionic calculations to only up toN515 particles. As
we see from Figs. 2 and 3, there is considerable differenc
the results for the relative fluctuations for small particle nu
bers. For fermions, we expect this difference to persist at
excitations even whenN is large. This is because at low
excitations, only a small fraction of the fermions near t
Fermi sea can be excited, so the effective number of fer
ons contributing to the number fluctuation remains sm
even when the system is large. For bosons, there is no d
culty in performing the microcanonical calculation for
large number of particles.

We have made the comparison between the microcan
cal and canonical results as functions of the excitation
ergy, rather than temperature. As stated earlier, the excita
energy is the natural variable for microcanonical countin
For the canonical ensemble, of course, a mapping from
excitation energy to temperature can be done using Eq.~22!.
We may also note that starting from the canonical equa
~21! and using Eq.~19! for bosons, one can obtain the an
lytical expression for the low temperature dependence of
fluctuation, as, for example, given by Eq.~14! of @11#. It
remains a challenging problem to obtain similar microc
nonical relations for fermions.
5-6
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TABLE II. Tabulation of fermionicv(n,Nex ,N) for N53.

n

L1 nmin 1 2 3 4 5 6 7

Nex51 31 1 1 1 1 1 1 1 1
21 2 0 1 1 1 1 1 1
11 3 0 0 1 1 1 1 1

v(n,1,N)5 1 2 3 3 3 3 3
4 0 0 0 1 1 2 2

~113! ~114! ~115! ~116!

Nex52 3121 ~214! ~215!

5 0 0 0 0 1 1 2
~114! ~115! ~116!

3111 ~215!

6 0 0 0 0 0 1 1
2111 ~214! ~215!

v(n,2,N)5 0 0 0 1 2 4 5
Nex53 312112 9 0 0 0 0 0 0 0
v(n,3,N)5 0 0 0 0 0 0 0
V(n,N)5 1 2 3 4 5 7 8
a
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V. APPENDIX

Calculation ofv(n,Nex ,N) in one-dimensional harmoni
oscillator.

A. Bosons

For illustration, in Table I, we display the simple case
N53 bosons, with the number of excitation quantan<7.
Since there is no degeneracy,v(n,Nex ,N) in this case is just
the number of distinct ways in which the integern may be
partitioned amongst exactlyNex identical bosons (Nex<3).
In Table I,n increases from left to right, and increasing va
ues ofNex are tabulated in a vertical column. The integer
03110
nd

-

f

each box is the correspondingv(n,Nex ,N), with the distinct
partitions ofn listed in brackets below it. For example, in th
box under (n54,Nex52), we see thatv(4,2,3)52, and the
two distinct partitions of 4 are (311) and (212). In the
last row is listedV(n,N), which is obtained by adding the
v(n,Nex ,N)’s in each vertical column. Note that these che
with the coefficients in the expansion of the three-boson
nonical partition function:

Z3511x12x213x314x415x517x618x71••• .

B. Fermions

This case is the same as for bosons, except that two m
vertical columns have been added under the headingsL1 and
nmin ~see Table II!. For three spinless fermions, the lowe
three energy levels (1,2,3)~in increasing order of energy!
are occupied atT50. The column underL1 lists the possible
configuration of holes in these levels for an excitation ene
of n>nmin quanta, the latter being listed in the adjacent c
umn. For example, forNex52, (3121) under the columnL1
denotes a two-hole configuration, with one hole in level
and another in level 2. The minimum energy required
this is nmin54 in units of\v.
ys.
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