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Numerical study of persistence in models with absorbing states
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Extensive Monte Carlo simulations are performed in order to evaluate both the @rand global ¢)
persistence exponents in the Ziff-Gulari-Barsta&B) [Phys. Rev. Lett56, 2553(1986)] irreversible reac-
tion model. At the second-order irreversible phase transitibi) we find that both the local and the global
persistence exhibit power-law behavior with a crossover between two different time regimes. On the other
hand, at the ZGB first-order IPT, active sites are short lived and the persistence decays more abruptly; it is not
clear whether it shows power-law behavior or not. In order to analyze universality issues, we have also studied
another model with absorbing states, the contact process, and evaluated the local persistence exponent in
dimensions from 1 to 4. A striking apparesuperuniversalitys reported: the local persistence exponent seems
to coincide in both one- and two-dimensional systems. Some other aspects of persistence in systems with
absorbing states are also analyzed.
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[. INTRODUCTION turbatively for non-Markovian process@serturbing around
a Gaussian and Markovian procg3s3]).

Very many articles devoted to the study of persistence in Recently, other similar nontrivial exponents have been
different physical contexts have appeared recently in the lituncovered and measured in different systems. Some of them
erature. From a theoretical point of view, the appearance dire associated with the following magnitudes.
such nontrivial critical exponents d§) the “nonequilibri- (i) The local persistence probabilifg,=t~ %, defined as
um” exponent\ needed to characterize the two-time corre-the probability that the local order parameter at a given point
lation functions in systems relaxing in the process of quenchg has never changed siga.g., the probability that one spin
ing from infinitely high temperatures to the critical has never been flipped in a ferromagri&,9]. Local persis-
temperaturd ¢ [1,2], and(ii) the global persistence exponent tence probabilities have been measured in real systems such
64 related to the probabilit4(t) ot~ % that the global order  as liquid crystals and soap bubblése[7] and references
parametere.g., the magnetization in a ferromagnleas not  therein.
changed sign up to a certain timafter a quench td. [3] (i) The block persistence probabiliBy =t~ -, defined as
constituted an exciting surprise. A number of theoreticalthe probability that the order parameter integrated over a
computational, and even experimental analyses were pebiock of linear size has never changed sign since the initial
formed afterward. From the theoretical viewpoint it has beenime in a phase-ordering process at finite temperature
shown that, for processes where the global order parametgro,11].
dynamics is Markovian, the global persistence exponent can (jii) The generalized persistence probabilities and expo-
be related to other “traditional” critical exponents; in par- nents introduced by Dornic and Godhe[12,6].
ticular, the following scaling law holdE3]: (iv) The persistence probability for domains, found first

by Krapivsky and Ben-Naim in Ising systems, and subse-
quently in diffusion by Majumdar and Corndll3]. These
(1) can also be generalized to other different types of pattern: the
persistence probability of each pattern decays with a differ-
ent exponent, a single spin or the global spin being just two
where d is the dimensionality andy is the static critical limiting cases.
exponent of the order parameter correlation function. Never- (v) The persistence with partial survival first studied by
theless, the required hypothesis is not typically satisfied foMajumdar and Bray and subsequently by other authbf$
most of the statistical models usually studied; i.e., the dy-Recently it has generated a lot of interest in the context of
namics of the global order parameter can be argued to bi@elastic collapse in granular materials.
generically non-Markovian. In these more generic cases Eq. For reviews of persistence studies in reversible systems
(1) does not hold and is an independent nontrivial expo- see, for instancd;11,12,15.
nent[3]. In general, persistence exponents depend on the Even though considerable effort has been devoted to the
system evolution as a whole and, therefore, analytical estistudy of persistence in various models exhibiting reversible
mations of them are scarce and diffic[46]. One impor- phase transitions(see [1-4,9—-11,16—2D and references
tant theoretical contribution is by Majumdar and Sire, whotherein as well as in diffusion-reaction systertsee[21,22]
proposed a method to calculate autocorrelation functions peand references thergirfar less numerous are the studies of
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persistence in systems exhibiting irreversible phase transi+0O,—2CGO,. The lattice-gas version of the ZGB model is
tions (IPT's) and, in particular, in systems presenting a criti- also known as the monomer-diméviD) model, whereA

cal point separating an active from an absorbing pltssee  =CO is the monomer, as it needs a single adsorption site on
exceptions arg23-25). In this context, recently, Hinrichsen the surface, and,=0, is the dimer, which is adsorbed
and Koduvely[23] have performed a numerical study of the gissociatively, and consequently requires two neighboring
local and global persistence in {11)-dimensional directed sijtes on the catalyst surface to be adsorbed. It is assumed that
percolation(DP) [26] (see also27]). They found that the  he monomer-dimer reaction proceeds according to the
local persistence probability at the critical poiiseparating Langmuir-Hinshelwood mechanism:

the absorbing from the active phagkecays as a power law
with an exponentP"~1.5. Also, global persistence mea-

surements seemed to be consistent vﬂ@r‘i’%l.S, a result Al9)+S—Ala), 2
that has to be taken with some caution since, on the one

hand, the evaluation of>" requires extensive simulations B.(9)+2S—2B(a), 3)
(see the criticisms of this result {i24]) and, on the other

hand, in all the previously known modelmainly for equi- A(a)+B(a)—AB(g)+2S, (4)

librium critical systemg 6,< 6, [3]. Furthermore, it was con-
jectured that both9, and ¢, are indeed universal exponents
characterizing the DP universality class. Another interestin
oint is that persistence exponents in this case seem to .
i?\dependent F(;f the initial coFr)1diti0n, at odds with what hap- _The MD model uses a square Iatpce to represent the cata-
pens in other well known cases such as, for example, thivtic surfacg. The Monte Carlo algorlthm for its S|mulat|on is
two-dimensional Ising model with Glauber dynamié3. Fi- as fqllows.(l) an_A_or B, molecule is rand_omly selected with
nally, Hinrichsen and Antoni succeeded in relating persis'elative probabilitiesy, and Yy, respectively. These prob-
tence exponents in directed percolation to certain “return”abilities are the relative impingement rates of the two spe-
probabilities with an absorbing boundary or an active sourc€i€s, Which are proportional to their partial pressures. Due to
[20]. Another important contribution to the study of persis- the normalizationY ,+Yg=1, the model is characterized by
tence in IPT was presented in the recent paper by Oerding single parameter, say,. If the selected species &, a
and van Wijland, in which the DP global persistence exposurface site is selected at random and, if it is vacanis
nent was calculated analytically by combining the perturbaadsorbed on ifEg. (2)]. Otherwise, if the site is occupied,
tive method developed by Majumdar and i8¢ with stan-  the trial ends and a new molecule is selected. If the selected
dard renormalization group techniquiet]. species isB,, a pair of nearest-neighbor sites is randomly
In order to contribute further to the understanding of per-chosen and the molecule is adsorbed on them only if they are
sistence in systems with an IPT and shed some light on thggin vacanfEq. (3)]. (ii) After each adsorption event, the
aforementioned issues, the present article is devoted to th@sarest neighbors of the added molecule are examined in
numerical study and evaluation of persistence exponents Qfder to account for the reaction given by E4). If one or
other models with absorbing states; in particular, the Ziff-more than one paif(a),A(a)] are identified, one of them
Gulari-BarshadZGB) model for the catalytic oxidation of s randomly selected and removed from the surfé@emore

CO[28], as well as contact procef26,29. The ZGB model  etails of the MD model and the simulation technique see,
(defined in two dimensionshas a twofold advantagéf) it ¢ g. [28,32).

exhibits a second-order IPT unambiguously placed in the DP "|nterest in the MD model arises due to its rich and com-

universality clas¢30], and (i) it also exhibits a first-order pjex phenomenology. In fact, in two dimensions and for the
IPT [28] where, as expected, the system does not show scadsymptotic regime t(—), the system reaches a stationary
ing or universal behaviof31]. In this way, the ZGB model  gtate whose nature depends solely on the paranfgteFor
provides a suitable framework for the study of persistence IR <Y,,=0.387368 ¥,>Y,,=0.52554) the surface be-
both first- and second-order irreversible critical points. Fur--gmes irreversibly poisoned witB (A) particles. On the
thermore, the present stu_dy extgnds the in\{estigation of PeBiher hand, fOiY ;o< Y A<Y,4 a Steady state with sustained
sistence exponents to higher dimensions in IPT's, by perproquction ofAB is reached. Figure 1 shows plots of the rate
fqrmmg. numerical studies of the contact process in spatiaks o production Ras) and the surface coveragesApar-
dimensions from 1 to 4. ticles, 6,, andB particles,fg, as functions ofY,.

The article |s.organ.|zed as follows. In Sec. “, the Z_GB At Y, andY,, the MD model exhibits irreversible phase
model and the simulation method are described in detail. If5sjtions between the reactive regime and poisoned states,
Sec. Il we define the local and global persistence probabiliyynich are of second- and first-order, respectively. The
ties in the systems under study, while Sec. IV is devoted t;econd—order IPT belongs to the universality class of directed

whereSis an empty site on the surface, whila) and (g)
%gfer to the adsorbed and gas phases, respectively.

the presentation and discussion of the mair_l resul'gs for bot ercolation[26] and it is rather well understod@0].

the ZG'B model a}nd the contact process. Finally, in Sec. Furthermore, as shown in Fig. 1, whaf, increases to-

the main conclusions are presented. ward Y,, the catalytic activity increases, and wh¥g, is

reached a discontinuous, first-order transition appears.

Above this value the activity is zerd\(clusters covering the
The ZGB model mimics the catalytic oxidation of carbon whole lattice can be observed to emerge suddenly,at

monoxide on a transition metal surfag28], namely, 2CO  poisoning the systen

Il. THE ZGB MODEL AND THE SIMULATION METHOD
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1 oo - ‘ = global order parametege.g., the total magnetization in the
s2A Ising mode] does not change sign up to tinheln contrast,
o—eB . .
g 08 oo AB for systems with gbsorbmg states, such as DP, the_global
~ order parameter given by the density of active sitgg(t) is
& 06t a strictly positive quantity and therefore the standard defini-
) tion is not applicable. 1f20] it was proposed that, instead,
® 04| » one can evaluate the probability that the deviation of the
] order parameter from its mean valudpag(t)=pag(t)
02 | —(pag(t)), does not change sign up to timdn the present
study, and close to the second-order IPT, we have considered
b
03 0.43 048 053 pas()=1— 0= 0+ 6y, 7
A

FIG. 1. Average coverage & species ¢g) andA species ¢,) where 6y, GA, and 6g are the_ densities qf empty sites and
and theAB production rate R,g), respectively, obtained under th0Se occupied b andB species, respectively. However, in
steady state operation, as a functionYof for the ZGB model.  finite systems such as directed percolation the deviation
Irreversible transitions of second- and first-order occurYat  Probability depends on the sign afpag(t). This asymmetry

~0.387 368 andr,,~0.525 54, respectively. should vanish in the thermodynamic limit whefg ,4(t)
becomes a Gaussian process. In finite systems, however, the
Ill. LOCAL AND GLOBAL PERSISTENCE renormalized variance of the fluctuations is no longer con-

h ) lati ) stant but increases with the value &pg(t), causing the

In a system such as directed percolation, possessing aRsetive time scales for positive and negative fluctuations to
sorbing states, thical persistenceprobability can be mea- |, different[20,24. Therefore,Pg_)(t) [P(g+)(t)] is defined
_sgr_ed by starting the system with a hom(_)_geneous rz_;\ndorgs the probability ofAp,g(t) to remain negativeépositive
initial condition, and evaluating the probability that agiven,. - o1 initial time t up to timet. We also define the
originally inactive, site has not become active up to titne robabilit distributiorllnfunctiorD_(”-(t) 6. the probabil-
[20]. It should be noted that this quantity depends upon thé h tAy 0 ch S gth i o t :Ob e
whole system evolution up to tinte and therefore it can be ItydtidtpAS( ) changes sign in the time interval betweten
viewed as an infinite-point correlation function in the time anln ordér o evaluate pag(t) we have first to calculate a

PA

direction. Consequentli?,(t) is a rather nontrivial quantity, , . = " L —a ;
difficult to study analytically as discussed before. Numerical calibration curve” given bypasxt™" where §=0.4505 is

simulations in a (¥ 1)-dimensional DP model show that the correspo_nqling DP_ exponent in £4) dimensions__
P,(t) decays algebraically at criticality: [26,33, describing the time decay of a homogeneous initial

condition at criticality: every timeppg(t) intersects this
Py (t)oct ™% (5) curve,Ap,g(t) changes sign.

A second important issue related to the global persistence
with 6,~1.5[20]. In the case of the ZGB model, and for the exponent, worth discussion before proceeding, is the time
continuous phase transition, the absorbing state correspontggime in which it should be measured. Followirg#], the
to the surface of the catalyst fully covered Byspecies. This global exponent is well defined in the regime in which the
species plays the role of the inactive sites. For the otheflependence on the initial state has been erased. On the other
transition, i.e., the first-order one, the roles of thandB  hand, there is also an upper bound to the validity of measure-
particles are exchanged. We defing®®(t) as the probabil- ments given by the system-size upper cutoff. Putting these
ity that a given inactive site does not become active up two constraints together we obtdia4]
time t. Consequently, for the second-ordérst-ordey tran-
sition simulations are started with lattices partially covered at LZ>ts ¢34 (8
random byA species B speciey 0, (t=0). The only
mechanism able to activate a site is the reac®hB  (for general systems with absorbing states, one has to substi-
—AB as specified by Eq4). _ tute for g the initial density of active sit¢sUsing the DP

We have evaluated numerically the persistence probabil;gues for the exponents, this implies 18 808>1 for sys-
ity distribution DF°(t), that is, the probability for a persis- tem sizel =256, and 65008t>1 for L="512. Therefore,
tent site to become active in the time interval betweand s g safe, conservative limit, we start measuring,at 100.
t+dt. One has It is worth stressing that in order to obtain reliable data for
. persistence exponents one has to perform extensive simula-
DECB(t)oct (0D, (6)  tions. The evaluation of the local persistence requires long
runs(up to 1d Monte Carlo steps and reliable statistics are
where#?“® is the persistence expondnbte thatD7®5(t) is  obtained by averaging over 192.5x 10°) different initial
simply the time derivative oP{®B]. configurations fok. = 128 (L =256). On the other hand, each
In systems exhibiting reversible phase transitionsglbe  single point for the global persistence distribution requires a
bal persistencas usually defined as the probability that the whole run; therefore, good statistics are much tougher to
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FIG. 2. Log-log plot of Df®®(t) versust at the second-order
IPT (for lattices of linear sizé. =128, O, andL =256, A respec- FIG. 3. Log-log plot of DF®B(t) versust at the second-order
tively). The dashedfull) line shows the shortdong-) time regime  IPT for lattices of sizel =256. Results obtained starting simula-
with a slope—(6,+1)=—2.00 (— #7°®—1=—-2.5). Results are tions with different values objz(t=0) as indicated in the figure,
obtained starting simulations witdg(t=0)=0.1 and averaging and averaging over 2:510° realizations. No significant modifica-
over 10 (2.5% 10°) realizations for. =128 (L=256). tion in the slope is observed upon changing the initial condition.

obtain than for local persistence. We averaged ovératl  persistent sites withy empty sites becomes “almost” van-
2X 10° different runs forL =256 andL =512, respectively. ishing at different timest=10 (for Ny=0); t=15 (for Ny
=1); t=30 (for Ny=2); t=120 (for Ny=3); andt=300
IV. RESULTS AND DISCUSSION (for Ny=4). Comparing the results of Figs. 2 and 3 with 4,
) ) ) ) o we observe that the crossover in Figs. 2 and 3 takes place
In this section we report our main numerical findings. Theyhen almost all persistent sites are blocked by inadtie
value of the ;econd-order critical point of the ZGB m0d9|sorbing ones (=300). The physical interpretation of the
reported previouslyY,=0.387 368[30], corresponds to the gpserved crossover is therefore the following. There is an
infinite-size limit; while for the system sizes we will con- jnjtial regime in which the persistence of a given site is
sider, namely, 128and 256, finite-size corrections shift the gominated by its open neighboring sites: particles can land
critical value to Sllghtly |arger values: in particular, all the directly in the neighboring sites Causing desorption, and con-
simulations at the critical point reported in what follows are sequently the loss of persistent sites. However, as the number
performed aty ,=0.3907[30]. of such open sites is reduced on average to a value close to
Figure 2 shows a log-log plot dD(t) versust at the  zero, there is a crossover to the true asymptotic regime in

second-order IPT. Two regimes can be observ@dThe  which one has to wait for local rearrangements in order to
short-time regime fot<200, whereD(t) exhibits a power-  reach persistent sites.

law behaviorD,(t)oct~(4*1) with 6,=1.00+0.05, and(ii)

the asymptotic regime far>200 , with the exponeng?©5 0.04 : : ‘
=1.50+0.10. Since the phase transition belongs in the DP s—Ny=
universality clas$30], it is quite surprising that the exponent = Ny=1
obtained, within error bars, is almost the same as the one 0.03 ~—*Ny=2

reported by Hinrichsen and Antof20] for a DP process in
(1+1) dimensions, namelyyP”=1.50+0.03. This finding n
suggests that for the DP class the difference between the Z, 0.02
persistence exponents in €1l) and (2+1) dimensions is v
very small.

In addition, we have verified the lack of dependence of
these exponents upon modifications of the initial condition,
as shown in Fig. 3. In fact, runs performed using 0.05 0
<#g(t=0)=<0.20 show that neither the short-time regime 10 10 10 10 10
nor the asymptotic regime depend on the initial density of t
ina'ctive'sites. This finding is in accordance with the obser- 5 4 Linear-logarithmic plot of the average fraction of per-
vations in[20]. sistent sites witiNy, empty neighbors, foNy=0, 1, 2, 3, and 4,

In order to gain some insight into the origin of the cross-yespectively, as a function of Results are obtained using the same
over observed in Figs. 2 and 3, we have evaluated the timgonditions as in Fig. 2. For times larger than®1Be fraction of

dependence of the fraction of persistent sites Withempty ~ empty sites neighboring persistent ones becomes very small, i.e.,

nearest-neighbor sitetN(=0, 1, 2, 3, and 4 respectively typically, activity takes place away from persistent sites, and local
as a function of timeglsee Fig. 4 The average number of outbursts of activity are required in order to reach persistent sites.
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v s s -, FIG. 6. Log-log plot ofD7®5(t) versust at and away from the

critical point. Results obtained using lattices of size 256, with

0s(t=0)=0.10, and averaging over %8.0° realizations. Differ-
FIG. 5. Local persistence for one- and two-dimensional simula€nt values of the paramet¥p, were used, as indicated in the figure.

tions of the contact process. th=1 (d=2) the system size ik The dashedfull) line shows the shortdong-) time regime with a

=10* (256%). Observe that the two slopes are indistinguishable.slope —2.00 (- 07®®—1=-2.5), and has been drawn to allow
The straight line has a slope §— 1= —2.5. comparison with Fig. 2. See more details in the text.

t

In order to further explore the dependence of the persisi? Fig. 6. ForY,=0.40(i.e., very close to the critical thresh-
tence exponents on the dimensionality we have also peplld) the power-law charact_enstlc of the short-time regime is
formed extensive simulationg84] of another system with Still observed, but thg persistence curve sh_ows a_clear depar-
absorbing states belonging to the DP universality C|ass_t,ure from the_behav_lor observed at criticality. Going deeper
namely, the contact proce&8P) [26,29. In this model, pro- N0 the reactive regime, e.g. for,=0.45, the plot shows a .
ceeding analogously as we have done for the ZGB model, wearked curvature and the existence 01_‘ a power-law_ behavior
observe no crossover similar to the one described for théan be ruled out. On the other hand, in the absorbing phase
ZGB model. Asymptotic regimes can be obtained with lesgPersistence curves tend to a constant for large values of
computational effort, and the exponent values are by fal-€:, there is a nonvanishing asymptotic probability of persist-
more accurate. We simulated the CP in dimensions rangin@d indefinitely. This is a direct consequence of the fact that
from 1 to 4. The largest system sizes considered wetenl0 eventually the system reaches an absorbing configuration and
d=1, 256 in d=2, 50 in d=3, and 32 in d=4. our the dynamics is arrested. Therefore, we conclude that, unlike
results ared,=1.50+0.01 for (1+ 1) andg;=1.50+0.01 for in' reversible systems Whe;r_e a power-law behavior holds fqr a
(2+1) dimensiong34] (see Fig. 5. In fact, the two curves wide range below the critical tempera_lture, in systems W|th_
in Fig. 5 are strikingly parallel. This fact confirms our rather 0sorbing states the power-law behavior of the persistence is
strange finding that the local persistence exponentais restricted to criticality. _ _
most) the same in one- and two-dimensional systems with Respecting the global persistence, Fig. 7 shows a double
absorbing states. It could be the case that there is some smi@garithmic plot of Dy (t) versust obtained at the ZGB
difference between the exponent valuesdinl andd=2, second-order IPT for two different lattice sizes. As in the
but within our numerical accuracy they are absolutely indis-case of the local persistence, two time regimes are observed:
tinguishable. The apparent coincidence between the resulty @ short-time regimet(300) with a power-law behavior
in one and two dimensions is quite intriguing, and so far wecharacterized by a slope1.25+0.05, andii) an asymptotic
do not have any satisfactory explanation for this surprising€gime ¢>300) with a power-law behavior with exponent
result. 956322.& 0.5. The onset of the long-time regime depends

For the sake of completeness, and in order to test wheth@n L as shown in Fig. 6 fot. =256 andL=512; however,
this apparensuperuniversalityextends also to higher dimen- HSGB appears to be size independent. As already discussed
sions, we have also measured the local persistence exponefds the case of local persistence, the crossover between the
in d=3 andd=4 as we said before. The results fgrare  different time regimes can be linked to the results shown in
1.33+0.03 ind=3 and 1.15-0.05 ind=4, indicate a dimi-  Fig. 4; again the asymptotic regime in the ZGB model starts
nution of the local persistence as a function of dimensionalwhen persistent sites are almost completely surrounded by
ity [34]. inactive ones.

It is well known that for equilibrium models the persis-  Our results for the persistence exponents, naméjy,
tence exhibits generically a power-law behavior below the<#,, are rather surprising at first sight, since from all pre-
critical temperaturd11,12. In order to establish analogies viously accumulated experience, mainly for equilibrium
with irreversible systems having absorbing states, we haveritical systemsg,> 6, [3]. It seems that irreversible critical
also measured the local persistence away from criticalitysystems may depart from this behavior.

i.e., within the reactive regime of the ZGB model, as shown Assuming the dynamics of the order parameter to be Mar-
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FIG. 7. Log-log plot oﬂDg(t) versugt for the ZGB model at the FIG. 8. Log-log plot ofD,(t) versust obtained at the coexist-
second-order IPT for lattices of side=256, A, andL=512, O. ence point ¥,,=0.52554) for lattice sizet =256 andL=512.
The dashedfull) line shows the shoridong-) time regime and has The straight line has slope §,— 1= —4.00. Results have been ob-
slope —1.25 (- 6508—1= —3.5). Results have been obtained tained starting simulations with,(t=0)=0.1 and averaging over
starting the simulations witl#,(t=0)=0.10 and averaging over 10* (2.5x10°) realizations forL=256 (L=512). The upward
10° (2.5x 10°) realizations for. =256 (L=512). The inset shows bending of the last two points indicates that the value of the critical
a log-log plot of Dy (t) versust, obtained for L=512: the  point we are considering is slightly in the subcritical phase for the
asymptotic slope coincides with that of the main plot. finite system sizes under analysis.

kovian, and using the known scaling relations and values of gjnce the ZGB model also exhibits a first-order IPT at
the directed percolation universality class, one obtains the(2A=0_525 54, we have evaluated the persistence at the co-
result that Eq(1) can be written a$24,33 6,=1+d/(22)  existence point. Figure 8 shows a log-log plot df ®&(t)
~1.565(in d=2). Our numerical value is far from this re- yersust as obtained for lattices of siZe=512. Since the
sult, implying that the process is strongly non-Markovian.regits are almost independent.gfiinite-size effects may be
Oerding and van Wijland have shoW24], using field theo-  gimost negligible. Figure 8 also shows that at coexistence the
retical tools combined with the perturbative expansionpersistent sites are short lived and consequently the persis-
method by Majumdar and Sif@], that up to first order e tence drops off abruptly. The data can be fitted by a power
expan3|on69=2+0.0595_—4—@(62)_. This implies 6>2 (at  |aw with an exponentd,=3.0+0.3. However, since the
least up to first orderas, in fact, is the case in our measure-ange of the fit is narrow and there seems to be a systematic
ments. o _ curvature, we cannot disregard an exponetitinh stretched

A qualitative physical interpretation for the fact thét  exponential decay for longer times. Further clarification of
<0y is the following: at the critical point, in the activity- thjs issue will have to wait for computationally expensive
density decay process, the system is more likely to fluctuatgyrge-scale numerical simulations. It should be noticed that
around the global average dendityhich corresponds to an- {he gperation of a power lascale invariancein the dy-
nihilating more (or less activity than the average at that pamical critical properties of the first-order IPT of the ZGB
time] than invading absorbing regions in which persistentyodel has recently been ruled ¢@t]. But given the lack of
sites exist. This is very reasonable since in general, at thg general theoretical framework, we do not know whether or

critical point and for large enough times, activity is restrictedot algebraic decay of persistence functions should be ex-
to some patches, which become smaller and smaller as timgacted at nonequilibrium first-order transitions.

runs. Fluctuations in the density of these patctass effect
controlled by the global persistence exponere therefore
more likely than invasion of persistent sitén effect con-
trolled by the local exponept which are typically sur- A numerical study of persistence in the ZGB dimer-
rounded at large times by absorbing sites. monomer model for the catalyzed reactidr- 1B, —AB, is

The inset of Fig. 7 shows a log-log plot &f, (t). Here  presented. It is found that for the second-order IPT the time
the events are short lived, making difficult the evaluation ofdependence of both the local and the global persistence ex-
the persistence exponent. However, considering the largefibits a crossover between a short- and a long-time regime.
error bars in this case, the exponent evaluatedp(t) is A physical explanation for such a crossover has been pro-
consistent with the exponent previously calculated forvided. Persistence exponents are evaluated within the long-
D, (t). Therefore, within the discussed limitations for the time regime, givings{ ®®~1.50+0.01 for the local one and
evaluation of the exponents, we expect that Hoff(t) and ~ #7°®~2.5+0.5 for the global one. The former, which
Dg+(t) exhibit power-law behavior with the same exponentshould correspond to the DP universality class int(@)
in the large system size and time limits, in agreement withdimensions, is very close to the value reported by Hinrichsen
the predictions of Oerding and Van Wijlahg4]. and Koduvely[23] for DP in (1+1) dimensions, namely,

V. CONCLUSIONS
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6PP=1.50+0.03. Simulations of the contact proce@m- first-order IPT of the ZGB model. Due to the short-lived
other model in the same universality clasenfirm this in-  behavior of the persistent sites we obtained an expoéient
distinguishability between the one- and two-dimensional lo-=3.0=0.3. However, further effort will be required in order
cal persistence exponents with higher accur@sge the to clarify if this apparent power-law behavior reflects merely
striking parallelism of the curves in Fig.)5This finding a short-time regime followed by a cutoff or if it is a real
implies a theoretical and numerical puzzle:#&” indepen- ~ asymptotic effect.
dent of the dimensionality fod<2, or is it just that the one- We expect our numerical findings to constitute a valuable
and two-dimensional exponents incidentally take very simistep for the development of a theoretical framework in the
lar numerical values? The likely possibility of them being field of irreversible phase transitions, which is certainly
equal is quite intriguing since the return probabilities in sys-needed.
tems with absorbing states are expected to be rather different
in different spatial dimensions. For the contact process, in
dimensions larger thadi=2 we find, as expected, dimension
dependent exponents. We acknowledge useful suggestions and discussions with
The fact thate; °®> 67 °® (in agreement with field theo- A. Gabrielli, P. Hurtado, and P. L. Garrido. We also thank A.
retical predictiong24]) is in marked contrast to well estab- Baldasarri and S. Majumdar for very valuable comments and
lished findings in the field of reversible transitions, wherea critical reading of the manuscript. E.A. acknowledges the
quite genericallyd,<6,. A physical explanation for such a kind hospitality of Professor J. Marro during his stay at the

ACKNOWLEDGMENTS

discrepancy has been provided.

University of Granada where the major part of this work was

We have also observed that power laws for persistencperformed. This work was financially supported by
are obtained only at criticality, and the associated exponentSONICET, UNLP, CIC(As. As), ANPCyT (Argenting, the
do not depend upon the considered initial conditions, unlike/olkswagen Foundation(Germany, DGESIC (Spain

what is known for other well known reversible systems.

Project No. PB97-0842, and the European Network Contract

Persistence probabilities have also been evaluated at tiido. ERBFMRXCT980183.

[1] H.K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. Bf19] C.M. Newman and D.L. Stein, Phys. Rev. Le&2 3944

Condens. Matter3, 539(1989.

[2] D.A. Huse, Phys. Rev. B0, 304(1989; S.N. Mamumdar and

D.A. Huse, Phys. Rev. B2, 270(1995.

(1999.
[20] H. Hinrichsen and M. Antoni, Phys. Rev. %7, 2650(1998.
[21] J. Cardy, J. Phys. &8, L19 (1995.

[3] S.N. Majumdar, A.J. Bray, S.J. Corwell, and C. Sire, Phys.[zz] S.N. Majumdar, C. Sire, A.J. Bray, and S.J. Cornell, Phys.

Rev. Lett.77, 3704(1996.
[4] B. Derrida, A.J. Bray, and C. Godike, J. Phys. 27, L357

(1994; A.J. Bray, B. Derrida, and C. Godree, Europhys.

Lett. 27, 177 (1994).

[5] B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. L&8,
751 (1995; J. Stat. Phys85, 763(1996.

[6] A. Baldassarri, J.-P. Bouchaud, I. Dornic, and C. Golee
Phys. Rev. 59, R20(1999.

[7] C. Sire, S. Majumdar, and A. Rlinger, Phys. Rev. B1, 1258
(2000.

[8] S. Majumdar and C. Sire, Phys. Rev. Lat?, 1420(1996.

[9] D. Stauffer, J. Phys. R7, 5029(1994).

[10] S. Cueille and C. Sire, J. Phys. 30, L791 (1997.

[11] S. Cueille and C. Sire, Eur. Phys. J.783111(1999.

[12] I. Dornic and C. Godrehe, J. Phys. /81, 5413(1998.

[13] P.L. Krapivsky and E. Ben-Naim, Phys. Rev. 36, 3788
(1998; S.N. Majumdar and S.J. Cornellbid. 57, 3757(1998.

[14] S.N. Majumdar and A.J. Bray, Phys. Rev. Le®l, 2626
(1998.

[15] S.N. Majumdar, Curr. Sci. Indi#&7, 370(1999.

[16] N. Menyhard and G. Odor, J. Phys.39, 8515(1997.

[17] D. Stauffer, Int. J. Mod. Phys. €, 753(1996); 8, 361(1997.

[18] L. Schulke and B. Zheng, Phys. Lett. 283 93 (1997.

Rev. Lett.77, 2867(1996.

[23] H. Hinrichsen and H.M. Koduvely, Eur. Phys. J. B 257
(1998.

[24] K. Oerding and F. Van Wijland, J. Phys. 24, 7011(1998.

[25] M. Howard and C. Godehe, J. Phys. 209, L209 (1998.

[26] G. Grinstein and M.A. Muoz, in Fourth Granada Lectures in
Computational Physigsedited by P. Garrido and J. Marro,
Lecture Notes in Physics Vol. 49&pringer-Verlag, Berlin,
1997 p. 223; J. Marro and R. Dickmahlonequilibrium Phase
Transitions in Lattice Modelg§Cambridge University Press,
Cambridge, 1999

[27] H. Hinrichsen e-print cond-mat/0001070.

[28] R. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. L&i6, 2553
(1986.

[29] T.M. Ligget, Interacting Particle SysteméSpringer-Verlag,
New York, 1985.

[30] I. Jensen, H.C. Fogedby, and R. Dickman, Phys. Revi1A
3411(1990; C.A. Voigt and R. Ziff, Phys. Rev. B6, R6241
(1997.

[31] R. Monetti, A.F. Rozenfeld,
cond-mat/9911040.

[32] E.V. Albano, Chem. ReV3, 389(1996.

[33] M.A. Munoz, R. Dickman, A. Vespignani, and S. Zapperi,
Phys. Rev. E59, 6175(1999.

[34] M.A. Munoz and E.V. Albanqunpublishea

and E. Albano, e-print

031104-7



