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Numerical study of persistence in models with absorbing states
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Extensive Monte Carlo simulations are performed in order to evaluate both the local (u l) and global (ug)
persistence exponents in the Ziff-Gulari-Barshad~ZGB! @Phys. Rev. Lett.56, 2553~1986!# irreversible reac-
tion model. At the second-order irreversible phase transition~IPT! we find that both the local and the global
persistence exhibit power-law behavior with a crossover between two different time regimes. On the other
hand, at the ZGB first-order IPT, active sites are short lived and the persistence decays more abruptly; it is not
clear whether it shows power-law behavior or not. In order to analyze universality issues, we have also studied
another model with absorbing states, the contact process, and evaluated the local persistence exponent in
dimensions from 1 to 4. A striking apparentsuperuniversalityis reported: the local persistence exponent seems
to coincide in both one- and two-dimensional systems. Some other aspects of persistence in systems with
absorbing states are also analyzed.
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I. INTRODUCTION

Very many articles devoted to the study of persistence
different physical contexts have appeared recently in the
erature. From a theoretical point of view, the appearanc
such nontrivial critical exponents as~i! the ‘‘nonequilibri-
um’’ exponentl needed to characterize the two-time cor
lation functions in systems relaxing in the process of quen
ing from infinitely high temperatures to the critica
temperatureTc @1,2#, and~ii ! the global persistence expone
ug related to the probabilityPg(t)}t2ug that the global order
parameter~e.g., the magnetization in a ferromagnet! has not
changed sign up to a certain timet after a quench toTc @3#
constituted an exciting surprise. A number of theoretic
computational, and even experimental analyses were
formed afterward. From the theoretical viewpoint it has be
shown that, for processes where the global order param
dynamics is Markovian, the global persistence exponent
be related to other ‘‘traditional’’ critical exponents; in pa
ticular, the following scaling law holds@3#:

ugz5l2d112
h

2
, ~1!

where d is the dimensionality andh is the static critical
exponent of the order parameter correlation function. Nev
theless, the required hypothesis is not typically satisfied
most of the statistical models usually studied; i.e., the
namics of the global order parameter can be argued to
generically non-Markovian. In these more generic cases
~1! does not hold andug is an independent nontrivial expo
nent @3#. In general, persistence exponents depend on
system evolution as a whole and, therefore, analytical e
mations of them are scarce and difficult@4–6#. One impor-
tant theoretical contribution is by Majumdar and Sire, w
proposed a method to calculate autocorrelation functions
1063-651X/2001/63~3!/031104~7!/$15.00 63 0311
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turbatively for non-Markovian processes~perturbing around
a Gaussian and Markovian process@7,8#!.

Recently, other similar nontrivial exponents have be
uncovered and measured in different systems. Some of t
are associated with the following magnitudes.

~i! The local persistence probabilityPl}t2u l, defined as
the probability that the local order parameter at a given po
xW has never changed sign~e.g., the probability that one spi
has never been flipped in a ferromagnet! @3,9#. Local persis-
tence probabilities have been measured in real systems
as liquid crystals and soap bubbles~see@7# and references
therein!.

~ii ! The block persistence probabilityPL}t2uL, defined as
the probability that the order parameter integrated ove
block of linear sizeL has never changed sign since the init
time in a phase-ordering process at finite temperat
@10,11#.

~iii ! The generalized persistence probabilities and ex
nents introduced by Dornic and Godre´che @12,6#.

~iv! The persistence probability for domains, found fir
by Krapivsky and Ben-Naim in Ising systems, and sub
quently in diffusion by Majumdar and Cornell@13#. These
can also be generalized to other different types of pattern:
persistence probability of each pattern decays with a dif
ent exponent, a single spin or the global spin being just t
limiting cases.

~v! The persistence with partial survival first studied
Majumdar and Bray and subsequently by other authors@14#.
Recently it has generated a lot of interest in the contex
inelastic collapse in granular materials.

For reviews of persistence studies in reversible syste
see, for instance,@11,12,15#.

Even though considerable effort has been devoted to
study of persistence in various models exhibiting reversi
phase transitions~see @1–4,9–11,16–20# and references
therein! as well as in diffusion-reaction systems~see@21,22#
and references therein!, far less numerous are the studies
©2001 The American Physical Society04-1
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EZEQUIEL V. ALBANO AND MIGUEL A. MUÑ OZ PHYSICAL REVIEW E63 031104
persistence in systems exhibiting irreversible phase tra
tions ~IPT’s! and, in particular, in systems presenting a cr
cal point separating an active from an absorbing phase~some
exceptions are@23–25#!. In this context, recently, Hinrichse
and Koduvely@23# have performed a numerical study of th
local and global persistence in (111)-dimensional directed
percolation~DP! @26# ~see also@27#!. They found that the
local persistence probability at the critical point~separating
the absorbing from the active phase! decays as a power law
with an exponentu l

DP'1.5. Also, global persistence mea
surements seemed to be consistent withug

DP'1.5, a result
that has to be taken with some caution since, on the
hand, the evaluation ofug

DP requires extensive simulation
~see the criticisms of this result in@24#! and, on the other
hand, in all the previously known models~mainly for equi-
librium critical systems! ug,u l @3#. Furthermore, it was con
jectured that bothug andu l are indeed universal exponen
characterizing the DP universality class. Another interest
point is that persistence exponents in this case seem t
independent of the initial condition, at odds with what ha
pens in other well known cases such as, for example,
two-dimensional Ising model with Glauber dynamics@5#. Fi-
nally, Hinrichsen and Antoni succeeded in relating pers
tence exponents in directed percolation to certain ‘‘retur
probabilities with an absorbing boundary or an active sou
@20#. Another important contribution to the study of pers
tence in IPT was presented in the recent paper by Oer
and van Wijland, in which the DP global persistence exp
nent was calculated analytically by combining the pertur
tive method developed by Majumdar and Sire@8# with stan-
dard renormalization group techniques@24#.

In order to contribute further to the understanding of p
sistence in systems with an IPT and shed some light on
aforementioned issues, the present article is devoted to
numerical study and evaluation of persistence exponent
other models with absorbing states; in particular, the Z
Gulari-Barshad~ZGB! model for the catalytic oxidation o
CO @28#, as well as contact process@26,29#. The ZGB model
~defined in two dimensions! has a twofold advantage:~i! it
exhibits a second-order IPT unambiguously placed in the
universality class@30#, and ~ii ! it also exhibits a first-order
IPT @28# where, as expected, the system does not show s
ing or universal behavior@31#. In this way, the ZGB mode
provides a suitable framework for the study of persistenc
both first- and second-order irreversible critical points. F
thermore, the present study extends the investigation of
sistence exponents to higher dimensions in IPT’s, by p
forming numerical studies of the contact process in spa
dimensions from 1 to 4.

The article is organized as follows. In Sec. II the ZG
model and the simulation method are described in detail
Sec. III we define the local and global persistence probab
ties in the systems under study, while Sec. IV is devoted
the presentation and discussion of the main results for b
the ZGB model and the contact process. Finally, in Sec
the main conclusions are presented.

II. THE ZGB MODEL AND THE SIMULATION METHOD

The ZGB model mimics the catalytic oxidation of carbo
monoxide on a transition metal surface@28#, namely, 2CO
03110
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1O2→2CO2. The lattice-gas version of the ZGB model
also known as the monomer-dimer~MD! model, whereA
[CO is the monomer, as it needs a single adsorption site
the surface, andB2[O2 is the dimer, which is adsorbe
dissociatively, and consequently requires two neighbor
sites on the catalyst surface to be adsorbed. It is assumed
the monomer-dimer reaction proceeds according to
Langmuir-Hinshelwood mechanism:

A~g!1S→A~a!, ~2!

B2~g!12S→2B~a!, ~3!

A~a!1B~a!→AB~g!12S, ~4!

whereS is an empty site on the surface, while~a! and ~g!
refer to the adsorbed and gas phases, respectively.

The MD model uses a square lattice to represent the c
lytic surface. The Monte Carlo algorithm for its simulation
as follows.~i! anA or B2 molecule is randomly selected wit
relative probabilitiesYA and YB , respectively. These prob
abilities are the relative impingement rates of the two s
cies, which are proportional to their partial pressures. Due
the normalizationYA1YB51, the model is characterized b
a single parameter, sayYA . If the selected species isA, a
surface site is selected at random and, if it is vacant,A is
adsorbed on it@Eq. ~2!#. Otherwise, if the site is occupied
the trial ends and a new molecule is selected. If the sele
species isB2, a pair of nearest-neighbor sites is random
chosen and the molecule is adsorbed on them only if they
both vacant@Eq. ~3!#. ~ii ! After each adsorption event, th
nearest neighbors of the added molecule are examine
order to account for the reaction given by Eq.~4!. If one or
more than one pairs@B(a),A(a)# are identified, one of them
is randomly selected and removed from the surface~for more
details of the MD model and the simulation technique s
e.g.,@28,32#!.

Interest in the MD model arises due to its rich and co
plex phenomenology. In fact, in two dimensions and for t
asymptotic regime (t→`), the system reaches a stationa
state whose nature depends solely on the parameterYA . For
YA<Y1A>0.387 368 (YA>Y2A>0.525 54) the surface be
comes irreversibly poisoned withB ~A! particles. On the
other hand, forY1A,YA,Y2A a steady state with sustaine
production ofAB is reached. Figure 1 shows plots of the ra
of AB production (RAB) and the surface coverages ofA par-
ticles,uA , andB particles,uB , as functions ofYA .

At Y1A andY2A the MD model exhibits irreversible phas
transitions between the reactive regime and poisoned st
which are of second- and first-order, respectively. T
second-order IPT belongs to the universality class of direc
percolation@26# and it is rather well understood@30#.

Furthermore, as shown in Fig. 1, whenYA increases to-
ward Y2A the catalytic activity increases, and whenY2A is
reached a discontinuous, first-order transition appe
Above this value the activity is zero (A clusters covering the
whole lattice can be observed to emerge suddenly atY2A ,
poisoning the system!.
4-2
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III. LOCAL AND GLOBAL PERSISTENCE

In a system such as directed percolation, possessing
sorbing states, thelocal persistenceprobability can be mea
sured by starting the system with a homogeneous ran
initial condition, and evaluating the probability that a give
originally inactive, site has not become active up to timt
@20#. It should be noted that this quantity depends upon
whole system evolution up to timet, and therefore it can be
viewed as an infinite-point correlation function in the tim
direction. ConsequentlyPl(t) is a rather nontrivial quantity
difficult to study analytically as discussed before. Numeri
simulations in a (111)-dimensional DP model show tha
Pl(t) decays algebraically at criticality:

Pl~ t !}t2u l ~5!

with u l'1.5 @20#. In the case of the ZGB model, and for th
continuous phase transition, the absorbing state corresp
to the surface of the catalyst fully covered byB species. This
species plays the role of the inactive sites. For the ot
transition, i.e., the first-order one, the roles of theA and B
particles are exchanged. We definePl

ZGB(t) as the probabil-
ity that a given inactive site does not become active up
time t. Consequently, for the second-order~first-order! tran-
sition simulations are started with lattices partially covered
random by A species (B species! uA(B)(t50). The only
mechanism able to activate a site is the reactionA1B
→AB as specified by Eq.~4!.

We have evaluated numerically the persistence proba
ity distribution Dl

ZGB(t), that is, the probability for a persis
tent site to become active in the time interval betweent and
t1dt. One has

Dl
ZGB~ t !}t2(u l

ZGB
11), ~6!

whereu l
ZGB is the persistence exponent@note thatDl

ZGB(t) is
simply the time derivative ofPl

ZGB#.
In systems exhibiting reversible phase transitions, theglo-

bal persistenceis usually defined as the probability that th

FIG. 1. Average coverage ofB species (uB) andA species (uA)
and theAB production rate (RAB), respectively, obtained unde
steady state operation, as a function ofYA for the ZGB model.
Irreversible transitions of second- and first-order occur atY1A

.0.387 368 andY2A.0.525 54, respectively.
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global order parameter~e.g., the total magnetization in th
Ising model! does not change sign up to timet. In contrast,
for systems with absorbing states, such as DP, the glo
order parameter given by the density of active sitesrAS(t) is
a strictly positive quantity and therefore the standard defi
tion is not applicable. In@20# it was proposed that, instead
one can evaluate the probability that the deviation of
order parameter from its mean value,DrAS(t)5rAS(t)
2^rAS(t)&, does not change sign up to timet. In the present
study, and close to the second-order IPT, we have consid

rAS~ t !512uB5uA1uV , ~7!

whereuV , uA , anduB are the densities of empty sites an
those occupied byA andB species, respectively. However, i
finite systems such as directed percolation the devia
probability depends on the sign ofDrAS(t). This asymmetry
should vanish in the thermodynamic limit whereDrAS(t)
becomes a Gaussian process. In finite systems, howeve
renormalized variance of the fluctuations is no longer c
stant but increases with the value ofDrAS(t), causing the
effective time scales for positive and negative fluctuations
be different@20,24#. Therefore,Pg

(2)(t) @Pg
(1)(t)# is defined

as the probability ofDrAS(t) to remain negative~positive!
from an initial time t in up to time t. We also define the
probability distribution functionDg

2(1)(t), i.e., the probabil-
ity that DrAS(t) changes sign in the time interval betweent
and t1dt.

In order to evaluateDrAS(t) we have first to calculate a
‘‘calibration curve’’ given byrAS}t2u whereu.0.4505 is
the corresponding DP exponent in (211) dimensions
@26,33#, describing the time decay of a homogeneous ini
condition at criticality: every timerAS(t) intersects this
curve,DrAS(t) changes sign.

A second important issue related to the global persiste
exponent, worth discussion before proceeding, is the t
regime in which it should be measured. Following@24#, the
global exponent is well defined in the regime in which t
dependence on the initial state has been erased. On the
hand, there is also an upper bound to the validity of meas
ments given by the system-size upper cutoff. Putting th
two constraints together we obtain@24#

Lz@t@uB
2z/(d2h) ~8!

~for general systems with absorbing states, one has to su
tute for uB the initial density of active sites!. Using the DP
values for the exponents, this implies 18 300@t@1 for sys-
tem sizeL5256, and 65 000@t@1 for L5512. Therefore,
as a safe, conservative limit, we start measuring att in5100.

It is worth stressing that in order to obtain reliable data
persistence exponents one has to perform extensive sim
tions. The evaluation of the local persistence requires lo
runs~up to 104 Monte Carlo steps!, and reliable statistics are
obtained by averaging over 104 (2.53103) different initial
configurations forL5128 (L5256). On the other hand, eac
single point for the global persistence distribution require
whole run; therefore, good statistics are much tougher
4-3
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obtain than for local persistence. We averaged over 106 and
23105 different runs forL5256 andL5512, respectively.

IV. RESULTS AND DISCUSSION

In this section we report our main numerical findings. T
value of the second-order critical point of the ZGB mod
reported previously,YA50.387 368@30#, corresponds to the
infinite-size limit; while for the system sizes we will con
sider, namely, 1282 and 2562, finite-size corrections shift the
critical value to slightly larger values: in particular, all th
simulations at the critical point reported in what follows a
performed atYA50.3907@30#.

Figure 2 shows a log-log plot ofDl(t) versust at the
second-order IPT. Two regimes can be observed:~i! The
short-time regime fort,200, whereDl(t) exhibits a power-
law behaviorDl(t)}t2(u l11) with u l.1.0060.05, and~ii !
the asymptotic regime fort.200 , with the exponentu l

ZGB

.1.5060.10. Since the phase transition belongs in the
universality class@30#, it is quite surprising that the exponen
obtained, within error bars, is almost the same as the
reported by Hinrichsen and Antoni@20# for a DP process in
(111) dimensions, namely,u l

DP.1.5060.03. This finding
suggests that for the DP class the difference between
persistence exponents in (111) and (211) dimensions is
very small.

In addition, we have verified the lack of dependence
these exponents upon modifications of the initial conditi
as shown in Fig. 3. In fact, runs performed using 0.
<uB(t50)<0.20 show that neither the short-time regim
nor the asymptotic regime depend on the initial density
inactive sites. This finding is in accordance with the obs
vations in@20#.

In order to gain some insight into the origin of the cros
over observed in Figs. 2 and 3, we have evaluated the
dependence of the fraction of persistent sites withNN empty
nearest-neighbor sites (NN50, 1, 2, 3, and 4 respectively!
as a function of time~see Fig. 4!. The average number o

FIG. 2. Log-log plot ofDl
ZGB(t) versust at the second-orde

IPT ~for lattices of linear sizeL5128, s, andL5256, n respec-
tively!. The dashed~full ! line shows the short-~long-! time regime
with a slope2(u l11)522.00 (2u l

ZGB21522.5). Results are
obtained starting simulations withuB(t50)50.1 and averaging
over 104 (2.53103) realizations forL5128 (L5256).
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persistent sites withNN empty sites becomes ‘‘almost’’ van
ishing at different times:t.10 ~for NN50); t.15 ~for NN
51); t.30 ~for NN52); t.120 ~for NN53); and t.300
~for NN54). Comparing the results of Figs. 2 and 3 with
we observe that the crossover in Figs. 2 and 3 takes p
when almost all persistent sites are blocked by inactive~ab-
sorbing! ones (t.300). The physical interpretation of th
observed crossover is therefore the following. There is
initial regime in which the persistence of a given site
dominated by its open neighboring sites: particles can l
directly in the neighboring sites causing desorption, and c
sequently the loss of persistent sites. However, as the num
of such open sites is reduced on average to a value clos
zero, there is a crossover to the true asymptotic regime
which one has to wait for local rearrangements in order
reach persistent sites.

FIG. 3. Log-log plot ofDl
ZGB(t) versust at the second-orde

IPT for lattices of sizeL5256. Results obtained starting simula
tions with different values ofuB(t50) as indicated in the figure
and averaging over 2.53103 realizations. No significant modifica
tion in the slope is observed upon changing the initial condition

FIG. 4. Linear-logarithmic plot of the average fraction of pe
sistent sites withNN empty neighbors, forNN50, 1, 2, 3, and 4,
respectively, as a function oft. Results are obtained using the sam
conditions as in Fig. 2. For times larger than 103 the fraction of
empty sites neighboring persistent ones becomes very small,
typically, activity takes place away from persistent sites, and lo
outbursts of activity are required in order to reach persistent sit
4-4
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In order to further explore the dependence of the per
tence exponents on the dimensionality we have also
formed extensive simulations@34# of another system with
absorbing states belonging to the DP universality cla
namely, the contact process~CP! @26,29#. In this model, pro-
ceeding analogously as we have done for the ZGB model
observe no crossover similar to the one described for
ZGB model. Asymptotic regimes can be obtained with le
computational effort, and the exponent values are by
more accurate. We simulated the CP in dimensions rang
from 1 to 4. The largest system sizes considered were 104 in
d51, 2562 in d52, 503 in d53, and 324 in d54. Our
results areu l.1.5060.01 for (111) andu l.1.5060.01 for
(211) dimensions@34# ~see Fig. 5!. In fact, the two curves
in Fig. 5 are strikingly parallel. This fact confirms our rath
strange finding that the local persistence exponent is~al-
most?! the same in one- and two-dimensional systems w
absorbing states. It could be the case that there is some s
difference between the exponent values ind51 andd52,
but within our numerical accuracy they are absolutely ind
tinguishable. The apparent coincidence between the re
in one and two dimensions is quite intriguing, and so far
do not have any satisfactory explanation for this surpris
result.

For the sake of completeness, and in order to test whe
this apparentsuperuniversalityextends also to higher dimen
sions, we have also measured the local persistence expo
in d53 andd54 as we said before. The results foru l are
1.3360.03 ind53 and 1.1560.05 ind54, indicate a dimi-
nution of the local persistence as a function of dimension
ity @34#.

It is well known that for equilibrium models the persi
tence exhibits generically a power-law behavior below
critical temperature@11,12#. In order to establish analogie
with irreversible systems having absorbing states, we h
also measured the local persistence away from critica
i.e., within the reactive regime of the ZGB model, as sho

FIG. 5. Local persistence for one- and two-dimensional simu
tions of the contact process. Ind51 (d52) the system size isL
5104 (2562). Observe that the two slopes are indistinguishab
The straight line has a slope2u l21522.5.
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in Fig. 6. ForYA50.40~i.e., very close to the critical thresh
old! the power-law characteristic of the short-time regime
still observed, but the persistence curve shows a clear de
ture from the behavior observed at criticality. Going deep
into the reactive regime, e.g., forYA50.45, the plot shows a
marked curvature and the existence of a power-law beha
can be ruled out. On the other hand, in the absorbing ph
persistence curves tend to a constant for large valuest,
i.e., there is a nonvanishing asymptotic probability of pers
ing indefinitely. This is a direct consequence of the fact t
eventually the system reaches an absorbing configuration
the dynamics is arrested. Therefore, we conclude that, un
in reversible systems where a power-law behavior holds fo
wide range below the critical temperature, in systems w
absorbing states the power-law behavior of the persistenc
restricted to criticality.

Respecting the global persistence, Fig. 7 shows a do
logarithmic plot of Dg

1(t) versus t obtained at the ZGB
second-order IPT for two different lattice sizes. As in t
case of the local persistence, two time regimes are obser
~i! a short-time regime (t<300) with a power-law behavio
characterized by a slope.1.2560.05, and~ii ! an asymptotic
regime (t.300) with a power-law behavior with exponen
ug

ZGB.2.560.5. The onset of the long-time regime depen
on L as shown in Fig. 6 forL5256 andL5512; however,
ug

ZGB appears to be size independent. As already discus
for the case of local persistence, the crossover between
different time regimes can be linked to the results shown
Fig. 4; again the asymptotic regime in the ZGB model sta
when persistent sites are almost completely surrounded
inactive ones.

Our results for the persistence exponents, namely,u l
,ug , are rather surprising at first sight, since from all pr
viously accumulated experience, mainly for equilibriu
critical systems,u l.ug @3#. It seems that irreversible critica
systems may depart from this behavior.

Assuming the dynamics of the order parameter to be M

-

.

FIG. 6. Log-log plot ofDl
ZGB(t) versust at and away from the

critical point. Results obtained using lattices of sizeL5256, with
uB(t50)50.10, and averaging over 2.53103 realizations. Differ-
ent values of the parameterYA were used, as indicated in the figur
The dashed~full ! line shows the short-~long-! time regime with a
slope 22.00 (2u l

ZGB21522.5), and has been drawn to allo
comparison with Fig. 2. See more details in the text.
4-5
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EZEQUIEL V. ALBANO AND MIGUEL A. MUÑ OZ PHYSICAL REVIEW E63 031104
kovian, and using the known scaling relations and values
the directed percolation universality class, one obtains
result that Eq.~1! can be written as@24,33# ug511d/(2z)
'1.565 ~in d52). Our numerical value is far from this re
sult, implying that the process is strongly non-Markovia
Oerding and van Wijland have shown@24#, using field theo-
retical tools combined with the perturbative expans
method by Majumdar and Sire@3#, that up to first order ine
expansionug5210.059e1Q(e2). This implies u.2 ~at
least up to first order! as, in fact, is the case in our measur
ments.

A qualitative physical interpretation for the fact thatu l
,ug is the following: at the critical point, in the activity
density decay process, the system is more likely to fluctu
around the global average density@which corresponds to an
nihilating more ~or less! activity than the average at tha
time# than invading absorbing regions in which persiste
sites exist. This is very reasonable since in general, at
critical point and for large enough times, activity is restrict
to some patches, which become smaller and smaller as
runs. Fluctuations in the density of these patches~an effect
controlled by the global persistence exponent! are therefore
more likely than invasion of persistent sites~an effect con-
trolled by the local exponent!, which are typically sur-
rounded at large times by absorbing sites.

The inset of Fig. 7 shows a log-log plot ofDg
2(t). Here

the events are short lived, making difficult the evaluation
the persistence exponent. However, considering the la
error bars in this case, the exponent evaluated forDg

2(t) is
consistent with the exponent previously calculated
Dg

1(t). Therefore, within the discussed limitations for th
evaluation of the exponents, we expect that bothDg

2(t) and
Dg

1(t) exhibit power-law behavior with the same expone
in the large system size and time limits, in agreement w
the predictions of Oerding and Van Wijland@24#.

FIG. 7. Log-log plot ofDg
1(t) versust for the ZGB model at the

second-order IPT for lattices of sideL5256, n, andL5512, s.
The dashed~full ! line shows the short-~long-! time regime and has
slope 21.25 (2ug

ZGB21523.5). Results have been obtaine
starting the simulations withuA(t50)50.10 and averaging ove
106 (2.53105) realizations forL5256 (L5512). The inset shows
a log-log plot of Dg

2(t) versus t, obtained for L5512: the
asymptotic slope coincides with that of the main plot.
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Since the ZGB model also exhibits a first-order IPT
Y2A.0.525 54, we have evaluated the persistence at the
existence point. Figure 8 shows a log-log plot ofDl

ZGB(t)
versust as obtained for lattices of sizeL5512. Since the
results are almost independent ofL, finite-size effects may be
almost negligible. Figure 8 also shows that at coexistence
persistent sites are short lived and consequently the pe
tence drops off abruptly. The data can be fitted by a pow
law with an exponentu l.3.060.3. However, since the
range of the fit is narrow and there seems to be a system
curvature, we cannot disregard an exponential~or a stretched
exponential! decay for longer times. Further clarification o
this issue will have to wait for computationally expensi
large-scale numerical simulations. It should be noticed t
the operation of a power law~scale invariance! in the dy-
namical critical properties of the first-order IPT of the ZG
model has recently been ruled out@31#. But given the lack of
a general theoretical framework, we do not know whether
not algebraic decay of persistence functions should be
pected at nonequilibrium first-order transitions.

V. CONCLUSIONS

A numerical study of persistence in the ZGB dime
monomer model for the catalyzed reactionA1 1

2 B2→AB2 is
presented. It is found that for the second-order IPT the ti
dependence of both the local and the global persistence
hibits a crossover between a short- and a long-time regi
A physical explanation for such a crossover has been p
vided. Persistence exponents are evaluated within the lo
time regime, givingu l

ZGB.1.5060.01 for the local one and
ug

ZGB.2.560.5 for the global one. The former, whic
should correspond to the DP universality class in (211)
dimensions, is very close to the value reported by Hinrich
and Koduvely@23# for DP in (111) dimensions, namely

FIG. 8. Log-log plot ofDl(t) versust obtained at the coexist
ence point (Y2A50.525 54) for lattice sizesL5256 andL5512.
The straight line has slope2u l21524.00. Results have been ob
tained starting simulations withuA(t50)50.1 and averaging ove
104 (2.53103) realizations forL5256 (L5512). The upward
bending of the last two points indicates that the value of the crit
point we are considering is slightly in the subcritical phase for
finite system sizes under analysis.
4-6
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u l
DP.1.5060.03. Simulations of the contact process~an-

other model in the same universality class! confirm this in-
distinguishability between the one- and two-dimensional
cal persistence exponents with higher accuracy~see the
striking parallelism of the curves in Fig. 5!. This finding
implies a theoretical and numerical puzzle: Isu l

DP indepen-
dent of the dimensionality ford<2, or is it just that the one-
and two-dimensional exponents incidentally take very si
lar numerical values? The likely possibility of them bein
equal is quite intriguing since the return probabilities in s
tems with absorbing states are expected to be rather diffe
in different spatial dimensions. For the contact process
dimensions larger thand52 we find, as expected, dimensio
dependent exponents.

The fact thatug
ZGB.u l

ZGB ~in agreement with field theo
retical predictions@24#! is in marked contrast to well estab
lished findings in the field of reversible transitions, whe
quite genericallyug,u l . A physical explanation for such
discrepancy has been provided.

We have also observed that power laws for persiste
are obtained only at criticality, and the associated expon
do not depend upon the considered initial conditions, un
what is known for other well known reversible systems.

Persistence probabilities have also been evaluated a
. B

ys
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first-order IPT of the ZGB model. Due to the short-live
behavior of the persistent sites we obtained an exponenu l
.3.060.3. However, further effort will be required in orde
to clarify if this apparent power-law behavior reflects mere
a short-time regime followed by a cutoff or if it is a rea
asymptotic effect.

We expect our numerical findings to constitute a valua
step for the development of a theoretical framework in
field of irreversible phase transitions, which is certain
needed.
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