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Random Ginzburg-Landau model revisited: Reentrant phase transitions
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We analyze the phase diagram of the random Ginzburg-Landau model, where a quenched dichotomous noise
affects the control parameter. We show that the system exhibits two types of counterintuitive reentrant second-
order phase transitions. In the first case, increasing the coupling drives the system from a disordered to an
ordered state and then back to a disordered state. In the second case, increasing the intensity of the quenched
noise, the system goes from an ordered phase to a disordered phase and back to an ordered state. We discuss
the general mechanism that produces these reentrant phase transitions, showing that it may appear in other
physical systems, such as a modification of the spin-1 Blume-Capel model proposed to describe the critical
behavior of helium mixtures in a random medium.
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I. INTRODUCTION ing that a deeper investigation of the physics of phase tran-
sitions in random ferromagnets is necessary. Short and long-
Random impurities play a crucial role in the physical range correlated quenched impurities have been also
properties of many systems. For example, in a ferromagneticonsidered for modeA [11], leading to relevant corrections
material the inclusion of random impurities shifts the critical of the mean-field value of critical exponents. Nevertheless,
temperature, modifies the critical exponents, and can eveto our knowledge, there is no complete characterization of
suppress the ferromagnetic phase when the proportion of inthe phase diagram and the reentrant phenomena in these ran-
purities exceeds a certain threshdld. Parallel to experi- dom models.
mental studies with technological motivations, a lot of effort  From the point of view of nonequilibrium statistical me-
has been made from the early seventies to theoretically chachanics, there are relevant studies of the time-dependent GL
acterize the critical behavior and phase diagrams of theseodel perturbed by Gaussian white noise in the control pa-
systemq 2,3]. rameter[12,13. For this case, a mean-field analysis, con-
Restricting ourselves to theoretical studies, we will brieflyfirmed by extensive numerical simulations, shows that mul-
review the effect of disorder and external fluctuations on theiplicative white noise can play a counterintuitive role. For
paradigmatic model of equilibrium phase transitions: thesome values of the coupling, noise can induce the appear-
time-dependent Ginzburg-Land4@L) model, also referred ance of an ordered pha§&2]. The system also undergoes
to as modelA, on a lattice[4,5]. reentrant transitiongl3], which are the result of a nontrivial
Model A can be derived from the Ising model by means ofinteraction between diffusive coupling and multiplicative
a coarse-graining procedufé]. It describes the critical be- noise in spatially extended systems.
havior of anisotropic ferromagnet systef@dd, and the dy- This unexpected and constructive role of external fluctua-
namics of front propagatiofi7]. Moreover, the GL Hamil- tions on spatially extended systems has been a subject of
tonian describes the critical behavior of many physicalincreasing interest in recent yeddst—18. As we have just
systems as it can be interpreted as an expansion of the freeentioned, noise can induce ordered phases, reentrant first
energy around the critical poif6]. and second order phase transitions, and even ordered spatial
Random impurities can be included in the GL model asstructures. More recently19,20], colored noise has been
external fluctuations perturbing the coefficients of the Hamil-studied in the pure noise-induced phase transition model in-
tonian. This procedure can be justified by both microscopiaroduced in[15], bringing out new effects when the correla-
and phenomenological argumefs, and it has been used to tion time of the external fluctuations changes. For instance,
study the influence of inhomogeneities in superconductorin addition to the reentrant phase transition as a function of
[8,9]. However, near the critical point, a perturbative expan-the noise intensity, the model presents a new reentrant tran-
sion shows that only the fluctuations of the control parametesition when the coupling is increas¢tid] as well as meta-
are relevani6]. stability regions[20]. However, the effect of colored noise
Usually, the fluctuations are considered Gaussian distriben the GL equation has been limited only to the additive case
uted, and the model is known as random GL modekdr [21].
model with random temperature. This model has been inves- In this paper we study the phase diagram of the time-
tigated using renormalization group methods, concludinglependent GL model, modél with quenched dichotomous
that randomness in the control parameter causes the appeanpurities, i.e., with a dichotomous multiplicative noise of
ance of a new random fixed poif®]. More recent studies infinite correlation-time perturbing the control parameter.
[10] have revealed that replica symmetry is broken in theThis is an equilibrium problem which, nevertheless, exhibits
paramagnetic phase far away from the critical point, suggesteentrant transitions akin to those found in the field of non-
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equilibrium noise-induced phase transitions. Therefore, the As we said before, in the context of anisotropic ferromag-
present study can be considered as part of the two researdlets, the control parametax, measures the distance to the
lines that we have briefly described in the above paragraphsritical temperature. In this way, Eql) could serve as a
equilibrium systems with disorder and nonequilibrium noise-model for the evolution of the local magnetization in a con-
induced phase transitions. We use and benefit from the teclglomerate of two anisotropic ferromagnets with different
niques of both fields. critical temperatures.

We will see that the inclusion of such a disorder produces The stationary solution of Eq1), for a given configura-
several relevant results. In particular, we show that the modelon of the disorder, is the equilibrium Gibbs state
exhibits two types of reentrant second-order phase transi-
tions. The first one drives the system from a disordered state _exd = BH{ iG]
to an ordered state and back to a disordered one by increas- P= Z '
ing the coupling, as in the pure noise-induced phase transi-
tion models with colored noise. The second transition: orderwhere, due to E¢(2) and the fluctuation-dissipation theorem,
disorder-order by increasing the multiplicative noise8=2. The Hamiltonian is given by
intensity, has no precedent, to our knowledge, in the litera- N 5
ture. We also study the dependence of the phase diagram on ) )
the proportion of impurities. H{ud{ah =2 (Vi) + g 20 (=) )

The structure of the paper is the following. In Sec. Il we
present the model and the mean-field analysis. In Sec. Il wand the local potential at each site is
describe and discuss the phase diagram of the model and its
reentrant phase transitions. In Sec. IV we present numerical (a+ ) ) wf‘
simulations in a two-dimensional lattice that qualitatively V(i ?gi):_T it ©®)
confirm the previous theoretical analysis. In Sec. V we give
an intuitive explanation of several reentrant transitions using The sign of the quadratic term of the potential determines
a decimation technique, and show the generality of thehe local dynamics at each site. I ¢ Z;)<0, we have a
mechanism that produces the main features of the modedingle well potential with a single equilibrium point &t
illustrating the idea with a variant of the Blume-Capel model=0. On the other hand, if¢+ ¢;)>0, the statey;=0 be-
[22] proposed to model the critical behavior of helium mix- comes unstable and(; :¢;) is a double well potential with
tures in a random medium. Finally, in Sec. VI we summarizeyyo symmetric stable points @t =+ Ja+ ¢;.

the main conclusions and present the perspectives of future For an estimation of the phase diagram of the model, we

4

work in this field. use a Weiss mean-field approximation for spatially extended
systemg12]. Replacing, in the diffusive term, the field at the
Il. MODEL: MEAN-FIELD ANALYSIS nearest neighbors by the mean val(g#), we can drop the

lattice index and write down the following equation for the

Consider a scalar field defined ordalimensional square temporal evolution of the field at a generic site:

lattice {¢;}. The time-dependent GL model with dichoto-
mous quenched impurities is given by the following dimen- dep=(a+ ) — PP+D(P)— ) + 7, )
sionless Langevin equation:
b where{ is a random variable with a probability distribution
debi=(a+ &) — lﬂi?”r 4 ; (=) +m, (D given by Eq.(3). This equation is equivalent to the system

dpe=(ax D)=y +D(P)—¢=)+ 7, (8)
where the sum runs over tha Zhearest neighbors of siie
and »; are Gaussian white noises with zero mean and correwhere . is the field at a site wherg=+A.
lation Equation(7) is not a closed evolution equation for the
stochastic procesg, but it can be easily solved in the sta-
(ni(O)m;(t")) =& 6(t—t"). (2)  tionary regime with( /) as a parameter. The stationary solu-
tion reads:
The quenched multiplicative noisésmimic the presence
of disorder. They are Markovian dichotomous processes spa- Pl () =ps Pa(i()) +p_Py(i()),  (9)
tially uncorrelated and with infinite correlation time. The

probability density of the impurities is whereP g (;()) are the stationary probability densities for
the two dynamics defined by E¢B). These probability den-
P({)=p+o(Li—A)+p-_o({i+A), ()  sities are

+ A value. Note that, when referring to the impurities, the

terms probability and proportion can be exchanged in the

thermodynamic limit, since thep.. is equal to the propor- where the potentiaV/(;¢) is defined in Eq(6) andN= are
tion of = A impurities. normalization constants.

where p. denotes the probability that the noise takes the P2 (i) =NTexp{—2[V(if; = A) + Dy p— ()1},
(10
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Finally, the following self-consistent condition must be '. i
fulfilled: . !

(¥)= ﬁ IPS(U(1))d (11) |

This equation hagy)=0 as a solution for any value of \
the parameters. This solution is called ttisordered phase \
However, nonsymmetric solutions exist in some regions of \
the space of parameters. These solutions With+0 are \
called ordered phasesA phase transition occurs when the \ ‘

system is driven from a region with only the symmetric so- — =01 | | Y
lution to a region with ordered phases. o gzgg NI
According to the mean-field theory, phase transitions oc- —-p.=09 S —_
cur at those values of the parameters satisfying the conditior e Tt T R
[12] %0 2 4 6
A

IP( ()

z9<l,0> |(:,//):0d¢:2DfR¢2Ps(¢;O)d¢:1-

12

FIG. 1. Phase diagram for=—0.75 and different values of
p.. The ordered regions are located to the right of the phase
boundaries. The possibility of DOD reentrant phase transitions de-

| v
R

. . . pends on the value gf, .
Equations(11) and(12) can be also derived using a rep-

lica tnclg calculation to average the quenched disorder Wlthcompetition between the two dynamics produces new transi-
the replica symmetry ansafgee the Appendix for detajls

In the casep, =1 or p_=1, the phase boundaries are tions depending on the value of, . In Fig. 3 we plot the

equivalent to the standard mod&l This phase diagram has phase boundaries far=0.75. There is a topological change

been studied with both the mean-field technifil2,23 and around_p+=0.22: below this val_ue, the region of dlso_rde_red
. : . states is connected and the region of ordered states is discon-
2d numerical simulation$5].

nected (see for instance the curve fqr,=0.2, whereas
above p,=0.22 it is the other way aroundsee p,
=0.225). Note that in this case there are two kinds of reen-
trant phase transitions: the one described previo(I3HD)

and a new one order-disorder-ordg@DO) increasing the
noise intensityA. This new reentrant phase transition ap-
pears above a given value of the coupling. In Fig. 4 we show

phase can exist, single=0 is stable in the two possible local the ODO transition by plotting the order parameter as a func-

potentials(6). On the other hand, iA>|a| a fractionp, of  t1ON of A for D=4 andp. =0.2.
sites feels a double well potential and then, for strong enough
couplingD, an ordered phase may appear. In Fig. 1 we plot
the phase diagram far= —0.75 and several values pf, .
Note that, below a certain value pf, , a reentrant transition
disorder-order-disorde(DOD) with the coupling appears.
That is, by continuously increasing the coupling we can first
drive the system from a disordered to an ordered state, as il
the standard modeA, and then back to a disordered state.
This reentrant phenomenon is always present in the systery
below that critical value op, . Note that by decreasing,
the ordered phase shifts to the right, due to the fact that the
fraction of double-well local potentials decreases and then
these potentials have to be deeper, demust be larger, in
order to keep stable the ordered phase. The reentrant trans
tion increasingD is clearly indicated by the behavior of the
order parametem= ()|, as plotted in Fig. 2 wherd =4
andp, =0.3. 0
For a>0, the model presents a richer phenomenology
than in the previous case. K< «, every site feels a double
well potential and therefore an ordered phase appears for a FIG. 2. Order parameter as a function of the couplidgor
given value of the coupling. On the other handAif« the  p,=0.3, a=—0.75, andA=4.

Ill. PHASE DIAGRAM

Let us first discuss the phase diagram in the pland()
given by Eqg.(12). We distinguish two casest<0 and «
>0.

For a negative and\ <|e/|, it is obvious that no ordered
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FIG. 3. Phase diagram fer=0.75 and different values qf, . 6 M ..'7’ T .
Note the saddle point behavior that appears varpingnd the two — re g "
kinds of reentrant phase transitions, DOD and ODO, indicated by 4. ] vg‘;" * .9 . !
the arrows. 5 . Pt | S Ceqd o 1
.y s L 1
IV. NUMERICAL SIMULATIONS 0 des . w w w
0 10 20 30 40 50
We also performed computer simulations of the model in D

two dimensions for different system sizesx L_,_varylng . FIG. 5. Simulation results for the order parameterand the
from L=10 toL =30. We measured several critical quanti- gysceptibility y as a function of the coupling. The value of the
ties in the simulations[5,15: the order parametem parameters are=—0.75, A=4, andp, =0.5. We also plot the
=(|L"2=yy|), the susceptibilityy= BL*[(m?*)—(m)?] with  mean-field order parametésolid line) and two vertical wide solid
B=2, and the second-order cumulant=(m?)/(m)?. Here lines indicating the location of the critical points. The inset graph
() denotes average over time and over disorder realizationshows details of the susceptibility at small

once the equilibrium state is reached. We typically average . . ) )

over one thousand configurations of disorder. Finite-size M Fig- 5 we plot the numerical simulation results of the
scaling theory predicts that the second-order cumulant dog¥der parameter and the susceptibility as a function of the
not depend on the size of the system at the critical fai, ~ coupling fora=—0.75,A=4, andp., =0.5. Notice that the
providing an accurate method to determine the position ofeentrant DOD behavior of the order parameter is in qualita-

the critical points. tive agreement with the mean-field order parameter also plot-
ted in the figure. The behavior of the susceptibility, also
0.8 ' plotted in Fig. 5, at the critical points with the two peaks

becoming higher as the size of the system increases, proves
the presence of two second-order phase transitions. Vertical
wide solid lines in Fig. 5 indicate the locations of the entrant
and reentrant phase transitions obtained by means of the
second-order cumulant technique.
Figure 6 is analogous to the previous one but &or
m o, | | =0.75,D=9, p,=0.2, and varying\. In this case we have
) an ODO reentrant phase transition by increasing the multi-
plicative noise intensity. We also notice that the susceptibil-
ity behaves at the critical points in a way similar to the pre-
02 I , vious case indicating again the existence of second-order
phase transitions. The second-order cumulant has been used
to locate the entrant and reentrant critical points, indicated
again by wide solid lines in Fig. 6.
0 w s ‘ Figures 5 and 6 show a novel and interesting feature of
A the mean-field approximation. In equilibrium and in most
nonequilibrium phase transitiof$2,13,13, this approxima-
FIG. 4. Order parameter as a function af (p,=0.2, « tion overestimates the size of the regions in the phase dia-
=0.75,D=4). The shape of the curve indicates the ODO reentrangram with ordered phases. This could be expected since, in
phase transition mentioned in the text. the mean-field approximation, all the sites interact with each

06 b
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08 - - visualize the system as a small number of particles in double
well potentialsfwe will refer to them as double we(DW)
siteg surrounded by particles in single well potentigdsgle
well (SW) sited.

When the coupling between sites is zero, there is no or-
dered phase; particles in SW sites fluctuate around zero,

whereas those in DW sites fluctuate either around the nega-

:t:;g tive or the positive minimum of the potential. The total
oL=30 “magnetization,” i.e., the average of the field, is therefore
—— Mean Field zero. If we increase the coupling and the double wells are
deep enough, the DW sites act as “seeds” of domains with
positive or negative magnetization. These domains possess a
kind of surface tension due to the coupling, and eventually
* one of them grows covering the whole system. However, if
8 ] the coupling is strong enough, the SW sites surrounding the
DW sites do not allow the creation of such domains.
6 : | . This intuitive argument explains how the reentrant transi-
x b tion with the coupling occurs. However, it can be translated
: into a more quantitative theory that we cdéicimation tech-
e nique

06

0.2

¢ .. o 0l - ey A. Decimation
e e,

. A decimation theory can be introduced for a globally
0 2 4 A 6 8 10 coupled random GL model. The idea is to integrate out the
SW sites, i.e., those sites whare- A takes a negative value,
FIG. 6. Order parameten and susceptibilityy obtained from in the partition function:
numerical simulations varying («=0.75,D=9, andp,=0.2).
We also plot the mean-field order parametsolid line) and the
positions of the critical points with two vertical wide solid lines.

2= fRNd'Zqu_BHGc({l/fi}i{G})], (13

other. However, in our case the mean-field apprOXimatiOQ/vcpered&:HiNzldwi and the Hamiltonian is given by

underestimates these regions. This fact has also been foun
in a nonequilibrium model with colored noig&9] and we N N
conjecture that it is related to the existence of an order- ) B ) D 2

disorder transition with the coupling. HGC({¢i}'{§i})_izl Vil + oy ;1 (=)

(14)

V. DISCUSSION o _ _
In order to obtain simple analytic expressions, we ap-

In this section we explore the mechanisms underlying thgyroximate the local potential at SW sites by a parabolic po-
phase transitions reported above. tential, i.e.,

The mechanism for the ODO reentrant transition as a
function of A for «>0 andp. small could be described as

. a—A 1 a—A

follows. If A=0, all the local potentials have a double well V(g —A)=— —llfi2+ _¢i4: — —z,/;iz. (15)
structure and then, if the coupling is strong enough, the sys- 2 4 2
tem is in an ordered phase. Whar> «, the local potential
of the p_ sites have a single well and as a consequence, afhe approximation is valid itt— A <0 and the field is small
order-disorder transition is induced. If we further increAse  enough. The decimation process, carried out on a globally
the influence ofp_ sites fades out inducing the disorder- coupled random GL model, yields the approximate partition
order phase transition. The reason is that for the double wefunction:
potentials, the depth of the minima decreases -a&
+A)?/4, whereas the minimum value of the single well po- _ _
tential remains equal to zero for any value/of Zocf N dyp,exp — BHed{Witicst ), (16

We will focus now on the DOD phase transitions as a 1
function of the coupling. These transitions occur fot A R
>0, a—A<0, andp, small, i.e., when sites with negative whered,=II;_s+dy; andS™ is the set of DW sites, i.e.,
multiplicative noise feel a single well potential, and sitesthe set of sites where the noise/js= A. The number of these
with positive noise, which are a small fractign, of the  sites is approximatelil,=Np, . The effective Hamiltonian
system, feel a double well potential. In this case, we caris:
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4

FIG. 8. IncreasingA trajectories calculated by the decimation
o ) ) . ) method fora=0.75, D=4, and different values gb, . The wide
FIG. 7. Decimation technique trajectories for different values ofsglid line represents the mean-field phase boundaries of the nonran-

P+ (a=-0.75, A=4). The wide solid line indicates the mean- gdom modelA and the arrows the direction of the trajectories as one
field phase diagram of the nonrandom ma8leThe arrows indicate  jncreasesh.

the direction of the trajectories as one increades

. The four trajectories in Fig. 7 start &* =0 and a*
~ a* , 1, =a+A=3.25 (D=0). This point is obviously in the disor-

Hoc{¥ili ES+)=4ES+ [ - 7‘/” + Z‘/’i dered phase region. The trajectories then move upwards and
' some of them enter into the ordered phase region. This first
5 disorder-order transition is due to the increase of the effec-

*IN .E+ (=) J (A7) tive couplingD*. For some values of, (p.=0.3 in Fig.
Tes 7), the trajectories get back to the disordered phase region
through a reentrant phase transition, that is due to the de-

This Hamiltonian has the same functional form as the Hamil-Crease of the effective control parametér We see the two
tonian of anonrandomGL model with N, sites[cf. Egs. P '

! i effects of an increase of the coupliBy it promotes the links
((alffzc"tiicg (Iig)rn%?gn(i;? ;\rlghgié;nog)'/ The parameters of the between sites inducing a disorder-order phase transition and

reinforces the influence of the SW sites on the rest of the

*

D(1-p.)(a—A) system, inducing an order-disorder phase transition.
a*=a+A+ - , Trajectories in Fig. 7 diverge for finite and positiué if
Dp,+A—«
(18 a+A(2p,—1)>0. (19
. D+A—a
D*=Dp. Dp.+A—a’ If this condition is fulfilled, the system presents a single

disorder-order transition. On the other handaif-A(2p,
Therefore, the DW sites of the original model now form a —1)<<0, there can be either no transition at all or a reentrant
nonrandom GL system with effective couplifyf* and ef-  transition. This condition allows us to reproduce a number of
fective control parametar* . Figure 7 depicts the mean-field features of the phase diagrams of Figs. 1 and 3. 40
phase diagram of a nonrandom GL model in the plandFig. 1), if p,<1/2 we have either DOD or no transition,
(D*,a*). For given values oD, a, p., andA in the origi-  whereas ifp, >1/2 there is DO transition foA>|a|/(2p
nal model, by applying the transformation given by ELp), —1). This implies that the curves in Fig. 1 fpr, >1/2 have
one can check whetheD{ ,a*) is in the region of ordered a vertical asymptote & =|a|/(2p, —1). Fora>0 (Fig. J),
or disordered phase. In the same way, we can map trajectd- p,>1/2 we have DO transition for any value d,
ries in the original space of parametel®,¢,A,p,) into  whereas ifp, <1/2 there is DO transition only foA
trajectories in the phase diagram of Fig. 7. <al(1—2p.). This also locates at\=a/(1—2p.) the
For A, a, andp, constantD* is an increasing function vertical asymptotes of all the curves in Fig. 3.
of D, whereasa™® is decreasing. This can be easily ex- The decimation technique also accounts for the phase
plained: the couplind®* between DW sites in the decimated transitions occurring by increasiryg In Fig. 8 we have plot-
system increases with the couplibyin the original model; ted on the phase diagram of the nonrandom GL model the
on the other hand, the effective control parametér de- trajectories resulting from varyind with «=0.75, D=4
creases due to the influence of the decimated SW sites. It caand several values qf, . D* is a decreasing function df
even be negative, i.e., those sites that were DW sites in thieut «* does not have a monotonous behavior. In any case,
original model become SW sites after the decimation. we can clearly see the ODO transitions in the figure. More-
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over, Eq.(19) tells us that forA —«~ we haveD* =Dp, and 4 ' ' '
a diverges. Therefore, the system is in an ordered phase fo
A—oo for any value of the other parameteg@ssumingD
#0).

B. The random Blume-Capel model i

One of the most important results of the present work isD , | /
the generality of the mechanism behind both the DOD and /
ODO phase transitions: external fluctuatiofimpurities
producing the mixture of two dynamics. We expect to find a
similar behavior in a number of different systems. To sup- 17
port this idea, here we study the phase diagram of the so
called Blume-Cape(BC) model[25], a spin-1 system with
Hamiltonian,

0
0.5

N
Hec{SH =2, [U<si>—32 sjs], (20 |
i=1 ) FIG. 9. (A,D) phase diagram for the random Blume-Capel
model for different values g, (8=2, «=0.75). Note the saddle-
wheres; is the spin variable that takes the values Q, point structure and the reentrant DOD and ODO phase transitions
This model was proposed to describe the critical behaviogery similar to those occurring in the random GL model.

of 3He-*He mixtures. The’He atoms are represented by the
stateS=0, and “He by S==+1. The phase transition to a 1
superfluid state corresponds to a symmetry breaking between
S= =1 states.

The termU(S) = —)\8,2/2 is the local potential at each
site. Note thafx plays the equivalent role at in the local

potential of the GL model. In the BC model ¥<0, the . ; >

local dynamics favors the zero spin solution, whereas if n the (4,D) plane for different values gf. anda=0.75.

>0 the nonzero spin solutions are energetically more favor'-A‘S in the random GL model, the random BC. ;ystem also

able shows DOD and ODO reentrant phase transitions and the
The inclusion of external fluctuations in the local dynam-s""ddle'pOInt structure gs, changes.

ics of the BC model will ensure one of the ingredients

needed for the appearance of DOD and ODO phase transi-

tions, dynamics mixture. Consequently, we perturb the BC | this work we used different analytical techniques and

with probability density(3) obtaining the following site-  counterintuitive reentrant phase transitions in the GL model

P+ P-
p— + ,
D 1+4+3eP et 143ePorh

(23

where we have chose@=2 in order to compare with the
results for the GL model. In Fig. 9 we plot the phase diagram

VI. CONCLUSIONS AND PERSPECTIVES

dependent local potential,

N+
U<si;§i>=—748.2-

perturbed by quenched dichotomous fluctuations.
Disorder-order-disorder transitions appear when the cou-

pling increases. The fact that the coupling can destroy an

ordered phase was first found in a nonequilibrium phase tran-

sition induced by colored noigel9]. Here we have shown
This random version of the BC model has been recentlfhat the same phenomenon can be observed in equilibrium
proposed in the context of the critical behavior of a mixturedisordered system.
of *He and “He in random media, particularly an aerogel e have characterized order-disorder-order transitions
[22]. One of the most striking results, when including ran-when the intensity of the noise increases. This sequence of
dom fields in such a model, is the elimination of first-orderransitions is the opposite to those found in nonequilibrium
phase transitions. models where weak noise has an ordering role whereas
To clarify the relationship between the random BC andstrong noise is destructive.
GL models, let us definB=4dJ ande=\+D. In terms of We have also given an intuitive explanation of these re-
these parameters, the Hamiltonian of the random BC modedntrant phase transitions using a decimation technique that
now reads allows to map trajectories in the phase diagram of the ran-
N p 5 dom system into trajectories in a nonrandom GL model.
TG Our work may be relevant to different situations regardin
Hrec{SHdH= izl 2 S'2+ ad <]E,> (S; _Si)Z]' anisotropic ferrgmagnets. The model considered cangdescr?be
(22)  the critical behavior of a conglomerate made by two kinds of
anisotropic ferromagnets with different critical temperatures.
The replica symmetry ansatz gives us the following equain this context, a simple experiment could be devised to
tion for the critical pointgsee the Appendix check some of the results obtained in this work, as the mag-
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netization of asingle anisotropic ferromagnet could be  Using the Hubbard-Stratonovich transformation:

driven through ODO reentrant phase transitions by heating

the material in a random arrary of points in a dichotomous ay?_ 1 J

way. . . . T V2mJR
Moreover, as already mentioned in the Introduction, the

GL model is a fundamental model that appears in manyyith y=3,4; and a=pD/(2N), and definihg m

problems of critical phenomena. We have studied the influ=y,/3/(4DN), the partition function can be written as
ence of dichotomic disorder for a conserved model, the

modelA, but we expect this type of disorder to be relevant to 2DN . N D ,
other kinds of dynamics as phase separatiprodel B), Z= B—Wﬁ%dmLNddfex —/3';1 (V(lﬁi )+ Ewi)
N

exp( — x2/2+ xy\2a)dx, (A2)

structural transitiongmodelC), binary fluids(modelH), or
superfluid phasegnodel F). 2DN
Most of the features discussed for the random GL model ~ — ——m2+2Dm>, ¥,
are also exhibited by a random Blume-Capel model, used to i=1
describe the critical behavior of helium mixtures in a random
media, showing that our results do not depend on the details
of the model and are present whenever a system possesses N
two types of local dynamics with one and two stable states. Z= f dm dlZfH gfwiim), (A4)
Finally, we want to briefly discuss the guidelines for fu- R RN =1
ture work on the field. The inclusion of a finite correlation-
time perturbation on the external fluctuations will induce
non-equilibrium noise-induced phase transitions. In particu- D 2D
lar, the results of Ref$12,13 should be recovered when the f(;m)= —,3( V(i &)+ 5 lplz) — —m?+2Dmy

: (A3)

After some simple manipulations, EGA3) becomes

where

correlation time vanishes. Therefore, finite correlation time B

should provide information about the crossover between 1 2DN

these two models. We then expect an even richer phenom- + mln B (A5)
a

enology and, in particular, the appearance of a characteristic
correlation time for which the reentrant character of the tran-,

g . ST e e nnealing averages are derived from the annealing free en-
sitions vanishes. Work in this direction is in progress. 9 g g

ergy Fan= —IN(Z)/ B where(-) denotes the average over
configurations of disorder. Averaging EGp4) gives
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= | dm dNFmI (AB)
APPENDIX QUENCHED AND ANNEALED IMPURITIES i

The macroscopic properties of disordered systems itvhere we have used the fact thiatare independent random
equilibrium can be calculated by means of two types of avvariables. The functiofr(m) is given by
erages over the configurations of disorder: quenching and
annealing. The former corresponds to quenched or frozen F(m)ziln(@) _ Qm
impurities and the latter to impurities that evolve and ther- 2N B B
malize at the time scale of measurement.

The starting point of both averages is the partition func- +InJ dy{exd — BV(4;0)])
tion of the system for a given disorder configuration: R

2

xexf — (BD/2) y?+2Dmy]. (A7)
z fRNd¢eXF[ BRG] (A1) In the thermodynamic limitN— o, only the saddle points
R of F(m) contribute to the integral in EqA6). The saddle
where dy=1I" ,dy; and H({}.{Z}) is the globally points are the solutions of the equatiBh(m)=0, i.e.,
coupled Hamiltoniar{14) of the system that depends on the
field {;} and also on the disord€i;}. This makes the

model simpler than systems where disorder affects the cou- m= 2 ‘Hdw Y Pandgm) (A8)
pling between sites, as the Sherrington-Kirkpatrick model
[26]. whereP4,{ ¢;m) is the probability distribution,
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Pand ;M) =N(m){(exd — BV(¥;0)]) relevant saddle points are those with=m for all y. With
this, the functionF on this subspace reads:

XEX[{—?IIIZ'FZDHN/I (A9)

2 )= n (ZDN)_ZDn 24| J'd
N(m) being a normalization constant. Jf are dichotomous (M= B g ™I 0¥
variables, as in the model studied in the paper, we have 8D N
Pand 3m) = N(M)[ P exp{ ~ BV(4:A)} Xex"[‘ﬂv(‘/”mex’“( - 7¢’2+2Dm‘/’” >
+p_exp—BV(;—A)}] (A14)

BD .
X exp( -5 J2+2Dmyr|. (A10) Second, we assume that the limits>0 andN—c commute
and the functior(m) can be analytically extended for non-

The solutionm of Eq. (A8) is the annealing average of integern and expanded arount=0 as
EiN:lwi /N in the thermodynamic limit. Then, the phase dia-
gram of the system can be found by a similar analysis as the _ n 2DN 2Dn
( ) 1+nln f dy
R

B

one carried out in Sec. Il. EquatidA8) plays identical role F(m)=55In - 7m2+|n

as the self-consistency equati@iil) and so doesn as ().

Notice, however, thaP,,{;m) is not equal toP(;(¥)) BD

in Eq. (9), which leads to different phase diagrams from Xexr{—ﬁV(w;é)]ex;{ —7¢2+ 2Dmlﬂ>>
those calculated in Sec. Il.

On the other hand, quenched averages are obtained from 1 [2DN\ 2D
the quenching free energ¥y,ei= —(1/8)(In2). The aver- =n Wln(ﬁ_w) - ?m2+<lnf dys
age of the logarithm can be calculated using the replica trick f
[26]: 8D
xexfg — BV(¢;)]exp — — > +2Dmy| ) |.
in2)— lim =21 All :
(& =lm = (ALD (A15)

The averagéZ") can be interpreted as the partition func- Thus, the equation for the saddle pointsFdin) is
tion of a set ofn replicas of the system. The replicas do not

interact with each other but the configuration of disorder is 8
the same for all of them. Consequently, they are not statisti- _P j .
cally independent. The average 8f' can be written as m=3 Rd‘// ¥ Paued M), (A16)

n

n N
(2= jﬁn( 71;[1 dmy> < H de¢yeXF[f(¢7;m7)]> whereP e { #;m) is the probability distribution

y=1
. = Pquer(l/f;m)
:ﬁRn Hl dm, JexdNF({m,p)], (A12) o
h exr{—ﬁv(¢;§)—7¢2+zom4
with _
Jd¢exF{_BV(¢'§)_@¢2+2Dm¢}
~ n [2DN| 2D & , . : 5
F({my}):mm B_7T —? ;1 m;, ol
+In< 11 jddfyexli—,BV(l//yig)] If ¢ are dichotomous variables we recover the self-

e consistency equatiofll) and thus the same phase diagram.

8D Therefore, we have proven that the mean-field analysis of
><exp( — 2 +2Dmy )> (A13)  Sec. Il is equivalent to quenching averages under the as-
2" Ty sumption of symmetry of replicas.

Quenching and annealing give rather different phase dia-

Once more, the integral in E¢A12) could be solved in grams. As mentioned in Sec. VI, we expect that the GL
the thermodynamic limit by finding the saddle points of model perturbed by dichotomous noise with finite correlation
F({m,}). In this case, further assumptions have to be madetime will give a phase diagram similar to the one obtained by

First, thereplica symmetry ansatavhich assumes that the using annealing averages.
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