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Weighted density functional theory for simple fluids: Supercritical adsorption
of a Lennard-Jones fluid in an ideal slit pore

M. B. Sweatman
Department of Chemistry, Imperial College of Science, Technology, and Medicine, London, SW7 2AZ, United Kingdom

~Received 5 October 2000; published 20 February 2001!

The adsorption of a Lennard-Jones fluid in an ideal slit pore is studied using weighted density functional
theory. The intrinsic Helmholtz free-energy functional is separated into repulsive and attractive contributions.
Rosenfeld’s accurate fundamental measure functional is employed for the repulsive functional while another
weighted density functional method is employed for the attractive functional. This other method requires an
accurate equation of state for the bulk fluid and an accurate pair-direct correlation function for a uniform fluid,
determined analytically or numerically. The results for this theory are compared against mean-field density
functional theory and grand canonical ensemble simulation results, modeling the adsorption of ethane in a
graphite slit. The results indicate that the weighted density functional method applied to the attractive func-
tional can offer a significant increase in accuracy over the mean-field theory.
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I. INTRODUCTION

Considerable progress has been made in recent decad
the understanding of phenomena arising from the interac
of fluids with surfaces@1#. From a theoretical perspective
density functional theory~DFT! has played a significant pa
in this increasingly active field. In the past two decad
there have been rapid improvements in the accuracy of d
sity functional methods that treat repulsive forces@2–8#, but
there has been little improvement in methods for treat
attractive forces, e.g., the dispersion forces modelled by
Lennard-Jones~LJ! fluid. A popular method for constructing
a density functional for such fluids is to separate the intrin
excess Helmholtz free-energy functional,Fex , into repulsive
and attractive contributions,

Fex@r~rW !#5Frep@r~rW !#1Fatt@r~rW !# ~1!

wherer(rW) is the average one-body density and other no
tion is obvious. The pair potential,f, is also separated into
corresponding repulsive and attractive contributions,

f~r !5f rep~r !1fatt~r !. ~2!

To achieve this separation, the prescriptions of Barker
Henderson~BH! @9# or Weeks, Chandler, and Anderso
~WCA! @10# are often invoked. The repulsive functional
then usually approximated by a hard-sphere functional w
an appropriate choice of hard-sphere diameter. The attrac
functional is often treated in mean-field fashion. The resu
that the approximation for the attractive functional is usua
considerably less accurate than the approximation for the
pulsive functional. At high temperatures, where the repuls
functional dominates fluid behavior, this is often not ve
important. But at lower temperatures it becomes more imp
tant that the attractive functional is accurate.

Several methods that attempt to improve upon the me
field functional for attractive forces have been proposed.
the LJ fluid they include modification of the effective har
sphere diameter@11,12# and modification of the form of the
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‘‘effective’’ attractive interaction@13#. For more general flu-
ids they include truncated density expansions@14# and meth-
ods based on a perturbative scheme@15#. Another method
due to van Swol and Henderson@16# is similar to the one
presented in this work, the significant difference being
form of the weight function used to define a smoothed d
sity. Whilst being effective for some applications, the acc
racy of these approaches has rarely been compared or e
lished for a wide range of temperatures, densities, and m
pair potentials.

This work focuses on the construction of a weighted d
sity functional method and application of this method to t
attractive functional of the LJ fluid. The performance of th
method is investigated by comparing results for a LJ flu
modeling the supercritical adsorption of a model of ethane
a planar graphite slit, with mean-field theory and simulatio

II. THEORY

The WDA method is developed quite generally and co
be used to describe both attractive and repulsive forc
However, it is recognized that the inherent approximations
this method will generally not be as accurate for repuls
forces as established repulsive functionals@e.g., the funda-
mental measure functional~FMF! for the hard-sphere fluid o
Rosenfeld and other workers@4–8## and so in this work the
WDA method is applied to the attractive functional only.

The grand potential functional,V@r(rW)#, is defined such
that @17#

V@r~rW !#5Fid@r~rW !#1Fex@r~rW !#

2E drWr~rW !@m~rb!2Vext~rW !#, ~3!

whereFid is the exact ideal-gas Helmholtz free-energy fun
tional, Vext is the external potential andm(rb) is the reser-
voir fluid chemical potential which is determined by the re
ervoir ~bulk! density,rb . The ideal-gas functional is given
by
©2001 The American Physical Society02-1
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Fid@r~rW !#5b21E drWr~rW !„ln@L3r~rW !#21…, ~4!

where L is the de Broglie thermal wavelength andb21

5kBT is the inverse temperature. Minimization of Eq.~3!

with respect tor(rW) for a given chemical potential

S dV

dr~rW !
D

m

50 ~5!

yields the Euler-Lagrange equation for the density profile

r~rW1!5rb exp„2b@Vext~rW1!2mex~rb!#1c(1)~rW1 ;r!…,
~6!

wherec(1)(rW;r) is the first functional derivative of2bFex

with respect tor(rW), and bmex(rb), the excess chemica
potential of the bulk fluid, is equated with2c(1)(rb). Given
mex(rb) andVext as input, and an approximate excess fre
energy functional, the approximate equilibrium density p
file and adsorption can be determined@assuming
d2V/dr(rW1)dr(rW2).0 at equilibrium#.

The adsorption is often of great importance, in both e
perimental and theoretical studies. For a planar geometry
adsorption,G, is defined by the Gibbs adsorption equati
on an isotherm

AG52S ]Vex

]m D
5E drW@r~rW !2rb#2S ]Fex

]m D
r(rW)

2E drWS dVex

dr~rW !
D

m

S ]r~rW !

]m
D , ~7!

whereVex5V1PV is the excess grand potential~note the
superscriptex which denotes exess over bulk, rather than
subscriptex which denotes excess over ideal gas!, P is the
bulk pressure andV is the volume of the system. An approx
mate functional will properly satisfy the Gibbs adsorpti
equation if the last two terms on the right-hand side are z
i.e., if Fex is independent of the chemical potential~or den-
sity! of the bulk fluid and if Eq.~5! is satisfied. Then the
observed adsorption,G05A21*drW(r(rW)2rb), can be
equated withG.

A. Density functional mean-field theory

The intrinsic excess Helmholtz free-energy can be
pressed formally@2,17# by
03110
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bFex@r~rW !#5E
0

1

da~a21!E drW1E drW2r~rW1!r~rW2!c(2)

3~rW1 ,rW2 ;ra!

5bFrep@r~rW !#1E
0

1

da~a21!

3E drW1E drW2r~rW1!r~rW2!catt
(2)~rW1 ,rW2 ;ra!,

~8!

wherea parametrizes a path between the zero-density fl
andr(rW) such that

r~rW;a!5ar~rW ![ra ~9!

and the pair-direct correlation function,c(2)(rW1 ,rW2)
5dc(1)(rW1)/dr(rW2), is the second functional derivative o
Fex with respect tor(rW). Alternatively, for a fluid with two-
body ~pair-potential! forces only, it can also be shown tha

Fex@r~rW !#5Frep@r~rW !#

1
1

2E0

1

daE drW1E drW2r~rW1!r~rW2!g(2)

3~rW1 ,rW2 ;fa!fatt~r 12!, ~10!

where nowa parametrizes a path between the repulsive c
tribution to the pair-potential and the full pair potential su
that

f~r ;a!5f rep~r !1afatt~r ![fa ~11!

andg(2)(rW1 ,rW2 ;fa) is the pair-distribution function. DFMFT
can be easily derived by settingcatt

(2)(rW1 ,rW2 ;ra)

52bfatt(r 12) in Eq. ~8! or by settingg(2)(rW1 ,rW2 ;fa)51 in
Eq. ~10!. For simple fluids these approximations are exac
the asymptoticr→` limit; hence the terminology ‘‘mean
field.’’ The excess Helmholtz free-energy functional b
comes

Fex@r~rW !#5Frep@r~rW !#

1
1

2E drW1E drW2r~rW1!r~rW2!fatt~r 12!.

~12!

DFMFT is simple to implement and gives reasonable res
for a range of fluid phenomena. Consequently, it has fou
widespread application despite its crude assumption conc
ing the attractive part of the inhomogeneous fluid pair-dir
correlation function, namelycatt

(2)(rW1 ,rW2)52bfatt(r 12) for
all fluid states. The bulk-fluid equation of state generated
this functional, with a suitable hard-sphere functional f
Frep , is not very accurate for the LJ fluid. For this reaso
methods have been suggested that modify the effective h
2-2



lk
w
u
ke
th
it
h
tio
o

su
r
on
th

-
a
ti
ea

fo
-
la

ca
r

d
e
ki

bu
ia

y

cle

nt
y
o

th
uni-

,
n-

a in
n

ion
-

s-

on
the

fi-

.
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sphere diameter enteringFrep @11,12#, and sometimesfatt
@13#, to improve the bulk equation of state~EOS!. The pre-
scription of Luet al. @11# improves some aspects of the bu
thermodynamic properties of DFMFT for the LJ fluid at lo
temperatures, but it is not accurate in the region of the b
critical temperature. The prescription of Walton and Quir
@12# fixes the hard-sphere diameter to guarantee that
chemical potential of the bulk fluid generated by the dens
functional theory agrees with an equation of state. While t
prescription does not properly satisfy the Gibbs adsorp
equation~7! because the repulsive functional is dependent
the bulk density through the hard-sphere diameter, the re
ing inconsistency in Eq.~7! is presumably small in thei
application to supercritical adsorption. Velasco and Taraz
@13# have performed several studies of the adsorption of
LJ fluid with anad hocmodification for the attractive inter
action,fatt . While this method has been shown to give re
sonable results at subcritical temperatures for the adsorp
of a Lennard-Jones fluid in planar geometries, it is not cl
how this method can be applied more generally.

B. The WDA method

The WDA method is essentially a crude method
implementing a WDA functional for fluids for which an ac
curate equation of state is known but the pair-direct corre
tion function can be accurately determined by numeri
methods only. The method presented in this work was fi
described in@21#. It is similar to the method of van Swol an
Henderson@16# who constructed a WDA for the attractiv
functional of the square-well fluid. The work of Sokolows
and co-workers@22# also has some similarity in that a WDA
is used to construct a functional for the associative contri
tion to the total Helmholtz free-energy of a model assoc
ing fluid.

The excess Helmholtz free-energy is approximated b
weighted density functional given by

Fex@r~rW !#5E drWr~rW !Cex„r̄~rW !…, ~13!

whereCex is the excess Helmholtz free-energy per parti
of a bulk fluid with densityr̄. The weighted density,r̄(r ), is
defined by

r̄~rW1!5E drW2r~rW2!w„r 12; r̄~rW1!…, ~14!

where w„r 12;r(rW1)… is a normalized, density-depende
weight function. The weight function is itself determined b
requiring the functional to generate accurate pair-direct c
relation functions for all uniform densities, i.e.,

2b21c(2)~r 12;r!5Cex8 S dr̄~rW1!

dr~rW2!
1

dr̄~rW2!

dr~rW1!
D

1rCex9 E drW3

dr̄~rW3!

dr~rW1!

dr̄~rW3!

dr~rW2!

1rCex8 E drW3

d2r̄~rW3!

dr~rW1!dr~rW2!
, ~15!
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where8 and 9 indicate the first and second derivatives wi
respect to density and all quantities are evaluated for a
form density. Thus, in Eq.~15!

dr̄~rW1!

dr~rW2!
5

dr̄~rW2!

dr~rW1!
5w~r 12;r!,

d2r̄~rW3!

dr~rW1!dr~rW2!
5w8~r 13;r!w~r 23;r!1w8~r 23;r!w~r 13;r!.

~16!

When Cex and c(2)(r ) can be approximated analytically
then with a suitable approximation for the density depe
dence ofw(r ;r), Eqs. ~15! and ~16! can be solved to find
w(r ;r). This is essentially the approach used by Tarazon
@4#. When the bulk-fluid pair direct correlation function ca
be determined approximately only atn nonzero density
points the weight function can be expanded tonth order in
density

w~r ;r!5(
i 50

n

rnwi~r !. ~17!

Because it becomes increasingly difficult to find the solut
set of weight functions,wi , as n increases, this work em
ploys a linear approximation forw, i.e.,

w~r ;r!5w0~r !1rw1~r !. ~18!

With an analytic approximation forCex and with c(2)(r )
determined approximately at one nonzero bulk density,r1,
the system of equations~15!, ~16!, and~18! can be solved at
r1. The weight functions are given by

w0~r !52bc(2)~r ;r50!/2Cex8 ~r50!,

w1~k!5@2b1~b224ac!1/2#/2a,

a5r1
3Cex9 ~r1!12r1

2Cex8 ~r1!,

b52r1
2Cex9 ~r1!w0~k!12r1Cex8 ~r1!@11w0~k!#,

c5r1Cex9 ~r1!w0~k!212Cex8 ~r1!w0~k!1bc(2)~k;r1!,
~19!

wherek indicates the Fourier transformed quantity. It is a
sumed that the linear approximation~18! is sufficiently ac-
curate for densities other thanr1, i.e., that with Eq.~18!

c(2)(rW1 ,rW2) is sufficiently accurate for all densitiesr(rW).
These equations require thatCex is consistent with
c(2)(r ;r1). For example, for hard-spheres the PY soluti
@23# for these quantities can be used. The presence of
square-root term indicates that Eq.~19! might not have real
solutions for some fluid systems. In this work no such dif
culties are encountered for the LJ fluid.

Finally, the remaining parameterr1 must be determimed
In this work, anad hocrelation is suggested
2-3
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r15

E drWu¹r~rW !ur̄~rW !

E drWu¹r~rW !u
. ~20!

This forces the functional to generate accuratec(2)(r ) for
uniform densities close tor̄(rW8) whererW8 is the position in
the fluid where the structure is most inhomogeneous. W
this choice forr1 the complete functional avoids reference
the bulk fluid, which could lead to thermodynamic incons
tencies@24#.

In this work the functional described above is employ
for the attractive functional of the LJ fluid only, with th
hard-sphere FMF employed for the repulsive function
Thus, all occurencesFex , Cex andc(2) in Eqs.~13! to ~19!
should be exchanged forFatt , Catt and catt

(2) respectively.
Since the repulsive functional is approximated by Ros
feld’s hard-sphere FMF@6#, Catt5C2CPYHS and catt

(2)

5c(2)2cPYHS
(2) , where the hard-sphere~PYHS! functions are

calculated using the same hard-sphere diameter as us
the repulsive functional.

However, the Lennard-Jones fluid has more complex
havior than the hard-sphere fluid and there does not yet e
an accurate analytic EOS for this system that is also con
tent with accurate pair-direct correlation functions. To for
a solution to Eq.~19! the inputcatt

(2)(r1) is manipulated by
simply scaling it by an appropriate factor so that it do
agree withCatt . It will be seen that this crude manipulatio
is sufficient to produce accurate results for supercritical
sorption.

Thus the complete description for this WDA method
given by Eqs.~13!, ~14!, ~18!–~20!. As with Tarazona’s
hard-sphere functional@4# ~as opposed to Rosenfeld’s FM
for hard-spheres@6#!, the above method uses thre
dimensional bulk fluid data as input in its construction. Th
this functional cannot be expected to be very accurate as
effective dimensionality of the nonuniform fluid is signifi
cantly reduced.

As with many other WDA functionals, this WDA metho
generates direct correlation functions to all orders, i.e., fo
general fluid

2bdnFex

dr~rW1!dr~rW2!, . . . ,dr~rWn!
5c(n)~rW1 ,rW2 , . . . ,rWn!Þ0

~21!

for n>0. This is not achieved by second-order approac
such as DFMFT and the method of Velasco and Taraz
@13# or by truncated density expansion approaches@14# ~by
definition, truncated density expansion theories generate
rect correlation functions up to the order of truncation onl!.

The accuracy of a DFT method can be estimated by
amining c(n) generated for uniform fluids. For this WDA
method, the accuracy ofc(0) andc(1) for a uniform fluid are
determined by the accuracy of the equation-of-state,C. The
method generates accurate pair-direct correlation funct
for uniform fluid states close tor50 andr5r1 ~assuming
that the inputc(2)(r1) is accurate! and so is likely to produce
03110
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reasonably accurate fluid structure for an inhomogene
fluid. Thus this WDA approach is likely to be more accura
than the perturbation approaches@15# based on the expres
sion ~10!. These approaches are not accurate for dense fl
@16,25# because they overemphasize structure in pair-di
correlaion functions for dense fluids. A similar criticism ca
also be leveled at the method of Velasco and Tarazona@13#.
These authors modify the prescription for the effective ha
sphere diameter,d, and the form of the attractive pair
potential,fatt(r ), entering Eq.~12! so that accurate densitie
for coexisting bulk liquid and gas phases are generated
the resulting DFT. They choose anad hocmodification for
fatt(r ) by considering the perturbation expression~10!. As
with the perturbation approaches@15#, their approach tends
to overemphasize attractive pair correlations in dense flu
@21#. Returning to the WDA method, the form of uniform
fluid direct correlation functions,c(n), for n.2 is not con-
trolled, although their magnitude~given by integration over
n21 spatial dimensions! is determined byC.

If all terms in Eq.~23! are evaluated explicitly, then thi
WDA method will satisfy the Gibbs adsorption equation a
yield consistent and reasonably accurate values for ther
dynamic quantities. This is generally not achieved by
truncated density expansion approaches@14# as explained in
@24#.

This WDA method is qualitatively similar to the approac
of van-Swol and Henderson@16#. Their theory is also ex-
pressed by Eqs.~13! and~14!, but they choose a less accura
expression forw(r ;r) than employed in this work. In par
ticular, they do not enforce the requirements~18!–~20!. It is
emphasized that these requirements are important for ge
ating accurate structure in the inhomogeneous fluid. Rat
they interpolatew(r ;r) between the exact low density lim
@w0(r ) in the method of this work# and a mean-field weight
function equal to the normalized attractive potential, i.e.,

w~r ;r!5a~r!w0~r !1@12a~r!#
fatt~r !

E drWfatt~r !

, ~22!

wherea is anad hocdensity-dependent switching function
Given the above features and the good performance

Tarazona’s hard-sphere functional@4# and the functional for
the square-well fluid of van Swol and Henderson@16#, it is
likely that the method in this work will be reasonably acc
rate for a wide range of fluids and fluid states whenever
required input data@Cex andc(2)(r1)# is accurate.

Sincer1 is dependent onr(rW), the first derivative ofFex

with respect tor(rW) becomes

S dFex

dr~rW !
D

m

5S dFex

dr~rW !
D

m,r1

1S ]Fex

]r1
D

m,r(rW)
S dr1

dr~rW !
D

m

.

~23!

Because]nFex /]r1
n evaluated for a uniform density is zer

for all n, the last term on the right of Eq.~23! is zero for a
uniform fluid. Also, no additional terms appear in Eq.~15!
which gives the pair-direct correlation function for a unifor
2-4
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WEIGHTED DENSITY FUNCTIONAL THEORY FOR . . . PHYSICAL REVIEW E63 031102
fluid. For a nonuniform fluid, the last term on the right of E
~23! will generally be nonzero. But in this work it is assume
that this term is almost zero. Thus the condition for equil
rium becomes

S dV

dr~rW !
D

m,r1

50, ~24!

i.e., it is assumed that

S dV

dr~rW !
D

m

5S ]Fex

]r1
D

m,r(rW)
S dr1

dr~rW !
D

m

'0. ~25!

It will be demonstrated that the above assumption is reas
able for the application to supercritical adsorption in th
work. It is emphasized that in principle all terms in Eq.~23!
could be evaluated explicitly.

By rewriting Eq.~13! as

Fex@r~rW !#5E drW1E drW2r~rW1!r~rW2!Jex„r 12; r̄~rW1!…,

~26!

where

r̄~rW1!Jex„r 12; r̄~rW1!…5Cex„r̄~rW1!…w„r 12; r̄~rW1!… ~27!

it can be seen that Eq.~13! can be obtained by setting

E
0

1

da~a21!c(2)~rW1 ,rW2 ;ra!5
bCex„r̄~rW1!…

r̄~rW1!
w„r 12; r̄~rW1!…

~28!

in Eq. ~8!. This shows that the approximation~13! has bro-
ken the symmetry ofc(2)(rW1 ,rW2) with respect to interchang
of rW1 and rW2, and it immiediately suggests that a possib
improvement to Eq.~13! can be written as

Fex@r~rW !#5E drW1E drW2r~rW1!r~rW2!Jex„r 12; r̂~rW1 ,rW2!…,

~29!

where r̂(rW1 ,rW2)5„r̄(rW1)1 r̄(rW2)…/2. Nevertheless, in this
work the WDA ~13! rather than Eq.~29! is employed.

III. SUPERCRITICAL ADSORPTION IN A PLANAR SLIT

The supercritical adsorption of a Lennard-Jones fluid
an ideal slit is investigated using the two theories descri
in the previous section. The fluid-fluid and surface-fluid
teraction parameters are chosen to model the interactio
ethane with graphite. This system has been studied pr
ously by Walton and Quirke@12#, van Megan and Snook
@18# and Tan and Gubbins@19# using both simulation and
DFT methods. Such systems are commonly studied, for
ample, in application to gas adsorption in, and character
tion of, porous materials@26#.

For each application in this work the intrinsic exce
Helmholtz free-energy functional for the LJ fluid is separa
03110
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into repulsive and attractive contibutions~1!. The LJ pair
potential,

fLJ~r !54e„~r * !2122~r * !26
…; r * 5r /s, ~30!

wheres ande establish the length and energy scales of
potential, is then separated according to the WCA presc
tion @10#, i.e., the LJ pair potential is split at its minimum
f(r min)52e, with r min521/6s

f rep
LJ ~r !5fLJ~r !1e; r<r min50; r .r min ,

fatt
LJ ~r !52e; r<r min5fLJ~r !; r .r min . ~31!

The repulsive functional is approximated by the FMF f
hard spheres of Rosenfeld and of Kierlik and Rosinberg@6#.
This functional is not described in this work since it has be
well documeted elsewhere. The effective hard-sphere di
eter,d, entering the hard-sphere functional is calculated
cording to the Barker-Henderson~BH! prescription@9#,

d5E dr„12exp@2bf rep~r !#…, ~32!

which is the low-density limit of the WCA prescription@20#.
Since Eq.~32! is independent ofrb , the repulsive functional
properly satisfies the Gibbs adsorption equation~7!.

Ethane is modeled by a Lennard-Jones potential~30!,
truncated and shifted atr c* 52.5

fatt~r !5fatt
LJ ~r !2fLJ~r c!; r<r c50; r .r c .

~33!

The graphite surface is modeled by a Steele 10-4-3 pote
@27#, deviod of structure in directions parallel to the surfac

Vs~z!5ewF 4

10S sw

z D 10

2S sw

z D 4

2
sw

4

3D~z10.61D!3G ; z.0,

~34!

with values for the parameterssw50.903s, ew512.96e,
and D50.8044s. For a planar slit of widthH, Vext(z)
5Vs(z)1Vs(H2z).

Tan and Gubbins and van Megan and Snook modeled
system at the supercritical reduced temperatureT* 5kbT/e
51.35 using computer simulation, but they obtained sligh
different results. Consequently, for this work Grand cano
cal ensemble simulation has been used to obtain a new s
computer simulation results for this system.

Application of the WDA method to the attractive func
tional requires the definition ofCatt and catt

(2)(r1) for the
bulk fluid under consideration. There are several equati
that describe the bulk thermodynamic properties of the
fluid. In this work the equation-of-state of Kolafa an
Nezbeda@28# is used since it has the advantage that it
exact in the low density limit. A mean-field correction
applied to this equation-of-state to account for truncation a
shifting of the LJ pair potential
2-5
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FIG. 1. Observed adsorption isotherms for
model of ethane in a graphite slit atT* 51.35 and
H* 55. The solid line, dashed line, solid symbo
and open symbols are the results of the WD
method of this work, DFMFT, the GCEMC simu
lations of this work and the GCEMC simulation
of van Megan and Snook, respectively.
fa
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q.

ler-
Catt~r!5CLJ~r!2CPY~r;d!2
r

2E0

r c
drWfLJ~r c!

2
r

2Er c

`

drWfLJ~r !, ~35!

whereCLJ andCPY denote the equation-of-state of Kola
and Nezbeda and the Percus-Yevick compressibility eq
tion of state for hard spheres@23#, respectively.

Similarly, there are many methods for generati
catt

(2)(r1), but none are exactly consistent with the equation
state of Kolafa and Nezbeda. In this work the Hyper-nett
chain ~HNC! integral equation closure@20# is employed to
generatecatt

(2)(r1), and a scaling method@using Eq.~15!# is
used to enforce consistency, i.e.,
03110
a-

f
-

catt
(2)~r ;r1!5@cHNC

(2) ~r ;r1!2cPY
(2)~r ;r1 ;d!#

3S 22bCatt8 ~r1!2br1Catt9 ~r1!

cHNC
(2) ~k50;r1!2cPY

(2)~k50;r1 ;d!
D ,

~36!

wherecHNC
(2) andcPY

(2) denote the pair-direct correlation func
tions resulting from solution of the HNC equation@for the
truncated potential~33!# and the PY equation for hard
spheres@23#, respectively, andk denotes the fourier trans
formed quantity. The weight functions resulting from E
~19! are truncated atr c and manipulated to ensurew0(k
50)51 and w1(k50)50 (w0 is rescaled andw1 is
shifted!. Finally, in all cases, a grid of 50 points pers and
simple Picard iteration is used to solve the respective Eu
Lagrange equations.
FIG. 2. As for Fig. 1 except thatH* 53.5.
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FIG. 3. Half-slit density profiles correspond
ing to the same system as in Fig. 1. The bu
densityrb* 50.09334 corresponds closely to th
at which the adsorption is a maximum. The key
the same as in Fig. 1.
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Figure 1 shows the variation of the reduced observed
sorption,G0* 5G0s2, with reduced bulk density,rb* 5rbs3,
at T* 51.35 and withH* 5H/s55 using simulation and
DFT methods. Figure 2 shows the same system but w
H* 53.5. The new simulation results agree with those of v
Megan and Snook, but not with those of Tan and Gubb
for H* 55 ~incidentally, the simulation results of Tan an
Gubbins for H* 55 can be closely reproduced with th
simulation code employed in this work if the fluid-fluid po
tential is cut butnot shifted!. These figures show that th
WDA method applied to the attractive functional of the
fluid is more accurate than the mean-field method for g
eration of supercritical adsorption isotherms. With the WD
method, the adsorption isotherms show a maximum cha
teristic of supercritical adsorption and are in good agreem
with the simulation results of this work. The mean-fie
theory is less accurate, consistently overpredicting ads
03110
d-

th
n
s

-

c-
nt

p-

tion at low bulk densities and under-predicting adsorption
high bulk densities. It should also be noted that in the wo
of Tan and Gubbins good agreement was found betw
their simulation results and DFMFT using the effective ha
sphere diameter of Luet al. The accuracy of DFMFT with
the prescription of Luet al. @11# should be reappraised fo
the supercritical LJ fluid in the light of these new simulatio
results, and the simulation results of van Megan and Sno

Figures 3 and 4 show the density profiles resulting fro
simulation and theory corresponding to bulk densities
rb* 50.0933 andrb* 50.0497 withH* 55 andH* 53.5, re-
spectively~note thatz* 5z/s). It can be seen that the WDA
method is more accurate than DFMFT, although DFMFT
almost as accurate as the WDA method in Fig. 3.

Since in this work it has been assumed that Eq.~25!
holds, then the WDA method does not properly satisfy
Gibbs adsorption equation. This can be seen by writin
-
lk
at
is
FIG. 4. Half-slit density profiles correspond
ing to the same system as in Fig. 2. The bu
densityrb* 50.0497 corresponds closely to that
which the adsorption is a maximum. The key
the same as in Fig. 2.
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FIG. 5. Excess grand potential isotherms co
responding to the same system as in Fig. 1. T
upper and lower solid lines correspond to the e
cess grand potential calculated from the gra
potential functional of the WDA method and b
integrating the observed adsorption isotherm
the WDA method, respectively. The middle sol
line is the average of these results. The dash
line and symbols correspond to the results
DFMFT and the simulations of this work, respe
tively.
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change in the grand potential as

2DVex52E S ]Vex

]m D
r(rW)

dm2E S dVex

dr~rW !
D

m

dr~rW !

5E E @r~rW !2rb#drWdm2E S dVex

dr~rW !
D

m,r1

dr~rW !

2E S ]Vex

]r1
D

m,r(rW)

dr1 . ~37!

Since the condition for equilibrium is given by Eq.~25!, for
the WDA method applied to the attractive functional of t
LJ fluid this becomes

2DVex5AE G0dm2E S ]Fatt

]r1
D

m,r(rW)

dr1 . ~38!
03110
The magnitude of the right-most term in Eq.~38! can be
determined by comparing the excess grand potential
therms determined from the grand potential functional w
those generated by simply integrating the observed ads
tion, G0, with respect to the chemical potential. The resulti
difference is equal to the right-most term in Eq.~38!. Figures
5 and 6 show the results of such calculations forH* 55 and
H* 53.5, respectively. In these figures the reduced exc
grand potentialV* 5Vexs2/Ae, the upper solid line is the
result obtained from the grand potential functional of t
WDA method, the lower solid line is the result obtained
integrating the observed adsorption,G0, of the WDA method
and the middle solid line corresponds to the average of th
two routes. The symbols indicate the excess grand pote
obtained by integrating the simulation adsorption isothe
@the integration constant,Vex(rb* 50.00407), is interpolated
from the values given by the two DFT methods#. Each of the
solid lines is generally closer to the simulation results th
the mean-field result, indicated by the dashed line. Also
Figs. 5 and 6 the upper and lower solid lines bracket
FIG. 6. As for Fig. 5 except thatH* 53.5.
2-8



e

s
.

d
fo
de
id
tio
ar

i
n

h
ra-
ver
ad-

ram

uid
us

WEIGHTED DENSITY FUNCTIONAL THEORY FOR . . . PHYSICAL REVIEW E63 031102
simulation results. This provides some justification for n
glecting terms of order]Fatt /]r1 in Eq. ~23!. At lower tem-
peratures, where the attractive functional becomes more
nificant, neglect of such terms is less likely to be justified

IV. CONCLUSION

It has been demonstrated that the WDA method applie
the attractive functional is more accurate than DFMFT
supercritical adsorption of a Lennard-Jones fluid in a mo
slit pore. It is expected that this accuracy extends to a w
range of regimes, and to other fluids where both an equa
of state and accurate pair-direct correlation functions
available~analytically or numerically! for the bulk fluid. It is
also possible to apply this method to the test-particle lim
with the modificationr15rb , to generate pair correlatio
s

-

em
ys

.

v.

J

hy

03110
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functions. Neglect of terms of order]Fatt /]r1 has been jus-
tified for the supercritical adsorption of the LJ fluid, althoug
this neglect is unlikely to be justified at subcritical tempe
tures. The increase in accuracy of the WDA method o
DFMFT has been gained at the expense of considerable
ditional complexity.

A problem with the new WDA method can occur ifr1 is
inside the unstable spinodal region of the bulk phase diag

corresponding to the method used to obtainc(2)(r1) used as
input. Whenr1 is within this region it will not be possible to

obtain accurate values forc(2)(r1), rendering the WDA
method inaccurate. This is a consequence of using bulk-fl
information to construct a theory for the inhomogeneo
fluid. This problem is under investigation.
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