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Weighted density functional theory for simple fluids: Supercritical adsorption
of a Lennard-Jones fluid in an ideal slit pore
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The adsorption of a Lennard-Jones fluid in an ideal slit pore is studied using weighted density functional
theory. The intrinsic Helmholtz free-energy functional is separated into repulsive and attractive contributions.
Rosenfeld’s accurate fundamental measure functional is employed for the repulsive functional while another
weighted density functional method is employed for the attractive functional. This other method requires an
accurate equation of state for the bulk fluid and an accurate pair-direct correlation function for a uniform fluid,
determined analytically or numerically. The results for this theory are compared against mean-field density
functional theory and grand canonical ensemble simulation results, modeling the adsorption of ethane in a
graphite slit. The results indicate that the weighted density functional method applied to the attractive func-
tional can offer a significant increase in accuracy over the mean-field theory.
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[. INTRODUCTION “effective” attractive interaction{ 13]. For more general flu-
ids they include truncated density expansipt¥] and meth-
Considerable progress has been made in recent decadesoitis based on a perturbative schef8]. Another method
the understanding of phenomena arising from the interactiodue to van Swol and Henders¢h6] is similar to the one
of fluids with surfaced1]. From a theoretical perspective, presented in this work, the significant difference being the
density functional theoryDFT) has played a significant part form of the weight function used to define a smoothed den-
in this increasingly active field. In the past two decadessity. Whilst being effective for some applications, the accu-
there have been rapid improvements in the accuracy of demacy of these approaches has rarely been compared or estab-
sity functional methods that treat repulsive for¢2s-8|, but  lished for a wide range of temperatures, densities, and model
there has been little improvement in methods for treatingpair potentials.
attractive forces, e.g., the dispersion forces modelled by the This work focuses on the construction of a weighted den-
Lennard-Joned.J) fluid. A popular method for constructing sity functional method and application of this method to the
a density functional for such fluids is to separate the intrinsi@ttractive functional of the LJ fluid. The performance of this
excess Helmholtz free-energy functionfl,, into repulsive  method is investigated by comparing results for a LJ fluid,
and attractive contributions, modeling the supercritical adsorption of a model of ethane in
a planar graphite slit, with mean-field theory and simulation.

Fex[P(r)]:Frep[p(r)]_FFatt[p(r)] D
R Il. THEORY
wherep(r) is the average one-body density and other nota- i i
tion is obvious. The pair potential, is also separated into ~ 1he WDA method is developed quite generally and could

corresponding repulsive and attractive contributions, be used to describe both attractive and repulsive forces.
However, it is recognized that the inherent approximations in
B(1)= rep(r) + ban(r). (2)  this method will generally not be as accurate for repulsive

forces as established repulsive function@gy., the funda-
To achieve this separation, the prescriptions of Barker anénental measure functionéfMF) for the hard-sphere fluid of
Henderson(BH) [9] or Weeks, Chandler, and Anderson Rosenfeld and other workef4—8]] and so in this work the
(WCA) [10] are often invoked. The repulsive functional is WDA method is applied to the attractive functional only.
then usually approximated by a hard-sphere functional with  The grand potential functiona!)[p(F)], is defined such
an appropriate choice of hard-sphere diameter. The attractiu@at[17]
functional is often treated in mean-field fashion. The result is
that the approximation for the attractive functional is usually QLp(N]1=FEiglp(N]+Fadp(N]
considerably less accurate than the approximation for the re-

pulsive functional. At high temperatures, where the repulsive _ - - _ -

functional dominates fluid behavior, this is often not very drp(Nlu(pp) =Vex(N], (3)
important. But at lower temperatures it becomes more impor-

tant that the attractive functional is accurate. whereF 4 is the exact ideal-gas Helmholtz free-energy func-

Several methods that attempt to improve upon the meartional, V¢, is the external potential and(p,,) is the reser-
field functional for attractive forces have been proposed. Fovoir fluid chemical potential which is determined by the res-
the LJ fluid they include modification of the effective hard- ervoir (bulk) density,p,. The ideal-gas functional is given
sphere diametdrl1,12 and modification of the form of the by
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Fid[P(r)]:B_lf drp(n(n[A®p(N)]-1), (4 ﬁFex[p(r)]:fO da(a—l)fdflj drap(ry)p(ry)c®

X(F1,F 2 Pa
where A is the de Broglie thermal wavelength agi ! ("1.r2ip0)

=kgT is the inverse temperature. Minimization of E®)
with respect top(r) for a given chemical potential

. 1
ZIBFrep[P(r)]+ fo da(a—1)

( 50 ) deFlJ' drap(ry)p(r) e raip.),
=—| =0 (5)
sp(r)) , (8)

where @ parametrizes a path between the zero-density fluid
yields the Euler-Lagrange equation for the density profile andp(F) such that

p(71) = P X~ B[V T1) ~ ter ) 1+ €T 1:p), = apt=p. ©
) and the pair-direct correlation functionc®(ry,r,)
=5cM(ry)/8p(r,), is the second functional derivative of
wherec)(r;p) is the first functional derivative of- BF.,  Fex With respect top(r). Alternatively, for a fluid with two-
with respect top(r), and Buedps), the excess chemical body (pair-potential forces only, it can also be shown that

potential of the bulk fluid, is equated withcM)(p,). Given

Mex(pp) andVe,, as input, and an approximate excess free- Fed p(r)]1=Frellp(r)]
energy functional, the approximate equilibrium density pro- 11 R o
fle and adsorption can be determineflassuming +§f daf drlf drop(ry)p(ry)g?
8201 8p(r1) Sp(r,)>0 at equilibriun. 0
The adsorption is often of great importance, in both ex- X(F1,Faih ) ari(F 12) (10)

perimental and theoretical studies. For a planar geometry, the

adsorption,I, is defined by the Gibbs adsorption equationwhere nowa parametrizes a path between the repulsive con-
on an isotherm tribution to the pair-potential and the full pair potential such
that

AP _(&3”) B(r0)= drep(N)+ adau(1) =, (11)
)7

andg®(ry,r,;¢,) is the pair-distribution function. DEMFT
. oFex , , Ay
:J dr[p(r)—pb]—( ) can be easily derived by settlngcgn(rl,rz;pa)
I oy =— Bau(r1) in Eq.(8) or by settingg®(r,r,;¢,)=1in

50\ [ ap(F) Eq. (10). For simple fluids these approximations are exact in
_J dF( _ ) P (7) the asymptoticr — o limit; hence the terminology “mean
Sp(r) B I field.” The excess Helmholtz free-energy functional be-
comes

where)®*=Q+ PV is the excess grand potentiaote the Fedp(r)]= Frep[p(F)]

superscriptex which denotes exess over bulk, rather than a 1

subscriptex which denotes excess over ideal gd3is the +_J > j e >

bulk pressure an¥ is the volume of the system. An approxi- 7] draf drap(r)p(ra) éau(riz).

mate functional will properly satisfy the Gibbs adsorption (12)
equation if the last two terms on the right-hand side are zero,
i.e., if F**is independent of the chemical potential den-  DFMFT is simple to implement and gives reasonable results
sity) of the bulk fluid and if Eq.(5) is satisfied. Then the for a range of fluid phenomena. Consequently, it has found
observed adsorption,[',=A"1fdr(p(r)—p,), can be widespread application despite its crude assumption concern-
equated withl". ing the attractive part of the inhomogeneous fluid pair-direct
correlation function, namelg(2)(ry,r,)=—Bhau(ri) for
all fluid states. The bulk-fluid equation of state generated by
this functional, with a suitable hard-sphere functional for
The intrinsic excess Helmholtz free-energy can be exf ., is not very accurate for the LJ fluid. For this reason,
pressed formally2,17] by methods have been suggested that modify the effective hard-

A. Density functional mean-field theory
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sphere diameter enterirfg,., [11,12, and sometimesp,;;  where’ and” indicate the first and second derivatives with
[13], to improve the bulk equation of sta(EOS. The pre- respect to density and all quantities are evaluated for a uni-
scription of Luet al.[11] improves some aspects of the bulk form density. Thus, in Eq(15)

thermodynamic properties of DFMFT for the LJ fluid at low

temperatures, but it is not accurate in the region of the bulk Sp(ry)  Sp(ry)
critical temperature. The prescription of Walton and Quirke —_— = ——=W(l15;p),
[12] fixes the hard-sphere diameter to guarantee that the op(rz)  6p(ry)

chemical potential of the bulk fluid generated by the density
functional theory agrees with an equation of state. While this 521 ,)
prescription does not properly satisfy the Gibbs adsorptio = =
equation(7) because the repulsive functional is dependent ondP( 1) 8p(r2)
the bulk density through the hard-sphere diameter, the result- (16)
ing inconsistency in Eq(7) is presumably small in their @ . .
application to supercritical adsorption. Velasco and Tarazon¥/Nen Wex and ¢*“(r) can be approximated analytically,
[13] have performed several studies of the adsorption of théhen with a suitable approximation for the density depen-
LJ fluid with anad hocmodification for the attractive inter- dence ofw(r;p), Egs.(15) and(16) can be solved to find
action, ¢, . While this method has been shown to give rea-W(r;p). This is essentially the approach used by Tarazona in
sonable results at subcritical temperatures for the adsorptidd]. When the bulk-fluid pair direct correlation function can
of a Lennard-Jones fluid in planar geometries, it is not cleabe determined approximately only & nonzero density
how this method can be applied more generally. points the weight function can be expandedhtb order in
density

=W (r13;p)W(r3;p) +W'(r23;p)W(r3;p).

B. The WDA method

The WDA method is essentially a crude method for ! n

implementing a WDA functional for fluids for which an ac- W(r;p)=Z,0 prwi(r). (17)
curate equation of state is known but the pair-direct correla-

tion function can be accurately determined by numerica
methods only. The method presented in this work was firs
described if21]. It is similar to the method of van Swol and
Henderson 16] who constructed a WDA for the attractive
functional of the square-well fluid. The work of Sokolowski N
and co-worker$22] also has some similarity in that a WDA W(r;p) =Wo(r)+pwy(r).
is used to construct a functional for the associative contribu-

tion to the total Helmholtz free-energy of a model associat-W'th an analytic approximation fo¥e and with ¢'(r)

ing fluid. determined approximately at one nonzero bulk dengity,
The excess Helmholtz free-energy is approximated by éhe _‘T‘_{}Stem lofhe?uatlc.)r(iS), (16).’ andé18) can be solved at
weighted density functional given by p1- The weight functions are given by

|Because it becomes increasingly difficult to find the solution
Set of weight functionsy;, asn increases, this work em-
ploys a linear approximation fow, i.e.,

(18)

R o Wo(r)=—Bc@(r;p=0)/12¥(p=0),
Fex[P(r)]:j drp(r)Wex(p(r)), (13

w;(K)=[—b+(b%?—4ac)*?]/2a,
where WV, is the excess Eelmholtz free-energy per particle
of a bulk fluid with densityp. The weighted density(r), is a:P?‘I’gx(Pl)JFZPf‘I’éx(pl),
defined by
. o . b=2p3W £ pD)Wo(K) + 201 W (p1)[ 1+ Wo(K)],
P("l):f drop(ra)w(rio;p(ry)), (14
R c=p1¥ e (p)Wo(K)>+2W o, (p1)Wo(K) + B (K;py),
where w(ri,;p(r1)) is a normalized, density-dependent 19

weight function. The weight function is itself determined by o ] ) _
requiring the functional to generate accurate pair-direct corwherek indicates the Fourier transformed quantity. It is as-

relation functions for all uniform densities, i.e., sumed that the linear approximatioh8) is sufficiently ac-
. . curate for densities other tham, i.e., that with Eq.(18)
B @ )= op(ry) N op(ry) c@(r,,r,) is sufficiently accurate for all densities(r).

B 12:P) = Fex S5p(fy)  p(ry) These equations require tha¥., is consistent with

c(r;p,). For example, for hard-spheres the PY solution

. p(rs) Sp(ra) [23] for these quantities can be used. The presence of the
+P‘I”éxf drg—— = square-root term indicates that E49) might not have real
dp(ry) op(rz) solutions for some fluid systems. In this work no such diffi-
) 52;(;3) culties are encountered for the LJ fluid.
+pW. | drg—=——=—, (15 Finally, the remaining parametgr must be determimed.
op(r1)op(ry) In this work, anad hocrelation is suggested
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N . reasonably accurate fluid structure for an inhomogeneous
j dr|Vp(r)|p(r) fluid. Thus this WDA approach is likely to be more accurate
p1= (200  than the perturbation approachd$] based on the expres-
f dr|Vp(r)] sion (10). These approaches are not accurate for dense fluids
[16,25 because they overemphasize structure in pair-direct

correlaion functions for dense fluids. A similar criticism can
i n -2 g o also be leveled at the method of Velasco and Tarazb8h
uniform densities close tp(r') wherer’ is the position in  These authors modify the prescription for the effective hard-
the fluid where the structure is most inhomogeneous. W'”!;phere diameterd, and the form of the attractive pair-
this choice forp, the complete functional avoids reference to potential,é..(r), entering Eq(12) so that accurate densities
the pulk fluid, which could lead to thermodynamic inconsis-,, coexisting bulk liquid and gas phases are generated by
tencies[24]. _ _ _ the resulting DFT. They choose @u hoc modification for

In this work the functional described above is employed¢att(r) by considering the perturbation expressidg). As
for the attractive functional of the LJ fluid o_nly, with_the with the perturbation approachgss], their approach tends
hard-sphere FMF employed for the repulsive functional oyeremphasize attractive pair correlations in dense fluids
Thus, all occurenceBey, Ve, andc® in Egs.(13) to (19) [21]. Returning to the WDA method, the form of uniform-
should be exchanged fdF., Way and cly) respectively. fiyid direct correlation functionsz™, for n>2 is not con-
Since the repulsive functional is approximated by Rosentrolled, although their magnitud@iven by integration over
feld’s hard-sphere FMF6], W,u=¥ ~W¥pyus and ¢} n—1 spatial dimensionss determined by¥.

This forces the functional to generate accure@(r) for

=c(®@—cf@), s, where the hard-sphet®YHS) functions are If all terms in Eq.(23) are evaluated explicitly, then this
calculated using the same hard-sphere diameter as used\WDA method will satisfy the Gibbs adsorption equation and
the repulsive functional. yield consistent and reasonably accurate values for thermo-

However, the Lennard-Jones fluid has more complex begdynamic quantities. This is generally not achieved by the
havior than the hard-sphere fluid and there does not yet existuncated density expansion approacfed as explained in
an accurate analytic EOS for this system that is also consig24].
tent with accurate pair-direct correlation functions. To force  This WDA method is qualitatively similar to the approach
a solution to Eq(19) the inputcf,jt)(pl) is manipulated by of van-Swol and Hendersofil6]. Their theory is also ex-
simply scaling it by an appropriate factor so that it doespressed by Eq$13) and(14), but they choose a less accurate
agree withW ;. It will be seen that this crude manipulation expression fow(r;p) than employed in this work. In par-
is sufficient to produce accurate results for supercritical adticular, they do not enforce the requireme(its)—(20). It is
sorption. emphasized that these requirements are important for gener-
Thus the complete description for this WDA method is ating accurate structure in the inhomogeneous fluid. Rather,
given by Egs.(13), (14), (18)—(20). As with Tarazona's they interpolaten(r;p) between the exact low density limit
hard-sphere functiond#] (as opposed to Rosenfeld’s FMF [wg(r) in the method of this workand a mean-field weight-
for hard-spheres[6]), the above method uses three- function equal to the normalized attractive potential, i.e.,
dimensional bulk fluid data as input in its construction. Thus,

this functional cannot be expected to be very accurate as the L Panlr)
effective dimensionality of the nonuniform fluid is signifi- w(r;p)=a(p)wo(r)+[1-alp)l——— (22
cantly reduced. f drau(r)

As with many other WDA functionals, this WDA method

generates direct correlation functions to all orders, i.e., for avherea is anad hocdensity-dependent switching function.

general fluid Given the above features and the good performance of
Tarazona’s hard-sphere functiojd] and the functional for
the square-well fluid of van Swol and Henderdd®], it is
likely that the method in this work will be reasonably accu-

(21)  rate for a wide range of fluids and fluid states whenever the
required input data¥ ., andc®(p,)] is accurate.

for EBO.DTIPI\i/TFi'IS' noga}[ﬁhieVe?hbé/ s?c\?nld—order zpﬁ)_roaches Sincep, is dependent op(r), the first derivative of .,

such as and the method of Velasco and Tarazong, >

[13] or by truncated density expansion approadte (by With respect top(r) becomes

definition, truncated density expansion theories generate di- SE SE IF S

rect correlation functions up to the order of truncation only ( e}) :( ej‘) ( ex) ( P1 ) _

The accuracy of a DFT method can be estimated by ex- | dp(r)/ , \p(r)) 9P/ 4 o)\ Sp(r)

L. . . . P1 ~r
amining c(™ generated for uniform fluids. For this WDA (23
method, the accuracy @f® andc® for a uniform fluid are
determined by the accuracy of the equation-of-stéteThe  Because?"F.,/dp] evaluated for a uniform density is zero
method generates accurate pair-direct correlation functionfor all n, the last term on the right of E¢23) is zero for a
for uniform fluid states close tp=0 andp=p; (assuming uniform fluid. Also, no additional terms appear in E35)
that the input(®(p,) is accuratgand so is likely to produce which gives the pair-direct correlation function for a uniform

_stnFex
Sp(ry)dp(ra), ... ,8p(ry)

:C(n)(Fl,Fz, P ,Ijn)#O
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fluid. For a nonuniform fluid, the last term on the right of Eq. into repulsive and attractive contibutiori$). The LJ pair
(23) will generally be nonzero. But in this work it is assumed potential,
that this term is almost zero. Thus the condition for equilib-

rium becomes dLy(r)=4e((r*) 2= (r*)"%; r*=rlo, (30
9} whereo and e establish the length and energy scales of the
Sp(r) =0, (24 potential, is then separated according to the WCA prescrip-
P HaPy tion [10], i.e., the LJ pair potential is split at its minimum,

o r.)=—e, with r . =26
i.e., it is assumed that ¢V min) € min 7

( 50 ) -
sp(r)] ,

It will be demonstrated that the above assumption is reasonrpe repulsive functional is approximated by the FMF for
able for_ the appli(_:ation to _supgrc_ritical adsorpt_ion in thishard spheres of Rosenfeld and of Kierlik and Rosinijéilg
work. It is emphasized that in principle all terms in EB3)  Thjs functional is not described in this work since it has been
could be evaluated explicitly. well documeted elsewhere. The effective hard-sphere diam-

By rewriting Eq.(13) as eter,d, entering the hard-sphere functional is calculated ac-
cording to the Barker-HendersdBH) prescription[9],

LJ . .
¢rep(r):¢’LJ(r)+E- r<rmin=0; r>rnin,

LJ

att(r):_f; F<rmin=¢y(r); r>rpin. (@1

oF 0,
ex) ( P i) ~0. (25
ﬁpl /-MP(F) 5p(|’) “

Folp(f)1= | 0f, | Qiap(Fp(Fo) Zerazinr), f
(26) d= dr(l_eXF[_ﬁd’rep(r)])a (32

where
. . . . which is the low-density limit of the WCA prescriptid0].
p(r)Eer12;0(r))=Yo,(p(r))w(r2;p(ry)) (27 Since Eq(32) is independent ofy, , the repulsive functional
properly satisfies the Gibbs adsorption equation

it can be seen that E@13) can be obtained by setting Ethane is modeled by a Lennard-Jones poter(),
' BY eulp(r1)) truncated and shifted af =2.5
ror p(ry .
J’ da(a—1)c®(ry,ry;p,) =——=———W(r12;p(ry)) LI : :
0 p(ry) Dare(1)=Pan(r)—PLy(ro);  r<r.=0; r>rg.
(28) o

in Eq. (8). This shows that the approximatid3) has bro-  The graphite surface is modeled by a Steele 10-4-3 potential
ken the symmetry of®)(r,,r,) with respect to interchange [27], deviod of structure in directions parallel to the surface,

of r, andr,, and it immiediately suggests that a possible

improvement to Eq(13) can be written as 4 (g, \¥® [o,\? o

V(2)= €| = - =] —————|; z>0,
3A(z+0.614)3

i i o o 10(? z
Fed o)1= [ 07y [ QTap(Fp(F) ZesriziplF2 1), 34

(29 with values for the parameters,,=0.903r, €,=12.96,

where ,3(;1,;2):(;(;1)+;(F2))/2. Nevertheless, in this and A=0.8044r. For a planar slit of widthH, V..(2)

; =V4(2) +V¢(H—2).
work the WDA (13) rather than Eq(29) is employed. s s
13 429 ploy Tan and Gubbins and van Megan and Snook modeled this

system at the supercritical reduced temperafiite-k, T/ e
=1.35 using computer simulation, but they obtained slightly
The supercritical adsorption of a Lennard-Jones fluid indifferent results. Consequently, for this work Grand canoni-
an ideal slit is investigated using the two theories describegal ensemble simulation has been used to obtain a new set of
in the previous section. The fluid-fluid and surface-fluid in-computer simulation results for this system.
teraction parameters are chosen to model the interaction of Application of the WDA method to the attractive func-
ethane with graphite. This system has been studied prevtional requires the definition o, and cgzn)(pl) for the
ously by Walton and Quirk¢12], van Megan and Snook bulk fluid under consideration. There are several equations
[18] and Tan and Gubbingl9] using both simulation and that describe the bulk thermodynamic properties of the LJ
DFT methods. Such systems are commonly studied, for exfluid. In this work the equation-of-state of Kolafa and
ample, in application to gas adsorption in, and characterizaNezbeda[28] is used since it has the advantage that it is
tion of, porous materialg26]. exact in the low density limit. A mean-field correction is
For each application in this work the intrinsic excessapplied to this equation-of-state to account for truncation and
Helmbholtz free-energy functional for the LJ fluid is separatedshifting of the LJ pair potential

I1l. SUPERCRITICAL ADSORPTION IN A PLANAR SLIT
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12 T T T T T T

0.8

FIG. 1. Observed adsorption isotherms for a
model of ethane in a graphite slit&t =1.35 and
H* =5. The solid line, dashed line, solid symbols
and open symbols are the results of the WDA
method of this work, DFMFT, the GCEMC simu-
lations of this work and the GCEMC simulations
of van Megan and Snook, respectively.

06 “
T2

0.4

0.2

c@)r;p) =[cRc(r;p1)—c@Ur;py;d)]

- Zﬁq’én(Pl) - Bplq’gtt(l)l)

- X (2) (2) J
drep(r), (35 Critc(k=0;p1) —cpy(k=05p4;d)
Ie

(36)

Va0) = ¥is(p) ~ Vol — 5 | “0F(r0

_p
2

wherec(2). andc{Z) denote the pair-direct correlation func-

whereV ; and ¥y denote the equation-of-state of Kolafa _. . . .
L) PY a tions resulting from solution of the HNC equati¢for the

and Nezbeda and the Percus-Yevick compressibility equa; | cated potentia33] and the PY equation for hard

tion of state for hard sphergg3], respectively. _ sphereg23], respectively, ank denotes the fourier trans-
(2)S|m|IarIy, there are many methods for generatingformed quantity. The weight functions resulting from Eq.
Catt(p1), but none are exactly consistent with the equation of19) are truncated at, and manipulated to ensuney(k
state of Kolafa and Nezbeda. In this work the Hyper-netted=0)=1 and w,;(k=0)=0 (w, is rescaled andw, is
chain (HNC) integral equation closurf20] is employed to  shifted. Finally, in all cases, a grid of 50 points perand
generatecZ)(p,), and a scaling methofising Eq.(15)] is  Simple Picard iteration is used to solve the respective Euler-

used to enforce consistency, i.e., Lagrange equations.

09 T T T T T T
0.8
0.7
0.6 ;
0.5
r/2
o4 FIG. 2. As for Fig. 1 except that* =3.5.
0.3

0.2

0.1

-0.1 1 1 1 1 1 I
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45

4
35

3+

FIG. 3. Half-slit density profiles correspond-
ing to the same system as in Fig. 1. The bulk
density p; =0.09334 corresponds closely to that
at which the adsorption is a maximum. The key is
the same as in Fig. 1.

Figure 1 shows the variation of the reduced observed adion at low bulk densities and under-predicting adsorption at
sorption,I'§ =T g%, with reduced bulk density} =ppo®,  high bulk densities. It should also be noted that in the work
at T*=1.35 and withH* =H/o=5 using simulation and of Tan and Gubbins good agreement was found between
DFT methods. Figure 2 shows the same system but wititheir simulation results and DFMFT using the effective hard-
H* =3.5. The new simulation results agree with those of varsphere diameter of Let al. The accuracy of DFMFT with
Megan and Snook, but not with those of Tan and Gubbinghe prescription of Luet al. [11] should be reappraised for
for H* =5 (incidentally, the simulation results of Tan and the supercritical LJ fluid in the light of these new simulation
Gubbins forH*=5 can be closely reproduced with the results, and the simulation results of van Megan and Snook.
simulation code employed in this work if the fluid-fluid po- ~ Figures 3 and 4 show the density profiles resulting from
tential is cut butnot shifted. These figures show that the simulation and theory corresponding to bulk densities of
WDA method applied to the attractive functional of the LJ pj; =0.0933 andpj; =0.0497 withH* =5 andH* =3.5, re-
fluid is more accurate than the mean-field method for genspectively(note thatz* =z/o). It can be seen that the WDA
eration of supercritical adsorption isotherms. With the WDAmethod is more accurate than DFMFT, although DFMFT is
method, the adsorption isotherms show a maximum chara@most as accurate as the WDA method in Fig. 3.
teristic of supercritical adsorption and are in good agreement Since in this work it has been assumed that E2p)
with the simulation results of this work. The mean-field holds, then the WDA method does not properly satisfy the
theory is less accurate, consistently overpredicting adsorgsibbs adsorption equation. This can be seen by writing a

FIG. 4. Half-slit density profiles correspond-
ing to the same system as in Fig. 2. The bulk

prasr densitypy =0.0497 corresponds closely to that at
oL which the adsorption is a maximum. The key is
the same as in Fig. 2.
15
1 -
05|
0 o
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FIG. 5. Excess grand potential isotherms cor-
responding to the same system as in Fig. 1. The
upper and lower solid lines correspond to the ex-
cess grand potential calculated from the grand
potential functional of the WDA method and by
integrating the observed adsorption isotherm of
the WDA method, respectively. The middle solid
line is the average of these results. The dashed
line and symbols correspond to the results of
DFMFT and the simulations of this work, respec-
tively.

0 0.1 0.2 03

change in the grand potential as

AQ® f (ﬁﬂex> d f ( o0
_ __ — _
] op(r)

0.4

) dp(r)
M

ex

:J J[p(F)—Pb]dFd”“—J (;ir)

= ) dp(r)
MiPq

(aQeX
- dpq.
J ap1 ) P

wp(1)

Since the condition for equilibrium is given by E@®5), for

0.5

(37

086

The magnitude of the right-most term in E@8) can be
determined by comparing the excess grand potential iso-
therms determined from the grand potential functional with
those generated by simply integrating the observed adsorp-
tion, I'y, with respect to the chemical potential. The resulting
difference is equal to the right-most term in £E88). Figures

5 and 6 show the results of such calculationsHdr=5 and
H*=3.5, respectively. In these figures the reduced excess
grand potential)* = Q)®*o?/Ae, the upper solid line is the
result obtained from the grand potential functional of the
WDA method, the lower solid line is the result obtained by
integrating the observed adsorptidh,, of the WDA method

and the middle solid line corresponds to the average of these
two routes. The symbols indicate the excess grand potential

the WDA method applied to the attractive functional of theobtained by integrating the simulation adsorption isotherm

LJ fluid this becomes

—AQEX:Afr d —f Fau
oUm ap1

dpl .

p(1)

(39

[the integration constanf)®(pf =0.00407), is interpolated
from the values given by the two DFT methdd&ach of the
solid lines is generally closer to the simulation results than
the mean-field result, indicated by the dashed line. Also, in
Figs. 5 and 6 the upper and lower solid lines bracket the

-2

FIG. 6. As for Fig. 5 except thatd* =3.5.
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simulation results. This provides some justification for ne-functions. Neglect of terms of ordéF ,;/dp, has been jus-
glecting terms of ordefF ..,/ dp, in EQ.(23). At lower tem- tified for the supercritical adsorption of the LJ fluid, although
peratures, where the attractive functional becomes more sighis neglect is unlikely to be justified at subcritical tempera-
nificant, neglect of such terms is less likely to be justified. tures. The increase in accuracy of the WDA method over
DFMFT has been gained at the expense of considerable ad-
IV. CONCLUSION ditional complexity.

It has been demonstrated that the WDA method applied to A problem with the_new WDA. method can occurdf IS
the attractive functional is more accurate than DFMFT for'ns‘Ide the unstable spinodal region of the bulk phase diagram
supercritical adsorption of a Lennard-Jones fluid in a modeforresponding to the method used to obttfi(p;) used as
slit pore. It is expected that this accuracy extends to a widéhput. Whenp, is within this region it will not be possible to
range of regimes, and to other fluids where both an equatiopbtain accurate values far'®)(p;), rendering the WDA
of state and accurate pair-direct correlation functions argnethod inaccurate. This is a consequence of using bulk-fluid

available(analytically or numericallyfor the bulk fluid. Itis  information to construct a theory for the inhomogeneous
also possible to apply this method to the test-particle limitsyid. This problem is under investigation.

with the modificationp;=p,, t0o generate pair correlation
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