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Averaging rheological quantities in descriptions of soft glassy materials
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Many mean-field models have been introduced to describe the mechanical behavior of glassy materials.
They often rely on averages performed over distributions of elements or states. We here underline that aver-
aging is a more intricate procedure in mechanics than in more classical situations such as phase transitions in
magnetic systems. This leads us to modify the predictions of the recently proposed soft glassy rheology model
for soft glassy materials, for which we suggest that the viscosity should diverge at the glass transition tem-
peratureTg with an exponential formh;exp@A/(T2Tg)#.
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I. INTRODUCTION

Concentrated colloidal suspensions of soft partic
~emulsions, slurries! tend to display glassy behavior whe
concentrated beyond a threshold@1–5#. Despite their great
physical and chemical diversity, these soft glassy mater
often share many mechanical features. This has prom
theoreticians to construct generic models@6–10#, indepen-
dent of the microscopic features of the systems, and o
borrowed from statistical physics. The outcome of such
procedure is often a description in terms of a large distri
tion of relaxation processes acting simultaneously, a pic
supported by experimental facts for many glassy syste
@11,12#.

Any macroscopic mechanical response of the system
results from an averaging over these distributions. In t
Rapid Communication we stress the importance of the a
aging procedure when one deals with mechanics. Averag
procedures have already been discussed for non-mecha
situations in the nonergodic glassy phase~e.g., statistical me-
chanics of spin glasses@11#!. However, averaging of me
chanical fields isa priori a different story@13#. This also
affects the description of the ergodic fluid phase~e.g., the
divergence of the viscosity when one approaches the ‘‘g
transition’’ from the fluid side!.

To make our point we focus here on the recently int
duced soft glassy rheology~SGR! model@6#, which incorpo-
rates mechanics in a simple picture of the glass transi
introduced by Bouchaud. The system is taken as a collec
of blocks, which evolve according to stochastic equatio
driven by the imposed shear rate. A control parameter of
model is the effective temperature that we will denote here
T. A transition occurs atTg below which the system is no
more ergodic~and the fluid displays a yield stress!. A re-
markable feature of the model is that the viscosity diver
at 2Tg ~not Tg), so that in the intervalTg,T,2Tg the ma-
terial is a power-law fluid. This large domain of viscosi
divergence, in the ergodic phase, is a feature absent in m
other models for soft glassy materials@7,8,10#.

After general comments about averaging procedures
mechanics~Sec. II!, we show that this feature is a cons
quence of the adopted averaging procedure~Sec. III!. We
propose an improvement of this procedure, which leads
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Vogel-Fulcher divergence of the viscosity atTg : h
;exp@A/(T2Tg)#. We end with a short discussion and b
drawing a few research directions~Sec. IV!.

II. VARIOUS AVERAGES FOR RHEOLOGY
OR MECHANICS

Let us start by clarifying the crucial role of the averagin
procedure in rheology or mechanics, which is very differe
from the one used in many classical areas, such as mag
systems, where the imposed fieldH is well-defined, and the
average magnetization is simply the algebraic mean of
local magnetizations. In rheological problems, the fields
imposed through the boundaries of the system, so that o
the shear rate and the shear stress play more or less sym
ric roles, which results in a wide variety of situations.

To clarify the message, let us focus on the simple cas
a system built of elements~blocks! of high viscosityh1 and
elements~blocks! of low viscosityh2 @Figs. 1~a! and 1~b!#,
and estimate the average viscosity of the system thro
different averaging procedures.

A first average corresponds to the situation whe
the same shear rateġ is imposed to all elements, and on

FIG. 1. Schematic pictures of:~a! a dispersion of fluid inclu-
sions 2 in a highly viscous matrix 1,~b! a dispersion of highly
viscous inclusions 1 in a fluid matrix 2,~c! a geometry correspond

ing to averaging at fixed strain rateġ, which leads to a highly
viscous behavior as in~a!, and ~d! a geometry corresponding t
averaging at fixed stress with a qualitative behavior similar to~b!.
©2001 The American Physical Society02-1
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averages the resulting stresses, which leads to an ave
viscosity

^h&ġ5f1h11~12f1!h2 , ~1!

where f1 is the proportion of blocks of high viscosity
Strictly speaking this procedure describes blocks arrange
layers disposed in parallel@Fig. 1~c!#. A second kind of av-
erage corresponds to submitting all blocks to the same s
s, and averaging the shear rates. This results in a diffe
average viscosity

^h&s5@f1h1
211~12f1!h2

21#21, ~2!

which describes layers in series@Fig. 1~d!#.
The behavior according to the first kind of average

dominated by the highly viscous blocks: the average visc
ity ^h&ġ diverges ifh1 diverges, whatever the relative vo
ume fractions. This is obviously a reasonable representa
of a highly viscous medium with low-viscosity inclusion
@f1 large, Fig. 1~a!#, but a poor one for a system of highl
viscous inclusions dispersed in a fluid matrix of low visco
ity h2 @Fig. 1~b!#. On the contrary, the latter case@f1 small,
Fig. 1~b!# is better represented by a fixed stress average@Fig.
1~d!#, as^h&s is dominated by the low viscosity blocks.

Clearly none of these two simple averages properly
scribes all situations. Consequently effective medium th
ries have tried to provide better alternatives. Among tho
let us quote the Olroyd-Palierne formula@14# for a matrix of
viscosityhm with various kind of dilute spherical inclusion
i ~volume fractionf i , viscosityh i). This formula states tha
the effective viscosity of the resulting composite fluid is~ne-
glecting surface tension effects!:

^h&OP5hm

11
3

2 (
i

f iHi

12(
i

f iHi

, ~3!

with

Hi5
2h i22hm

2h i13hm
. ~4!

The above formula provides a convenient interpolation
tween the two limiting physics mentioned above. For
sparse dispersion of highly viscous blocks in a less visc
matrix @Fig. 1~b!#, it yields the Einstein formulâ h&OP
.h2(11 5

2 f1), and thus similar physics to the consta
stress picturêh&s.h2(11f1) @Fig. 1~d!#. For a sparse dis
persion of fluid inclusions in a highly viscous matrix@Fig.
1~a!#, ^h&OP.h1(12 5

3 f2), a result qualitatively akin to tha
of the constant shear rate picture^h&ġ5h1(12f2) @Fig.
1~c!#. Of course, the Olroyd-Palierne formula is unable
describe accurately the properties of intermediate mixtu
~roughlyf in the range 30–70 %! as it neglects spatial struc
tures that could result in percolation effects of great con
quence on the mechanical behavior.

III. CONSEQUENCES FOR THE SGR MODEL

Implicitly the SGR model of Sollichet al. @6# considers
an ensemble of elements of viscosity distributed along
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h~E!5h0 exp~E/T!, ~5!

whereE characterizes the activation barrier limiting the yie
of these blocks. The distribution of these barriers is mode
by n(E);exp(2E/Tg), which naturally introducesTg as a
~glass! transition temperature. Indeed, forT.Tg , the states
are populated according to Boltzmann statistics at ste
state p(E);n(E)exp(E/T), which gives p(E)5@(T
2Tg) /TTg# exp$2@(T2Tg) /TTg #E%, which ceases to be nor
malizable asT→Tg

1 .
The average viscosity used in this model is the cons

rate one, which leads forT.Tg to

^h&ġ5E dE p~E! h~E!5E
0

`

dE
T2Tg

TTg
e2@~T22Tg! /TTg#E,

~6!

which diverges forT→2Tg
1 ~i.e., not forT→Tg

1). With this
averaging procedure, the viscosity is thus infinite in t
rangeTg,T,2Tg , above the glass transition temperatu
The corresponding mechanical behavior was found to be
of a power-law fluid with a temperature dependent expon

^s&;ġ (T2Tg) /Tg.
Let us now explain why, on physical grounds, we exp

this prediction to be incorrect, and the viscosity of the syst
to remain finite forTg,T,2Tg . For example, focus on the
10% most viscous blocks@i.e., those of viscosity larger tha
hc5h0 exp(Ec /T) with Ec51@TTg/(T2Tg)# ln(10)].
These few very viscous blocks are embedded in a matrix
viscosity smaller thanhc , as all its blocks have a viscosit
weaker thanhc . The effective viscosity of the whole fluid
composed of this matrix with sparse quasi-solid inclusions
thus smaller thanhc times a geometric factor related to th
10% volume fraction~e.g.,h, 1.15

0.9 hc in the Olroyd-Palierne
model!, and the actual position of the inclusions. The visco
ity is thus finite forTg,T,2Tg and cannot diverge faste
thanhc5h0 exp@ln(10)Tg /(T2Tg)# asT→Tg

1 .
Switching to the other limit and using a fixed stress av

age, leads to averaging the inverse of the viscosities~or the
inverse of the relaxation times!. The continuous version o
Eq. ~2! yields an average viscosity of

^h&s5h0

T

T2Tg
, ~7!

which displays a weak~algebraic! divergence atTg .
We now propose a physically sounder recipe based on

Olroyd-Palierne formula and a self-consistent approxim
tion. We take a representative but small proportionf of the
blocks as ‘‘inclusions,’’ while the rest is the ‘‘matrix.’’ As
the matrix and the whole system are similar, formula~3!
gives an average viscosity^h&OPSS5hm :

^h&OPSS5^h&OPSS

11
3

2 (
i

f iHi

12(
i

f iHi

, ~8!

with
2-2
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(
i

f iHi5fE
0

`

dE p~E!
2h~E!22^h&OPSS

2h~E!13^h&OPSS
. ~9!

The average viscositŷh&OPSS is thus implicitly given by
( if iHi50 ~a similar approximation was used in anoth
context@15#!,

E
0

`

dE p~E!
5^h&OPSS

2h~E!13^h&OPSS
51. ~10!

Although the actual numerical factors~2 and 3! may be dis-
cussed, we believe that this formula gives a physically c
rect average, intermediate between the two limiting ca
mentioned above:̂h&ġ>^h&OPSS>^h&s , and with the ap-
propriate behavior in the two limits.

Applying this to the SGR model of Sollichet al. leads to
a divergence of the viscosity atTg . Indeed if we write the
average viscosity at temperatureT in the form ^h&OPSS
5 2

3 h0 exp(E* /T), then the implicit equation forE* is

E
0

`

dE p~E!
1

exp@~E2E* !/T#11
53/5. ~11!

Given that*0
`dE p(E)51, this suggests*E*

` dE p(E);2/5
and thus exp@2E* (T2Tg) /TTg#;2/5. This corresponds to
viscosity diverging forT→Tg

1 as ; 2
3 h0 exp@ln(5/2)Tg /(T

2Tg)#. This divergence, obtained by the above rough ana
sis, is confirmed by numerical inspection of Eq.~10!, which
gives

^h&OPSS;h0 exp@ ln~5/2!Tg /~T2Tg!#, ~12!

with a prefactor.0.72 instead of 2/3. This exponential d
vergence is consistent with our qualitative analysis be
Eq. ~6!.

Of course the 5/2 is not to be taken too seriously, but
think that a Vogel-Fulcher-like divergence of the viscosity
Tg is a sound result, within the hypothesis of the SGR mod
ce

d

.
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IV. DISCUSSION

In conclusion, great care should be taken when choos
an averaging procedure for the mechanical properties o
system close to a ‘‘glass transition.’’ Fixed stress and fix
shear rate averages are only extremes that limit a large s
possibilities. A physically appealing intermediate procedu
for elements of distributed properties, adapted from effect
medium theory, has been proposed in Eq.~10!.

Focusing on the SGR model, we have shown that us
different averages seriously modifies the law characteriz
the divergence of the viscosity. Using the recipe of Eq.~10!
we have proposed that a Vogel-Fulcher divergence co
quite naturally arise. Revisiting the model, to incorporate
effects of the inhomogeneity of the driving strain rate fieldġ
on the dynamics, is a direction that we wish to explore.

It would also be interesting to analyze thoroughly wh
kind of averages are implicitly made within the dynamic
rules used in other models for such systems@7,8,10#. For
example the simple models of@7,8# predict an algebraic di-
vergence of the viscosity. A natural question is whether t
is the result of an implicit averaging of the inverse of t
relaxation times as in Eq.~7!.

We have considered here the simplest~in principle! situ-
ation of an ergodic system~i.e., above the effective glas
transition temperature!, where neglecting spatial structure
and adopting mean-field approaches is most likely to ap
Analysis of nonergodic situations is left for further wor
Eventually, let us clarify that we have focused here on
sole viscosity to make our point clear, but that a more co
plete description of rheological properties would have to d
with effective theories for assemblies of viscoelastic~and
possibly plastic! elements@14#. Such effective theories mos
likely will have to deal with the importance of spatial corr
lations and with the role of percolating structures.
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