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Many mean-field models have been introduced to describe the mechanical behavior of glassy materials.
They often rely on averages performed over distributions of elements or states. We here underline that aver-
aging is a more intricate procedure in mechanics than in more classical situations such as phase transitions in
magnetic systems. This leads us to modify the predictions of the recently proposed soft glassy rheology model
for soft glassy materials, for which we suggest that the viscosity should diverge at the glass transition tem-
peratureT, with an exponential formy~exd A/(T—T)].
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. INTRODUCTION Vogel-Fulcher divergence of the viscosity &y 7

) ) . ~exgA/(T-Ty]. We end with a short discussion and by
Concentrated colloidal suspensions of soft particlegrawing a few research directiofiSec. I\).

(emulsions, slurriestend to display glassy behavior when

concentrated beyond a threshglt-5]. Despite their great Il. VARIOUS AVERAGES FOR RHEOLOGY

physical and chemical diversity, these soft glassy materials OR MECHANICS

often share many mechanical features. This has prompted

theoreticians to construct generic modfs-10], indepen- Let us start by clarifying the crucial role of the averaging

dent of the microscopic features of the systems, and ofteRrocedure in rheology or mechanics, which is very different
borrowed from statistical physics. The outcome of such drom the one used in many classical areas, such as magnetic
procedure is often a description in terms of a large distribusystems, where the imposed fi¢tdis well-defined, and the
tion of relaxation processes acting simultaneously, a pictur@verage magnetization is simply the algebraic mean of the
supported by experimental facts for many glassy systemk¥cal magnetizations. In rheological problems, the fields are
[11,17. imposed through the boundaries of the system, so that often
Any macroscopic mechanical response of the system theffie shear rate and the shear stress play more or less symmet-
results from an averaging over these distributions. In thigic roles, which results in a wide variety of situations.
Rapid Communication we stress the importance of the aver- To clarify the message, let us focus on the simple case of
aging procedure when one deals with mechanics. Averaging System built of elemeniblocks of high viscosity#, and
procedures have already been discussed for non-mechanigdémentsblocks of low viscosity 7, [Figs. 1a) and ib)],
situations in the nonergodic glassy phése., statistical me- and estimate the average viscosity of the system through
chanics of spin glassgd1]). However, averaging of me- different averaging procedures.
chanical fields isa priori a different story[13]. This also A first average corresponds to the situation where
affects the description of the ergodic fluid phaseg., the the same shear ratg is imposed to all elements, and one
divergence of the viscosity when one approaches the “glass
transition” from the fluid side

To make our point we focus here on the recently intro- 1O O) @ O O @® O 2
duced soft glassy rheolod$GR model[6], which incorpo- O O @ OO0 0O
rates mechanics in a simple picture of the glass transitior
introduced by Bouchaud. The system is taken as a collectior a b

of blocks, which evolve according to stochastic equations,
driven by the imposed shear rate. A control parameter of the
model is the effective temperature that we will denote here as
T. A transition occurs affy below which the system is no
more ergodic(and the fluid displays a yield strg@ss\ re-
markable feature of the model is that the viscosity diverge
at 2Ty (not Ty), so that in the interval (<T<2T4 the ma-
“lg . . : - ma- c d
terial is a power-law fluid. This large domain of viscosity
divergence, in the ergodic phase, is a feature absent in most FIG. 1. Schematic pictures ofa) a dispersion of fluid inclu-
other models for soft glassy materiql8,10. sions 2 in a highly viscous matrix Xp) a dispersion of highly
After general comments about averaging procedures imiscous inclusions 1 in a fluid matrix 25) a geometry correspond-
mechanics(Sec. I), we show that this feature is a conse-ing to averaging at fixed strain ratg, which leads to a highly
quence of the adopted averaging procedi®ec. ll). We  viscous behavior as ifia), and (d) a geometry corresponding to
propose an improvement of this procedure, which leads to averaging at fixed stress with a qualitative behavior similaibjo
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averages the resulting stresses, which leads to an average 7(E)= 5o exp(E/T), (5)
viscosity

. whereE characterizes the activation barrier limiting the yield
(m)y=d1m+(1—b1)n2, (1) of these blocks. The distribution of these barriers is modeled
where ¢, is the proportion of blocks of high viscosity. by n(E)~exp(—E/Ty), which naturally introducedy as a
Strictly speaking this procedure describes blocks arranged itglass transition temperature. Indeed, for>T,, the states
layers disposed in parallgFig. 1(c)]. A second kind of av- are populated according to Boltzmann statistics at steady
erage corresponds to submitting all blocks to the same stres¢ate p(E)~n(E)expE/T), which gives p(E)=[(T
o, and averaging the shear rates. This results in a different Tg) /T Tg] exp{—[(T—T)/TT, ]E}, which ceases to be nor-

average viscosity malizable asT—>Tg .
. - The average viscosity used in this model is the constant
— 1 _ 19-1
(mo=[dam "+ (=) m "] @ rate one, which leads foF>T, to

which describes layers in serigBig. 1(d)].

The behavior according to the first kind of average is (n): :f dE p(E) n(E)zfdeT_Tg e [(T—2Tg) ITT4IE
dominated by the highly viscous blocks: the average viscos-' """ 0 TT, '
ity (7); diverges if, diverges, whatever the relative vol- (6)
ume fractions. This is obviously a reasonable representation .= . 4 _ _
of a highly viscous medium with low-viscosity inclusions Which diverges folf —2T, (i.e., not forT—Tg). With this
[, large, Fig. 1a)], but a poor one for a system of highly averaging procedure, the viscosity is th_u_s infinite in the
viscous inclusions dispersed in a fluid matrix of low viscos-"angeTg<T<2T,, above the glass transition temperature.
ity 7, [Fig. 1(b)]. On the contrary, the latter cage, small, The corresponding mechanical behavior was found to be that

Fig. 1(b)] is better represented by a fixed stress avef&ie of a ppwer-law fluid with a temperature dependent exponent
1(d)], as(#), is dominated by the low viscosity blocks. (o)~ "~ Te/Ta.

Clearly none of these two simple averages properly de- Let us now explain why, on physical grounds, we expect
scribes all situations. Consequently effective medium theothis prediction to be incorrect, and the viscosity of the system
ries have tried to provide better alternatives. Among thoseto remain finite forT<T<2T,. For example, focus on the
let us quote the Olroyd-Palierne formytk4] for a matrix of ~ 10% most viscous blocks.e., those of viscosity larger than
viscosity 7, with various kind of dilute spherical inclusions 7c= 7o eXpE:/T)  with  E.=+[TTy/(T—Tg)]In(10)].

i (volume fractione; , viscosity7;). This formula states that These few very viscous blocks are embedded in a matrix of
the effective viscosity of the resulting composite fluidng-  Viscosity smaller tham, as all its blocks have a viscosity

glecting surface tension effegts weaker thany.. The effective viscosity of the whole fluid,
3 composed of this matrix with sparse quasi-solid inclusions, is
1+= > ¢iH; thus smaller tham. times a geometric factor related to the
(7 op=Tm 27 ’ ) 10% volume fractior(e.g.,17__< 52 7e in_the O_Iroyd-PaIieme
1— E n mode), and the actual position of the inclusions. The viscos-
i it ity is thus finite forT,<T<2T, and cannot diverge faster
with than 7,= 7o exdIN(10)Ty/(T-Ty)] asT—T, .
Switching to the other limit and using a fixed stress aver-
:277i_277m (4) age, leads to averaging the inverse of the viscosipbeshe
" 29+3ny, inverse of the relaxation timgsThe continuous version of
The above formula provides a convenient interpolation beEd. (2) yields an average viscosity of
tween the two limiting physics mentioned above. For a T
sparse dispersion of highly viscous blocks in a less viscous (7)o= 0 , (7)
matrix [Fig. 1(b)], it yields the Einstein formul& #)op T-Ty

=n,(1+3¢,), and thus similar physics to the constant
stress picturé ) ,= 7,(1+ ¢4) [Fig. 1(d)]. For a sparse dis-
persion of fluid inclusions in a highly viscous matfikig.
1@, (7)op=11(1— 3 ¢,), a result qualitatively akin to that
of the constant shear rate pictu(ey),=7.(1— ¢,) [Fig.
1(c)]. Of course, the Olroyd-Palierne formula is unable to
describe accurately the properties of intermediate mixture
(roughly ¢ in the range 30—70 Y%as it neglects spatial struc-

which displays a weakalgebrai¢ divergence aff, .

We now propose a physically sounder recipe based on the
Olroyd-Palierne formula and a self-consistent approxima-
tion. We take a representative but small proportibiof the
blocks as “inclusions,” while the rest is the “matrix.” As
the matrix and the whole system are similar, form(&
aives an average Viscosity7) ops<s= 7m:

tures that could result in percolation effects of great conse- 3
quence on the mechanical behavior. 1+3 > biH;
I
(Mopss=(Mopss— (8)
I1l. CONSEQUENCES FOR THE SGR MODEL 1_2 diH;

Implicitly the SGR model of Sollictet al. [6] considers
an ensemble of elements of viscosity distributed along with
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S i FdE E\Z”(E)_2< Nopss . IV. DISCUSSION
i SHi=4 0 i ’277(E)+3< 7)opss In conclusion, great care should be taken when choosing

an averaging procedure for the mechanical properties of a
The average viscosityn)opssis thus implicitly given by  system close to a “glass transition.” Fixed stress and fixed
>i;¢iH;=0 (a similar approximation was used in another shear rate averages are only extremes that limit a large set of

context[15]), possibilities. A physically appealing intermediate procedure
for elements of distributed properties, adapted from effective

- 5(mopss medium theory, has been proposed in Ek).
o dE p(E)zﬂ(E)+3< 77>opss_1' (10 Focusing on the SGR model, we have shown that using

different averages seriously modifies the law characterizing

Although the actual numerical factof and 3 may be dis- the divergence of the viscosity. Using the recipe of Bdq)
cussed, we believe that this formula gives a physically corWe have proposed that a Vogel-Fulcher divergence could
rect average, intermediate between the two limiting case§uite naturally arise. Revisiting the model, to incorporate the
mentioned above(7);=(7)opss(7),, and with the ap- effects of the inhomogeneity of the driving strain rate figld
propriate behavior in the two limits. on the dynamics, is a direction that we wish to explore.

Applying this to the SGR model of Sollicét al.leads to It would also be interesting to analyze thoroughly what
a divergence of the viscosity &,. Indeed if we write the kind of averages are implicitly made within the dynamical
average viscosity at temperatuie in the form (7)opss rules used in other models for such systems,10. For

=21, expE*/T), then the implicit equation foE* is example the simple models §7,8] predict an algebraic di-
vergence of the viscosity. A natural question is whether this

% 1 is the result of an implicit averaging of the inverse of the
f dE p(E) . =3/5. (11 relaxation times as in Eq7).
0 exd(E—E*)/T]+1 We have considered here the simpléstprinciple) situ-

. w . o ation of an ergodic systerfi.e., above the effective glass
Given that/odE p(E)=1, this suggestg . dE p(E)~2/5  yansition temperatuje where neglecting spatial structures
and thus exp-E*(T—Ty) /TT,]~2/5. This corresponds to & and adopting mean-field approaches is most likely to apply.
viscosity diverging forT—T, as ~5 7, exdIn(5/2)Ty/(T  Analysis of nonergodic situations is left for further work.
—Ty]. This divergence, obtained by the above rough analyEventually, let us clarify that we have focused here on the
sis, is confirmed by numerical inspection of E§0), which  sole viscosity to make our point clear, but that a more com-
gives plete description of rheological properties would have to deal
with effective theories for assemblies of viscoelagténd
{(mopss~ 70 eXHIN(S/2)Ty/(T=Ty)], (12) possibly plastit elementq14]. Such effective theories most

with a prefactor=0.72 instead of 2/3. This exponential di- likely will have to deal with the importance of spatial corre-

vergence is consistent with our qualitative analysis belowations and with the role of percolating structures.
Eq. (6).
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