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Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential
exact solution
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The nonlinear diffusion equatiofip/dt=DAp” is analyzed here, wherd=(1/r4=1)(a/ar)rd 1%/ or,
andd, #, and v are real parameters. This equation unifies the anomalous diffusion equation on fractals (
=1) and the spherical anomalous diffusion for porous media @). An exact point-source solution is
obtained, enabling us to describe a large class of subdiffUsion(1—»)d], “normal” diffusion [ 6= (1
—v)d] and superdiffusiof§<(1— v)d]. Furthermore, a thermostatistical basis for this solution is given from
the maximum entropic principle applied to the Tsallis entropy.
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One of the most ubiquitous processes in nature is the dif- ap

fusive one. In this context, anomalous diffusion has awak- 51~ V(KVp), ©)
ened great interest nowadays, in particular in a variety of
physical applications. A representative set of such applic
tions of current interest is surface growth and transport o
fluid in porous medwﬁl]_, diffusion in plasmas2], d|ffu5|on real parameter. Thus,V(KV) is proportional to
on fractals[3], subrecoil laser coolin¢4], CTAB micelles ~(d-1) d—1-¢ 2-0 -

. i ) ; . r (alor)r alar+Alr (A is an operator de-
dissolved in salted watdb], two dimensional rotating flow , ) ~
[6], and anomalous diffusion at liquid surfacEg. The [:ien_d(ldn_gl)on thed_alrl%ular variabjesand  consequenthA
anomalous diffusive process is commonly characterized! . (@/r)r dlor is the radial part to be consid-
from the mean-square displacement time dependené ered in the study of the spherical symmetrical solutions of
«t?, with o#1, i.e., we have superdiffusion far>1 and’ Eq. (3). In this context, wherd is interpreted as fractal di-

subdiffusion foro<1. For a system that presents anomaloudnension in an embeddirtg-dimensional space, the equation

spreading, it is generally associated with a non-Gaussian
space-time distribution, such as power-law or stretched ex-
ponential. In this framework, it is desirable to incorporate, in

a unified way, these two behaviors, since it enables us tBas been used to study diffusion on fractdlg].
describe a wide class of diffusive processes. The present Here we are going fo propose the equation
work is dedicated to giving such unified description.

whereK«r#3(r=|x|). In a more general case, we consider
g. (3) in a d-dimensional space witkor ~¢ whered is a

ap ~
—-=DBp @

Power-law or stretched exponential distributions arise ap
naturally from generalizations of tliedimensional diffusion 51~ V(KVp?Y), )
equation
as a unification of Eqg€2) and(3). In fact, Eq.(5) reduces to
ap the correlated anomalous diffusi@8) if K=D, and to the
—; ~DPAp, (1) generalized Richardson equati¢d) if »=1. The present

study is mainly addressed to the point-source solution of Eq.
- (5), because it contains, as particular caséy, @symptoti¢
with p=p(X,t), X=(X1,%z, ... Xg), A=2_10%/9x;, and  power-law and a stretched exponential. In this way, we focus
D being the diffusion coefficient. The nonlinear equation  our attention on the radial equation

dap ~
(7p — v
2t ~DAp’ 2 i Parn ©

Using this equation instead of Ep) enables us to analyze
is just one of these generalizations, wheris a real param- cases with noninteged, so we can relatel with a fractal
eter. Equation(2) has been employed to model diffusion in dimension. Therefore, in the following discussion, we are
porous mediur(see Ref[1] and references thergimnd in  going to consided as a non-negative real parameter.
connection with generalized Tsallis statistig&-10. An- In order to motivate the ansatz to obtain an exact time-
other important kind of anomalous diffusion, in a tridimen- dependent solution for Ed6), we recall the corresponding
sional space, is related to turbulent diffusion in the atmo-solutions for equations Eq€1), (2), and (4). The time-
sphere and is usually described [dyl] dependent point-source solution for Ed) is
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Po r? A={y"[DAM2-q) (A +d(1—q))J} MRl

p(hUZ—ex;{——), (7) 13

(4D 71 4Dt B={y{DA(2—)(n-+d(1—q)jopinraa-ar (19

where the normalizatio)4f5p(r,t)r4 *dr=p, and the Which
d-dimensional solide angl€),=27%%T(d/2) have been
used. From Eq(7) we can easily obtain the Einstein formula
for the Brownian montion, i.e{r?)=2dDt. y=
The analogous solution for E€R) is [8—10] Apo d)
2

p(r,t)=[1-(1—q)BL(Or? " YZy(v), 8

( 1 d
where q=2-—v, Zy(t)«t¥PTdA=A1  and  By(t) F(q__l_x>
ot~ 2M2+d1-0] 1t is important to emphasize the short or
long tailed shape of Eq8), when compared with the normal (q—1)¥\r
diffusion (limit g—1). Wheng<1 we havep(r,t)=0 for
1—(1—q)B,(t)r?<0, giving the short tailed behavior for 1
p(r,t). On the other hand, wheq>1, the asymptotic r<—+1
power-law behavior for solutiori8), r ~2@~1) shows that
p(r,t) is a long tailed function. This short or long tailed (1—q)9r
behavior forp(r,t) reflects directly on the mean-square dis- \
placement, leading tdr2)«t?27d1-al  Again compared
with the usual diffusiong=1, we have a superdiffusion
(subdiffusion for q>1(q<1).

The fundamental solution of E@4) is the stretched ex-
ponential[12]

(14)

(g<1l).

d + + 1)
N 1—q
The normalization conditionQdfgp(r,t)rd‘ldrzpo, em-
ployed in the above calculation can only be satisfied if
>0 and\+d(1—q)>0. From these conditions over the
parameters| and\, we verify that the exponents j8(t) and
Z(t) are respectively negative and positive. In addition to the

p(r,t)=exd — Bo(1)r?2]1Z,(t) (9) normalization condition, the restrictian< 2 is necessary for

' ' p(r,t) to be real. In the following, we assume that the pa-

which Z,(t)=t¥(?+2) and B,(t)«t™ !, presenting a short 'ameters obey the above restrictions. Of course, by setting
(long) tailed behavior for@>0(#<0). Furthermore, the the appropriate limits of parametefsand v, or equivalently
mean-square displacement behavio(ri&)«t?(*+2), Thus, M andg, the solutiong7)—(9) are recovered, giving the full
for >0 (6<0) we have a subdiffusivesuperdifussivere- ~ €xpression foB,(t), Z;(t), Ba(t), andZ(t).

gime. By using the above solution we can calculate the mean
Note that Eqs(7)—(9) can be interpolated if we employ a Value ofr itis
generalized stretched Gaussian function, &g ) (X)=[1 oc
(1= Q)X or Gyg ) (x)=0 when[1 (i q)[x] | repiror
<0, with g and\ being real parameters. In this direction, (rey= 0 =c D rdi-al (15
our ansatz to solve E@p) is * d-1 ¢ ’
p(r,tyr® =dr
p(r)=[1-(1-QBOM Y 9Z(t) (10 ’
where
or p(r,t)=0 if 1—(1—q)B(t)r*<0, wherep(t) andZ(t)
are functions to be determined. By using this ansatz in Eq. d+_“
(6) we verify that 8(t) and Z(t), with A\=0+2 andgq=2 = (ay) A
— v, obey the equations Ca=A d
r[5)
dZ(t)
gt = PM2-9)dAMmZAY), ( o2 d+a
(11) g-1 X
s, ot T (a>1)
— = —DA22-q)BA(HZ9 (). (q_l)a/xr(j_x)
< q
X
The solutions of these nonlinear differential equations, r E+ 1
which lead Eqs(7)—(9) as limit cases of Eq10), are N 1-q (q<1)
B(t)ZAt7XI[X+d(17q)], Z(t):lgtd/[ﬁd(l*m], (12) (1_q)(a/>\)r(d:_a+ ﬁ.ﬂ_
\

where (16)
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FIG. 1. Diffusive regime related to Eq6) in terms of its di- s
mensionless parametess and v to d=3. Thus, by using(r?) R S A - A

oct210+2+d(=1)] from Eq. (15) we have classified the subdiffusive
[6>(1-v)d], “normal” [6=(1—-v)d], and superdiffusive] 6 r
<(1-v)d] regimes. The forbidden region refers to the region of

parameters wherér?) does not existdiverges. FIG. 2. By considering the “normal” diffusionp=(1-»)d,

the shape op(r,t) withd=3,D=1, pp=1, andt=5 is illustrated

. . o in three cases: short tailkE —0.6 andv=1.2), Gaussian {=0
with A given by Eq.(13). Whenqg<1, the mean valuer ) andv=1), and long tail f=0.6 andv=0.8). Inset: detail of the

always exists. On the other hand, the existencér6f for 4| pehavior in the three cases above. The constant of normalization
g>1 imposes a further restriction over the parametars: , is considered dimensionless; thgsis given in units off ~¢ and
+d(1—-g)>a(q—-1). D in units ofr7279="¢=1 with r andt being measured in units
To decide if the diffusion is anomalous or “normal,” we of distance and time, respectively.
consider Eq(15) with a=2. In this way, we havér?)«=t”
with =22+ #+d(v—1)]. Thus, the condition for “nor- observed short and long tail behaviors compared with the
mal” diffusion, o= 1, can be satisfied even whprdoes not Gaussian one.
obey Eq.(1), i.e., #=d(1—v) with 6+0 andv#1. In this To conclude our discussion about E§) and its radial
case, we can also verify that the anomalous diffusive regiméme-dependent solutiofil0), we present an entropic basis
induced byf#+0 is compensated by a convenient one withfor this solution. This basis is motivated by the Tsallis gen-
v# 1. Furthermore, this competition betwe@mand v values eralized statistical mechani¢$3—15, where the Tsallis en-
can lead to a subdiffusioru(<1) if #>d(1—v) or a super- tropy [13] qu(l—E}"Llp?)/(q—l) plays a central role,
diffusion (o>1) if §<d(1-w). This classification is illus-  with {p;} being the probabilities for the/ states of the sys-
trated in Fig. 1 ford=3. tem, andqe R being the Tsallis indexby taking the limit
In the following, we discuss the consequences of they—1, we recover the usual entrolsi=—2}/\ilpj Inp). To
above classification on the shape. From solutio8), for  understand the entropic basis, for simplicity, let us consider
porous medium, and solutiof®), for diffusion on fractals, the maximization ofS,=[1—J=..p(x)%dx]/(q—1) subject
we can see that the superdiffusiv@bdiffusive regime is i3 the constraints [13,14 [“.p(x)dx=1 and
associated with the longhor) tail of p(r,t) when compared I2 X p(x)dx= Uq. This maximization leads tp(x)=[1

with Gaussian(7). However, this connection is not valid in =~~~ \1/(g—1) _% o
general. To illustrate the relation between regime of diffu- (g 1))’?'1),((L,]1) /24, : where ~ Zo=/_.[1-(q .
sion and tail behavior op(r,t), we consider Fig. 2. In this F;QSB'X' ] dxand is related to the Lagrange mult-

figure, we plotp(r,t) given by Eqg.(10) versusr to some
values off andv, subject to the restrictiod=d(1—») (the We thank CNPg and PRONEMBrazilian agenciesfor
“normal” diffusion line indicated in Fig. 1. In this case we partial financial support.
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