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Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential
exact solution
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The nonlinear diffusion equation]r/]t5DD̃rn is analyzed here, whereD̃[(1/r d21)(]/]r )r d212u]/]r ,
and d, u, and n are real parameters. This equation unifies the anomalous diffusion equation on fractals (n
51) and the spherical anomalous diffusion for porous media (u50). An exact point-source solution is
obtained, enabling us to describe a large class of subdiffusion@u.(12n)d#, ‘‘normal’’ diffusion @u5(1
2n)d# and superdiffusion@u,(12n)d#. Furthermore, a thermostatistical basis for this solution is given from
the maximum entropic principle applied to the Tsallis entropy.
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One of the most ubiquitous processes in nature is the
fusive one. In this context, anomalous diffusion has aw
ened great interest nowadays, in particular in a variety
physical applications. A representative set of such appl
tions of current interest is surface growth and transport
fluid in porous media@1#, diffusion in plasmas@2#, diffusion
on fractals@3#, subrecoil laser cooling@4#, CTAB micelles
dissolved in salted water@5#, two dimensional rotating flow
@6#, and anomalous diffusion at liquid surfaces@7#. The
anomalous diffusive process is commonly characteri
from the mean-square displacement time dependence,^r 2&
}ts, with sÞ1, i.e., we have superdiffusion fors.1 and
subdiffusion fors,1. For a system that presents anomalo
spreading, it is generally associated with a non-Gaus
space-time distribution, such as power-law or stretched
ponential. In this framework, it is desirable to incorporate,
a unified way, these two behaviors, since it enables u
describe a wide class of diffusive processes. The pre
work is dedicated to giving such unified description.

Power-law or stretched exponential distributions ar
naturally from generalizations of thed-dimensional diffusion
equation

]r

]t
5DDr, ~1!

with r5r( x̄,t), x̄5(x1 ,x2 , . . . ,xd), D5(n51
d ]2/]xn

2 , and
D being the diffusion coefficient. The nonlinear equation

]r

]t
5DDrn ~2!

is just one of these generalizations, wheren is a real param-
eter. Equation~2! has been employed to model diffusion
porous medium~see Ref.@1# and references therein! and in
connection with generalized Tsallis statistics@8–10#. An-
other important kind of anomalous diffusion, in a tridime
sional space, is related to turbulent diffusion in the atm
sphere and is usually described by@11#
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]r

]t
5¹~K¹r!, ~3!

whereK}r 4/3(r 5ux̄u). In a more general case, we consid
Eq. ~3! in a d-dimensional space withK}r 2u, whereu is a
real parameter. Thus, ¹(K¹) is proportional to
r 2(d21)(]/]r )r d212u]/]r 1A/r 22u (A is an operator de-
pending on the angular variables!, and consequentlyD̃
[r 2(d21)(]/]r )r d212u]/]r is the radial part to be consid
ered in the study of the spherical symmetrical solutions
Eq. ~3!. In this context, whend is interpreted as fractal di
mension in an embeddingN-dimensional space, the equatio

]r

]t
5DD̃r ~4!

has been used to study diffusion on fractals@12#.
Here we are going to propose the equation

]r

]t
5¹~K¹rn!, ~5!

as a unification of Eqs.~2! and~3!. In fact, Eq.~5! reduces to
the correlated anomalous diffusion~2! if K5D, and to the
generalized Richardson equation~3! if n51. The present
study is mainly addressed to the point-source solution of
~5!, because it contains, as particular cases, a~n! ~asymptotic!
power-law and a stretched exponential. In this way, we fo
our attention on the radial equation

]r

]t
5DD̃rn. ~6!

Using this equation instead of Eq.~5! enables us to analyz
cases with nonintegerd, so we can related with a fractal
dimension. Therefore, in the following discussion, we a
going to considerd as a non-negative real parameter.

In order to motivate the ansatz to obtain an exact tim
dependent solution for Eq.~6!, we recall the corresponding
solutions for equations Eqs.~1!, ~2!, and ~4!. The time-
dependent point-source solution for Eq.~1! is
©2001 The American Physical Society01-1
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r~r ,t !5
r0

~4pDt !d/2
expS 2

r 2

4Dt D , ~7!

where the normalizationVd*0
`r(r ,t)r d21dr5r0 and the

d-dimensional solide angleVd[2pd/2/G(d/2) have been
used. From Eq.~7! we can easily obtain the Einstein formu
for the Brownian montion, i.e.,̂r 2&52dDt.

The analogous solution for Eq.~2! is @8–10#

r~r ,t !5@12~12q!b1~ t !r 2#1/12q/Z1~ t !, ~8!

where q522n, Z1(t)}td/[21d(12q)] and b1(t)
}t22/[21d(12q)] . It is important to emphasize the short
long tailed shape of Eq.~8!, when compared with the norma
diffusion ~limit q→1). Whenq,1 we haver(r ,t)50 for
12(12q)b1(t)r 2,0, giving the short tailed behavior fo
r(r ,t). On the other hand, whenq.1, the asymptotic
power-law behavior for solution~8!, r 22/(q21), shows that
r(r ,t) is a long tailed function. This short or long taile
behavior forr(r ,t) reflects directly on the mean-square d
placement, leading tôr 2&}t2/[21d(12q)] . Again compared
with the usual diffusion,q51, we have a superdiffusion
~subdiffusion! for q.1(q,1).

The fundamental solution of Eq.~4! is the stretched ex
ponential@12#

r~r ,t !5exp@2b2~ t !r u12#/Z2~ t !, ~9!

which Z2(t)}td/(u12) and b2(t)}t21, presenting a shor
~long! tailed behavior foru.0(u,0). Furthermore, the
mean-square displacement behavior is^r 2&}t2/(u12). Thus,
for u.0 (u,0) we have a subdiffusive~superdifussive! re-
gime.

Note that Eqs.~7!–~9! can be interpolated if we employ
generalized stretched Gaussian function, i.e.,G(q,l)(x)[@1
2(12q)uxul#1/(12q) or G(q,l)(x)[0 when@12(12q)uxul#
,0, with q and l being real parameters. In this directio
our ansatz to solve Eq.~6! is

r~r ,t !5@12~12q!b~ t !r l#1/12q/Z~ t ! ~10!

or r(r ,t)50 if 12(12q)b(t)r l,0, whereb(t) andZ(t)
are functions to be determined. By using this ansatz in
~6! we verify thatb(t) and Z(t), with l5u12 andq52
2n, obey the equations

dZ~ t !

dt
5Dl~22q!db~ t !Zq~ t !,

~11!
db~ t !

dt
52Dl2~22q!b2~ t !Zq21~ t !.

The solutions of these nonlinear differential equatio
which lead Eqs.~7!–~9! as limit cases of Eq.~10!, are

b~ t !5At2l/@l1d~12q!#, Z~ t !5Btd/@l1d~12q!#, ~12!

where
03010
q.

,

A5$gq21@Dl~22q!~l1d~12q!!#%2l/@l1d~12q!#,
~13!B5$g@Dl~22q!~l1d~12q!!#d/l%l/@l1d~12q!#,

which

g5
2pd/2

lr0

G S d

l D
GS d

2D

35
GS 1

q21
2

d

l D
~q21!d/lGS 1

q21D ~q.1!

GS 1

12q
11D

~12q!d/lGS d

l
1

1

12q
11D ~q,1!.

~14!

The normalization condition,Vd*0
`r(r ,t)r d21dr5r0, em-

ployed in the above calculation can only be satisfied ifl
.0 and l1d(12q).0. From these conditions over th
parametersq andl, we verify that the exponents inb(t) and
Z(t) are respectively negative and positive. In addition to
normalization condition, the restrictionq,2 is necessary for
r(r ,t) to be real. In the following, we assume that the p
rameters obey the above restrictions. Of course, by set
the appropriate limits of parametersu andn, or equivalently
l andq, the solutions~7!–~9! are recovered, giving the ful
expression forb1(t), Z1(t), b2(t), andZ2(t).

By using the above solution we can calculate the me
value of r a; it is

^r a&5

E
0

`

r ar~r ,t !r d21dr

E
0

`

r~r ,t !r d21dr

5Cata/@l1d~12q!#, ~15!

where

Ca5A 2(a/l)

GS d1a

l D
GS d

l D

35
GS 1

q21
2

d1a

l D
~q21!a/lGS 1

q21
2

d

l D ~q.1!

GS d

l
1

1

12q
11D

~12q!(a/l)GS d1a

l
1

1

12q
11D ~q,1!,

~16!
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with A given by Eq.~13!. Whenq,1, the mean valuêr a&
always exists. On the other hand, the existence of^r a& for
q.1 imposes a further restriction over the parametersl
1d(12q).a(q21).

To decide if the diffusion is anomalous or ‘‘normal,’’ w
consider Eq.~15! with a52. In this way, we havêr 2&}ts

with s52/@21u1d(n21)#. Thus, the condition for ‘‘nor-
mal’’ diffusion, s51, can be satisfied even whenr does not
obey Eq.~1!, i.e., u5d(12n) with uÞ0 andnÞ1. In this
case, we can also verify that the anomalous diffusive reg
induced byuÞ0 is compensated by a convenient one w
nÞ1. Furthermore, this competition betweenu andn values
can lead to a subdiffusion (s,1) if u.d(12n) or a super-
diffusion (s.1) if u,d(12n). This classification is illus-
trated in Fig. 1 ford53.

In the following, we discuss the consequences of
above classification on ther shape. From solution~8!, for
porous medium, and solution~9!, for diffusion on fractals,
we can see that the superdiffusive~subdiffusive! regime is
associated with the long~short! tail of r(r ,t) when compared
with Gaussian~7!. However, this connection is not valid i
general. To illustrate the relation between regime of dif
sion and tail behavior ofr(r ,t), we consider Fig. 2. In this
figure, we plotr(r ,t) given by Eq.~10! versusr to some
values ofu andn, subject to the restrictionu5d(12n) ~the
‘‘normal’’ diffusion line indicated in Fig. 1!. In this case we

FIG. 1. Diffusive regime related to Eq.~6! in terms of its di-
mensionless parametersu and n to d53. Thus, by usinĝ r 2&
}t2/[u121d(n21)] from Eq. ~15! we have classified the subdiffusiv
@u.(12n)d#, ‘‘normal’’ @u5(12n)d#, and superdiffusive@u
,(12n)d# regimes. The forbidden region refers to the region
parameters wherêr 2& does not exist~diverges!.
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observed short and long tail behaviors compared with
Gaussian one.

To conclude our discussion about Eq.~5! and its radial
time-dependent solution~10!, we present an entropic bas
for this solution. This basis is motivated by the Tsallis ge
eralized statistical mechanics@13–15#, where the Tsallis en-
tropy @13# Sq5(12( j 51

W pj
q)/(q21) plays a central role,

with $pj% being the probabilities for theW states of the sys-
tem, andqPR being the Tsallis index~by taking the limit
q→1, we recover the usual entropyS152( j 51

W pj ln pj). To
understand the entropic basis, for simplicity, let us consi
the maximization ofSq5@12*2`

` r(x)qdx#/(q21) subject
to the constraints @13,14# *2`

` r(x)dx51 and
*2`

` uxulr(x)dx5Uq . This maximization leads tor(x)5@1
2(q21)buxul#1/(q21)/Zq , where Zq5*2`

` @12(q
21)buxul#1/(q21)dx andb is related to the Lagrange multi
pliers.

We thank CNPq and PRONEX~Brazilian agencies! for
partial financial support.

f
FIG. 2. By considering the ‘‘normal’’ diffusion,u5(12n)d,

the shape ofr(r ,t) with d53, D51, r051, andt55 is illustrated
in three cases: short tail (u520.6 andn51.2), Gaussian (u50
andn51), and long tail (u50.6 andn50.8). Inset: detail of the
tail behavior in the three cases above. The constant of normaliza
r0 is considered dimensionless; thus,r is given in units ofr 2d and
D in units of r u122d(12n)t21, with r and t being measured in units
of distance and time, respectively.
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