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Comment on “sr kinks in strongly ac driven sine-Gordon systems”
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V. Zharnitsky, 1. Mitkov, and N. Gronbech-Jensgthys. Rev. B58, 1, R52(1998] found thats kinks can
propagate in strongly perturbed, directly driven rescaled sine-Gordon system provided that the parameters are
chosen to make 2 kink localization vanish. In this paper we would like to note that besidand 27 kinks
there can exist other kinklike solutions due to the fact that two unstable equilibria in the sine-Gordon phase
emerging at a critical value of the drive amplitude are not necessarily separateddyhe contrary with the
result of Zharnitsky, Mitkov, and Gronbech-Jensen. As a result, for the nondissipative system two one-
parameter families of kink solutions exist that in the degenerate case become a one-parameter faskiik of
solutions obtained in Zharnitsky, Mitkov, and Gronbech-Jensen. In the dissipative case velocity is selected for
each of the two families of kink solutions by the balance between perturbations.
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In a recent paper Zharnitskat al.[1] found for nondissi- stable and one stable equilibrium, it is obvious that for any
pative ac driven sine-Gordon equatiofsGE a one- frequency, we can finC+#+0 such that the system would
parameter family ofm kinks moving with any prescribed have two stable and two unstable equilibria. This is the key
velocity. In the case of damped and driven SGE it waspoint that leads to the existence of new kink solutions in the
shown that velocity is selected and only one of théinks  forced SGE. Denote=Cw?/2D and letD>0. One can see
survives. The purpose of this Comment is to show that othethat in case 2= 6— m and k<1 there are two stable equi-
kinklike solutions can be easily obtained using the eleganlibria given by ®, ,= y+arccos, y—arccosk and two un-
techniques of Zharnitskgt al,, if one eliminates small inac- stable equlibria given bW 4=, 7+ y. The distance be-
curacies in1]. tween two stable equlibria is equal {®=2 arccosc< and

Following [1], consider firstly the equation of motion for becomes equal ter for C=0. It is important that these
a directly forced pendulung+ sin p=Mf(wt), wheref is a  equlibria are on the same level of the Hamiltonian,
mean-zero periodic functioM is a constantf represents a i.e., H(0,0,)=H(0,0,). We are interested in the stable
normalized time, and»>1. After applying the transforma- - equlipria of H(P,0) because in the consideration of the
tion ¢=0+Ma " “F(ot) [whereF"(7) =f(7)], one obtains ¢, .o SGE the Hamiltoniaiti (P,©)=P?%/2+C cos@®—1y)

the equation , o A
+(w ™ “/2)D cos(— 6) will arise. The HamiltoniaH (P, )
9+sif 0+ Mo 2F(wt)]=0 (1) has the unstable equilibria coincident with the stable equilib-
ria of H(P,®) (see Fig. 1 From now on, we assume that
with the corresponding Hamiltoniar(p, #). Invoking series  2y=§— o (we will show below that this condition is auto-
of canonical transformations described 1, one finally gets  matically fulfilled when the perturbation is sinusoigal
the HamiltonianH,=H(P,0)+O(w 3), where Solving the equations of motion corresponding to Hamil-
tonian H(P,®), one can get the following separatrix solu-
tions:

2) - 1—« [D(1-«?)
®,(t)=y+2arcta 1r Ktan Tt

here P and ® are new canonical variables and
C, D, vy, & are constants depending on perturbation (©)
Mf(wt) [1]. The simple but important question is the exis- 5
tence and location of equilibria of the systé¢fy. (2)]. 1+« D(1-«
a ysteEg. (2)] O,(t)=y+ w+2arcta{ — tan?‘( %t)
w

~ P2 w2
H(P,®)=7—Ccos{®—7)—TD cog20 — ),

In [1], it is said that forC#0 there is only one stable
equilibrium ® =y and one unstable equilibriu® = 7+ v,
for large frequencies; a€ passes through 0, a bifurcation where®,(t) is the separatrix solution with the initial condi-

occurs andfor C=0) the system has two stable equlibria tion ©,(0)=1y, and @,(t) is the separatrix solution with
given by ®=45/2, w+4/2 and two unstable equilibria @,(0)=7+y.

given by@: w2+ 612, 3mwl2+ 5/2. This is S|Ight|y inac- Consider now the damped and driven SGE:
curate. Althouth it is true that for an€+0 there are fre-
guencies large enough for the system to have only one un- bi— Pyt SiING=MTF(wt) — ad;+ 7. (4)

Following [1], introduce a new phasé= ¢— G(t), where
*Email address: alx_it@yahoo.com G+aG=Mf(wt). The new equations of motions are
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FIG. 1. The effective potential H(O,@):Ccos(e—y)
+(w %2)D cos(®—6) in the case 3=6—m and k=Cw?/2D
<1.

Pt=Oxx—ap+ s 6+G(wt)]. (5

Applying a series of transformations described ihto Eq.
(5) and neglecting terms- o2 one gets the following sys-
tem of equationgcompare with Eq(16) of [1]]:

at:pi

®t: P,
5 (6)
Pi=0,—aP+ 17—Csir|(®—y)+—25in(2®—2y).
1)

Let us substitute a traveling wave ansatz x—ct in Eq.

(6). In the zeroth order inx and 7, we get the equatio®
=sin(@—v)—w D sin(20—2y), where overdots denote dif-
ferentiating over new tim&/\1—c?. The Hamiltonian of

the latter equation iéi(P,@) and its separatrix solutions are
1'2(2/\/1—02). These solutions are kinks whose heights
[i.e.,®(+x)—0O(—x)] are equal tg3 and 27— 3, respec-
tively. In the degenerate cagg=2 arccosc<= 7 these two
one-parameter families of kink solutions give w@skinks
obtained in[1] (note that arctgdmanh/2)]=arctafexp(x) ]
—a/4). Whena#0 and »+# 0, only two of these solutions

are selected out because of the energy balance consideratigﬁ

[1]. Each of the one-parameter families of kink solutions
1(2/\/1—02) and@z(lell—CZ) gives one solution, with
the velocitiesc; andc, correspondingly, where

+ oo
f 0;,dZ
_77 — ’
Cio=—

o1 mw

. (D
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V1— kT 2k arctan
1+ k

Returning back to the variable®,) we finally get two

Here we denoted

4 arcta

®

approximate kink  solutions (64(x,t),p1(x,t)) and
(62(%,1),pa(x,1)):
01‘2:V1‘2+A7},
{A} {B} ©
-1 . -1
pl,ZZEVLZ_ o sin(Vy9) — o cogVy ),

Wherevlvz(x,t)z@1_2([x—ct]/\/1—cz), {A}_, and{B}_,
are defined i1], A,=w?7/2D(1-«?) is a small correc-
tion that compensates the constant perturbagofar from
the center of the kink. Thus, in the dissipative case the pa-
rameters of the system should satisfy the additional condition
|A,|<1 in order for Eq(9) to be the good approximate kink
solution.

In the particular case of sinusoidal perturbatibfr)
=sin(r) one can find, using Eq9) of [1],

” rJ_(r
c e dn(I)In(I)

Jo(I),

v=0, o=, 10
wherel' = — M/w+\Ja?+ w? (see alsd2]). Note that the con-
dition 2y=§— 7 is automatically fulfilled. Using Eq(10),
one can vary the parametgrfrom 0 to 2.

To conclude, we have shown that directly strongly ac
ven SGE can produce two branches of kink solutions in
the region of parameter space where-Rink localization
vanishes. These two branches of kink solutions @+eand
(27— B)-kinks. It means that the region of parameter space
where 2r-kink localization vanishes does not coincide with
the regions wherer-kink localization exists, to the contrary
with [1].

The author wishes to thank Professor A. |. Neishtadt for
useful discussions.
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