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Exact expressions for minor hysteresis loops in the random field Ising model on a Bethe lattice
at zero temperature
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We obtain exact expressions for the minor hysteresis loops in the ferromagnetic random field Ising model on
a Bethe lattice at zero temperature in the case when the driving field is cycled infinitely slowly.
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I. INTRODUCTION

Hysteresis is a common phenomenon but uncommo
difficult to treat analytically. Theoretically, hysteresis is e
pected to vanish as the frequency of the driving field goe
zero, or its period goes to infinity. However, in many cas
hysteresis persists over the longest experimental time sc
For example, there are indications that hysteresis would
observed in a permanent magnet even if the applied fi
were to be cycled so slowly as to take the entire life of
experimentalist to complete one loop. It is of practical im
portance to make a theory for this kind of hysteresis t
persists over the longest practical time scales, and where
effect of temperature on the area and the shape of the
teresis loop is small. A reasonable starting point for
theory may be the Glauber dynamics of the Ising mode
temperatureT, driven by a field of frequencyv. However,
this is difficult to treat analytically. A simpler version of thi
model that appears to be adequate for our purpose is
tained by taking the limitT50 first, and then the limitv
50. The zero-temperature, zero-frequency version produ
realistic-looking hysteresis loops if one incorporates
Gaussian distribution of on-site quenched random field in
model. Thus the zero-temperature single-spin-flip dynam
of the ferromagnetic random field Ising model~RFIM! was
proposed as a model of hysteresis and Barkhausen nois
Sethnaet al. @1#. Antiferromagnetic RFIM is also interestin
in the context of relaxation without Barkhausen noise@2#.
The difficulty in the analytical treatment of the mode
comes from the presence of the quenched random field.
zero-temperature dynamics of RFIM cannot be solved
actly in two or three dimensions~so far!. We have obtained
the major hysteresis loop for the ferromagnetic RFIM in o
dimension@3# and on a Bethe lattice@4#. The Barkhausen
noise on the major loop has been analyzed@5#. Minor hys-
teresis loops in the ferromagnetic RFIM have been obtai
in one dimension@6#. Antiferromagnetic RFIM is apparently
more difficult, and its analytic solution is limited so far to th
major hysteresis loop in one dimension for a rectangular
tribution of the quenched field of width 2D whereD<uJu, J
being the strength of the nearest neighbor interaction.

In the following, we present the solution of minor loops
the ferromagnetic RFIM on a Bethe lattice. This is an ext
sion of the work presented in Ref.@6#, and the completion of
a problem that remained open in Ref.@4#; therefore the
reader is assumed to be familiar with these references.
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eral important aspects of the analysis and simulations of
model that are discussed in Refs.@4# and@6# are not repeated
here in order to save space, or mentioned only briefly for
sake of completeness. It was shown in one dimension@6# that
a reversal of the applied field by an amount 2J from any-
where on the major loop brings the system on the oppo
half of the major loop. The reversed trajectory merges w
the opposite half of the major loop for the portion of th
reversed field exceeding 2J. Thus, the width~along the ap-
plied field axis! of a minor loop that touches both halves
the major loop~but does not merge with either of them! is
constant and equal to 2J irrespective of the position of the
minor loop. The shape of the minor loop does depend u
its position inside the major loop. This physically interesti
result is now shown to hold on all Bethe lattices irrespect
of the coordination numberz of the lattice.

II. MAJOR HYSTERESIS LOOP

In this section, we recall the model briefly, and the so
tion of the major hysteresis loop obtained earlier@4#. The
RFIM in an external fieldhext is characterized by the Hamil
tonian

H52J(
i , j

sisj2(
i

hisi2hext(
i

si . ~1!

The sum in the first term is restricted to pairs of near
neighbors on a Bethe lattice of coordination numberz. The
external fieldhext is cycled from2` to 1` and back to
2`. This takes the system around its major hysteresis lo
Spins turn up on the lower half of the loop, and turn dow
again on the upper half. The applied field changes v
slowly. Equivalently, at each value of the external field, t
system is allowed adequate time to attain a relaxed state
each spin pointing along the net field at its site. In the relax
state athext5h, the probability that an arbitrary sitei is up is
given by

p~h!5 (
n50

z S z

nD @P* ~h!#n@12P* ~h!#z2npn~h!. ~2!

Here P* (h) is the conditional probability that a neare
neighbor of sitei is up before sitei is relaxed, andpn(h) is
the probability that the sitei with quenched fieldhi can turn
up in applied fieldh if n of its nearest neighbors are up. Th
starting state on the lower half of the major loop has all si
©2001 The American Physical Society02-1
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down, and the starting state on the upper half has all sites
Thus, on the lower half of the major loop,P* (h) denotes the
conditional probability that a nearest neighbor of sitei turns
up before sitei. On the upper half,P* (h) denotes the con
ditional probability that a nearest neighbor of sitei turns
down after sitei. We distinguish the two situations by pu
ting a subscriptl for the lower half andu for the upper half.
This gives

Pl* ~h!5 (
n50

z21 S z21

n D @Pl* ~h!#n@12Pl* ~h!#z212npn~h!

~3!

and

Pu* ~h!5 (
n50

z21 S z21

n D @Pu* ~h!#n@12Pu* ~h!#z212npn11~h!.

~4!

We note thatpn11(h)5pn(h12J), and thereforePu* (h)
5Pl* (h12J). Here, Pu* (h) is the conditional probability
that when a site that is up on the upper half of the major lo
at field h, its nearest neighbor is also up. Similarly,Pl* (h
12J) is the conditional probability that when a site that
down on the lower half of the major loop at fieldh12J, its
nearest neighbor is up.

III. STARTING A MINOR LOOP

Suppose we are on the lower part of the major loop wh
the applied field is reversed fromh to h8 (h8<h) to generate
the upper half of a minor hysteresis loop. We ask the qu
tion, what is the probability that an arbitrary sitei that was
up ath turns down ath8? In order to compute this probabilit
correctly, we must take into account the irreversibility of t
zero-temperature dynamics. Consider a sitei that is down on
the lower half of the major loop at an applied fieldh2dh but
turns up ath, wheredh is an arbitrarily small field. Once site
i has turned up, it may not turn down immediately if the fie
is rolled back to the valueh2dh. The reason is as follows
When sitei turns up, it increases the net field on each of
nearest neighbors by an amount 2J. The increased field may
cause one or more nearest neighbors of sitei to turn up.
Supposena nearest neighbors of sitei were already up before
site i turned up, andnb nearest neighbors turn up after sitei
turns up. Clearly,nb must lie in the range 0<nb<z2na .
The nb neighbors increase the local field at sitei by a finite
amount 2nbJ. Therefore, an infinitesimal decrease in the a
plied field will not cause sitei to turn down unlessnb50. A
site i with nb.0 will turn down in decreasing applied fiel
only after all of thenb nearest neighbors have turned dow
When the field is reversed toh8,h, none of thena neigh-
bors~which turned up before sitei turned up! could possibly
turn down before sitei turns down. This leaves the othernb
neighbors that turned up after sitei. Thenb neighbors turned
up because the field on them increased by an amount 2J after
site i turned up. In decreasing fieldh8, thenb neighbors will
turn down before sitei turns down. Ath85h22J, all of the
nb neighbors would have turned down with the result that
02710
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nearest neighbors of a sitei that are up ath85h22J are
precisely those that were up before sitei flipped up. These
neighbors will turn down on the reverse trajectory only af
site i turns down. Thus, given an up sitei at h85h22J on
the upper half of the minor loop, the conditional probabili
Pu* (h22J) that a nearest neighbor ofi is up is equal to
Pl* (h), where Pl* (h) is the conditional probability that a
nearest neighbor of sitei is up at fieldh given that sitei is
down on the lower half of the major loop at fieldh. The
probability that the sitei is up at h22J is given by the
equation

p~h22J!5 (
n50

z S z

nD @Pl* ~h!#n@12Pl* ~h!#z2npn~h22J!

~5!

or, using the identityPl* (h)5Pu* (h22J),

p~h22J!5 (
n50

z S z

nD @Pu* ~h22J!#n

3@12Pu* ~h22J!#z2npn~h22J!. ~6!

It follows from the above equation that the reverse traject
will meet the upper half of the major loop ath85h22J and
merge with it forh8,h22J. Thus, the task of computing
the minor hysteresis loop is reduced to rangeh22J<h8
<h. We return to the question asked at the beginning of t
section. What is the probability that a sitei that is up ath
turns down ath8? This is given by

q8~h8!5 (
n50

z S z

nD @Pl* ~h!#n@D* ~h8!#z2n@pn~h!2pn~h8!#.

~7!

HereD* (h8) is the probability that a nearest neighbor of s
i turns down on the reverse trajectory before sitei. D* (h8) is
determined by the equation

D* ~h8!5 (
n50

z21 S z21

n D @Pl* ~h!#n@12Pl* ~h!#z212n

3@12pn11~h!#1 (
n50

z21 S z21

n D
3@Pl* ~h!#n@D* ~h8!#z212n

3@pn11~h!2pn11~h8!#. ~8!

Given a sitei that is up ath, the first sum above gives th
conditional probability that a nearest neighbor of sitei is
down ath85h, i.e., at the very start of the reverse trajecto
~and hence remains down forh8,h). The second sum take
into account the situation that the nearest neighbor in qu
tion is up ath, but turns down before sitei turns down on the
return loop. Note thatall the nearest neighbors of a sitei that
turned up after it turned up on the lower major loop mu
turn down before sitei turns down on the upper minor loop

The magnetization on the reverse trajectory is given b
2-2
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m8~h8!52@p~h!2q8~h8!#21. ~9!

IV. COMPLETING THE MINOR LOOP

We reverse the fieldh8 to h9 (h9.h8) to trace the lower
half of the return loop. The magnetization on the lower h
of the return loop may be written as

m9~h9!52@p~h!2q8~h8!1p9~h9!#21, ~10!

wherep9(h9) is the probability that an arbitrary sitei that
turned up ath and turned down ath8, turns up again ath9,

p9~h9!5 (
n50

z S z

nD @U* ~h9!#n@D* ~h8!#z2n

3@pn~h9!2pn~h8!#. ~11!

Here U* (h9) is the conditional probability that a neare
neighbor of a sitei turns up before sitei turns up on the
lower return loop. It is determined by the equation

U* ~h9!5P* ~h!2 (
n50

z21 S z21

n D
3@Pl* ~h!#n@D* ~h8!#z212n@pn~h!2pn~h8!#

1 (
n50

z21 S z21

n D @U* ~h9!#n@D* ~h8!#z212n

3@pn~h9!2pn~h8!#. ~12!

The rationale behind Eq.~12! is similar to the one behind Eq
~8!. Given that a sitei is down ath8, the first two terms
account for the probability that a nearest neighbor of sitei is
up ath9>h8. Note that the neighbor in question must ha
been up ath in order to be up ath8, and if it is already up at
h8 then it will remain up on the entire lower half of th

FIG. 1. Major and minor hysteresis loops in RFIM (J51) on a
Bethe lattice (z53) for a Gaussian distribution of the random fie
with mean zero ands52. The minor hysteresis loop is obtained b
reversing the applied field fromh51.5 to h8520.5 and back to
h51.5. Theoretical result is shown by a continuous line, and sy
bols show the data obtained from numerical simulation of
model.
02710
f

return loop, i.e., ath9>h8. The third term gives the prob
ability that the neighboring site was down ath8, but turned
up on the lower return loop before sitei turned up. It can be
verified that the lower return loop meets the lower ma
loop at h95h and merges with it forh9.h, as may be
expected on account of the return point memory. The ex
expressions given above have been checked against nu
cal simulations of the model in selected cases resulting
excellent agreement in all cases that were tested.

V. CONCLUDING REMARKS

The method of calculating the minor loop described abo
may be extended to obtain a series of nested minor loo
The key point is that whenever the applied field is revers
a sitei may flip only after all neighbors of sitei that flipped
in the wake of sitei ~on the immediately preceding secto!
have flipped back. The neighbors of sitei, which remained
firm after sitei flipped previously, do not yield before sitei
has flipped again on the return loop. We have obtained
above expression for the return loop when the applied fiel
reversed fromhext5h on the lower major loop tohext5h8
(h22J<h8<h), and reversed again fromhext5h8 to hext
5h9 (h9<h). When the applied field is reversed a third tim
from h9 to h- (h-,h9), expressions for the magnetizatio
on the nested return loop follow the same structure as the
on the trajectory fromh to h8. Qualitatively, the role ofP*
on the first leg (h to h8) is taken up byU* on the third leg
(h9 to h-) of the nested return loop.

We conclude by comparing the results obtained ab
with numerical simulations on Bethe lattices of coordinati
numberz53 andz54, and also contrast these results w
those obtained in the one-dimensional case@6#. Let us spe-
cifically choose a Gaussian distribution of the random fi
with mean value zero and variances2. One generally ex-

-
e

FIG. 2. Hysteresis in RFIM (J51) on a Bethe lattice (z54) for
a Gaussian random field of mean zero ands51.70. Discontinuities
in the major loop vanish abovesc51.78. Two minor loops are
shown starting on the lower major loop ath50.95 andh51.05,
respectively. As in Fig. 1, theoretical result is shown by a contin
ous line, and symbols show the data obtained from numerical si
lation of the model. Note that the minor loops touch the upp
major loop when the applied field has been reversed by an am
2J.
2-3
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pects the solution of an Ising model with nearest neigh
interactions on a Bethe lattice (z>3) to be qualitatively dif-
ferent from its solution in one dimension (z52), and to be
similar to the mean-field solution of an infinite-range mod
However, these expectations are not borne out in the cas
hysteresis in RFIM. The mean-field solution@1# does not
show any hysteresis fors>sc(`)5A2/p. In contrast to
this, there is hysteresis on Bethe lattices for all values ofs.
Moreover, the behavior on lattices withz52 andz53 turns
out to be qualitatively similar. For lattices withz>4, the
magnetization on each half of the hysteresis loop has a ju
discontinuity fors<sc(z); the jump discontinuity is absen
on lattices withz<3 for any finite value ofs. Figure 1
shows the major as well as a minor hysteresis loop o
Bethe lattice withz53, ands52. The minor loop starts on
the lower half of the major loop ath51.5 and meets the
upper half ath520.5 as may be expected from the theor
ical prediction. As the magnetization on the lower half of t
major loop is a single valued function of the applied field
W
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Fig. 1, the point where the applied field is reversed de
mines the minor loop uniquely. The one-dimensional ca
(z52) is similar @6#. However, the situation is different fo
z>4. Forz54, we havesc(4)51.78 approximately. Figure
2 shows the major loop forz54 ands51.70 with a jump
discontinuity at a critical fieldhc that is slightly higher than
unity for s51.70. There are two values of the magnetizati
at hc , both lying on the lower half of the major loop. If w
reverse the applied field from the valuehc , we must specify
the state of the magnetization from where the return is ma
giving us two possible return loops originating athc . Figure
2 shows two minor loops starting ath50.95 ~slightly less
thanhc), andh51.05~slightly greater thanhc) on the lower
half of the major loop. Both the return trajectories touch t
upper half of the major loop when the field has been rever
by an amount 2J as expected from the theoretical analys
The overall agreement between the simulations and
theory is also quite good indicating that the model cons
ered here is self-averaging@4–6#.
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