PHYSICAL REVIEW E, VOLUME 63, 027102

Exact expressions for minor hysteresis loops in the random field Ising model on a Bethe lattice
at zero temperature
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We obtain exact expressions for the minor hysteresis loops in the ferromagnetic random field Ising model on
a Bethe lattice at zero temperature in the case when the driving field is cycled infinitely slowly.
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[. INTRODUCTION eral important aspects of the analysis and simulations of the
model that are discussed in Ref4] and[6] are not repeated
Hysteresis is a common phenomenon but uncommonlyere in order to save space, or mentioned only briefly for the
difficult to treat analytically. Theoretically, hysteresis is ex- Sake of completeness. It was shown in one dimen@bthat
pected to vanish as the frequency of the driving field goes t@ reversal of the applied field by an amourdt om any-
zero, or its period goes to infinity. However, in many casesvhere on the major loop brings the system on the opposite
hysteresis persists over the longest experimental time scaldlf of the major loop. The reversed trajectory merges with
For example, there are indications that hysteresis would b opposite half of the major loop for the portion of the
observed in a permanent magnet even if the applied fielf€versed field exceedingl2Thus, the width(along the ap-
were to be cycled so slowly as to take the entire life of anP!i€d field axig of a minor loop that touches both halves of
experimentalist to complete one loop. It is of practical im-the major loop(but does not merge with either of thgis

portance to make a theory for this kind of hysteresis thaf:O.nStant and equal toJ2rrespective of the position of the

persists over the longest practical time scales, and where e nor loop. The shape of the minor loop does depend upon

effect of temperature on the area and the shape of the hyltes position inside the major loop. This physically interesting

. X . . Fesult is now shown to hold on all Bethe lattices irrespective
teresis loop is small. A reasonable starting point for the

theory may be the Glauber dynamics of the Ising model a?f the coordination number of the lattice.
temperaturerl, driven by a field of frequencw. However,
this is difficult to treat analytically. A simpler version of this
model that appears to be adequate for our purpose is ob- In this section, we recall the model briefly, and the solu-
tained by taking the limiff=0 first, and then the limiw tion of the major hysteresis loop obtained earliét. The

=0. The zero-temperature, zero-frequency version producdsFIM in an external fieldh.,, is characterized by the Hamil-
realistic-looking hysteresis loops if one incorporates atonian

Gaussian distribution of on-site quenched random field in the

model. Thus the zero-temperature s_ingle-spin—ﬂip dynamics H= —JE SiSj—Z hisi_hextz s . (1)

of the ferromagnetic random field Ising mod&FIM) was i i i

proposed as a model of hysteresis and Barkhausen noise I% _ ) ) _ )

Sethnaet al.[1]. Antiferromagnetic RFIM is also interesting The sum in the first term is restricted to pairs of nearest
in the context of relaxation without Barkhausen noj&g neighbors on a Bethe lattice of coordination numherhe

The difficulty in the analytical treatment of the models external fieldhe,, is cycled from—c to +c and back to
comes from the presence of the quenched random field. The . This takes the system around its major hysteresis loop.
zero-temperature dynamics of RFIM cannot be solved exSpins turn up on the lower half of the loop, and turn down
actly in two or three dimensionso fa). We have obtained again on the upper half. The applied field changes very
the major hysteresis loop for the ferromagnetic RFIM in oneslowly. Equivalently, at each value of the external field, the
dimension[3] and on a Bethe latticB4]. The Barkhausen System is allowed adequate time to attain a relaxed state with
noise on the major loop has been analy#8H Minor hys-  €ach spin pointing along the net field at its site. In the relaxed
teresis loops in the ferromagnetic RFIM have been obtainegtate ahe,=h, the probability that an arbitrary sités up is

in one dimensior6]. Antiferromagnetic RFIM is apparently given by

more difficult, and its analytic solution is limited so far to the .
major hysteresis loop in one dimension for a rectangular dis- (h)= E
tribution of the quenched field of width2 whereA<|J|, J P =0
being the strength of the nearest neighbor interaction.

In the following, we present the solution of minor loops in Here P*(h) is the conditional probability that a nearest
the ferromagnetic RFIM on a Bethe lattice. This is an extenneighbor of site is up before site is relaxed, ang,(h) is
sion of the work presented in R¢B], and the completion of the probability that the sitewith quenched fieldh; can turn
a problem that remained open in Ré#]; therefore the up in applied fielch if n of its nearest neighbors are up. The
reader is assumed to be familiar with these references. Sestarting state on the lower half of the major loop has all sites

Il. MAJOR HYSTERESIS LOOP

V4
(n)[P*(h)]”[l—P*(h)]z_”pn(h)- (2
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down, and the starting state on the upper half has all sites upearest neighbors of a sitethat are up ah’=h-2J are
Thus, on the lower half of the major looB} (h) denotes the precisely those that were up before ditBipped up. These
conditional probability that a nearest neighbor of sitarns  neighbors will turn down on the reverse trajectory only after
up before sitd. On the upper halfP* (h) denotes the con- sitei turns down. Thus, given an up sitath’=h—2J on
ditional probability that a nearest neighbor of siteaurns the upper half of the minor loop, the conditional probability
down after sitei. We distinguish the two situations by put- P} (h—2J) that a nearest neighbor afis up is equal to
ting a subscript for the lower half andi for the upper half. Py (h), where Py (h) is the conditional probability that a

This gives nearest neighbor of siteis up at fieldh given that sitd is
-1, 4 down on the lower half of the major loop at field The
* ) — B * nrq_ p* z-1-n probability that the sitd is up ath—2J is given by the
P (h)= 2 ( . )[Fﬁ (MITL=PETT () o
) :
and p(h—2J)= EO ( n)[PT(h)]“[l— PF ()] "pn(h—2J)
0=
P*(h)=221(Z_l)[P*m)]“[l—P*(h)]z—l—“p (h. ©
u ol on u u el or, using the identityP} (h) = P* (h—2J),
@ ]
z
We note thatp,,1(h)=p,(h+2J), and thereforeP} (h) p(h—2J)=E ( )[Pfj(h—ZJ)]“
=P (h+2J). Here, P} (h) is the conditional probability n=o\N
that when a site that is up on the upper half of the major loop X[1-P%(h—23)]1> "pa(h—2J).  (6)

at field h, its nearest neighbor is also up. Similar®; (h
+2J) is the conditional probability that when a site that is It follows from the above equation that the reverse trajectory
down on the lower half of the major loop at field+2J, its  will meet the upper half of the major loop At=h—2J and

nearest neighbor is up. merge with it forh’<h—2J. Thus, the task of computing
the minor hysteresis loop is reduced to rarlge2J<h’
. STARTING A MINOR LOOP <h. We return to the question asked at the beginning of this

) section. What is the probability that a sitehat is up ath
Suppose we are on the lower part of the major loop wheR;rns down ah’? This is given by

the applied field is reversed fromto h’ (h’<h) to generate
the upper half of a minor hysteresis loop. We ask the ques- zZ 5

tion, what is the probability that an arbitrary sitethat was  q'(h’)= Z ( )[Pf*(h)]”[D*(h’)]Z”[pn(h)—pn(h’)].
up ath turns down ah’? In order to compute this probability n=0 N

correctly, we must take into account the irreversibility of the (7
zero-temperature dynamics. Consider a istteat is down on
the lower half of the major loop at an applied fiéder 5h but
turns up ah, wheresh is an arbitrarily small field. Once site

i has turned up, it may not turn down immediately if the field
is rolled back to the valua— sh. The reason is as follows. =1/, 1
When sitei turns up, it increases the net field on each of its D*(h')= > (
nearest neighbors by an amourdt Z'he increased field may n=o01 N

HereD* (h’) is the probability that a nearest neighbor of site
i turns down on the reverse trajectory before sife* (h’) is
determined by the equation

[P (ML P} (W)

cause one or more nearest neighbors of site turn up. -1, 1
Supposen, nearest neighbors of sitevere already up before X[1=ppra(h)]+ E ( )
sitei turned up, anadh, nearest neighbors turn up after site n=o01\ N

turns up. Clearlyh, must lie in the range €ny,<z—n,. % N1z 1—
The ny, neighbors increase the local field at ditey a finite X[PF (M]7D*(h))= i

amount 21le. Therefore, an infinitesimal decrease in the ap- X[Prs1(h)=pns1(h)]. (8)

plied field will not cause sitéto turn down unless,=0. A

site i with n,>0 will turn down in decreasing applied field Given a sitei that is up ath, the first sum above gives the
only after all of then, nearest neighbors have turned down.conditional probability that a nearest neighbor of dites
When the field is reversed o' <h, none of then, neigh-  down ath’=h, i.e., at the very start of the reverse trajectory
bors(which turned up before siteturned up could possibly  (and hence remains down fbf <h). The second sum takes
turn down before sité turns down. This leaves the otheg  into account the situation that the nearest neighbor in ques-
neighbors that turned up after siteThen, neighbors turned tion is up ath, but turns down before siteturns down on the

up because the field on them increased by an amalafter  return loop. Note thaall the nearest neighbors of a sitthat

sitei turned up. In decreasing field, then, neighbors will  turned up after it turned up on the lower major loop must
turn down before sitéturns down. Ath’ =h—2J, all of the  turn down before sité turns down on the upper minor loop.
ny, neighbors would have turned down with the result that the The magnetization on the reverse trajectory is given by
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FIG. 1. Major and minor hysteresis loops in RFINI%1) on a FIG. 2. Hysteresis in RFIMJ=1) on a Bethe lattice=4) for

Bgthe lattice £=3) for a GauSS|.an dlstrlbutlop of thg randqm field a Gaussian random field of mean zero and1.70. Discontinuities
with mean zero and=2. The minor hysteresis loop is obtained by .

reversing the applied field froh=1.5 toh’ = —0.5 and back to in the major loop vanish above.=1.78. Two minor loops are

h=1.5. Theoretical result is shown by a continuous line, and Sym_shown starting on the lower major loop at0.95 andh=1.05,

bols show the data obtained from numerical simulation of therespgctlvely. As in Fig. 1, theoretical resu_lt is shown by a_cont|_nu-
ous line, and symbols show the data obtained from numerical simu-

model. lation of the model. Note that the minor loops touch the upper
Do Do major loop when the applied field has been reversed by an amount
m’(h")=2[p(h)—q’(h")]-1. © 2
IV. COMPLETING THE MINOR LOOP return loop, i.e., abh”=h’. The third term gives the prob-

) ability that the neighboring site was down fat, but turned

We reverse the fiell’ to h” (h">h’) to trace the lower 5 on the lower return loop before sitéurned up. It can be
half of the return loop. The magnetization on the lower halfygrified that the lower return loop meets the lower major

of the return loop may be written as loop ath”=h and merges with it foh”>h, as may be
"R — A (h! "R expected on account of the return point memory. The exact

m(h")=2[p() —a’(h")+p"(h")] -1, (10 expressions given above have been checked against numeri-
wherep”(h”) is the probability that an arbitrary sifethat ~ cal simulations of the model in selected cases resulting in
turned up ah and turned down at’, turns up again al”, excellent agreement in all cases that were tested.

z

Z
p(h") =3 (n)[U*<h">]”[D*<h'>]”

n=0

V. CONCLUDING REMARKS

The method of calculating the minor loop described above
m_ , may be extended to obtain a series of nested minor loops.
X[Pn(N")=pn(N")]. (11 The key point is that whenever the applied field is reversed,

Here U*(h") is the conditional probability that a nearest & Sitéi may flip only after all neighbors of sitethat flipped
neighbor of a sité turns up before sité turns up on the N the wake of sitd (on the immediately preceding sector

lower return loop. It is determined by the equation have flipped back. The neighbors of sifewhich remained
firm after sitei flipped previously, do not yield before site
z-1 /5 1 has flipped again on the return loop. We have obtained the
U*(h")=P*(h)— 20 ( N ) above expression for the return loop when the applied field is
A=

reversed fromh,,=h on the lower major loop td.,=h’
<[P*(h)1"[D* (h')1Z~1" h)—p.(h’ (h—2J=<h’'<h), and reversed again froim,,=h’ to hgy
LPF (TP (h)] LPa(h)=Pah)] =h" (h"<h). When the applied field is reversed a third time

2liz-1 from h” to h” (h”<h"), expressions for the magnetization
+> ( N )[U*(h")]n[D*(h')]Z_l_” on the nested return loop follow the same structure as the one
n=0 on the trajectory frormh to h’. Qualitatively, the role oP*
X[pn(h")—pny(h")]. (12 on the first leg b to h') is taken up byu* on the third leg
(h” to h™) of the nested return loop.
The rationale behind E@12) is similar to the one behind Eq. We conclude by comparing the results obtained above

(8). Given that a sita is down ath’, the first two terms with numerical simulations on Bethe lattices of coordination
account for the probability that a nearest neighbor ofisise  numberz=3 andz=4, and also contrast these results with
up ath”=h’. Note that the neighbor in question must havethose obtained in the one-dimensional cg8g Let us spe-
been up ah in order to be up ab’, and if it is already up at cifically choose a Gaussian distribution of the random field
h’ then it will remain up on the entire lower half of the with mean value zero and variane€. One generally ex-
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pects the solution of an Ising model with nearest neighbofFig. 1, the point where the applied field is reversed deter-
interactions on a Bethe lattice% 3) to be qualitatively dif- mines the minor loop uniquely. The one-dimensional case
ferent from its solution in one dimensioz<£2), and to be (z=2) is similar[6]. However, the situation is different for
similar to the mean-field solution of an infinite-range model.z=4. Forz=4, we haver (4)=1.78 approximately. Figure
However, these expectations are not borne out in the case @fshows the major loop fox=4 ando=1.70 with a jump
hysteresis in RFIM. The mean-field soluti¢fi] does not discontinuity at a critical fieldh,, that is slightly higher than
show any hysteresis for=o()=2/m. In contrast to unity for o= 1.70. There are two values of the magnetization
this, there is hysteresis on Bethe lattices for all values.of ath., both lying on the lower half of the major loop. If we
Moreover, the behavior on lattices wittx=2 andz=3 turns  reverse the applied field from the valbg, we must specify
out to be qualitatively similar. For lattices with=4, the the state of the magnetization from where the return is made,
magnetization on each half of the hysteresis loop has a jumgiving us two possible return loops originatinghat. Figure
discontinuity foro<o(z); the jump discontinuity is absent 2 shows two minor loops starting &at=0.95 (slightly less

on lattices withz=3 for any finite value ofo. Figure 1  thanh.), andh=1.05(slightly greater tham_) on the lower
shows the major as well as a minor hysteresis loop on #&alf of the major loop. Both the return trajectories touch the
Bethe lattice withz=3, ando=2. The minor loop starts on upper half of the major loop when the field has been reversed
the lower half of the major loop at=1.5 and meets the by an amount 2 as expected from the theoretical analysis.
upper half ah=—0.5 as may be expected from the theoret-The overall agreement between the simulations and the
ical prediction. As the magnetization on the lower half of thetheory is also quite good indicating that the model consid-
major loop is a single valued function of the applied field in ered here is self-averagirig—6|.
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