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Internal eigenstate problem: The trial state method
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It is shown that the device of adding a special trial state to a basis set, thus augmenting by 1 the dimension
of any complex matrix being studied, leads to a formalism that permits the application of the wave operator
approach to calculating the internal spectrum of the matrix as well as the action of the resolvent ojgerator (
—H) ™! on an arbitrary vector in the origin&l-dimensional space. Two calculational variants of the method
are described and both are tested by studying the problem of a short laser pulse interacting sitlora H
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[. INTRODUCTION ods[14,15. Experience with the direct methods has shown,
despite their wide range of applicability, some cases for
Studies of the bound and resonance states of moleculavhich they typically encounter difficulties. The Bloch algo-
systems and of the quantum dynamical processes involvingthm is easily implemented but as a perturbative method it
such systems are often faced with the task of calculatinguffers from convergence problems, although these have
several internal eigenvalues and eigenvectors for large mdeen somewhat reduced by the use of the intermediate space
trices which may have complex elements. This task arisegoncept[16] and of quasiquadratic iterative proces§g|.
for example, in the work of Manthe and Mill¢t,2], which ~ The single-vector Lanczos method shares with the Bloch al-
uses a reaction probability operator expressed in terms of thgorithm and with the method of variational Rayleigh itera-
Green operatof3] for a case in which the potential incorpo- tion [18] the advantage of requiring only the formation of
rates a complex absorbing term to enforce outgoing wavenatrix-vector products but it generates artificial repetitions in
boundary conditions in the reactant and product spatial rethe spectrum and tends to converge most readily to eigenval-
gions. It also arises in the Floquet treatment of photoreactiveies at the ends of the spectrum unless special steps are taken
processe$4,5] which, when allied with the complex coordi- to handle these problems. Nevertheless, the Lanczos method
nate method6], allows calculation of photoionization and does converge quickly for interior eigenvalues, if the local
photodissociation probabilities using Floquet eigenvectors agap spacings are sufficiently large.
a basis in a generalized Hilbert space; the method can be Hybrid techniques have been proposed in order to over-
generalized to nonperiodic systems in order to treat processesme some of the typical defects of the methods mentioned
involving pulsed laser fieldg7]. Recent work 8] shows that above and so make possible the inspection of any desired
strongly nonlinear photodissociation phenomena can bgart of the spectrum of a large matrix, in what may be ap-
treated by means of a few Floquet eigenvectors in an apprgpropriately described as “matrix spectroscopiyt9]. To this
priately defined extended Hilbert space. end the Lanczos method has been coupled with a spectral
The matrices used to describe resonance states and pHater [19] and a preconditioned Green function block Lanc-
toreactive processes are often non-Hermitian because of th@s algorithm has also been propo§2d|. A Green function
use of complex rotations or complex absorbing potentials irexpansion in terms of Chebyshev polynomials, exploiting
the calculation of the matrix elements. They are, howevertheir simple recurrence relations, was used2at]. Cheby-
often sparse matrices, for which only the spectrum in a winshev polynomials are also used in a spectral projection
dow centered on some reference energy is required or fonethod, which uses an absorbing potential-like damping fac-
which only eigenvectors with some suitable property arefor and is able to produce simultaneous results at several
sought. For example, spectroscopic calculations may neeehergies; this last approach has been applied to reactive scat-
energies that have zero or very small imaginary paound  tering problemg22] and to calculations of vibrational reso-
states or long-lived resonangewhile photoreactive studies nanceg23].
primarily select Floquet eigenstates that have a suitably large The present work tests an approach that blends a Green
overlap with some specified initial state. function filter with wave operator techniques. The strategy
The many methods of eigenvalue calculation proposed itised hinges on an equivalence between two calculations,
the literature can be roughly classified into indirect and direcfirst, that of finding the resolvents—H) 1V for an arbi-
methods. The indirect methods include the relaxation methottary vectorV in the primaryN-dimensional Hilbert space
[9], the spectral methofll0], and the filter diagonalization and, second, that of solving an eigenvalue problem in an
method[11]. The direct methods, which include perturbative augmented space &f+1 dimensions for a new matrix that
and moment method approaches, include those of BlbZh  depends linearly oll. The (N+ 1)-dimensional space is ob-
and Davidsor13] and the Lanczos and block Lanczos meth-tained by adding a special “trial state” to the original space,
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if the numerical elements inserted in the coluRiare those
of the vector|a).

This matrix possesses two main featur@sAll the non-
diagonal elements in the first row are zero; the diagonal el-
ementE, is consequently an exact eigenvalue of the new
(N+1)x(N+1) matrix, whatever the elements are in the
first column.(ii) The matrix is non-Hermitian, even H is a
real symmetric matrix.

FIG. 1. Schematic representation of the modification of khe The last point is a handicap since the eigenvalue treatment
matrix that is produced by introducing a single extra test stateof this matrix cannot use the well established procedures for
which is nonsymmetrically coupled to the states in the original Hil-Hermitian matrices. However, the matrix has an interesting
bert space. property related to the eigenvector associated Eigh An
elementary calculation reveals that this eigenveptgy can

and the new eigenvalue problem is solved by using a timebe expressed in the form

dependent wave operator formalism which has been de-

scribed and applied in previous wolR4]. I\o)=
The formalism is given in detail in Sec. Il, while Sec. llI

! R
Eo—H
sets out two calculational implementations of it: one of themand this provides the kev point of our calculational strate
proceeds by working out—H) 'V, while the other aims P y poin : 9y-
To see this result we set the first eigencolumn element equal

more directly at the eigenvalues. Section IV carries out 35 1 and reaard the remaining elements as a védorThe
numerical trial of these two implementations by calculating . 9 ) : 9 B
%lgenvalue equation gives for tli¢h component

some generalized Floquet eigenstates for the problem of
strong pulsed laser field interacting with theHon.

1+

|0) 2

RyX 1+ >, HyXk=EpX;,
K

Il. THE BASIC IDEA leading to the vector equations

Let H be a general X N) nonsingular matrix represent-
ing some Hamiltonian in a finiteN-dimensional Hilbert
space anda) a vector of this space.H can be a complex
non-Hermitian matrix if complex similarity transformations
have been intoduced to give a representation of any continua IX)=(Eq— H)*1|R>,
involved in the processes described.

If H is partitioned into a zeroth-order Hamiltonian plus awhich is equivalent to Eq(2), since we chooséR)=|a).
perturbation, H=Hy+ V), and|e) is an eigenvector ofi,, Consequently we find from Eqg¢l) and (2) that the nondi-
then a key problem in quantum dynamics is the calculatioragonal components of vectpr,) are given by
of the H eigenvectot) ,) that issues frona) when an adia-
batic switching on of the perturbatidnhis used. In the strong
coupling regime, the calculation principally involves the
group ofn H eigenvectormm<N {|\),i=1-n} that have
significant overlap with the initial state). )

An indirect way to treat the problem is to form the prod- O the trial vecto
uct[1/(E—H)]|a) in the N-dimensional Hilbert space,.  €duation
In the spectral projection method of Mandelshtam and Tay- _
lor [22] this product is found by using a polynomial expan- HIXo)=EolXo) @
sion of the resolvent operator. The alternative approach of; the extended space.

the  present ~ work introduces an  extended Thjs offers the possibility of applying a standard eigen-
(N+1)-dimensional Hilbert spacey ., consisting of the di-  yajye algorithm to solve this filtered system, albeit still with
rect sum ofey and a one-dimensional supplementary spacene restriction that is a non-Hermitian matrix. The extra
spanned by a vectdp) orthogonal toey. This vector, the  state|0) which gives its name to this method was initially
test state is a mathematical aid, with no direct physical intercajled the “dat sonde” in French; in English it is best ren-
pretation. In the extended space we introduce a new nonsyngiered as trial statéor probe state
metric matrix{ with a structure that is displayed pictorially At first sight it might appear that the reformulation of the
in Fig. 1. This matrix has a first column containing a singleproblem has not changed the intrinsic difficulty of its solu-
arbitrary diagonal matrix elemer, and the vectorR  tion. However, the modified formulation brings the problem
shown in Fig. 1, which can be seen to represent the formajithin the region of applicability of the time-dependent wave
operator operator formalisnj24], which can handle Eq4) whenE,

is a fixed number and whery) has anX) component that

R=|a)(0] (1)  develops from an initial vectde) in the spacesy.

[(Eol—H)X];=R;,

ie.,

1
(|)\O>)offdiag:m|a>v (3

so that the calculation of the action of the resolvent operator
fa) can be found by solving the eigenvalue
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1. PRACTICAL IMPLEMENTATION
A. The general scheme

From Egs.(2) and(3), the solution\,) of the eigenvalue
problem™|\o) =Eg|\o), EQ. (4), can be written as

[Xo)=10)+[X), (5)
where

X)=

EO_ H |a> (6)

designates the components of the eigensolution in the pr

mary Hilbert spacey .
Denoting by|\ z) the eigenvectors off and byE their
associated eigenvalues, we have in the general case

|a>=§ aglhp) (7)

and

a
¥)=3 g7, M- ®

We particularly note that when the trial vectas) is propor-
tional to a single eigenvectdh,), i.e., |a)=a,|\,), then
[X) is itself proportional to this vector]{X)=[a,/(Ey
—E,)]I\,). This special feature will be used later.

We will now integrate the eigenvalue equati@n by not-
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This introduces artificially a time-dependent mattxt) by
replacing the first columiR=|a)(0| with a time-dependent
one such that at=0 the trial vector|0)+|X("=%) is an
exact eigenvector otH(t=0)=H—QuH"=9P,, while at
t=Ts we haveH(t=Tg)="H. The switching functiorF (t)
=t/Ts— (1/27)sin(2at/Ty) increases from 0 at=0 up to 1
att=Tg with zero first- and second-order time derivatives at
the ends of the interval in order to reduce nonadiabatic ef-
fects.

(iv) The evolution equation for the time-dependent re-
duced wave operator is then integrated over the interval
[0,T;] by taking the initial choice

X(t=0)=X"=0 (12

The integration process uses the formula derivef2#,
H(HP
X(t+ A)=X(0)+| X(t- A - X(1) + S0

Xexp(—2iwAt) — .

(13

where the compact notation; ,= (7;;— H,.)/% has been
used.

The propagation equatioqii3) has desirable interpolatory
properties. The limitw—0 leads to the standard second-
order differential schemi5], while in the region of largev
the rapidly oscillating term has a negligible contribution at

ing that|\,) satisfies an intermediate normalization condi-the adiabatic limit Ts— ) and can be suppressed, leading

tion in the extended Hilbert space, i.€Q|\o)=1. Conse-

to a result similar to the RDWA iteration scheme result:

quently, [\o){(0| can be assimilated to the Bloch wave X(t+At)=X(t) —[QoH(t)Pol/iw. Equation (13) is thus

operator associated with the test st@eand the matrixi.
The calculation of the off-diagonal paX of this operator

appropriate for the adiabatic limif.e., the case of large
switching timeT) since the high-frequency terms, which

[i.e., X=2;.0((jI\o))|i){0]] can be made by using the usually produce an instability and so impose the need for a

time-dependent wave operator formulation already explainethirge number of time steps, can be arbitrarily suppressed.

in [24]. We will briefly describe that formalism and its ad- The equation can also cope with accidental resonanees (

aptation for the present problem. ~0) between the states that are implicitly involved in the
(i) First we select a trial wave operatbx(”:o)). The integration process.

simplest choice i$X("=%)=0. However, if|a) is one of the The integration of this time-dependent wave operator on

H, eigenvectors then a better choice is [t=0, t=T,] gives a solutionX("*1) a first-cycle solution,

1 which for sufficiently largeT s will be a good approximation
—|a) (9)  of the exact stationary wave operator. When the nonadiabatic
Eo~Haa effects remain too large, i.e., when the residual term
QuHM VP =Qo(1— XM Yy H(1+ X" 1) is not suffi-
ciently small, a second cycle of integratipiqgs. (10)—(13)]
can be performed by simply incrementing the indexn
=0—n=1) in the proceduréi)—(iv).

|X(n=0)>:

[cf. Eq.(6)].
(ii) The matrixH is then separated into two parts,

H=(H—QoH"="Pg)+QuH"=P,, (10)

where H"=0=(1—-X"=0)(1+X("=9). Here P, is the
projector|0)(0| for the test cas®) andQ, is the projector for
the complementary space, i.e., for the primary Hilbert space The preceding cycle of integration converges to the solu-
: tion [\g)=|0)+[1/(Eo—H)]|@). From Egs.(7) and (8), it

(iii) An adiabatic integration procedure is then introducedgives a vectof\ ) that is a linear combination of the exadt

by taking a time-dependent matrix in place of the seconcigenvectors) ;) possessing a nonvanishing overlap with
matrix on the right hand side of E¢L0): |@). When the chosen value & is far away from the cor-
responding eigenvaluds; in the complex plane, the integra-
tion is easier but the final solution has a wide distribution
over the basis seivg). In contrast, wherE, is near to a
group of Ny exact eigenvalues, the weight of these states

B. A second option: The eigenvalue problem

EN

7/(n=0) 7/(n=0) t L
QoM Po—QoH Po T, ESIH(ZW'[/TS) .
11
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increases dramatically in the expans|@my. (8)] because of Oppenheimer approximation, the coupling produced by the
the large factors 1K,—Eg). By usingN, differentE, val-  field-matter interaction is

ues in this region of the complex plane one can generate an _ 5

Ny X N, effective Hamiltonian which when diagonalized will Voulr 1) = tgu(r) Eo exi — (t—to) / ¥ ]cog wot),
give the group of vectorisk;;} involved in the expansion.

However, our formalism can actually be modified to SOIVewhereEO is the maximum amplitude of the electric field and

the eigenproblenH |\, )=E_|\,) directly and not just to . s .
find th?a Poduc(l/(|E “EH)]TLY)“;M the i)r/1direct ro<J:ess of Hau is the transition moment between the ground electronic
P 0 P surface oy and the excited o, surface.

the preceding paragraph. To simplify the presentation we The (t,t') wave operator theor§8] sets out to describe

shall assume thd) is one of the basis vectors used in thethe photodissociation process induced by a short laser pulse

representathn OH.‘ An ad'labatlc scheme is th_en introduced by using a reduced basis formed by a few eigenvectors of the
by transformingH into a time-dependent matrix, Floguet Hamiltonian

(18)

H—H(t). (14 J
HF(t)zH(t)—ihE. (19
In this process all the matrix elements are unchanged except

the off-diagonal elements of colunwg in which we incor-
porate the time-dependent factor:

t (27'rt
S

T, 270 T,

The HamiltonianH(t) represents the dynamics of the mol-
ecule on the two surfaces coupled by the field. It includes a
(15) negative imaginary potentiatiV,,(r) added in the spatial
asymptotic region to absorb the outgoing wave packets. This
) ) ) ) . ) Hamiltonian belongs to an extended Hilbert space which in-
With this choice|a) is an eigenvector oH(t=0) with the  cjydes the two radial coordinates for the two surfaces and the
eigenvalueE}=(a|H|a), while H(t=Tg=H. The initial  whole time variation of the field envelope. This space is
wave operator associated with the test state is chosen to bgpanned by a discrete product basis set with elements
liY®|n), wherelj) are the eigenvectors &f without the field
INo(t=0))(0[=]0)(0[+|X(t=0)){0], (16) Cguplir?g[Eq. (18)] and|n) is a basis that spans a time inter-
val [ —T/2,T/2] in which the Gaussian field envelope is in-
cluded and with elementg|n)=exp(2mint/T).
)= 1 ) Using the €,t’) wave operator theoy8], one can express
Eq—H(t=0) Eo—H,, "’ the photoreactive dynamics issuing from an initial unper-
turbed eigenstate such gs=1)x|n=0) (i.e., the first free
i.e., we usga) as the initialR column (cf. Fig. 1. eigenstate of the ground surface times the initial laser field
The eigenvalue equatiofi{|\o)=Eo|\o) is then inte-  state|n=0)) by simply calculating the associated Floquet
grated by using the time-dependent wave operator procedutdgenstate|@ ;-1 ,-o)). The eigenproblem in the generalized
and by forcing at each time a proportionality betweenHilbert space then appears as the key aspect of this formula-
INo(1)) and theH(t) eigenvectori\ ,(t)) that issued from tjon. The present test calculation considers the same data as
la) at timet=0. This proportionality is imposed by varying those of[24]. In Eq. (18) w, is taken to be that correspond-
the first column as followsFig. 1): ing to a wavelengthh =329.7 nm, to induce an energetically
favorable vertical three-photon transition from the bound
_ _ : i state(lsoy, v =0) to the continuum (Rao). The field am-
Rt ,Zo (B0~ Eu(OKiRot)HINO], @7 plitude E?) corresponds to a laser field intensity of
2.5x 108 Wi/cn?.
where 2x 100 eigenfuctiongj) are used to represent the two
E(1)=(X()[HX(t) Y {X(t)|X(t)). uncoupled surfaces on the ran@el2] a.u. of the radial co-
ordinate and 198 functionf) are used to span the time
This forced evolution is introduced in order to obtain at theinterval [ —T/2,T/2] with T=1000 a.u.(On this interval the
end of the integration using Eq13) a vector|X) that is  Gaussian pulse with=140 a.u.[Eq. (18)] is centered at
proportional to |\,), i.e., to ensure thatX(t=Tg)) =0, This leads to a coupled basis that includes 39 600
=[1/(Eo—E,)]|Ny), with H|\,)=E,|\,). The procedure states.
is identical to those in the preceding section, except that two Figure 2 represents the initial unperturbed eigenvalue

columnsffirst column of Eq.(17) and columna of Eq. (15)] Ej0=l,n=0 (situated at the bottom of the arrpwand the first

f(t)=

with

IX(t=0))=

are now modified during the time integration. 500 nearest unperturbed eigenvalues. The optical potential
displaces all these eigenvalues into the lower half of the
IV. TEST: CALCULATION OF FLOQUET EIGENSTATES complexE plane. Nevertheless, the density of states remains
TO DESCRIBE PHOTODISSOCIATION high, with multiple near degeneracies. The test state eigen-

DUE TO ULTRASHORT LASER PULSES value E, is defined from the initial eigenvalue by using a

. . ) complex positive shift
We will consider the case of tHg,” molecule subjected

to a short Gaussian electric field pulse. In the Born- Eo=Ej_;,—otiA. (20
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FIG. 4. Convergence rate for the solution of the eigenvalue
problem H—E,)|X)=0 when using the procedure described in
Sec. Il B. Three pairs of curves corresponding to three increasing
values ofA are presented: full lines\ =0.5X 1072; dashed lines,
=102, dotted lines,A=0.5x10"1. For each pair the lower
curve is a measure of the defect|af) as an eigenvector 6f, i.e.,
[(H—Eg)|N\o)||%. The upper curve is a measure of the defedd®f
J;lf:_q. (5)] as an eigenvector dfl.

-0.09 -0.092 -0.094 -0.096 -0.098 -0.1 -0.102 -0.104 -0.106 -0.108
Re (E)

FIG. 2. Positions in the complex plane of the unperturbed Flo-
quet eigenvalues for the problem of,Hsubjected to a Gaussian
pulse(see the text The units are atomic units. The arrow connects
the initial unperturbed state eigenvalli?:l,n:O to the test state
energyE,. The 500 nearest unperturbed eigenvalues are also re
resented.

Figure 2 refers to the choic&=0.5x 10 2. This shift pro-
cess extracts the test state from the region of large density
states by movindg, into the upper half plane. It thus avoids

) . . Curves corresponding to four decreasing values of the
accidental resonances, since all the exaetigenvalues;

: ! I shift A [Eq. (20)] are shown. The convergence is relatively

as well as all the unperturbed eigenval@gs, are situated in 450 A precision of 102 is obtained after 30 iterations for

the I.ower half plane. . , the largestA value, although decreasingdecreases the rate
Figure 3 presents some results obtained by applying thgs convergence. This effect would be anticipated, since the

computat?onal method of Sec. Il A. This figure shows on ayrm of Eq. (13) implies that decreasing will introduce
logarithmic scale a measure of the “defect” of the calculatedy,ore and more small frequencies into the equation of

test statd\ o) [Eq. (5)] with respect to the exact eigenvector. propagation. FoA values smaller than 0:810°2 a signifi-

The measure chosen is the quantity cant increase of the number of time stdpsd thus a de-
crease ofAt) is required to produce convergendén the
case of Fig. 3, each cycle between0 andTg was made
The independent variable used in Fig. 3 is the “order ofusing only ten time steps.

iteration” in the wave operator time integrgq. (13)], i.e., Figure 4 presents results that relate to the eigenvalue op-
the number of calls of the subroutine which forms the prod-tion presented in Sec. IllB. Three pairs of curves are pre-
uct of theH matrix with the vectorlX(t)) (this number of sented for three decreasing values of the shiffor eachA

calls gives an approximate measure of the total CPU timealue two curves are shown. In each case the lowest curve

[(H—Eo)|\o)lI*. (21

required.

0

-5

1} = Eo}[2o)?
T COR RV
S & & & o
T T T T T

'

[

(=4l
T

20

40

60

80 100 120

iteration order n

corresponds to the measure of the defeddgf as an eigen-
vector of H, i.e., the quantityl—Eg)|\o)|? [Eq. (21)],
whereH represents the value of the matrix at the end of the
cycle:t=Tg. The upper curve is a measure of the defect of
IX(t=T,)) [i.e., the part of|]\o(t=Tg)) embedded in the
original Hilbert spacesy] as an eigenvector of the mati,
I(H=E XTI (22
This figure reveals that the concepts introduced in the
eigenvalue optior(Sec. Il B) are appropriate. It is in fact
possible to impose a proportionality betweift) ) [Eq. (5)]
and |\ ,(t)) and thus to follow adiabatically the instanta-

neousH eigenvectoif\ ,(t)), although the concomitant pen-
alty for this is a decrease of the rate of convergence. The

FIG. 3. A measure of the defect of the calculated test $iafe  d/ff€rence in the behavior df(H—Eo)[\o)[|* at A=1072, .
as an eigenvector of the extended mathx [(H—Eg)[\o)l|% is @S produ_ced by ch_anglng betvvee_n the two methods set out in
shown on a logarithmic scale as a function of the iteration onder S€C. lll, is clearly illustrated by Figs. 3 and 4.

Four curves, corresponding to four decreasing values of the com- The results clearly become incorrect whiens too large
plex shifti A [Eq. (20)] are represented. From the bott¢full line),  (€.9., atA=0.09. This is simply because in this cakg is
to the top(dotted ling: A=10"%, 0.3x107%, 1072, 0.3x1072. far away from the selected unperturbed eigenvﬁﬁglyr,:(,
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L 0 ' ' : : ' ' ' ues, particularly when is large. One obtains, for example, a
S sl i plateau value of about I6 for A=0.03. This means that the
= test state|\y)=|0)+[1/(Eo—H)]|a), which is converged
E'f -10 [ - to a precision of less than 18°, has a wide-range expansion
E s + 4 i over the basis set dfl eigenvectorg|\g)}.
") * + . By contrast the two same functions converge to small
= *4 values(of about 10*° and 10 8) in the case of the eigen-
= o i value option. This indicates that in this case the converged
E'f test state|\o) is, as expected, proportional to a sindte
g -3 7 eigenvector, i.e., that we have|\g)=|0)+[1/(E,
T g i —E,)1|\.), wherea denotes the stat§ =1, n=0). The
1 13 1 1 1 1 H
0 00 200 300 400 500 600 700 figure also shows f[he decrease'of t_he convergence rate that
iteration order n occurs when the eigenvalue option is used.
FIG. 5. Comparison of the convergence rates corresponding to
the use of the algorithms of Secs. IIl A and lliBee text Three V. CONCLUSION
pairs of curves correspond to the general schégee. 11l A): full
lines, A=0.3x10"!; dashed lines, A=10"2%; dotted lines, A The model of the trial state is based on the use of a con-

=0.3x10 2. The upper flat lines shoW(H—E,)|X)||> and the  venient mathematical artifact. By increasing by 1 the dimen-
lower ones show|(H—Eg)|\o)|?. The points & and + show  sion of the Hilbert space in whicH operates, with the cre-
[(H—E,)|X)||? and||(H—Eg)|\o)||> atA=10"2 for the eigenvalue  ation of a test state nonsymmetrically coupled to the inktal
method of Sec. Il B. matrix, a new representation of the Green operator equation
|X)=[1/(E—H)]| ) is obtained. This reformulation permits

and thus far away from the exakt eigenvalueE;_; . the application of various algorithms developed within the
With such a large separation it is impossible to force anframework of stationary and time-dependent wave operator
adiabatic response and the propagated soluti¥(t))  theories. An adaptation of this formulation allows us to solve
spreads out over many eigenvectrg). the eigenvalue problefw)— |\ ,) for internal eigenstates.

Figure 5 compares more directly the general schédee. The algorithm used here for the eigenvalue problem will
[l A) and the specialized eigenvalue opti@ec. Il B). The  remain applicable to general non-Hermitian matrices, but the
dashed, dotted, and full lines correspond to the generahodification introduced to impose adiabatic following of the
scheme. For each value, two curves represent successivelyinstantaneous eigenvectors was seen to give a marked reduc-
the two functions|(H—Eg)|\o)|? and[[(H—E,)|X)|?. In  tion in the convergence rate. We are currently exploring
this case the functiof(H — E,)|X)||> converges to large val- methods that can be used to counter this effect.
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